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Abstract. We extend dynamic logic of propositional assignments by adding an
operator of parallel composition that is inspired by separation logics. We pro-
vide an axiomatisation via reduction axioms, thereby establishing decidability.
We also prove that the complexity of both the model checking and the satisfiabil-
ity problem stay in PSPACE.
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1 Introduction

It is notoriously delicate to extend Propositional Dynamic Logic PDL with an operator
of parallel composition of programs. Several attempts were made in the literature: Abra-
hamson as well as Mayer and Stockmeyer studied a semantics in terms of interleaving
[Abr80,MS96]; Peleg and Goldblatt modified the interpretation of programs from a re-
lation between possible worlds to a relation between possible worlds and sets thereof
[Pel87,Gol92]; Balbiani and Vakarelov studied the interpretation of parallel composi-
tion of programs π1 and π2 as the intersection of the accessibility relations interpreting
π1 and π2 [BV03]. However, it seems fair to say that there is still no consensus which
of these extensions is the ‘right’ one.

Dynamic Logic of Propositional Assignments DL-PA [BHT13,BHST14] is a ver-
sion of Propositional Dynamic Logic (PDL) whose atomic programs are assignments
of propositional variables p to true or false, respectively written +p and −p. We and
coauthors have shown that many knowledge representation concepts and formalisms
can be captured in DL-PA, such as update and revision operations [Her14], database
repair [FHR19], lightweight dynamic epistemic logics [CS15,CHM+16,CS17], plan-
ning [HMNDBW14], and judgment aggregation [NGH18]. The mathematical prop-
erties of DL-PA are simpler than those of PDL, in particular, the Kleene star can be
eliminated [BHT13] and satisfiability and model checking are both PSPACE com-
plete [BHST14].

In this paper we investigate how dynamic logic can be extended with a program
operator of parallel composition π1||π2 of two programs π1 and π2 that is inspired by
separation logic. The latter was studied in the literature as an account of concurrency,
among others by Brookes and by O’Hearn [O’H04,Bro04,BO16]. Their Concurrent
Separation Logic is characterised by two main principles:



1. When two programs are executed in parallel then the state of the system is parti-
tioned (‘separated’) between the two programs: the perception of the state and its
modification is viewed as being local to each of the two parallel programs. Each of
them therefore has a partial view of the global state. This entails that parallelism
in itself does not modify the state of the system: the parallel execution of two pro-
grams that do nothing does not change the state. The formula ϕ→

[
>?||>?

]
ϕ should

therefore be valid, where “>?” is the test that > is true (which always succeeds).
2. The execution of a parallel program π1||π2 should be insensitive to the way the

components of π1 and π2 are interleaved. Hence “race conditions” [BO16] must
be avoided: the execution should not depend on the order of execution of atomic
programs in π1 and π2 (where we consider tests to be atomic, too). Here we interpret
this requirement in a rather radical way: when there is a race condition between
two programs then they cannot be executed in parallel. For example, the parallel
program +p||−p where +p makes p true and −p makes p false is inexecutable
because there is a conflict: the two possible interleavings +p;−p and −p; +p are
not equivalent. We even consider that +p||+p is inexecutable, which some may
consider a bit over-constrained4.

In formal frameworks for the verification of parallel programs such as the one pro-
posed by Brookes and O’Hearn [Bro04,O’H04], allowing race conditions is a necessary
feature for the framework to be able to prove a property of programs, namely that they
are race-free. On the contrary, dynamic logics permit to prove properties of formulas,
and atomic actions are actually even totally abstracted away in most dynamic logics.
In such abstract settings, whether two given atomic actions can be executed concur-
rently is a semantic detail of each model. For instance, in dynamic logics with a parallel
composition based on separation (like in [BdFV11,Bou16,BB18]), the separation rela-
tion of the model provides the possibility to forbid race conditions. The race condition
issue arises in logics based on DL-PA because atomic actions are concrete: basically,
each atomic action potentially changes the valuation of exactly one propositional vari-
able. Hence it is natural to consider access to the propositional variables as the main
resource. In this perspective, a decision has to be made on whether the separation of
these resources is strict or not, i.e., whether race conditions are allowed or not. In the
present work, we have chosen a strict separation semantics because it is the simplest
solution satisfying the two principles stated above.

We have not yet said what one should understand by a DL-PA system state. A previ-
ous approach of one of us only considered the separation of valuations, i.e., of truth val-
ues of propositional variables [Her13]. Two separating conjunctions in the style of sep-
aration logic were defined on such models. This however did not allow one to define an
adjoint implication as usually done in the separation logic literature, which was some-
what unsatisfactory. Another paper that was coauthored by one of us has richer models:
valuations are supplemented by information about writability of variables [HMV19].
It is supposed that a variable can only be assigned by a program when it is writable.
Splitting and merging of such models can be defined in a natural way, thus providing a
meaningful interpretation of parallel composition. When parallel composition is based

4 This restriction can be related to the fact that the formula e 7→ e′ ∗ e 7→ e′ is unsatisfiable in
Separation Logic [Rey02].



on separation, writability information permits to resolve merge conflicts. Consider for
instance the executions of the two programs >?||+p and −p||+p from a state in which p
is false. We argue that intuitively, the former program should lead to a state in which p is
true whereas the latter program should either not be executable or non-deterministically
lead to two possible states, one where p is true and one where p is false. However, with-
out writability information, the states before the merge of each of these programs turn
out to be identical: p is false in the left branch but true in the right branch. Writabil-
ity information allows the merge operation to distinguish these two situations and to
resolve the conflict in the former case.

We here push this program further and consider models having moreover informa-
tion about readability of variables. We suppose that writability implies readability5 and
that a variable can only be tested if it is readable. Our tests ϕ?? therefore differ from
the standard tests of PDL and DL-PA in that their executability depends on whether
the relevant variables are readable. In particular, while

〈
p??

〉
> → p, remains valid, its

converse p →
〈
p??

〉
> becomes invalid in our logic: it may be the case that p is true but

cannot be read.
Distinguishing the variables that can be tested permits some useful checks. Consider

for instance the execution of the program (−p; q??) || (−q; p??) from a state in which both
p and q are true. Without readability, this program can be executed and results in a
state in which both p and q are false. However, no interleaving of this program can be
executed. Adding readability of variables permits to detect this issue: we enforce that a
variable cannot be read by one subprogram of a parallel composition if it can be written
by the other subprogram.

The paper is organised as follows. In Section 2 we define models and the two ternary
relations ‘split’ and ‘merge’ on models. In Section 3 we define the language of our
logic and in Section 4 we give the interpretation of formulas and programs. In Section 5
we axiomatise the valid formulas by means of reduction axioms and in Section 6 we
establish that the satisfiability problem is PSPACE complete. Section 7 sums up our
contributions and discusses related work and the application to parallel planning. The
annex contains a proof of associativity of parallel composition.6

2 Models and Their Splitting and Merging

Let P be a countable set of propositional variables. We use p, q, . . . for elements of P. A
model (alias a system state) is a triple m = 〈Rd,Wr,V〉 where Rd, Wr, and V are subsets
of P such that Wr ⊆ Rd. The intuition is that Rd is the set of readable variables, Wr is
the set of writable variables, and V is a valuation: its elements are true, while those of its

5 As suggested by one of the reviewers of a previous version of the present paper [BHT19], this
constraint may be relaxed and one may suppose that a program can modify a variable without
being able to read its value. This would simplify the presentation of the logic; however, we
believe that our inclusion constraint is natural in most applications.

6 The present paper is a more elaborate version of [BHT19]. It contains proofs of the results,
more motivation and explanations, and furthermore proves that our operator of parallel com-
position is associative.



〈{p, q, r}, {p, q}, {p, q, r}〉

〈{p, r}, {p}, {p, q, r}〉

〈{q, r}, {q}, {p, q, r}〉

〈{p, r}, {p}, {q, r}〉

〈{q, r}, {q}, {p, r}〉

〈{p, q, r}, {p, q}, {r}〉

Fig. 1. Examples of split and merge operations: the left side illustrates the split of the
model 〈{p, q, r}, {p, q}, {p, q, r}〉 into 〈{p, r}, {p}, {p, q, r}〉 and 〈{q, r}, {q}, {p, q, r}〉; the right
side illustrates the merge of the models 〈{p, r}, {p}, {p, q, r}〉 and 〈{q, r}, {q}, {p, q, r}〉 into
〈{p, q, r}, {p, q}, {r}〉.

complement P \V are false. The constraint that Wr ⊆ Rd means that writability implies
readability.

The special case when Wr = P is typical when checking the validity or the satisfi-
ability of a formula ϕ. Lemma 1 in Section 4 will prove that, as expected, this case is
equivalent to the case where Wr and Rd are the set of propositional variables occurring
in ϕ. In fact, the writability and readability sets are mostly useful for checking prop-
erties of subprograms of parallel compositions. On the other end of the spectrum, the
case Wr = ∅ is of little interest since the only executable programs will be those without
assignments.

