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Technical Report Associated with the Paper
“Singularity Conditions for Continuum Parallel

Robots”
Sébastien Briot1 and Alexandre Goldsztejn1

I. INTRODUCTION

In the present technical report, associated with the paper [1],
we provide the expressions of the gradient and Hessian of
the Lagrangian, and of the constraints, with respect to the
variables qpu as well as the expressions of the gradient of the
constraints and the derivative of the gradient of the Lagrangian
with respect to the variables qa.

Sections II and III are brief recalls of the equations provided
in Sections II to IV of the paper [1]. These recalls are
necessary in order to have a self-contained report. Sections IV
and V provide the equations for computing all gradients
and Hessian necessary for writing the geometric-static and
kinemato-static models of the continuum parallel robot.

II. POTENTIAL ENERGY OF THE CONTINUUM PARALLEL
ROBOT

This Section is almost identical to Section II of [1], but it
introduces all necessary variables reused in Sections IV and V
for the computation of all gradients and Hessian necessary for
writing the geometric-static and kinemato-static models of the
continuum parallel robot.

A. Description of the continuum parallel robot

Let us describe the generic continuum parallel robot archi-
tecture that we consider in this report (Fig. 1): it is a robot
which is made of n slender flexible rods (called legs). An
extremity of each rod is connected to a motor at one end
(points Ai, i = 1, ..., n), the other extremity to the moving
platform via a joint (at points Bi, i = 1, ..., n), which is either
a passive revolute joint, a passive spherical joint or a fixed
joint, as proposed in [2], [3]. Other types of legs could be
considered, by modifying the equations of the constraints and
the Jacobian matrices associated to the motions of the motors,
which are displayed further.

The legs can be either of constant length and connected at
points Ai to an active revolute (Fig. 2(a)) or prismatic joint
(Fig. 2(b)) as it was done in [2], or of variable length, i.e.
acting like a soft cylinder fixed on the ground at point Ai as
proposed in [3] (Fig. 2(c)). The robot moving platform, on
which is located the end-effector, is considered to be rigid.

1S. Briot and A. Goldsztejn are with the Laboratoire des Sci-
ences du Numérique (LS2N) at the Centre National de la Recherche
Scientifique (CNRS), 44321, Nantes, France. {Sebastien.Briot,
Alexandre.Goldsztejn}@ls2n.fr

leg 1

leg i

leg n

motor 1
motor i

motor n

rigid
platform

Ai

A1 An

P
Bi

B1 Bn

fixed base

hP

fP

mP

Fig. 1. A general parallel continuum robot
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Fig. 2. Three different types of motors of legs for continuum parallel robots.

The variable associated with the motor displacement for the
leg i is denoted by qai. All motor variables are grouped in the
vector qa. The variables associated with the platform motion
are pP , the location of the platform center of mass P , and
hP = hP1 + hP2 î + hP3 ĵ + hP4 k̂ the unit quaternion (i.e.
hTPhP = 1) characterizing the platform orientation (Fig. 1).

Let us now compute the potential energy of the robot legs,
which can be modeled as flexible rods of constant length
clamped at points A1 to An when the motors are fixed.

B. Potential energy of a single flexible rod

In this paper, we take the same hypotheses as in [2]: the
rods are modeled using the Kirchoff assumptions (shear is ne-
glected) and the rod elongation is considered to be negligible.
More general assumptions, like the Cosserat ones [3], could
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Fig. 3. Parameterization of the continuum clamped-free slender rod

be used without changing the definitions of the singularity
conditions further.

We derive here the equations for the 3D problem. Equations
for the 2D case can be found in [4].

Let us consider the leg i of the robot. It can be mod-
eled as a slender rod of length Li (Fig. 3(a)) clamped
into the ground at point Ai, made of an isotropic ma-
terial and having a constant cross-section along its lon-
gitudinal direction. The robot base frame is denoted as
F0 : (O, d01, d02, d03). The local configuration of a rod
cross-section located at the curvilinear abscissa s is defined
by the frame Fc : (S, di1(s), di2(s), di3(s)), in which
di3(s) is the vector tangent to the cross-section at s. The
configuration of the frame Fc wrt the frame F0 is provided
by the homogeneous transformation matrix 0Ts defined by:

0Ts =

[
0Rs pi(s)
0 1

]
(1)

in which

0Rs =
[
0di1(s) 0di2(s) 0di3(s)

]
(2)

is the rotation matrix between F0 and Fc and pi(s) is the
position of S in F0. The superscript “0” before the vectors
dik means that they are expressed in the frame F0.

The curvature and torsion of the rod can be represented by
the Darboux vector ui(s), defined as:

ui =

3∑
k=1

uik dik (3)

with [5]

ui1 = −dTi2 d′i3, ui2 = −dTi3 d′i1, ui3 = −dTi1 d′i2 (4)

in which (.)′ denotes the derivative wrt the variable s, i.e.
(.)′ = ∂(.)/∂s.

