Fabien Herbaut
email: fabien.herbaut@univ-cotedazur.fr

Nicolas Méloni

Pascal Véron
email: veron@univ-tln.fr

Compact variable-base ECC scalar multiplication using Euclidean addition chains

Keywords: Elliptic curves, scalar multiplication, side-channel protection, memory usage, addition chain

 and provides a method with decent performance despite the growth of the base field required to get the same level of security. The aim of this paper is to reduce the size of the base field required. Combined with an algorithmic improvement, we obtain a reduction of 21% of the memory usage. Hence, our method appears to be one of the most compact scalar multiplication procedure and is particularly suitable for lightweight applications.

Introduction and context

The increasing importance of smart devices such as smart cards or sensor networks comes with growing needs for low cost algorithms in the area of cryptographic primitives. Relevant solutions should involve low memory usage and a compact code which does not sacrifice protection against physical attacks. The aim of this paper is to improve a regular and constant time method, so we obtain a very compact algorithm both from a memory usage and size code point of view. This algorithm could be dedicated for lightweight applications.

Purpose and main idea

The Euclidean addition chains are sequences of couples of integers starting from (1, 1) and such that (u, v) leads to (u, u + v) or to (v, u + v). Such chains enable to take advantage of the ZADD operation, which is an efficient way to compute the sum of two points of an elliptic curve with the same Z Jacobian coordinate.

According to [START_REF] Dosso | Euclidean addition chains scalar multiplication on curves with efficient endomorphism[END_REF], this approach fits well with the GLV-like context of an elliptic curve endowed with an efficiently computable endomorphism. Indeed, the method described in [START_REF] Dosso | Euclidean addition chains scalar multiplication on curves with efficient endomorphism[END_REF] leads to a simple and compact way to compute the elliptic curve scalar multiplication kP (ECSM) for a Diffie-Hellman key exchange protocol. The main drawback of this method is that it requires the use of a larger curve as compared to other methods for the same security level. But despite the growth of the base field, it provides decent speed results and very good memory usage performance.

The aim of this paper is to improve the method described in Section 4 of [START_REF] Dosso | Euclidean addition chains scalar multiplication on curves with efficient endomorphism[END_REF]. First, we obtain an asymptotic reduction of 7.97% of the size of the base field required. Next, we modify the original ZADD algorithm to save one register over F p . For practical usage, we obtain a reduction of 21% of the memory used in the method described in [START_REF] Dosso | Euclidean addition chains scalar multiplication on curves with efficient endomorphism[END_REF].

In comparison with the method proposed in [START_REF] Dosso | Euclidean addition chains scalar multiplication on curves with efficient endomorphism[END_REF], the progress lies in the restriction of the random generation to a subset S of all Euclidean addition chains. Call the chaining (u, v) → (u, u+v) a small step and the chaining (u, v) → (v, u+ v) a big step. The subset S to which we restrict ourselves is the one of Euclidean chains with more small steps than big steps. The subset S has been chosen such that its chains are sufficiently numerous with respect to their growth (see Theorem 2), and quite easy to randomly generate (see lines 2-6 of Algorithm 3).

Context

Let us now describe more precisely the context of our work. We intend:

-to define a variable scalar multiplication algorithm to be used in the context of Diffie-Hellman key exchange,

-to provide a regular and constant time algorithm (which is nowadays a minimum requirement for any cryptographic primitive), -to respect low memory constraints, -to work with an elliptic curve E defined over a prime field F p and endowed with one efficient endomorphism.

Related papers

One wants to compute a scalar multiplication point kP to perform a part of a Diffie-Hellman key exchange under the above constraints. In [START_REF] Herbaut | Random euclidean addition chain generation and its application to point multiplication[END_REF] one suggests to randomly sample an Euclidean additions chain

(P, 2P) small step ------→ (P, 3P) big step
----→ (3P, 4P) → . . . rather than an integer k.

In [START_REF] Gallant | Faster point multiplication on elliptic curves with efficient endomorphisms[END_REF] it is proposed to make use of one efficient endomorphism φ on a curve to perform kP. The idea to randomly sample Euclidean additions chains starting from (P, φ(P)) appears in [START_REF] Dosso | Euclidean addition chains scalar multiplication on curves with efficient endomorphism[END_REF]. These ideas and the notations are progressively recalled in Section 2.

Note that the idea to randomly sample other elements than the scalar in order to compute scalar multiplication also appears in other works, (see for example the beginning of Section 4 in [START_REF] Costello | Faster compact Diffie-Hellman: Endomorphisms on the x-line[END_REF]). It necessary leads to a study of the repartition of the computed points (see for example Proposition 4 of [START_REF] Costello | Faster compact Diffie-Hellman: Endomorphisms on the x-line[END_REF]). The methods described in [START_REF] Herbaut | Random euclidean addition chain generation and its application to point multiplication[END_REF] leans on an injectivity result (Proposition 3) or an asymptotic result (Theorem 1). As for the main method described in [START_REF] Dosso | Euclidean addition chains scalar multiplication on curves with efficient endomorphism[END_REF], it leans on the injectivity result of Proposition 4. We recall this statement in Section 2, and we improve it with Theorem 2 of Section 3.