Two models m1 = 〈Rd1,Wr1,V1〉 and m2 = 〈Rd2,Wr2,V2〉 are RW-disjoint if and
only if the writable variables of one model and the readable variables of the other are
disjoint, i.e., if and only if Wr1 ∩Rd2 = Wr2 ∩Rd1 = ∅. For example, m1 = 〈{p}, {p}, ∅〉
and m2 = 〈{p}, ∅, ∅〉 fail to be RW-disjoint: in m1, some program π1 modifying the value
of p may be executable, while for programs executed in m2, the value of p may differ
depending on whether it is read before or after the modification by π1 took place.

As writability implies readability, RW-disjointness of m1 and m2 implies that Wr1
and Wr2 are disjoint.

We define ternary relations / (‘split’) and . (‘merge’) on models as follows:

m / m1
m2

iff m1 and m2 are RW-disjoint, Rd = Rd1 ∪ Rd2, Wr = Wr1 ∪Wr2,
and V = V1 = V2;

m1
m2
. m iff m1 and m2 are RW-disjoint, Rd = Rd1 ∪ Rd2, Wr = Wr1 ∪Wr2,

V1 \Wr = V2 \Wr, and V = (V1 ∩Wr1) ∪ (V2 ∩Wr2) ∪ (V1 ∩ V2).

For example, for m = 〈Rd,Wr,V〉 and m2 = 〈Rd2,Wr2,V2〉 we have m / m
m2

if and only
if Wr2 = ∅, V2 = V, and Rd2 ⊆ Rd \Wr. In particular, 〈∅, ∅, ∅〉 / m1

m2
if and only if m1 =

m2 = 〈∅, ∅, ∅〉. Contrarily to splitting, merging does not keep the valuation constant:
it only keeps constant the non-modifiable part V \Wr of the valuation V and puts the
results of the allowed modifications of Wr together. These modifications cannot conflict
because m1 and m2 are RW-disjoint. Figure 1 illustrates each of these two operations by
an example. The checks that are performed in the merge operation are reminiscent of the
self composition technique in the analysis of secure information flows [DHS05,SG16].7

7 We are grateful to Rainer Hähnle for pointing this out to us.



The set Rd of readable variables of a model m determines which models cannot be
distinguished from m:

m ∼ m′ iff Rd = Rd′,Wr = Wr′,V ∩ Rd = V′ ∩ Rd′.

Hence m and m′ are indistinguishable if (1) they have the same readable and writable
variables and (2) the valuations are identical as far as their readable parts are concerned.
This relation will serve to interpret tests: the test ϕ?? of a formula ϕ is conditioned
by its truth in all read-indistinguishable models, i.e., in all models where the readable
variables have the same truth value.

3 Language

Formulas and programs are defined by the following grammar, where p ranges over the
set of propositional variables P:

ϕ ::= p | > | ¬ϕ | ϕ ∨ ϕ |
〈
π
〉
ϕ,

π ::= +p | −p | r+p | r−p | w+p | w−p | ϕ? | ϕ?? | π; π | π∪ π | π∗ | π||π.

The program +p makes p true and −p makes p false, where the executability of these
two programs is conditioned by the writability of p. The program r+p makes p readable
and r−p makes p unreadable; similarly, w+p makes p writable and w−p makes p non-
writable. We suppose that these four programs are always executable. The program ϕ?
is the PDL test that ϕ, that we call exogenous; ϕ?? is the endogenous test that ϕ: it is
conditioned by the readability of the relevant variables of ϕ.

The formula
[
π
]
ϕ abbreviates ¬

〈
π
〉
¬ϕ. Given an integer n ≥ 0, the program πn is de-

fined inductively by π0 = >? and πn+1 = π; πn. Similarly, π≤n is defined by π≤0 = >? and
π≤n+1 = >?∪ (π; π≤n). For a finite set of variables P = {pi}1≤i≤n and associated programs
{πi(pi)}1≤i≤n, we use the notation ;p∈P π(p) to denote the sequence π1(p1); · · · ; πn(pn),
in some order. We will make use of this notation with care to guarantee that the ordering
of the elements of P does not matter.

The set of propositional variables occurring in a formula ϕ is noted Pϕ and the set
of those occurring in a program π is noted Pπ. For example, Pp∨

〈
+q

〉
¬r = {p, q, r}.

4 Semantics

Let m = 〈Rd,Wr,V〉 be a model. Formulas are interpreted as sets of models:

m |= >;
m |= p iff p ∈ V, for p ∈ P;
m |= ¬ϕ iff m 6|= ϕ;
m |= ϕ ∨ ψ iff m |= ϕ or m |= ψ;
m |=

〈
π
〉
ϕ iff there is a model m′ such that m~π�m′ and m′ |= ϕ.



〈{p, q, r}, {p, q}, {p, q, r}〉

〈{p, r}, {p}, {p, q, r}〉

〈{q, r}, {q}, {p, q, r}〉

〈{p, r}, {p}, {q, r}〉

〈{q, r}, {q}, {p, r}〉

〈{p, q, r}, {p, q}, {r}〉

−p

−q

Fig. 2. Illustration of an execution of −p||−q at the model 〈{p, q, r}, {p, q}, {p, q, r}〉.

Programs are interpreted as relations on the set of models:

m~+p�m′ iff Rd′ = Rd, Wr′ = Wr, V′ = V ∪ {p}, and p ∈ Wr

m~−p�m′ iff Rd′ = Rd, Wr′ = Wr, V′ = V \ {p}, and p ∈ Wr

m~r+p�m′ iff Rd′ = Rd ∪ {p}, Wr′ = Wr, and V′ = V

m~r−p�m′ iff Rd′ = Rd \ {p}, Wr′ = Wr \ {p}, and V′ = V

m~w+p�m′ iff Rd′ = Rd ∪ {p}, Wr′ = Wr ∪ {p}, and V′ = V

m~w−p�m′ iff Rd′ = Rd, Wr′ = Wr \ {p}, and V′ = V

m~ϕ?�m′ iff m = m′ and m |= ϕ

m~ϕ??�m′ iff m = m′ and m′′ |= ϕ for every m′′ such that m′′ ∼ m

m~π1; π2�m′ iff there is an m′′ such that m~π1�m′′ and m′′~π2�m′

m~π1 ∪ π2�m′ iff m~π1�m′ or m~π2�m′

m~π∗�m′ iff there is an n ≥ 0 such that m~π�nm′

m~π1||π2�m′ iff there are m1,m2,m′1,m
′
2 such that m / m1

m2
, m′1

m′2
. m′,

m1~π1�m′1, Rd1 = Rd′1, Wr1 = Wr′1, V1 \Wr1 = V′1 \Wr′1,
m2~π2�m′2, Rd2 = Rd′2, Wr2 = Wr′2, V2 \Wr2 = V′2 \Wr′2

In the interpretation of assignments of atomic formulas we require propositional vari-
ables to be modifiable, while readability and writability can be modified uncondition-
ally. When a variable is made writable then it is made readable, too, in order to guarantee
the inclusion constraint on models; similarly when a variable is made unreadable. The
interpretation of parallel composition π1||π2 is such that both π1 and π2 only modify
‘their’ variables. More precisely, parallel composition π1||π2 of two programs π1 and π2
relates two models m and m′ when the following conditions are satisfied: (1) m can be
split into m1 and m2; (2) the execution of π1 on m1 may lead to m′1 and the execution
of π2 on m2 may lead to m′2; (3) m′1 and m′2 can be merged into m′. Moreover, (4) the
modifications are legal: π1 and π2 neither change readability nor writability, and each
of them only modifies variables that were allocated to it by the split.

Figure 2 illustrates the interpretation of the parallel program −p||−q. Some more
examples follow.

Example 1. Suppose m = 〈Rd,Wr,V〉 with Wr = Rd = V = {p, q, r}. Then m′ =

〈Rd,Wr,V′〉 with V′ = {p, r} is the only model such that m~+p||−q�m′.



The next example illustrates the last condition in the interpretation of parallel com-
position.

Example 2. The programs +p||+p and +p||(w+p;−p; r−p) cannot be executed on the
model m = 〈{p}, {p}, {p}〉. For the second, suppose there are m1 and m2 such that m / m1

m2

and suppose +p is executed on m1 and w+p;−p; r−p on m2. For +p to be executable we
must have p ∈ Wr1, and therefore p < Wr2 (and a fortiori p < Rd2) because of the RW-
disjointness condition. Hence m1 = 〈{p}, {p}, {p}〉 and m2 = 〈∅, ∅, {p}〉. Then m′1 = m1
is the only model such that m1~+p�m′1; and m′2 = 〈∅, ∅, ∅〉 is the only model such that
m2~w+p;−p; r−p�m′2. These two models cannot be merged because V′2 \Wr′2 = ∅ fails
to be equal to V2 \ Wr2 = {p}. However, +p||(w+p; +p; r−p) is executable on m: we
have m / m

〈∅,∅,{p}〉 and m~+p�〈{p}, {p}, {p}〉 and 〈∅, ∅, {p}〉~w+p; +p; r−p�〈∅, ∅, {p}〉 and
〈∅,∅,{p}〉
〈{p},{p},{p}〉 . 〈{p}, {p}, {p}〉.