In order to avoid any singularity of representation, we used
the unit quaternion hi(s) = hi1(s) + hi2(s) î + hi3(s) ĵ +
hi4(s) k̂ in order to parameterize the orientation of the cross-
section at s. As a result, the columns of the matrix 0Rs are
given by the well-known expression (omitting the variable s):

0di1 =

h2
i1 + h2

i2 − h2
i3 − h2

i4

2 (hi1 hi4 + hi2 hi3)
2 (hi2 hi4 − hi1 hi3)

 (5)

0di2 =

 2 (hi2 hi3 − hi1 hi4)
h2
i1 − h2

i2 + h2
i3 − h2

i4

2 (hi1 hi2 + hi3 hi4)

 (6)

0di3 =

 2 (hi1 hi3 + hi2 hi4)
2 (hi3 hi4 − hi1 hi2)
h2
i1 − h2

i2 − h2
i3 + h2

i4

 (7)

under the constraint hTi hi = 1, and their derivatives wrt s are:

0d′i1 = Di1 h′i,
0d′i2 = Di2 h′i,

0d′i3 = Di3 h′i (8)

where h′i is the derivative of hi wrt s and the matrices Dαk

are defined, for any quaternion hα = [hα1 hα2 hα3 hα4]T , as

Dα1 = 2

 hα1 hα2 −hα3 −hα4

hα4 hα3 hα2 hα1

−hα3 hα4 −hα1 hα2

 (9)

Dα2 = 2

−hα4 hα3 hα2 −hα1

hα1 −hα2 hα3 −hα4

hα2 hα1 hα4 hα3

 (10)

Dα3 = 2

 hα3 hα4 hα1 hα2

−hα2 −hα1 hα4 hα3

hα1 −hα2 −hα3 hα4

 (11)

Introducing (5) to (8) into (4) leads to, for k = 1, 2, 3:

uik = 2 hTi BT
k h′i (12)

with

B1 =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 , B2 =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0



B3 =


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 (13)
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For an isotropic material, the rod deformation energy is then
given by [6]:

Vei =
1

2

∫ Li

0

(cui − cûi)
TKi(

cui − cûi) ds (14)

where ûi = [ûi1 ûi2 ûi3]T is the (constant) pre-curvature of
the rod, Li is the rod length, and the matrix Ki is defined by:

Ki =

Ki1 0 0
0 Ki2 0
0 0 Ki3

 , (15)

Ki1 = Ei Ii1, Ki2 = Ei Ii2, Ki3 = Gi Ii0

in which Ei is the material Young’s modulus, Gi is its shear
modulus, Ii1 (Ii2, resp.) is the area moment of inertia of the
cross-section around di1 (di2, resp.), and Ii0 = Ii1 + Ii2. The
superscript “c” before the vectors ui and ûi means that they
are expressed in the frame Fc. Introducing (12) into (14) leads
to:

Vei =
1

2

∫ Li

0

(
3∑
k=1

Kik(2 hTi BT
k h′i − ûik)2

)
ds (16)

It is possible to approximate the expression of h′ by using
finite differences [6]. Thus, let us discretize the rod into N
rigid elements of equal length `ei = Li/Nj (Fig. 3(b)). The
orientation of the element i is defined by the quaternion hij .
The expression of the deformation energy becomes:

Vei ≈
Ni∑
j=1

Veij , (17)

where

Veij =
1

2

(
3∑
k=1

Kik

∫ `ei

0

(2 hTij BT
k h′ij − ûijk)2 ds

)
(18)

with h′ij being the derivative of the quaternion hij of the
element j, and ûijk is kth component of the precurvature
vector cûij of the element j.

The expression of h′ij can be then approximated as follows:

h′ij =
hij − hi(j−1)

`ei
, (19)

where, if the rod is assumed to be clamped at s = 0, hi1
is a known constant and hi0 = hi1 (i.e. h′i1 = 0). Then,
introducing (19) into (18), and integrating, leads to:

Veij =
1

2

(
3∑
k=1

Kik

`ei
(2 hTij BT

k (hij − hi(j−1))− `eiûijk)2

)
(20)

Let us now compute the potential energy due to the external
wrenches. We assume that these wrenches are conservative and
that only two types of external effects are applied on the robot:
• gravitational effects due to the gravity field g and
• nodal wrenches.
The potential energy due to gravity is given by:

Vgi = −gT ρi

∫ Li

0

pi(s) ds (21)

with ρi the material linear density. Again,
• discretizing the rod into Ni rigid elements, and
• assuming that for the element j, pi(s) ≈ pij + sdij3,

where pij is the position of the node j while dij3 is the
third column of the matrix 0Rij representing the rotation
of the element j wrt the frame F0,

the gravity potential energy is approximated by:

Vgi ≈
Ni∑
j=1

Vgij , (22)

where

Vgij =− gT ρi

∫ `ei

0

(pij + sdij3) ds

=−mij gT (pij + dij3`ei/2) (23)

mij being the mass of the element j. It should be mentioned
that the expression of pij can be computed thanks to the
following recursive formula:

pij = pi(j−1) + `ei di(j−1)3 (24)

starting with pi0 = pAi which is the known location of the
point Ai. Thus, pij is a function of hi1 to hi(j−1) and Vgij a
function of hi1 to hij .

Let us finally denote as fij the constant force applied at
node j. The potential energy due to this force is given by:

Vwij = −fTij (pij − p̂ij) (25)

where (̂.) corresponds to the state without deformation. Thus,
Vwij a function of hi1 to hij .

As a result, the total potential energy is equal to:

Vrodi(hi,hi1,pAi , Li) =

Ni∑
j=1

(Veij + Vgij + Vwij) (26)

It is a function of all orientation variables hi1 and hi =
[hTi2 . . . hTiNi ]

T , of the rod length Li and of the position of
the point pAi . Note that we deliberately exited hi1 from the
vector hi grouping all element orientation because hi1 is a
known constant when the motor position is fixed. If the motor
is a revolute actuator located at Ai, then this constant depends
on the motor position qai, i.e. hi1 = hi1(qai). If the motor
is a prismatic joint, then this is pAi which depends on the
motor position qai, i.e. pAi = pAi(qai); hi1 is then a constant
defined by design. Finally, if this is the length Li of the rod
which varies through actuation, Li is a function of qai, i.e.
Li = Li(qai). Thus, Vrodi(hi,hi1,pAi , Li) = Vrodi(hi, qai),
and hi1 is again a constant defined by design.

C. Potential energy of the closed-loop mechanism

Considering now the full continuum parallel robot, its total
potential energy is given by:

Vtot = Vplatform +

n∑
i=1

Vrodi(hi, qai) (27)
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where Vplatform is the potential energy of the platform con-
sidered here as rigid. Its expression is given by

Vplatform = −fTP (pP − p̂P ) (28)

fp is a constant force exerted on the robot platform at point
P (fp includes the effect of the gravity field – recall that
P is considered to the platform center of mass). A force
fQ applied on the platform at any point Q with location
pQ could be added as well, using the potential energy
−fTQ (pQ− p̂Q) = fTQ (pp + 0Rp

−−→
PQ− p̂Q), but we disregard

it in the following of the computations. Moreover, 3D moment
being non conservative [7], we do not consider them for the
computation of the energy. However, they could easily be
added later in Section III-A by using the Principle of Virtual
Works. However, for reasons of writing clarity, we disregard
them in the following of the report.

Obviously, due to the closed kinematic chain geometric
constraints (and of the quaternion constraints), variables h,
pP and hP are related by the following expressions (for
j = 2, . . . , Ni, i = 1, . . . , n):

chij(hij) =hTijhij − 1 = 0, (29)

chp(hP ) =hTPhP − 1 = 0 (30)
cBi(pP ,hP ,hi, qai) =pBi(pP ,hP )

− pBi(hi, qai) = 0 (31)

where pBi(hi, qai) is the position of the rod i extremity that
can computed thank to the expression (24) while pBi(pP ,hP )
is given by:

pBi(pP ,hP ) = pP + 0RP rPBi (32)

in which rPBi is the vector
−−→
PBi expressed in the platform

frame, and 0RP is the rotation matrix between the robot fixed
frame F0 and the moving platform frame.

If the joint at Bi is spherical, Eqs. (29) to (31) are enough
in order to characterize the constraints. This is no more the
case if the joint is of another type:

• for a fixed joint, the orientation 0RP of the platform
frame and the orientation 0RiNi of the extremity of
the link i (that depends on hiNi only) are related by a
predefined constant offset orientation, Roffi (depending
on the platform design). This constant offset rotation
leads to [3]