As we claim very good memory management, we try to provide a fair comparison with competitive side-channel attack resistant scalar multiplication algorithms in the context of our paper. We give in Section 4 details about the memory consumption of the following well-known algorithms:

• endomorphism of the x-line [START_REF] Costello | Faster compact Diffie-Hellman: Endomorphisms on the x-line[END_REF],

• FourQ [START_REF] Costello | FourQ: four-dimensional decompositions on a Q-curve over the Mersenne prime[END_REF],

• Ted-glv [START_REF] Gallant | Faster point multiplication on elliptic curves with efficient endomorphisms[END_REF] taking benefits from the sign-aligned column decomposition of the scalar [START_REF] Faz-Hernández | Efficient and secure algorithms for GLV-based scalar multiplication and their implementation on GLV-GLS curves (extended version)[END_REF] and the twisted Edwards coordinates system,

• Ted127-glv4 [START_REF] Faz-Hernández | Efficient and secure algorithms for GLV-based scalar multiplication and their implementation on GLV-GLS curves (extended version)[END_REF],

• the Montgomery ladder algorithm exploiting the benefit of the Curve25519 [START_REF] Bernstein | Curve25519: New Diffie-Hellman speed records[END_REF].

2 Background and notations 2.1 Elliptic curves with one efficient endomorphism and Co-Z arithmetic

The well known GLV method was introduced in 2001 by Gallant, Lambert and Vanstone in [START_REF] Gallant | Faster point multiplication on elliptic curves with efficient endomorphisms[END_REF]. It has given rise to many efficient algorithms in a broader range of contexts (see [START_REF] Galbraith | Endomorphisms for faster elliptic curve cryptography on a large class of curves[END_REF][START_REF] Longa | Four-dimensional Gallant-Lambert-Vanstone scalar multiplication[END_REF][START_REF] Faz-Hernández | Efficient and secure algorithms for GLV-based scalar multiplication and their implementation on GLV-GLS curves (extended version)[END_REF][START_REF] Costello | Faster compact Diffie-Hellman: Endomorphisms on the x-line[END_REF] for instance). As in [START_REF] Gallant | Faster point multiplication on elliptic curves with efficient endomorphisms[END_REF] we will consider an elliptic curve E defined over a prime field F p , endowed with an efficiently computable endomorphism φ : E → E. A first list of such curves and endomorphisms is given in Section 2 of [START_REF] Gallant | Faster point multiplication on elliptic curves with efficient endomorphisms[END_REF]. We will keep the context and the notations of (F. [START_REF] Sica | Analysis of the Gallant-Lambert-Vanstone method based on efficient endomorphisms: elliptic and hyperelliptic curves[END_REF]. Namely, we will fix a point P ∈ E of order N such that #E/N 4, we assume that

X 2 + rX + s ∈ Z[X]
is the characteristic polynomial of φ and that φ(P) = λP with 0 < λ < N.

Recall that if two different points P and Q given by their Jacobian coordinates (X : Y : Z) and (X : Y : Z) share the same third coordinate Z = Z (sometimes called the Z-coordinate) then the ZADD operation introduced in [START_REF] Méloni | New point addition formulae for ECC applications[END_REF] computes the sum P + Q for the elliptic curve law group at a low cost of 5M+2S. Since, this operation and its variants have attracted attention and yielded efficient scalar multiplication schemes [START_REF] Longa | New Composite Operations and Precomputation Scheme for Elliptic Curve Cryptosystems over Prime Fields[END_REF][START_REF] Hutter | Memoryconstrained implementations of elliptic curve cryptography in co-Z coordinate representation[END_REF][START_REF] Goundar | Co-Z addition formulae and binary ladders on elliptic curves -(extended abstract)[END_REF][START_REF] Goundar | Scalar multiplication on Weierstraß elliptic curves from co-z arithmetic[END_REF][START_REF] Baldwin | Co-z ECC scalar multiplications for hardware, software and hardware-software co-design on embedded systems[END_REF]. To be more precise, the ZADD operation enables to recover, at the same cost, representatives of both P + Q and P with the same Zcoordinate, or representatives of both P + Q and Q with the same Z-coordinate.

Lastly, with regard to the memory usage, let us emphasize that the x-only trick introduced by Montgomery in [START_REF] Montgomery | Speeding the Pollard and elliptic curve methods of factorization[END_REF] fits well with the Co-Z arithmetic context. Indeed, consider the formulas given in [START_REF] Méloni | New point addition formulae for ECC applications[END_REF] to perform the addition of two points with the same Jacobian Z-coordinate: the computation of the X and Y coordinates of the sum does not involve the Z coordinate of the input. When one does not care about the Z coordinate, one can perform the addition saving one register and one multiplication (so the cost drops down to 4M+2S).

About the random generation of

Euclidean addition chains in GLV-like context.

The idea of the random generation of chains is introduced in [START_REF] Herbaut | Random euclidean addition chain generation and its application to point multiplication[END_REF] when the base point P is fixed. The scope is extended to the context of variable-base scalar multiplication on a curve endowed with an endomorphism in [START_REF] Dosso | Euclidean addition chains scalar multiplication on curves with efficient endomorphism[END_REF].

The Proposition 4 of the latter paper is the result we want to improve and exploit in this work. Namely, this proposition states that under some assumptions 2 different chains of length compute 2 different points when applying the Algorithm 2 of [START_REF] Dosso | Euclidean addition chains scalar multiplication on curves with efficient endomorphism[END_REF] and starting from (P, φ(P)). Let us recall what it means.

We introduce M = {0, 1} in order to represent choices of computations in a sequence of ZADD operations. When dealing with elements of M in this context, the vocabulary involves the word chains because of the links with addition chains (see [START_REF] Brauer | On addition chains[END_REF] for example). The words Euclidean addition chains (EAC in the sequel of this paper) are also used because of the link with the Euclidean algorithm (see [START_REF] Montgomery | Evaluating Recurrences of form x m+n = f (x m , x n , x m-n) via Lucas chains[END_REF] for example).