It is clear that parallel composition satisfies commutativity. It is less obvious that it
is also associative. The proof is somewhat involved and can be found in the annex.

Let us finally illustrate the different semantics of the two test operators of our logic.

Example 3. Suppose m is such that p < Rd and p ∈ V. Then the program p? is exe-
cutable on m because p ∈ V. In contrast, there is no m′ such that m~p??�m′, the reason
being that there is always an m′′ such that m ∼ m′′ and p < V′′, hence p?? is inexe-
cutable.

In practice, parallel programs should only contain endogenous tests in order to avoid
that a subprogram accesses the truth value of a variable that is not among its readable
variables. Actually we have kept PDL tests for technical reasons only: we could not
formulate some of the reduction axioms without them.

Satisfiability and validity of formulas are defined in the expected way.

Example 4. The formulas ϕ→
[
>??||>??

]
ϕ,

[
+p||−p

]
⊥,

[
+p||+p

]
⊥ and

[
p??||+p

]
⊥whose

parallel programs were discussed in the introduction are all valid.

The formulas
〈
+p

〉
> and

〈
−p

〉
> both express that p is writable. Moreover,

〈
p??

〉
>

expresses that p is true and readable, and
〈
¬p??

〉
> expresses that p is false and readable;

therefore
〈
p??

〉
>∨

〈
¬p??

〉
> expresses that p is readable. This will be instrumental in our

axiomatisation.
Finally, for any model m = 〈Rd,Wr,V〉 and P ⊆ P, we write m ∩ P for the model

〈Rd∩ P,Wr∩ P,V∩ P〉. This notation along with the following standard lemma will be
used several times in the remainder of this work.

Lemma 1. If there is P ⊆ P such that m1 ∩ P = m′1 ∩ P, Pϕ ⊆ P and Pπ ⊆ P then

1. m1 |= ϕ implies m′1 |= ϕ; and
2. m1~π�m2 implies m′1~π�m

′
2, for m′2 such that m′2 ∩ P = m2 ∩ P and m′2 ∩ (P \ P) =

m′1 ∩ (P \ P).

Proof (sketch). The proof is by a straightforward simultaneous induction on the size of
ϕ and π.



5 Axiomatisation via Reduction Axioms

We axiomatise the validities of our logic by means of reduction axioms, as customary
in dynamic epistemic logics [vDvdHK07]. These axioms transform every formula into
a boolean combination of propositional variables and formulas of the form

〈
+p

〉
> and〈

p??
〉
> ∨

〈
¬p??

〉
>. The former expresses that p is writable: we abbreviate it by wp; the

latter expresses that p is readable: we abbreviate it by rp. Hence we have:

wp
def
=

〈
+p

〉
>

rp
def
=

〈
p??

〉
> ∨

〈
¬p??

〉
>

The reduction starts by eliminating all the program operators from formulas, where the
elimination of parallel composition is done by sequentialising it while keeping track of
the values of the atoms. After that step, the only remaining program operators either
occur in formulas of the form rp or wp, or in modal operators of the form

〈
+p

〉
,
〈
−p

〉
,〈

r+p
〉
,
〈
r−p

〉
,
〈
w+p

〉
, or

〈
w−p

〉
. All these modal operators can be distributed over the

boolean operators, taking advantage of the fact that all of them are deterministic modal
operators (validating the Alt1 axiom

〈
π
〉
ϕ →

[
π
]
ϕ). Finally, sequences of such modal-

ities facing a propositional variable can be transformed into boolean combinations of
readability and writability statements rp and wp. The only logical link between these
statements is that writability of p implies readability of p. This is captured by the ax-
iom schema wp → rp.

The sequentialisation of parallel composition uses copies of variables, so we start
by introducing that notion. We then define some programs and formulas that will allow
us to formulate the reduction axioms more concisely.

5.1 Copies of Atomic Propositions

Our reduction axioms will introduce fresh copies of each propositional variable, one per
occurrence of the parallel composition operator. The interpretation of parallel compo-
sition being based on separation, each concurrent program operates on its own model.
The copies emulate the separation of models: each concurrent program is executed on
a set of copies of propositional variables.

In order to keep things readable we neglect that the copies should be indexed by
programs and denote the copies of the variable p by pk, where k is some integer. In
principle we should introduce a bijection between the indexes k and the subprogram
they are attached to; we however do not do so to avoid overly complicated notations.

Given a set of propositional variables P ⊆ P and an integer k ∈ {1, 2}, we define the
set of copies Pk = {pk : p ∈ P}. Similarly, we define copies of programs and formulas:
the program πk and the formula ϕk are obtained by replacing all their occurrences of
propositional variables p by pk. For example, (+p; q??)k equals +pk; qk??.

The following lemma will be instrumental in the soundness proof.

Lemma 2. Let π be a program, let 〈Rd,Wr,V〉 be a model, and let k ∈ {1, 2}. Then

〈Rd,Wr,V〉~π�〈Rd′,Wr′,V′〉 iff 〈Rdk,Wrk,Vk〉~πk�〈Rd′k,Wr′k,V′k〉.



split(P) = ;p∈P

(
w+p1; w+p2;

((
p?; +p1; +p2)∪ (

¬p?;−p1;−p2)); r−p1; r−p2;(
¬rp?∪

(
wp?; (w+p1 ∪ w+p2)

)
∪(

¬wp∧rp?;
(
r+p1 ∪ r+p2 ∪ (r+p1; r+p2)

))))
store(P) = ;p∈P ;k∈{1,2}

(
w+pk

R; w+pk
W ;(

(rpk ?; +pk
R)∪ (¬rpk ?;−pk

R)
)
;
(
(wpk ?; +pk

W )∪ (¬wpk ?;−pk
W )

))
check(P) =

∧
p∈P

∧
k∈{1,2}

(
(pk

R ↔ rpk ) ∧ (pk
W ↔ wpk ) ∧ (¬pk

W → (p↔ pk))
)

merge(P) = ;p∈P

((
¬wp?∪(
(wp1 ∧ p1) ∨ (wp2 ∧ p2)?; +p

)
∪(

(wp1 ∧ ¬p1) ∨ (wp2 ∧ ¬p2)?;−p
))

;

;k∈{1,2}
(
−pk

R;−pk
W ; w+pk;−pk; r−pk

R; r−pk
W ; r−pk))

flatten(π1, π2) = split
(
Pπ1 ||π2

)
; store

(
Pπ1 ||π2

)
; π1

1; π2
2; check

(
Pπ1 ||π2

)
?; merge

(
Pπ1 ||π2

)
Table 1. Useful programs and formulas, for all finite P ⊆ P and all programs π1 and π2.

Proof (sketch). Just as for Lemma 1, the proof is by simultaneous induction on the
form of programs and formulas, where the induction hypothesis for the latter is that
〈Rd,Wr,V〉 |= ϕ if and only if 〈Rdk,Wrk,Vk〉 |= ϕk. It relies on the fact that DL-PA||

satisfies the substitution rule.

Moreover, in order to simulate the semantics of the parallel composition operator
our reduction axioms associate to each copy pk two fresh variables pk

R and pk
W , denoting

whether pk was respectively readable and writable just after the split. Given a set of
propositional variables P, we define

St(P) = {pk
R : k ∈ {1, 2}, p ∈ P} ∪ {pk

W : k ∈ {1, 2}, p ∈ P}

as the set of all these fresh variables.

5.2 Useful Programs and formulas

Let P ⊆ P be some finite set of propositional variables. Table 1 lists programs and
formulas that will be useful to concisely formulate the reduction axioms. Observe
that the order of the variables in the sequential compositions ;p∈P (· · · ) occurring in
the above programs does not matter. Observe also that the only endogenous tests on
the right hand side occur in readability statements rp. (Remember that rp abbreviates〈
p??

〉
> ∨

〈
¬p??

〉
>.)

The split(P) program simulates the split operation by (1) assigning the truth value of
every p ∈ P to its copies p1 and p2 and (2) non-deterministically assigning two copies of
each read and write variable in a way such that a counterpart of the RW-disjointness con-
dition Wr1 ∩ Rd2 = Wr2 ∩ Rd1 = ∅ is guaranteed. Note that the assignments w+pk also



make pk readable. The following lemma formally states the main property of split(P).
It can easily be proved by following the previous observations.

Lemma 3. For all P ⊆ P, and all models m, m1 and m2 such that m ∩ P = m,

m / m1
m2

if and only if m~split(P)�m′

with Rd′ = Rd ∪ Rd1
1 ∪ Rd2

2, Wr′ = Wr ∪Wr1
1 ∪Wr2

2, and V′ = V ∪ V1
1 ∪ V2

2.

The store(P) program stores the readability and writability states of the copies of
the propositional variable into some fresh variables. These variables are then used only
in check(P).