To introduce Algorithm 1, fix c ∈ M and a point P ∈ E. Start from (P, φ(P)). If c 0 = 1, compute (P, P + φ(P)) with ZADD. We call this chaining a small step. If c 0 = 0, compute (φ(P), P + φ(P)).

We call this chaining a big step. In both cases the representatives of the computed points share the same Z-coordinate. In the first case, if c 1 = 1, compute (P, 2P + φ(P)). If c 1 = 0 compute (P + φ(P), 2P + φ(P)). In the second case, if c 1 = 1, compute (φ(P), P + 2φ(P)). If c 1 = 0 compute (P + φ(P), P + 2φ(P)). Repeat this procedure for each bit c i . At the end, sum the two components with a last call to ZADD. Now assume that φ(P) = λP with λ ∈ Z. This way we start from (P, λP) and a choice of c ∈ M amounts to choosing a branch in a binary tree (see fig. 1). It naturally leads to a point (k 1 + k 2 λ)P for some integers k 1 and k 2 . It leads to the Algorithm 1 which corresponds to the method of Section 4 in [START_REF] Dosso | Euclidean addition chains scalar multiplication on curves with efficient endomorphism[END_REF].

Important remark: This algorithm makes exactly n + 1 calls to ZADD, where n is the length of c. As it will be explained in the next section, this size will be determined by the required security level. Hence, once the security level of the protocol is settled, the number of calls to ZADD is constant.

The algorithm requires P ∈ E such that φ(P) = λP Algorithm 1 EAC Point Mul(c: an addition chain of length n)

Require: P ∈ E and c ∈ M n Ensure: Q = χ 1,λ (c)P 1: (U 1 ,U 2) ← (P, φ(P)) 2: for i = 1 . . . length(c) do 3: if c i = 0 then 4: (U 1 ,U 2) ← ZADD(U 2 ,U 1) [it corre- sponds to (U 2 ,U 1 +U 2)] 5: else 6: (U 1 ,U 2) ← ZADD(U 1 ,U 2) [it corre- sponds to (U 1 ,U 1 +U 2)] 7: end if 8: end for 9: (U 1 ,U 2) ← ZADD(U 1 ,U 2) 10: return Q = U 2 and c = (c 1 , . . . , c) ∈ M . This algorithm computes kP where k = (1, λ) ∏ i=1 S c i 1
1 and where S 0 and S 1 denote the matrices defined as follows.

Definition 1. S 0 = 0 1 1 1 and S 1 = 1 1 0 1 .
To exploit this linear algebra point of view we also introduce the following definitions.

Definition 2. Let (a, b) ∈ N 2 , s ∈ N * and c = (c 1 , . . . , c s) ∈ M s . We define: . ψ a,b (c) = (a, b) ∏ s i=1 S c i and χ a,b (c) = (a, b) ∏ s i=1 S c i 1 1 . µ(c) = ∏ s i=1 S c i 1 1
Now we understand the statement of the Proposition 4 in [START_REF] Dosso | Euclidean addition chains scalar multiplication on curves with efficient endomorphism[END_REF]. We recall that N denotes the order of the point P and that X 2 + rX + s is the characteristic polynomial of the endomorphism φ as mentionned in subsection 2.1. Proposition 1. (Proposition 4 in [START_REF] Dosso | Euclidean addition chains scalar multiplication on curves with efficient endomorphism[END_REF])

If N > F 2 n+2 (1 + |r| + s), then the 2 n chains c ∈ M n compute 2 n different points when applying Al- gorithm 1.
This statement has justified the following procedure: randomly choose c ∈ M n and compute χ 1,λ (c)P with the algorithm above. Unfortunately, the condition N > F 2 n+2 (1 + |r| + s) involves the use of a curve of greater size than usual. For instance, for a 128bit security level, the conditions of Proposition 4 of [START_REF] Dosso | Euclidean addition chains scalar multiplication on curves with efficient endomorphism[END_REF] leads to work over a field of size 358.

P, λP

(P,(1+λ)P)

(P, (λ + 2)P) → (3 + λ)P c 1 = 1 ((λ + 1)P, (λ + 2)P) → (3 + 2λ)P c1 = 0 c 1 = 1 (λP,(λ+1)P) (λP, (2λ + 1)P) → (1 + 3λ)P c 1 = 1 ((λ + 1)P, (2λ + 1)P) → (2 + 3λ)P c1 = 0 c0 = 0
Figure 1: Running an addition chain from (P, λP)

.

3 Our contribution

Notations and preliminary results

The main idea of this paper is to consider a subset S ⊂ M and to randomly choose c in S rather than in M , so it enables to decrease the minimum size of the curve E. Here the point is to choose a subset S large enough and whose elements c yield couples Although the following lemma is an easy consequence of a coefficient by coefficient comparison of the couples computed by chains, it will make the reading of the proof of Proposition 2 easier. Lemma 1. Let , m, a and b be four integers such that 0 m and 1 ≤ a ≤ b. Then

(k 1 , k 2) := ψ 1,λ (
max{χ a,b (c) | c ∈ M , m } = max{χ a,b (c) | c ∈ M ,m } .
Proof. Fix a chain c of length and weight m, and consider any chain ĉ obtained from c by changing a 0 into a 1. An induction on the length of the chain enables to prove that the couples arising in the computation of χ a,b (c) are greater or equal than the the couples arising in the computation of χ a,b (ĉ) when comparing coefficients by coefficients.

The next result could be considered as the main ingredient of the work [START_REF] Dosso | Euclidean addition chains scalar multiplication on curves with efficient endomorphism[END_REF] and of this contribution. Indeed, when trying to prove that different chains give rise to different points, it enables to bound k 1 and k 2 rather than bounding k 1 + k 2 λ. This result appears in the section 2.1 of (F. Sica and M. Ciet and J-J. [START_REF] Sica | Analysis of the Gallant-Lambert-Vanstone method based on efficient endomorphisms: elliptic and hyperelliptic curves[END_REF] and it is also stated in Lemma 6 of [START_REF] Longa | Four-dimensional Gallant-Lambert-Vanstone scalar multiplication[END_REF]. Proofs release on the irreductibility of

X 2 + rX + s on Z[X]. Lemma 2. Let (k 1 , k 2) ∈ Z \ {(0, 0)}. If k 1 + k 2 λ ≡ 0 (mod N) then max(|k 1 |, |k 2 |) ≥ N 1 + |r| + s .
To end this section, we remind the following result from [START_REF] Herbaut | Random euclidean addition chain generation and its application to point multiplication[END_REF] which will be used in the proof of the next proposition. Theorem 1. (Theorem 2 in [START_REF] Herbaut | Random euclidean addition chain generation and its application to point multiplication[END_REF])

Let (p,) ∈ N 2 such that 0 < 2p < . Let F i be the i th Fibonacci, α p = (1+ √ 2) p +(1- √ 2) p 2 , β p = (1+ √ 2) p -(1- √ 2) p 2 √ 2
, then for all m ∈ M ,p we have

χ 1,2 (m) F -2p+4 (α p + β p) + β p F -2p+2
and this upper bound is reached if and only if m = (01) p 0 -2p or m = 0 -2p (10) p .

New theoretical results

We first want to have an upper bound on the coefficient of µ(c) when c is a chain of M 2n, n .

Proposition 2. Let n 3 be an integer. Then

max{ µ(c) ∞ | c ∈ M 2n, n } = 8α n-2 + 11β n-2 where α m = (1+ √ 2) m +(1- √ 2) m 2 and β m = (1+ √ 2) m -(1- √ 2) m 2 √ 2
.

Proof. Fix an integer n 2. We begin by proving

that max{ µ(c) ∞ | c ∈ M 2n, n } = max{χ 1,2 (c) | c ∈ M 2n-2,n-2 }.
Recall that for any couple of integers

that max{ µ(c) ∞ | c ∈ M 2n, n } is the greatest integer between max{χ 1,1 (c)| c ∈ M 2n-1, n } and max{χ 1,1 (c)| c ∈ M 2n-1, n-1 }.
Using Lemma 1 we see that one can consider M 2n-1,n and M 2n-1,n-1 rather than M 2n-1, n and M 2n-1, n-1 . Now, with the same argument as in the proof of Lemma 1 the maximum we look for is max{χ

1,1 (c)| c ∈ M 2n-1,n-1 }.
Remark that whatever the first step is a small or a big one, it maps (1, 1) to (1, 2), so the maximum taken is

the maximum between max{χ 1,2 (c)| c ∈ M 2n-2,n-2 } and max{χ 1,2 (c)| c ∈ M 2n-2,n-1 }.
The maximum we look for is the first one for the same reason as above. We conclude making use of the Theorem 1 which gives the maximum of χ 1,2 .

The next result is our main statement: it enables better memory usage than Proposition 1. Theorem 2. Let n 3 be an integer. We consider an elliptic curve E endowed with an endomorphism φ whose characteristic polynomial is X 2 + rX + s. Let P ∈ E of prime order N, if

N (8α n-2 + 11β n-2) 2 (1 + |r| + s)
then, starting from (P, φ(P)), the 2 2n-1 chains c ∈ M 2n, n compute 2 2n-1 different points when applying the Algorithm 1 .

Proof. We follow the proof of Proposition 4 in [START_REF] Dosso | Euclidean addition chains scalar multiplication on curves with efficient endomorphism[END_REF]. Suppose that the chains c and c in c ∈ M 2n, n compute the same point when applying

Algorithm 1. If k 1 k 2 = µ(c) and k 1 k 2 = µ(c), then one should have k 1 +k 2 λ ≡ k 1 +k 2 λ (mod N) and so (k 1 -k 1) + (k 2 -k 2)λ ≡ 0 (mod N).
But the integers k i and k i are positive, so with Proposition 2 we get

|k i -k i | < 8α n-2 + 11β n-2 , hence by hypothesis |k i -k i | < N 1+|r|+s .
It remains to apply Lemma 6 of [START_REF] Longa | Four-dimensional Gallant-Lambert-Vanstone scalar multiplication[END_REF]

to obtain k 1 k 2 = k 1 k 2
and thus c = c , as µ is injective (see Proposition 1 in [START_REF] Dosso | Euclidean addition chains scalar multiplication on curves with efficient endomorphism[END_REF]).