The formula check(P) compares the current state with the state just after the split.
It is true if and only if (1) readability values are identical, (2) writability values are
identical, and (3) truth values are identical for non-writable variables.

The merge(P) program simulates the merge operation by reinstating all those read-
and write-atoms that had been allocated to the first subprogram in the sequentialisation.
The following lemma formally states the main property of merge(P). This lemma is
weaker than Lemma 3 for split(P). The additional hypotheses are guaranteed to hold by
the interplay of programs split(P) and store(P), and formula check(P).

Lemma 4. Let m, m1 and m2 be models, and P a set of propositional variables such
that m ∩ P = m, m1 and m2 are RW-disjoint, Rd = Rd1 ∪ Rd2, Wr = Wr1 ∪Wr2, and
V1 \Wr = V2 \Wr. Then

m1
m2
. m if and only if m′~merge(P)�m

with Rd′ = Rd ∪ Rd1
1 ∪ Rd2

2 ∪ St(P), Wr′ = Wr ∪Wr1
1 ∪Wr2

2 ∪ St(P), and V′ =

V] ∪ V1
1 ∪ V2

2 where V] is any subset of P ∪ St(P) such that V] \Wr = V \Wr.

Proof (sketch). It suffices to prove that m′~merge(P)�m if and only if V = (V1∩Wr1)∪
(V2 ∩Wr2) ∪ (V1 ∩ V2), which is straightforward.

Finally, the flatten(π1, π2) program emulates the execution of the program π1||π2 as
a sequential composition of the previous programs. Notice that there is no occurrence
in flatten(π1, π2) of the parallel composition operator, except possibly inside π1 and π2.
Lemma 6 below states that the emulation is faithful. We first need Lemma 5, which can
be seen as an adaptation of Lemma 1 to flatten(P).

Lemma 5. For all models m and m′, and all programs π1 and π2,

m~flatten(π1, π2)�m′ iff (m ∩ Pπ1 ||π2 )~flatten(π1, π2)�(m′ ∩ Pπ1 ||π2 ).

Proof (sketch). It suffices to observe that all variables in Pflatten(π1,π2)\Pπ1 ||π2 are (1) made
writable and initialized by split or store, and (2) set to false and made unreadable by
merge.

We can now prove our main lemma.



Lemma 6. For all models m and m′, and all programs π1 and π2,

m~π1||π2�m′ if and only if m~flatten(π1, π2)�m′.

Proof (sketch). Let P = Pπ1 ||π2 . By Lemmas 1 and 5, we can assume that m ∩ P = m
and m′ ∩ P = m′.

For the left-to-right direction, suppose there are models m1, m2, m′1 and m′2 such that

m / m1
m2

, m′1
m′2
. m′, m1~π1�m′1, m2~π2�m′2, Rd1 = Rd′1, Wr1 = Wr′1, V1 \Wr1 = V′1 \Wr′1,

Rd2 = Rd′2, Wr2 = Wr′2, and V2 \ Wr2 = V′2 \ Wr′2. The following statements can be
proved:

1. m~split(P)�m+
1 with Rd+

1 = Rd ∪ Rd1
1 ∪ Rd2

2, Wr+
1 = Wr ∪ Wr1

1 ∪ Wr2
2, and

V+
1 = V ∪ V1

1 ∪ V2
2. The proof relies on Lemma 3.

2. m+
1 ~store(P)�m+

2 with Rd+
2 = Rd+

1 ∪ St(P), Wr+
2 = Wr+

1 ∪ St(P), V+
2 = V+

1 ∪ VSt,
and VSt = {pk

R : pk ∈ Rd+
1 } ∪ {p

k
W : pk ∈ Wr+

1 }. Notice that VSt = {pk
R : p ∈

Rdk} ∪ {pk
W : p ∈ Wrk}.

3. m+
2 ~π1

1�m+
3 with Rd+

3 = Rd∪Rd′1
1
∪Rd2

2∪St(P), Wr+
3 = Wr∪Wr′1

1
∪Wr2

2∪St(P),
and V+

3 = V ∪ V′1
1
∪ V2

2 ∪ VSt. The proof relies on Lemmas 1 and 2.
4. m+

3 ~π2
2�m+

4 with Rd+
4 = Rd∪Rd′1

1
∪Rd′2

2
∪St(P), Wr+

4 = Wr∪Wr′1
1
∪Wr′2

2
∪St(P),

and V+
4 = V ∪ V′1

1
∪ V′2

2
∪ VSt.

5. m+
4 |= check(P).

6. m+
4 ~merge(P)�m′. The proof relies on Lemma 4.

7. m~flatten(π1, π2)�m′.

For the right-to-left direction, let us suppose that there are models m+
1 , m+

2 , m+
3 and

m+
4 such that m~split(P)�m+

1 ~store(P)�m+
2 ~π1�m+

3 ~π2; check(P)?�m+
4 ~merge(P)�m′.

The following statements can be proved:

1. m / m1
m2

with Rd1 = {p : p1 ∈ Rd+
1 }, Wr1 = {p : p1 ∈ Wr+

1 }, V1 = {p : p1 ∈ V+
1 },

Rd2 = {p : p2 ∈ Rd+
1 }, Wr2 = {p : p2 ∈ Wr+

1 }, and V2 = {p : p2 ∈ V+
1 }. The

proof relies on Lemma 3.
2. m1~π1�m′1 with Rd′1 = {p : p1 ∈ Rd+

3 }, Wr′1 = {p : p1 ∈ Wr+
3 }, and V′1 =

{p : p1 ∈ V+
3 }. The proof relies on Lemmas 1 and 2.

3. m2~π2�m′2 with Rd′2 = {p : p2 ∈ Rd+
4 }, Wr′2 = {p : p2 ∈ Wr+

4 }, and V′2 =

{p : p2 ∈ V+
4 }.

4. Rd1 = Rd′1, Wr1 = Wr′1, V1 \ Wr1 = V′1 \ Wr′1, Rd2 = Rd′2, Wr2 = Wr′2, and
V2 \Wr2 = V′2 \Wr′2. The proof relies on the fact that m+

4 |= check(P), and V+
4 ∩

St(P) = {pk
R : p ∈ Rdk} ∪ {pk

W : p ∈ Wrk}.
5. m′1

m′2
. m′. The proof relies on Lemma 4.

6. m~π1||π2�m′.

5.3 Reduction Axioms for Program Operators

The reduction axioms for program operators are in Table 2. Those for sequential and
non-deterministic composition and for exogenous tests (PDL tests) are as in PDL. The
one for endogenous tests ϕ?? checks whether ϕ remains true for any possible value of



〈
ϕ?

〉
ψ↔ ψ ∧ ϕ〈

ϕ??
〉
ψ↔ ψ ∧

[ ;p∈Pϕ

(
rp?∪

(
¬rp?; (+p∪−p)

))]
ϕ〈

π1; π2
〉
ϕ↔

〈
π1

〉〈
π2

〉
ϕ〈

π1 ∪ π2
〉
ϕ↔

〈
π1

〉
ϕ ∨

〈
π2

〉
ϕ〈

π∗
〉
ϕ↔

〈
π≤2|Pϕ |〉ϕ〈

π1||π2
〉
ϕ↔

〈
flatten(π1, π2)

〉
ϕ

Table 2. Reduction axioms for program operators

the non-readable variables of ϕ. That for the Kleene star is familiar from DL-PA. That
for parallel composition π1||π2 executes π1 and π2 in sequence: it starts by splitting up
readability and writability between the two programs, then executes π1, checks whether
π1 didn’t change the readability and writability variables and whether all truth value
changes it brought about are legal, and finally executes π2 followed by the same checks
for π2.

Observe that the validity of the reduction axiom for endogenous tests relies on the
fact that the copies p1 and p2 that are introduced by the program split(Pπ1 ||π2 ) are fresh.
The length of the right hand side can be shortened by restricting Pπ1 ||π2 to the proposi-
tional variables that are assigned by Pπ1 ||π2 , i.e., to elements p ∈ P such that +p or −p
occurs in Pπ1 ||π2 .

The exhaustive application of the equivalences of Table 2 from the left to the right
results in formulas whose program operators are either endogenous tests occurring in
a readability statement rp =

〈
p??

〉
> ∨

〈
¬p??

〉
>, or assignments of the form r+p, r−p,

w+p, w−p, +p, or −p.

5.4 Reduction Axioms for Boolean Operators

We now turn to modal operators
〈
π
〉

where π is an atomic assignment, i.e., π is of
the form r+p, r−p, w+p, w−p, +p, or −p. They are deterministic and can therefore
be distributed over the boolean operators. The corresponding reduction axioms are in
Table 3.

In the first equivalence
〈
+p

〉
> ↔ wp, the right hand side is nothing but an abbrevia-

tion of the left hand side. We nevertheless state it in order to highlight that the exhaustive
application of these reduction axioms results in sequences of atomic assignments facing
either wp or rq. These sequences are going to be reduced in the next step.