The necessary condition in this theorem is more favourable than the one of Proposition 1. Indeed, let us estimate the field size required for a t-bit security level. For such a security level we need to have 2n -1 2t which implies to take n t + 1. Thus, if we take n = t + 1, Theorem 2 shows that it is sufficient to have

N (8α t-1 + 11β t-1) 2 (1 + |r| + s).
(1)

In the worst case we consider we have 1

+ |r| + s = 4.
According to the definition of α and β, the right hand side of the last inequation (1) can be seen as a polynomial of degree 2t -2 in (1-√ 2) and (1+ √ 2). If for first approximation we only consider the terms in (1 + √ 2) then the condition becomes

N 4(1 + √ 2) 2t-2 16 + 121/8 + 44/ √ 2 ,
which amounts to taking log 2 (N) 2.54t -1.41. Asymptotically we need log 2 (N) 2.54t, so as compared to the protocol described in [START_REF] Dosso | Euclidean addition chains scalar multiplication on curves with efficient endomorphism[END_REF] (where log 2 (N) 2.76t) we obtain here asymptotically a gain of 7.97%. We give in Table 1 the order of the point P necessary for a given security level computed from inequation (1). For instance in the case of a 128-bit security level, rather than considering a point P of order 358 as in [START_REF] Dosso | Euclidean addition chains scalar multiplication on curves with efficient endomorphism[END_REF] we can now consider a point of order 331, which enables a gain of 7.5%.

The ZADDu algorithm

In our implementation, our priority is to minimize the number of active registers. For this purpose, we use a slightly modified version of the ZADD procedure. We call this procedure ZADDu (see Algorithm 2).

Compared to ZADD, it saves one register. Indeed, the coordinates of the two input points can be used to store some intermediate results. Hence the register B used in Algorithm 9 of [START_REF] Dosso | Euclidean addition chains scalar multiplication on curves with efficient endomorphism[END_REF] is not necessary. It is important to note that this procedure only uses its five parameters and one auxiliary register to perform all its computations, no extra variable is needed.

With this procedure it is possible to perform a scalar multiplication using Algorithm 3. There are two main differences between this algorithm and Algorithm 1. First, note that Theorem 2 requires that more than half of the bits of the chain c are 1's. In practice it only means that more than half of the operations are small steps. As it is purely arbitrary to 1: Field and chain sizes required for a given security level when φ satisfies φ2 + rφ + s = 0 and (r, s) = (0, 1)/(1, 1)/(-1, 2).

Algorithm 2 ZADDu(X 0 ,Y 0 ,X 1 ,Y 1 ,Z)

Ensure: Update X 0 ,Y 0 , X 1 ,Y 1 and Z such that (X 0 ,Y 0 , Z) and (X 1 ,Y 1 , Z) be the representatives of P and P + Q

1: A ← X 1 -X 0 2: Z ← Z.A 3: A ← A 2 4: X 0 ← X 0 .A 5: A ← X 1 .A 6: Y 1 ← Y 1 -Y 0 7: X 1 ← Y 2 1 8: X 1 ← X 1 -X 0 9: X 1 ← X 1 -A 10: A ← A -X 0 11: Y 0 ← Y 0 .A 12: A ← X 0 -X 1 13: Y 1 ← A.Y 1 14: Y 1 ← Y 1 -Y 0
consider that a 1 represent a small step, the if statement from line 2 to 6 ensure that the bit b will represent a big step and thus b ⊕ 1 a small step. Secondly, each step of the for loop must compute either ZADDu(P 0 , P 1) or ZADDu(P 1 , P 0) depending on the current EAC bit. In order to avoid the if statement and eliminate a possible cache timing attack, the swap of variables is achieved using the same trick shown in [START_REF] Düll | High-speed curve25519 on 8-bit, 16-bit, and 32-bit microcontrollers[END_REF] (line 9 to 11).

From a memory perspective, it is important to note that the whole scalar multiplication only requires 6 active registers for storing 6 field elements. Most scalar multiplication algorithms require at least so many registers just to store the base point P (that must be kept during the whole process, for instance when using double and add) and the result value Q. If the Z-coordinate is not required by the protocol, it is possible to perform a (X,Y)-only scalar multiplication, saving 1 register as the computation involving Z becomes superfluous [START_REF] Méloni | New point addition formulae for ECC applications[END_REF].

First implementation and practical results

We describe here a C implementation of our scalar multiplication scheme. It is worth noting that it is a proof of concept implementation, meaning we do not aim at any speed record, and that is why all field arithmetic operations are performed using the GNU Multi Precision library1 . We measured the computation time of our method. For practical reasons we have used EAC of length 256 so that we can generate 2 255 different chains leading to a potential security of 127.5 bits. This is coherent with other standards such as curve25519 (whose security is 126 bits) [START_REF] Bernstein | Curve25519: New Diffie-Hellman speed records[END_REF]. Based on Table 1, it is sufficient to choose a base field defined by a prime p of 331 bits in order to achieve this level of security. That is why we used the curve E 331 (F p 331) : y 2 = x 3 + 3 with p 331 = 2 331 -36301 for our experiments.

We use the endomorphism φ : (x, y) → (βx, y) where β is an element of order 3 so that φ satisfies the equation φ 2 + φ + 1 = 0. With the vocabulary of Section 3 we have r = s = 1 so the results of Table 1 do apply.

Measurements were performed on an Intel(R) Core(TM) i5-6500 CPU 3.20GHz using gcc 9.3.0 and gmp 6.2.1. The test procedure first runs 1000 times the scalar multiplication function to heat the cache. Then 1000 random data sets are used and for each of them, one takes the minimum as well as the median value of the execution clock cycle numbers over a batch of 1000 runs. The performance is the average of all the minimums and median values. Cycle count is done as recommended in [START_REF] Paoloni | How to benchmark code execution times on intel R ia-32 and ia-64 instruction set architectures[END_REF]. The results obtained with curve E 331 are given in table 2. To give the reader an order of idea, there are

Min

Median EAC 1,397,527 1,400,548 EAC (X,Y)-only 1,199,439 1,201,950 several benchmarks available on the SUPERCOP site [START_REF] Bernstein | ebacs: Ecrypt benchmarking of cryptographic systems[END_REF] for a Diffie-Helmann exchange on an elliptic curve 2 . All the results correspond to optimized versions of Diffie-Helmann key exchange on different curves. Our implementation is just a proof of concept and relies on the general GNU multiprecision library, hence it cannot be considered as an optimized implementation. However, let us consider as an example the NIST P-256 curve which is an international standard used in OpenSSL. Three different implementations of this curve are available in the SUPERCOP package. The first one, developped by Y. Nawaz and G. Gong (University of Waterloo, Canada), only runs on Sun's Ultrasparc processors, hence we could not perform any evaluation on our platform. The second one (named wbl) has been developped by Watson Ladd (Cloudfare company) from the source code of the NIST P-256 implementation of the OpenSSL project developped by Adam Langley (Google). It contains optimized arithmetic operations and uses Jacobian coordinates (like our protocol). The last one (named ref), developped by Jan Mojzis 3 , is a constant-time version which uses Jacobian coordinates and implements low-level fast arithmetic (unlike our proof of concept). We followed the procedure described in the SUPERCOP package to evaluate the wbl and ref versions. We obtained the following outputs on our platform : Each value corresponds to the number of cycles required to compute one scalar multiplication. Hence our non-optimized version is competitive with the ref version and it is almost half as fast as the wbl version. Once again, the purpose of this section is not to claim any speed record but to show that, despite the extra cost in terms of field size, our algorithm remains practical speed wise compared to existing standards.

Memory usage

The aim of this section is to compare our approach with other well known side-channel attack resistant scalar multiplication algorithms from a memory usage point of view.

We sum up the comparison details in Table 3 for a 128-bit level of security. The first column recalls the size of the prime p (given in bits). Then, the "Inputs" double-column gathers the number of F p -registers 3 https://github.com/janmojzis Algorithm 3 EACsmult(X 0 ,Y 0 , c) Require: β ∈ F p , P in affine coordinates Ensure: Return Q = (X 1 ,Y 1 , Z) the point computed from (P, φ(P)) and the Euclidean addition chain c

1: w ← weight(c) 2: if w length(c)/2 then 3: b ← 0 4: else 5: b ← 1 6: end if 7: X 1 ,Y 1 , Z ← X 0 .β,Y 0 , 1 8: for i = 1 . . . length(c) do 9: A ← (X 0 ⊕ X 1) × (c i ⊕ b) 10: X 0 , X 1 ← X 0 ⊕ A, X 1 ⊕ A 11: A ← (Y 0 ⊕Y 1) × (c i ⊕ b) 12: Y 0 ,Y 1 ← Y 0 ⊕ A,Y 1 ⊕ A 13: ZADDu(X 0 ,Y 0 , X 1 ,Y 1 , Z) 14: end for 15: ZADDu(X 0 ,Y 0 , X 1 ,Y 1 , Z) 16: return X 1 ,Y 1 , Z
and the corresponding size (given in bytes) of the input data of the scalar multiplication procedure. The "ECSM" (Elliptic Curve Scalar Multiplication) double-column gathers the number of F p -registers and the corresponding size (given in bytes) of the ancillary data used in addition and doubling formulas. Last, the "Total" column summarizes the sizes (given in bytes) of the whole data involved in the ECSM procedure. For the reader's convenience we now provide some details to better understand the memory count for the different methods.

x-line [START_REF] Costello | Faster compact Diffie-Hellman: Endomorphisms on the x-line[END_REF]: the ECSM procedure takes as inputs four affine elements x(P), x(Q), x(P -Q) and x(P + Q) where Q = ψ(P). Each element has two F p 2 coordinates (Z : T) and each element of F p 2 is encoded into two F p -registers. To compute kP, the procedure uses the ADD AFFINE and DBLADD AFFINE formulas described in [START_REF] Bernstein | Explicit-Formulas Database[END_REF]. However, considered "as is", these formulas are not optimal for memory usage. We provide in Algorithms 4 and 5 are modified versions in order to minimize the number of registers. The letter in bracket indicates the name of the register originally used in [START_REF] Bernstein | Explicit-Formulas Database[END_REF]. We notice that 6 supplementary F p 2 elements (i.e 12 F p -registers) are needed for these formulas. Moreover the whole ECSM procedure requires 4 F p -registers (z 0 , . . . , z 3) and 3 affine points T 0 , T 1 , T 2 (i.e 12-F p registers) Ted-glv-sac: to compute kP we exploit the wellknown GLV method [START_REF] Gallant | Faster point multiplication on elliptic curves with efficient endomorphisms[END_REF]