5.5 Reduction Axioms for Assignments

When atomic programs face propositional variables or readability and writability state-
ments then the modal operator can be eliminated (sometimes introducing a writability
statement wp). The reduction axioms doing that are in Table 4.

As announced, the exhaustive application of the above axioms results in boolean
combinations of propositional variables and readability and writability statements.



〈
+p

〉
> ↔ wp

〈
−p

〉
> ↔ wp〈

r+p
〉
> ↔ >

〈
r−p

〉
> ↔ >〈

w+p
〉
> ↔ >

〈
w−p

〉
> ↔ >〈

+p
〉
¬ϕ↔ wp ∧ ¬

〈
+p

〉
ϕ

〈
−p

〉
¬ϕ↔ wp ∧ ¬

〈
−p

〉
ϕ〈

r+p
〉
¬ϕ↔ ¬

〈
r+p

〉
ϕ

〈
r−p

〉
¬ϕ↔ ¬

〈
r−p

〉
ϕ〈

w+p
〉
¬ϕ↔ ¬

〈
w+p

〉
ϕ

〈
w−p

〉
¬ϕ↔ ¬

〈
w−p

〉
ϕ〈

+p
〉
(ϕ ∨ ψ)↔

〈
+p

〉
ϕ ∨

〈
+p

〉
ψ

〈
−p

〉
(ϕ ∨ ψ)↔

〈
−p

〉
ϕ ∨

〈
−p

〉
ψ〈

r+p
〉
(ϕ ∨ ψ)↔

〈
r+p

〉
ϕ ∨

〈
r+p

〉
ψ

〈
r−p

〉
(ϕ ∨ ψ)↔

〈
r−p

〉
ϕ ∨

〈
r−p

〉
ψ〈

w+p
〉
(ϕ ∨ ψ)↔

〈
w+p

〉
ϕ ∨

〈
w+p

〉
ψ

〈
w−p

〉
(ϕ ∨ ψ)↔

〈
w−p

〉
ϕ ∨

〈
w−p

〉
ψ

Table 3. Reduction axioms for boolean operators

5.6 Soundness, Completeness, and Decidability

Let us call DL-PA|| our extension of DL-PA with parallel composition. Its axiomatisation
is made up of

– an axiomatisation of propositional logic;
– the equivalences of Sections 5.3, 5.4, and 5.5;
– the inclusion axiom schema wp → rp, which is an abbreviation of the formula〈

+p
〉
> →

(〈
p??

〉
> ∨

〈
¬p??

〉
>
)
;

– the rule of equivalence for the modal operator “from ϕ↔ ψ infer
〈
π
〉
ϕ↔

〈
π
〉
ψ”.

Theorem 1. The axiomatisation of DL-PA|| is sound: if ϕ is provable with the axiomat-
ics of DL-PA|| then it is DL-PA|| valid.

Proof (sketch). We have to show that the inference rules preserve validity and the ax-
ioms are valid. For the reduction axiom for endogenous test, it suffices to observe that
m~+p∪−p�m′ if and only if m ∼ m′. The proof of validity of the reduction axiom for
Kleene star can easily be adapted from the one in [BHT13]. The case of the reduction
axiom for parallel composition is handled by Lemma 6. All other cases are straightfor-
ward.

Theorem 2. The axiomatisation of DL-PA|| is complete: if ϕ is DL-PA|| valid then it is
provable in the axiomatics of DL-PA||.

Proof. The reduction axioms of Sections 5.3, 5.4, and 5.5 allow us to transform any for-
mula into an equivalent boolean combination of propositional variables and readability
and writability statements. (Their application requires the rule of replacement of equiv-
alents, which is derivable because we have rules of equivalence for all the connectives
of the language, in particular the above RE(

〈
π
〉
).) Let ϕ be the resulting formula. Then

ϕ has a DL-PA|| model if and only if

ϕ ∧
∧
p∈P

(
wp → rp

)



〈
+p

〉
q↔

wp if q = p
wp ∧ q otherwise

〈
−p

〉
q↔

⊥ if q = p
wp ∧ q otherwise〈

r+p
〉
q↔ q

〈
r−p

〉
q↔ q〈

w+p
〉
q↔ q

〈
w−p

〉
q↔ q〈

+p
〉
rq ↔ wp ∧ rq

〈
−p

〉
rq ↔ wp ∧ rq〈

r+p
〉
rq ↔

> if q = p
rq otherwise

〈
r−p

〉
rq ↔

⊥ if q = p
rq otherwise

〈
w+p

〉
rq ↔

> if q = p
rq otherwise

〈
w−p

〉
rq ↔ rq〈

+p
〉
wq ↔ wp ∧ wq

〈
−p

〉
wq ↔ wp ∧ wq〈

r+p
〉
wq ↔ wq

〈
r−p

〉
wq ↔

⊥ if q = p
wq otherwise

〈
w+p

〉
wq ↔

> if q = p
wq otherwise

〈
w−p

〉
wq ↔

⊥ if q = p
wq otherwise

Table 4. Reduction axioms for assignments

has a model in propositional logic, where in propositional logic, rp and wp are consid-
ered to be arbitrary propositional variables; so there is a priori no connection between
them nor with the propositional variable p.

Based on the reduction of DL-PA|| formulas to boolean formulas (and the transfor-
mation of rp and wp from abbreviations into propositional variables), we may check
the satisfiability of DL-PA|| formulas by means of propositional logic SAT solvers. This
is however suboptimal because the reduction may result in a formula that is super-
exponentially longer than the original formula. In the next section we explore another
route.

6 Complexity via Translation into DL-PA

We establish PSPACE complexity of DL-PA|| satisfiability and model checking by trans-
lating formulas and programs to Dynamic Logic of Propositional Assignments DL-PA.
The language of the latter is the fragment of that of DL-PA||: it has neither endogenous
tests, nor readability and writability assignments, nor parallel composition. Hence the
language of DL-PA is built by the following grammar:

ϕ ::= p | > | ¬ϕ | (ϕ ∨ ϕ) |
〈
π
〉
ϕ

π ::= +p | −p | ϕ? | (π; π) | (π∪ π) | π∗

None of the operators of the language refers to the Rd-component or the Wr-component
of models. The interpretation of DL-PA formulas and programs therefore only requires
a valuation V.



split(P) = ;p∈P

(((
p?; +p1; +p2)∪ (

¬p?;−p1;−p2));
−wp1 ;−rp1 ;−wp2 ;−rp2 ;(
¬rp?∪(
wp?; ((+rp1 ; +wp1 )∪ (+rp2 ; +wp2 ))

)
∪(

¬wp∧rp?;
(
+rp1 ∪+rp2 ∪ (+rp1 ; +rp2 )

))))
store(P) = ;p∈P ;k∈{1,2}

((
(rpk ?; +pk

R)∪ (¬rpk ?;−pk
R)

)
;(

(wpk ?; +pk
W )∪ (¬wpk ?;−pk

W )
))

check(P) =
∧
p∈P

∧
k∈{1,2}

(
(pk

R ↔ rpk ) ∧ (pk
W ↔ wpk ) ∧ (¬pk

W → (p↔ pk))
)

merge(P) = ;p∈P

((
¬wp?∪(
(wp1 ∧ p1) ∨ (wp2 ∧ p2)?; +p

)
∪(

(wp1 ∧ ¬p1) ∨ (wp2 ∧ ¬p2)?;−p
))

;

;k∈{1,2}
(
−pk

R;−pk
W ;−pk;−wpk ;−rpk

))
flatten(π1, π2) = split

(
Pπ1 ||π2

)
; store

(
Pπ1 ||π2

)
; π1

1; π2
2; check

(
Pπ1 ||π2

)
?; merge

(
Pπ1 ||π2

)
Table 5. Adaptation of the programs and formulas of Table 1 to the translation into DL-PA.

Our translation from DL-PA|| to DL-PA eliminates endogenous tests and parallel
composition. This is done in a way that is similar to their reduction axioms of Table 2.
It moreover transforms readability and writability statements into special propositional
variables rp and wp, similar to the reduction axioms of Table 4.

To make this formal, let the set of atomic formulas be

X = P ∪ {wp : p ∈ P} ∪ {rp : p ∈ P}.

Given a set of propositional variables P ⊆ P, RP = {rp : p ∈ P} is the associated set of
read-variables and WP = {wp : p ∈ P} is the associated set of write-variables. Hence
X = P∪RP ∪WP. As before, the set of propositional variables occurring in a formula ϕ
is noted Pϕ and the set of those occurring in a program π is noted Pπ. This now includes
the p’s in rp and wp. For example, Pp∧

〈
+wq

〉
¬rp

= {p, q}.

We translate the DL-PA|| programs r+p, r−p, w+p, and w−p into the DL-PA pro-
grams +rp, −rp, +wp and −wp. Moreover, we have to ‘spell out’ that −wp has side effect
−rp and that +rp has side effect +wp. Hence the programs and formulas of Table 1
become the DL-PA programs and formulas listed in Table 5. Notice that readability and
writability statements are no longer DL-PA|| abbreviations, but are now DL-PA proposi-
tional variables.