4 ADD AFFINE(X 2 , Z 2 , X 3 , Z 3 , X 1) 1: X 5 ← X 2 + Z 2 (A) 2: Z 5 ← X 3 -Z 3 (D) 3: DA ← X 5 × Z 5 4: X 5 ← X 2 -Z 2 (B) 5: Z 5 ← X 3 + Z 3 (C) 6: CB ← X 5 × Z 5 7: X 5 ← (DA +CB) 2 8: Z 5 ← X 1 × (DA -CB) 2 9: return X 5 , Z 5 Algorithm 5 DBLADD AFFINE(X 2 , Z 2 , X 3 , Z 3 , X 1) 1: X 4 ← X 2 + Z 2 (A) 2: Z 4 ← X 3 -Z 3 (D) 3: Z 4 ← X 4 × Z 4 (DA) 4: X 5 ← X 2 -Z 2 (B) 5: Z 5 ← X 3 + Z 3 (C) 6: Z 5 ← X 5 × Z 5 (CB) 7: X 5 ← X 2 4 (AA) 8: BB ← X 2 5 9: E ← X 5 -BB 10: X 4 ← X 5 × BB 11: X 5 ← (Z 4 + Z 5) 2 12: Z 5 ← X 1 × (Z 4 -Z 5) 2 13: Z 4 ← E × (BB + a24 × E) 14: return X 4 , Z 4 , X 5 , Z 5
defined over F p with one efficiently computable endomorphism, and the Sign-Aligned Column decomposition of k decribed in [START_REF] Faz-Hernández | Efficient and secure algorithms for GLV-based scalar multiplication and their implementation on GLV-GLS curves (extended version)[END_REF]. The points are represented using the Twisted Edwards coordinates system. To obtain better performances, point doubling and addition are computed mixing standard twisted Edwards coordinates with extended twisted Edwards coordinates. Standard twisted Edwards coordinates are encoded on 3 F pregisters while extended twisted Edwards coordinates need 4 resisters. The algorithm is described in (Dosso et al., 2018, Alg. 7) 4 . The point doubling takes as input extended twisted Edwards coordinates and outputs extended twisted Edwards coordinates (for the point Q). The corresponding formula (non optimized for memory) can be found in the section 3.3 of [START_REF] Hisil | Twisted Edwards curves revisited[END_REF]. The C implementation shows that in practice only the 4 registers of the point Q and 2 additional registers are needed to update Q. The point addition takes as input extended twisted Edwards coordinates and standard twisted Edwards coordinates. The output is expressed in extended twisted Edwards coordinates. The formula is given in section 3.2 of [START_REF] Hisil | Twisted Edwards curves revisited[END_REF] when a = -1 and Z 2 = 1. In the C implementation which is provided, only the 4 registers of the point Q and 2 additional registers are needed to perform this point addition. Hence 6 registers are needed to compute any of these two operations. Last, the input of the ECSM algorithm consists of two points given in standard twisted Edwards coordinates, that is 6 registers.

Ted127-glv4 [START_REF] Faz-Hernández | Efficient and secure algorithms for GLV-based scalar multiplication and their implementation on GLV-GLS curves (extended version)[END_REF]: here the authors take benefit of two efficiently computable endomorphisms φ and ψ on a curve defined over F p 2 . The points are represented either in standard twisted Edwards coordinates or in extended twisted Edwards coordinates. Each coordinate is encoded on 2 F p -registers. The input of the algorithm consists of four points: P, φ(P), ψ(P), φψ(P) (we need 4 coordinates for each of these points, see annex B of [START_REF] Faz-Hernández | Efficient and secure algorithms for GLV-based scalar multiplication and their implementation on GLV-GLS curves (extended version)[END_REF]). It gives a total of 32 F p -registers. Three coordinates are used to encode P, which are later extended to 4 coordinates. In the case of variable base scalar multiplication, as explained in [START_REF] Faz-Hernández | Efficient and secure algorithms for GLV-based scalar multiplication and their implementation on GLV-GLS curves (extended version)[END_REF], 4 more points are computed during the computation of kP. Each point is represented using 4 coordinates (X + Y,Y -X, 2Z, 2T), which leads to 32 F p -registers. The results given in table 3 come from [START_REF] Faz-Hernández | Efficient and secure algorithms for GLV-based scalar multiplication and their implementation on GLV-GLS curves (extended version)[END_REF] where the formulas of [START_REF] Hisil | Twisted Edwards curves revisited[END_REF] have been adapted to reduce memory storage. The algorithm computes a doubling followed by an addition. The result of these operations is stored in a point Q which is represented by 3 coordinates plus two additional elements of F p 2 , namely T a and T b (see [START_REF] Hamburg | Fast and compact elliptic-curve cryptography[END_REF] for the description of the Hamburg's "extensible" strategy which requires 10 registers). Doubling needs 2 additional elements of F p 2 , hence 4 registers (note that in Algorithm 11 of [START_REF] Faz-Hernández | Efficient and secure algorithms for GLV-based scalar multiplication and their implementation on GLV-GLS curves (extended version)[END_REF] X 1 and Z 1 can be used instead of X 2 and Z 2). A point addition requires 3 F p 2 -elements, so 6 registers (X 1 , Y 1 and Z 1 can be also used instead of X 3 , Y 3 and Z 3 if line 10 is computed before line 8 in Algorithm 11 of [START_REF] Faz-Hernández | Efficient and secure algorithms for GLV-based scalar multiplication and their implementation on GLV-GLS curves (extended version)[END_REF]). To conclude, doubling and adding can be done with 6 registers for additional elements and 10 registers for the storage of the point Q.