Given a DL-PA|| program or formula, its translation into DL-PA basically follows
the reduction axiom for endogenous tests ?? and parallel composition || of Table 2. We
replace:



1. all occurrences of ϕ?? with
[
;p∈Pϕ

(
rp?∪

(
¬rp?; (+p∪−p)

))]
ϕ?,

2. all occurrences of π1||π2 with flatten(π1, π2),
3. all occurrences of +p with wp?; +p,
4. all occurrences of −p with wp?;−p,
5. all occurrences of r+p with +rp,
6. all occurrences of r−p with −wp;−rp,
7. all occurrences of w+p with +rp; +wp,
8. all occurrences of w−p with −wp.

Let t(π) be the translation of the DL-PA|| program π and t(ϕ) the translation of the
DL-PA|| formula ϕ. Remember that when t(π) and t(ϕ) are interpreted in DL-PA, the
variables rp and wp are considered to be arbitrary propositional variables.

Lemma 7. For all DL-PA|| programs π and formula ϕ, and all DL-PA|| models m and
m′ such that m ∩ P = m,

m~π�m′ if and only if V+~t(π)�DL-PAV′+, and

m |= ϕ if and only if V+ |=DL-PA t(ϕ)

where V+ = V ∪ RRd ∪WWr and V′+ = V′ ∪ RRd′ ∪WWr′ .

Proof (sketch). The proof is by simultaneous induction on the size of π or ϕ. The cases
for endogenous test and parallel composition are similar to those in the proof of Theo-
rem 1. The other cases are straightforward.

The following theorem is a direct corollary of the previous lemma.

Theorem 3. A DL-PA|| formula ϕ is DL-PA||-satisfiable if and only if the DL-PA formula
t(ϕ) ∧

∧
p∈Pϕ (wp → rp) is DL-PA satisfiable.

We can now state our complexity results.

Lemma 8. The translation t is polynomial.

Proof. It can easily be checked that for all P, split(P), store(P), check(P) and merge(P)
are linear in the size of P. Therefore, flatten(π1, π2) is linear in the size of π1 plus the
size of π2. Similarly,

[
;p∈Pϕ

(
rp?∪

(
¬rp?; (+p∪−p)

))]
ϕ? is linear in the size of ϕ. All

other translation expressions are clearly linear too. Hence applying t from the root of
the syntax tree to its leaves, t(ϕ) can be computed in time polynomial in the size of ϕ.

Theorem 4. DL-PA|| model and satisfiability checking are both PSPACE complete.

Proof. First, PSPACE membership of DL-PA|| model and satisfiability checking follows
from Lemmas 7 and 8. Second, since the language of DL-PA|| contains that of DL-PA
and since model and satisfiability checking are PSPACE hard for the latter [BHST14],
it follows that DL-PA|| model and satisfiability checking are PSPACE hard, too.



7 Discussion and Conclusion

We have added to Dynamic Logic of Propositional Assignments DL-PA a parallel com-
position operator in the spirit of separation logics. Our semantics augments DL-PA val-
uations by readability and writability information. We have provided an axiomatisation
in terms of a complete set of reduction axioms. Our reduction to DL-PA ensures de-
cidability. We have also proved PSPACE complexity via a polynomial translation to
DL-PA.

We have adopted a stricter stance on race conditions than in [HMV19] where e.g. the
program +p||+p is executable. Let us briefly compare these two semantics. In our case,
the intuition is that π1||π2 is executable if any interleaving of the components of π1 and
π2 is executable, and that any of these interleavings leads to the same outcome. This is
not guaranteed in the approach of [HMV19], which is motivated by parallel planning.
There, it is generally considered that two actions that are executed in parallel should
not interfere [BF97]: they should not have conflicting effects and there should be no
cross-interaction, where the second condition means that the effect of one action should
not destroy the precondition of the other, and vice versa. For example, in a world of
blocks the actions

liftLeft(b) = OnTable(b)?;−OnTable(b); +HoldsLeft(b),
liftRight(b) = OnTable(b)?;−OnTable(b); +HoldsRight(b)

of lifting block b with the left robot arm and with the right robot arm have cross-
interaction because one of the effects of liftLeft(b) is ¬OnTable(b), which makes the
precondition pre(liftRight(b)) = OnTable(b) of lifRight(b) false. The more liberal se-
mantics of [HMV19] makes that it is not enough to describe the parallel execution of
actions π1, . . . , πn as a step of a parallel plan by π1|| . . . ||πn. Instead, the absence of
cross-interactions has to be checked ‘by hand’, namely by explicitly inserting a DL-PA
test after each πi that the preconditions of the other actions are not violated: a step of a
parallel plan is described by the program.(

π1;
∧
j,1

pre(π j)?
)
|| . . . ||

(
πn;

∧
j,n

pre(π j)?
)
.

This is not necessary in our semantics where the absence of cross interaction between
actions that are performed in parallel is ‘built-in’. Indeed, the parallel composition
liftLeft(b)||liftRight(b) is not executable in DL-PA||: each subprogram requires writability
of OnTable(b) to be executable. Our logic DL-PA|| can therefore be expected to provide
a more appropriate base for parallel planning.

The language of the extension of DL-PA of [HMV19] also contains an operator of
inclusive nondeterministic composition, noted t. While the standard inclusive nonde-
terministic composition π1 ∪ π2 of PDL and DL-PA|| is read “do either π1 or π2”, the pro-
gram π1tπ2 is read “do π1 or π2 or both”. It has the same semantics as π1 ∪ π2 ∪ (π1||π2)
and hence does not add expressivity. It is shown in [HMV19] that it does not increase
succinctness either. This is proved by a polynomial reduction that uses the same ‘flat-
tening’ programs as the reduction of parallel composition. These programs are similar



to our programs in Table 5, we therefore expect that inclusive nondeterministic compo-
sition does not increase the succinctness of the language of DL-PA|| either.

The mathematical properties of DL-PA|| compare favourably with the high com-
plexity or even undecidability of the other extensions of dynamic logic by a separating
parallel composition operator that were proposed in the literature [BT14,Bou16]. Just
as ours, the latter line of work is in the spirit of separation logic, having splitting and
merging operations that are defined on system states. The axiomatisation that was intro-
duced and studied in [BB18] is restricted to the star-free fragment and the authors had to
add propositional quantifiers in order to make parallel composition definable. This con-
trasts with the simplicity of our axiomatisation of DL-PA|| that we obtained by adding
reduction axioms to the axiomatisation of DL-PA. This can be related to the fact that
propositional quantifiers can be expressed in DL-PA: ∃pϕ is equivalent to

〈
+p∪−p

〉
ϕ

and ∀pϕ is equivalent to
[
+p∪−p

]
ϕ. Just as DL-PA can be viewed as an instance of

PDL—the interpretation of atomic programs moves from PDL’s abstract relation be-
tween states to concrete updates of valuations—, DL-PA|| can be viewed as an instance
of the logic of [BdFV11] where the interpretation of parallel composition no longer re-
sorts to an abstract relation ? associating three states, but instead has concrete functions
that split and merge valuations and that are constrained by readability and writability
information.
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A Appendix: Associativity of Parallel Composition

Alongside commutativity, associativity is a desirable property of a parallel composition
operator. While the operator defined in Section 4 is clearly commutative, whether it is
associative does not strike the eye. In fact, a detailed proof of it is rather cumbersome.
We present it here.

Proposition 1. m~π1||(π2||π3)�m′ iff m~(π1||π2)||π3�m′.

Proof. Figure 3 illustrates precisely what we are going to show. Suppose m = 〈Rd,Wr,V〉
and m′ = 〈Rd′,Wr′,V′〉.



∃m1,m∗,m2,m3,m′1,m
′
2,m

′
3,m

′
∗’: iff ∃a#, a3, a1, a2, a′1, a

′
2, a

′
#, a

′
3:

m

m1

m∗

m′1

m2

m3

m′∗

m′2

m′3

m′

π1

π2
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a′3
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a′1

m′

π3

π2

π1

Fig. 3. Illustration of associativity. Visual aid for the proof of Proposition 1.

Left-hand side. m~π1||(π2||π3)�m′.
There are m1,m∗,m′1,m

′
∗ such that (with, m1 = 〈Rd1,Wr1,V1〉, m′1 = 〈Rd′1,Wr′1,V

′
1〉,

m∗ = 〈Rd∗,Wr∗,V∗〉, m′∗ = 〈Rd′∗,Wr′∗,V
′
∗〉):

1. m / m1
m∗ and m′1

m′∗
. m′

2. m1~π1�m′1
3. Rd1 = Rd′1 and Wr1 = Wr′1 and V1 \Wr1 = V′1 \Wr′1
4. m∗~π2||π3�m′∗
5. Rd∗ = Rd′∗ and Wr∗ = Wr′∗ and V∗ \Wr∗ = V′∗ \Wr′∗

Item 4 is equivalent to: there are m2,m3,m′2,m
′
3 such that (with m2 = 〈Rd2,Wr2,V2〉,

m′2 = 〈Rd′2,Wr′2,V
′
2〉, m3 = 〈Rd3,Wr3,V3〉, m′3 = 〈Rd′3,Wr′3,V

′
3〉):

6. m∗ /
m2
m3

and m′2
m′3
. m′∗,

7. m2~π2�m′2,
8. Rd2 = Rd′2 and Wr2 = Wr′2 and V2 \Wr2 = V′2 \Wr′2,
9. m3~π3�m′3,

10. Rd3 = Rd′3 and Wr3 = Wr′3 and V3 \Wr3 = V′3 \Wr′3.

Item 1 is m / m1
m∗ and m′1

m′∗
. m′ iff:

11. Wr1 ∩ Rd∗ = Wr∗ ∩ Rd1 = ∅ (m1 and m∗ are RW-compatible),
12. Rd = Rd1 ∪ Rd∗, and Wr = Wr1 ∪Wr∗, and V = V1 = V∗,
13. Wr′1 ∩ Rd′∗ = Wr′∗ ∩ Rd′1 = ∅ (m′1 and m′∗ are RW-compatible),
14. Rd′ = Rd′1 ∪ Rd′∗, Wr′ = Wr′1 ∪ Wr′∗, and V′1 \ Wr′ = V′∗ \ Wr′, and V′ = (V′1 ∩

Wr′1) ∪ (V′∗ ∩Wr′∗) ∪ (V′1 ∩ V′∗).

Item 6 is m / m2
m3

and m′2
m′3
. m′ iff:

15. Wr2 ∩ Rd3 = Wr3 ∩ Rd2 = ∅ (m2 and m3 are RW-compatible),
16. Rd∗ = Rd2 ∪ Rd3, and Wr∗ = Wr2 ∪Wr3, and V∗ = V2 = V3,
17. Wr′2 ∩ Rd′3 = Wr′3 ∩ Rd′2 = ∅ (m′2 and m′3 are RW-compatible),
18. Rd′∗ = Rd′2 ∪ Rd′3, Wr′∗ = Wr′2 ∪Wr′3, and V′2 \Wr′∗ = V′3 \Wr′∗, and V′∗ = (V′2 ∩

Wr′2) ∪ (V′3 ∩Wr′3) ∪ (V′2 ∩ V′3).



Right-hand side. m~(π1||π2)||π3�m′.
There are a# = 〈Rda#,Wra#,Va#〉, a′# = 〈Rda′#,Wra′#,Va′#〉, a3 = 〈Rda3,Wra3,Va3〉

and a′3 = 〈Rda′3,Wra′3,Va′3〉 such that:

19. m / a#
a3

and a′#
a′3
. m′,

20. a#~π1||π2�a′#,
21. Rda# = Rda′# and Wra# = Wra′# and Va# \Wra# = Va′# \Wra′#,
22. a3~π3�a′3,
23. Rda3 = Rda′3 and Wra3 = Wra′3 and Va3 \Wra3 = Va′3 \Wra′3.

Item 20 is equivalent to: there are a1, a2, a′1, a
′
2 such that (with, a1 = 〈Rda1,Wra1,Va1〉,

a′1 = 〈Rda′1,Wra′1,Va′1〉, a2 = 〈Rda2,Wra2,Va2〉, a′2 = 〈Rda′2,Wra′2,Va′2〉):

24. a# /
a1
a2

and a′1
a′2
. a′#,

25. a1~π1�a′1,
26. Rda1 = Rda′1, and Wra1 = Wra′1 and Va1 \Wra1 = Va′1 \Wra′1,
27. a2~π2�a′2,
28. Rda2 = Rda′2 and Wra2 = Wra′2 and Va2 \Wra2 = Va′2 \Wra′2.

Item 19 is m / a#
a3

and a′#
a′3
. m′ iff:

29. Wra# ∩ Rda3 = Wra3 ∩ Rda# = ∅ (a# and a3 are RW-compatible),
30. Rd = Rda# ∪ Rda3, and Wr = Wra# ∪Wra3, and V = Va# = Va3,
31. Wra′# ∩ Rda′3 = Wra′3 ∩ Rda′# = ∅ (a′# and a′3 are RW-compatible),
32. Rd′ = Rda′# ∪ Rda′3, Wr′ = Wra′# ∪Wra′3, and Va′# \Wr′ = Va′3 \Wr′, and V′ =

(Va′# ∩Wra′#) ∪ (Va′3 ∩Wra′3) ∪ (Va′# ∩ Va′3).

Item 24 is a# /
a1
a2

and a′1
a′2
. a′# iff:

33. Wra1 ∩ Rda2 = Wra2 ∩ Rda1 = ∅ (a1 and a2 are RW-compatible),
34. Rda# = Rda1 ∪ Rda2, and Wra# = Wra1 ∪Wra2, and Va# = Va1 = Va2,
35. Wra′1 ∩ Rda′2 = Wra′2 ∩ Rda′1 = ∅ (a′1 and a′2 are RW-compatible),
36. Rda′# = Rda′1 ∪ Rda′2, Wra′# = Wra′1 ∪Wra′2, and Va′1 \Wra′# = Va′2 \Wra′#, and

Va′# = (Va′1 ∩Wra′1) ∪ (Va′2 ∩Wra′2) ∪ (Va′1 ∩ Va′2).

Left to right. Suppose lhs. We define:

– a# = 〈Rda#,Wra#,Va#〉 = 〈Rd1 ∪ Rd2,Wr1 ∪Wr2,V〉,
– a1 = 〈Rda1,Wra1,Va1〉 = m1 = 〈Rd1,Wr1,V〉,
– a2 = 〈Rda2,Wra2,Va2〉 = m2 = 〈Rd2,Wr2,V〉,
– a3 = 〈Rda3,Wra3,Va3〉 = m3 = 〈Rd3,Wr3,V〉,
– a′# = 〈Rda′#,Wra′#,Va′#〉 = 〈Rd′1∪Rd′2,Wr′1∪Wr′2, (V

′
1∩Wr1)∪(V′2∩Wr2)∪(V′1∩V′2)〉,

– a′1 = 〈Rda′1,Wra′1,Va′1) = m′1 = (Rd′1,Wr′1,V
′
1〉,

– a′2 = 〈Rda′2,Wra′2,Va′2〉 = m′2 = 〈Rd′2,Wr′2,V
′
2〉,

– a′3 = 〈Rda′3,Wra′3,Va′3〉 = m′3 = 〈Rd′3,Wr′3,V
′
3〉.

We must show that these models satisfy all the properties from 19 through 36.



19 if and only if
29 Wra# ∩ Rda3 = ∅, Wra3 ∩ Rda# = ∅. It holds because:

∗ Wra# ∩ Rda3 = (Wr1 ∪ Wr2) ∩ Rd3 = (Wr1 ∩ Rd3) ∪ (Wr2 ∩ Rd3). By
15, we have Wr2 ∩ Rd3 = ∅. By 16, we have Rd3 ⊆ Rd∗. By 11, we have
Wr1 ∩ Rd∗ = ∅. So, Wr1 ∩ Rd3 = ∅.

∗ Wra3 ∩ Rda# = Wr3 ∩ (Rd1 ∪ Rd2) = (Wr3 ∩ Rd1) ∪ (Wr3 ∩ Rd2). By 15,
we have Wr3 ∩ Rd2 = ∅. By 11, we have Wr∗ ∩ Rd1 = ∅. By 16, we have
Wr3 ⊆ Wr∗. So, Wr3 ∩ Rd1 = ∅.

30 Rda# ∪ Rda3 = (Rd1 ∪ Rd2) ∪ Rd3 = Rd1 ∪ Rd∗ = Rd (definition and 16 and
12). Wra# ∪Wra3 = (Wr1 ∪Wr2) ∪Wr3 = Wr1 ∪Wr∗ = Wr (definition and 16
and 12). V = Va# = Va3 (definition).

31 Wra′# ∩ Rda′3 = Wra′3 ∩ Rda′# = ∅. It holds because:
∗ Wra′#∩Rda′3 = (Wr′1∪Wr′2)∩Rd′3 by definition. It is equal to (Wr1∩Rd3)∪

(Wr2 ∩ Rd3), by 3, 8, 10. We have Wr1 ∩ Rd∗ = ∅ (11), and Rd3 ⊆ Rd∗
(16). So Wr1 ∩ Rd3 = ∅. We have Wr2 ∩ Rd3 = ∅ (15).