FourQ [START_REF] Costello | FourQ: four-dimensional decompositions on a Q-curve over the Mersenne prime[END_REF]: the ECSM is processed on an elliptic curve defined over F p 2 and endowed with two efficiently computable endomorphisms. Computations are done using twisted Edward coordinates. Elements of F p 2 are represented using two F p -registers. 5 . The variable-base scalar multiplication is implemented in the function ecc_mul of the ecpp2.c file. The input consists of two points given in affine coordinates that require 8 F p -registers. The function needs a point R with 5 coordinates (X,Y, Z, T a , T b) and 9 points (S, T 0 ,. . . , T 7) with 4 coordinates (X + Y,Y -X, 2Z, 2dT), which leads to a total of 82 F p -registers. Notice that doubling a point (function eccdouble from ecpp2_core.c) only needs two extra elements of F p 2 (i.e 4 registers). Adding two points (function eccadd from ecpp2_core.c) requires one extra-point R given by its 4 coordinates (X + Y,Y -Z, Z, T) and two elements of F p 2 which leads to a total of 12 registers. The whole ECSM needs 98 F p -registers.

Montgomery ladder [START_REF] Montgomery | Speeding the Pollard and elliptic curve methods of factorization[END_REF]: Montgomery curves combined with the Montgomery ladder algorithm give rise to fast and secure ECSM and are of particular interest for elliptic curve cryptography. Since December 2016, the IETF (Internet Engineering Task Force) uses two Montgomery curves (Curve25519 [START_REF] Bernstein | Curve25519: New Diffie-Hellman speed records[END_REF] and Curve448 [START_REF] Hamburg | Ed448-goldilocks, a new elliptic curve[END_REF]) for instantiating Diffie-Hellman protocols named X25519 and X448 in the Internet Key Exchange Protocol Version 2 (IKEv2). We focus on Curve25519 which is defined over F p . Results given in table 3 come from [START_REF] Düll | High-speed curve25519 on 8-bit, 16-bit, and 32-bit microcontrollers[END_REF] where the authors use formulas for the ladder step that minimize the number of temporary (stack) variables (see Algorithm 2 of [START_REF] Düll | High-speed curve25519 on 8-bit, 16-bit, and 32-bit microcontrollers[END_REF]). The ECSM algorithm takes as input the x-coordinate of P (one F p -register). The algorithm needs 6 registers (X 1 , X 2 , Y 1 , Y 2 , T 1 and T 2) to process.

EAC and EAC (X,Y)-only (this paper): the algorithm takes as input data the points P and φ(P). Five registers are required to store these points. For the (X,Y)-only version, only four F p -registers are required. We stress that in this case the Z-coordinate is not required in the ZADDu procedure. To compute one step of the main loop of Algorithm 3, only one additional register is used in ZADDu in both cases. Notice that one of the main advantage of our method is that after the first iteration of the main loop the input data are not used again. Hence the corresponding registers can be used to store new computed values. This is not the case for the preceding methods.

To conclude this section, let us supply some arguments about the natural compacity of the code induced by our method. First, when compared to the classical algorithms which use endomorphisms, we do not need to implement any decomposition of the scalar k. Second, when compared to methods which need to implement double and addition formulae, our method uses only one operation ZADDu which is easy to implement in a compact way.

Conclusion

We have provided theoretical results which enable to reduce the size of the base field about 8% with respect to [START_REF] Dosso | Euclidean addition chains scalar multiplication on curves with efficient endomorphism[END_REF] while keeping the same level of security. We also have provided a modification of the original ZADD procedure to save one register on F p . These two improvements allow to obtain a reduction of 21% of the memory usage. From a memory usage point of view, and in accordance with the context we have described, our method appears to be the most compact.

We have also provided a first implementation whose sources are available on github and some elements of comparison between the memory usages of the different classical methods which are relevant in the same context. The simplicity of the code is yet another argument which suggests that it is well adapted for lightweight applications.

 c) such that k 1 and k 2 are not too big as compared to the order of P. The subset S we propose in this work is the subset of the chains c ∈ M whose Hamming weight is greater or equal than half the size . This subset offers a good tradeoff between the two conditions stated above. Its elements are also easy to produce in a simple and quite symmetric way (see lines 2-6 of Algorithm 3). It leads to the following notations. Definition 3. Let and w be two non-zero integers. We define . M ,w as the set of the elements of {0, 1} of Hamming weight w, . M , w as the set of the elements of {0, 1} of Hamming weight greater or equal to w.

 y , so the biggest component of µ(c) is the sum of the components of µ(ĉ) where ĉ is obtained from c by removing its first element. Taking into account that the first element of c can be 0 or 1, we obtain

Table 2 :

 2 Performance (CPU cycles) for a 128-bit security level

 on a curve

			Inputs	ECSM	
		log 2 (p) (bits)	F p registers	Size(bytes)	F p registers	Size(bytes)	Total
	x-line (Costello et al., 2014)	128	16	256	28	448	704
	Ted-glv-sac	256	6	192	6	192	384
	Ted127-glv4 (Faz-Hernández et al., 2015)	127	32	508	48	762	1270
	FourQ(Costello and Longa, 2015)	127	4	64	98	1556	1620
	Montgomery(Bernstein, 2006)	256	1	32	6	192	224
	EAC (Dosso et al., 2018)	358	5	224	2	90	314
	EAC (this paper)	331	5	207	1	42	249 (-21%)
	EAC (X,Y)-only (Dosso et al., 2018)	358	4	179	2	90	269
	EAC (X,Y)-only (this paper)	331	4	166	1	42	207 (-23%)

Table 3 :

 3 Memory storage for a 128-bit security level

	Algorithm

http://github.com/eac-team/eac scalarmult

https://bench.cr.yp.to/results-dh.html

A C implementation is available on https://github.com/eacElliptic/Scalar-multiplications/tree/ master/C/with edwards coord/sac glv

The results given in Table3come from http://research. microsoft.com/en-us/projects/fourqlib/