∗ Wra′3 ∩ Rda′# = Wra′3 ∩ (Rd′1 ∪ Rd′2) by definition. It is equal to (Wra3 ∩

Rd1)∪(Wra3∩Rd2), by 10, 3, 8. We have Wr3 ⊆ Wr∗ (16) and Wr∗∩Rd1 =

∅ (11). So Wra3 ∩ Rd1 = ∅. We have Wra3 ∩ Rd2 = ∅ (15).
32 ∗ Instrumental claims:

· (claim 1) Wr′∗ = Wr∗, by 16, 7, 9 and 18.
· (claim 2) Wr = Wr′, by 12, 3, claim 1, 14.
· (claim 3) Wr1 ⊆ Wr′, by claim 2, and 12.
· (claim 4.1) Wr2 ⊆ Wr′, by claim 2, 16, and 12.
· (claim 4.2) Wr3 ⊆ Wr′, by claim 2, 16, and 12.
· (claim 5) V′1 \Wr′ = V1 \Wr′, by 3, 12, and claim 2.
· (claim 6) V′2 \Wr′ = V2 \Wr′, by 8, 16, and 12.
· (claim 7) V′3 \Wr′ = V3 \Wr′, by 10, 16, and 12.
· (claim 8) Wr1∩Wr2 = ∅, by 11, 12, the ‘write-set included in read-set’

model constraint, and 16.
∗ Rd′ = Rda′#∪Rda′3 and Wr′ = Wra′#∪Wra′3 hold by definition, 16 and 12.
∗ Va′# \Wr′ = Va′3 \Wr′ holds because:
· Va′# \Wr′ = (V′1 ∪ V′2) \Wr′ by definitions, claim 3, and claim 4.1. By

claim 5 and claim 6, it is equal to (V1 ∪V2) \Wr′, which by 12 and 16
is V \Wr′.
· Moreover, Va′3 \Wr′ = V′3 \Wr′ by definition. It is equal to V3 \Wr′

by claim 7, and to V \Wr′ by 12 and 16.
∗ V′ = (Va′# ∩Wra′#) ∪ (Va′3 ∩Wra′3) ∪ (Va′# ∩ Va′3) holds because:
· Va′# ∩Wra′# = ((V′1 ∩Wr′1) ∪ (V′2 ∩Wr′2) ∪ (V′1 ∩ V′2)) ∩ (Wr′1 ∪Wr′2)

by definition, 3, and 8. We get (V′1 ∩Wr′1 ∩Wr′1)∪ (V′1 ∩Wr′1 ∩Wr′2)∪
(V′2 ∩ Wr′2 ∩ Wr′1) ∪ (V′2 ∩ Wr′2 ∩ Wr′2) ∪ (V′1 ∩ V′2 ∩ Wr′1) ∪ (V′1 ∩
V′2 ∩Wr′2). With elementary set theory simplifications and claim 8, we
obtain (V′1 ∩Wr′1) ∪ (V′2 ∩Wr′2).
· Va′3 ∩Wra′3 = V′3 ∩Wr′3.
· Va′# ∩ Va′3((V′1 ∩Wr′1)∪ (V′2 ∩Wr′2)∪ (V′1 ∩ V′2))∩ V′3 by definition, 3,

and 8. We get (V′1 ∩Wr′1 ∩ V′3) ∪ (V′2 ∩Wr′2 ∩ V′3) ∪ (V′1 ∩ V′2 ∩ V′3).



· The rhs quantity (Va′# ∩Wra′#) ∪ (Va′3 ∩Wra′3) ∪ (Va′# ∩ Va′3) is then
equal to (V′1 ∩Wr′1) ∪ (V′2 ∩Wr′2) ∪ (V′3 ∩Wr′3) ∪ (V′1 ∩ V′2 ∩ V′3).
· Moreover, by 14, we have V′ = (V′1 ∩Wr′1) ∪ (V′∗ ∩Wr′∗) ∪ (V′1 ∩ V′∗).
· By 18, V′∗ = (V′2 ∩Wr′2) ∪ (V′3 ∩Wr′3) ∪ (V′1 ∩ V′2).
· By claim 1, Wr′∗ = Wr∗, which by 16 is Wr2 ∪Wr3 which by 8 and 10

is Wr′2 ∪Wr′3. So Wr′2 ⊆ Wr′∗ and Wr′3 ⊆ Wr′∗.
· So (V′∗ ∩ Wr′∗) = (V′2 ∩ Wr′2) ∪ (V′3 ∩ Wr′3) ∪ (V′1 ∩ V′2 ∩ Wr′∗), with

V′1 ∩ V′2 ∩Wr′∗ = V′1 ∩ V′2 ∩ (Wr′2 ∪Wr′3) by 18, which is (V′2 ∩ V′3 ∩
Wr′2) ∪ (V′2 ∩ V′3 ∩Wr′3). So (V′∗ ∩Wr′∗) = (V′2 ∩Wr′2) ∪ (V′3 ∩Wr′3).
· Also (V′1 ∩V′∗) = (V′1 ∩V′2 ∩Wr′2)∪ (V′1 ∩V′3 ∩Wr′3)∪ (V′1 ∩V′2 ∩V′3),

with the first two disjuncts included in V′∗ ∩Wr′∗.
· The lhs quantity V ′ is then equal to (V′1 ∩Wr′1) ∪ (V′2 ∩Wr′2) ∪ (V′3 ∩

Wr′3) ∪ (V′1 ∩ V′2 ∩ V′3).
20 if and only if

24 if and only if
33 Wra1 ∩ Rda2 = ∅, Wra2 ∩ Rda1 = ∅. It holds, because:

· Wra1 ∩ Rda2 = Wr1 ∩ Rd2 by definition. From 16, Rd2 ⊆ Rd∗. From
11, Wr1 ∩ Rd∗ = ∅. So Wr1 ∩ Rd2 = ∅.
· Wra2 ∩ Rda1 = Wr2 ∩ Rd1 by definition. From 16, Wr2 ⊆ Wr∗. From

11, Wr∗ ∩ Rd1 = ∅. So Wr2 ∩ Rd1 = ∅.
34 By definition.
35 By definition, 33, 3, and 8.
36 Rda′# = Rda′1 ∪ Rda′2, Wra′# = Wra′1 ∪Wra′2, and Va′# = (Va′1 ∩Wra′1) ∪

(Va′2 ∩Wra′2) ∪ (Va′1 ∩ Va′2) by definition. Also, Va′1 \Wra′# = Va′2 \Wra′#
holds because:
· Va′1 \Wra′# = V′1 \(Wr′1∪Wr′2), which by 3 and 8 is equal to V1 \(Wr1∪

Wr2), which by 12 is equal to V \ (Wr1 ∪Wr2).
· Similarly, Va′2 \Wra′# is equal to V \ (Wr1 ∪Wr2) by 8, 3, 16 and 12.

25 By definition, and 2.
26 By definition, 3, and 12.
27 By definition, and 7.
28 By definition, 8, 16, and 12.

21 Rda# = Rda′# and Wra# = Wra′# hold by definition, 3, and 8. Also by definition,
3, and 8, Va# \ Wra# = Va′# \ Wra′# is equivalent to V \ (Wr1 ∪ Wr2) = ((V′1 ∩
Wr′1) ∪ (V′2 ∩Wr′2) ∪ (V′1 ∩ V′2)) \ (Wr1 ∪Wr2). The right-hand-side simplifies into
(V′1 ∩ V′2) \ (Wr1 ∪Wr2). Moreover, we have V′1 \Wr′1 = V \Wr′1 (by 3 and 12) and
V′2\Wr′2 = V\Wr′2 (by 8, 16, and 12). So we have V′1\(Wr′1∪Wr′2) = V\(Wr′1∪Wr′2)
and V′2 \ (Wr′1 ∪Wr′2) = V \ (Wr′1 ∪Wr′2). Hence, (V′1 ∩V′2) \ (Wr1 ∪Wr2) simplifies
into the left-hand-side V \ (Wr1 ∪Wr2).

22 By definition, and 9.
23 By definition, 10, 16, and 12.

Right to left. Suppose rhs. We define:

– m∗ = 〈Rd∗,Wr∗,V∗〉 = 〈Rda2 ∪ Rda3,Wra2 ∪Wra3,V〉,
– m1 = 〈Rd1,Wr1,V1〉 = a1 = 〈Rda1,Wra1,Va〉,



– m2 = 〈Rd2,Wr2,V2〉 = a2 = 〈Rda2,Wra2,Va〉,
– m3 = 〈Rd3,Wr3,V3〉 = a3 = 〈Rda3,Wra3,Va〉,
– m′∗ = 〈Rd′∗,Wr′∗,V

′
∗〉 = 〈Rda′2∪Rda′3,Wra′2∪Wra′3, (Va′2∩Wra2)∪ (Va′3∩Wra3)∪

(Va′2 ∩ Va′3)〉,
– m′1 = 〈Rd′1,Wr′1,V

′
1〉 = a′1 = 〈Rda′1,Wra′1,Va′1〉,

– m′2 = 〈Rd′2,Wr′2,V
′
2〉 = a′2 = 〈Rda′2,Wra′2,Va′2〉,

– m′3 = 〈Rd′3,Wr′3,V
′
3〉 = a′3 = 〈Rda′3,Wra′3,Va′3〉.

We must show that these models satisfy all the properties from 1 to 18. This is done
routinely, analogously to the proof of the left-to-right direction above.
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