0RT
P

0RiNi = Roffi ⇒ RT
offi

0RT
P

0RiNi = 13 (33)

where 13 is the identity matrix of dimension 3. Con-
straint (33) has nine equations for constraining three
rotations. Keeping in mind that the result of the prod-
uct of several rotation matrices must be an orthog-
onal matrix, it is enough to check that three extra-
diagonal terms of the product RT

offi
0RT

P
0RiNi defined

by eTj

(
RT
offi

0RT
P

0RiNi

)
ek (with e1 = [1 0 0]T , e2 =

[0 1 0]T and e3 = [0 0 1]T , for {j, k} = {2, 1}, {j, k} =
{3, 2} and {j, k} = {1, 3}) are all equal to 0, i.e. that:

cri(hP ,hiNi) =


eT2

(
RT
offi

0RT
P

0RiNi

)
e1

eT3

(
RT
offi

0RT
P

0RiNi

)
e2

eT1

(
RT
offi

0RT
P

0RiNi

)
e3

 = 0

(34)
• for a revolute joint of axis ai (aTi ai = 1), it is necessary

to have:
0RP

Pai = 0RiNi
iNiai (35)

where Pai = Roffi1e3 is the (constant) value of the
vector ai in the platform frame and iNiai = Roffi2e3 is
the (constant) expression of the same vector but the in the
frame of the last element of the rod i, matrices Roffij

being two constant rotation matrices characterizing the
orientation of the joint axis in the platform and leg
extremity frames, respectively. We can thus rewrite the
expression (35) under the form:

0ai =0RP Roffi1e3 = 0RiNi Roffi2e3

⇒ e3 = RT
offi2

0RT
iNi

0RT
P Roffi1e3 (36)

Constraint (36) has three equations for constraining two
rotations. It is indeed enough to check that the two first
components of the vector RT

offi1
0RT

P
0RiNi Roffi2e3

are all equal to 0, i.e. that:

cri(hP ,hiNi) =

[
eT1
eT2

]
RT
offi2

0RiNi
0RP Roffi1e3 = 0

(37)
In what follows, we stack all constraints in the vector Φ

such that:

Φ(h,pP ,hP ,qa) = [cThl chp cTB cTr ]T (38)

in which
chl(h) = [cTh1 . . . c

T
hn]T (39)

with chi(hi) = [chi2 . . . chiNi ]
T ,

cB(h,pP ,hP ,qa) = [cTB1 . . . c
T
Bn]T (40)

and cr stacks the additional constraints (34) or (37), depending
if the robot is made with either revolute or fixed joints on the
platform. cr does not exist if all joints are spherical.

III. GEOMETRICO-STATIC AND KINEMATO-STATIC
PROBLEMS

This Section is a brief summary of the equations defining the
geometrico-static and kinemato-static models, whose detailed
expressions are provided in Sections III and IV of [1].

A. Geometrico-static problem

In the static context, configurations are acceptable provided
that for fixed motor positions qa they are stable with respect to
internal and external forces. This leads to the definitions of the
geometrico-static model, which relates fixed motor positions
and stable configurations, and of the forward and inverse
problems. As expected, we will see below that the number of



5

coordinates of the platform position and orientation that can
be controlled is exactly the number n = dim qa of actuated
motors. Therefore, we define qp ∈ Rn as the vector containing
the coordinates to be controlled. Usually, it contains a subset of
(pp,hp) of the platform position and orientation coordinates,
but it may contain other types of variables. We also stack all
remaining coordinates amongst (pp,hp) and h to obtain the
vector qu ∈ Rm of uncontrolled coordinates. For notational
convenience, we furthermore define qpu = (qp,qu) ∈ Rn+m

and q = (qa,qp,qu) ∈ Rn+n+m. These coordinates are
related by the system of equations Φ(q) = 0. The number
of equations in Φ(q) = 0 is denoted by nΦ ≤ n+m.

Lagrange conditions provide the following characterization
of local extrema: Under the condition that the gradients of the
equality constraint are linearly independent, i.e., ∇qpu

Φ(q)
is full rank, q is a local extrema if and only if there exist
multipliers λ ∈ RnΦ such that

∇qpu
Vtot(q) +∇qpu

Φ(q)λ = 0 (41)
Φ(q) = 0. (42)

This system of equations represents the implicit geometrico-
static model and is valid as long as ∇qpuΦ(q) is of full
rank. The explicit expressions of these equations can be
obtained in an analytical way by using the expressions of the
section IV. Note that the expression in the left-hand side of
Equation (41) is the gradient ∇qpu

L(q,λ) of the so-called
Lagrangian function

L(q,λ) = Vtot(q) + Φ(q)Tλ (43)

associated to the equality constrained optimization problem.

B. Kinemato-static Model

The kinemato-static model of the robot can be obtained by
differentiating the equations (41) and (42) wrt all variables
qa ∈ Rn, qp ∈ Rn and qu ∈ Rm, and with respect to
multipliers λ ∈ RnΦ as well. We obtain the following linear
relations relating the variations ∆qa, ∆qp, ∆qu and ∆λ of
variables and multipliers:

AL∆qa + PL∆qp + UL∆qu + ΛL∆λ = 0 (44)
AΦ ∆qa + PΦ ∆qp + UΦ ∆qu = 0 (45)

where
• AL = Dqa

∇qpu
L(q,λ) ∈ R(n+m)×n,

• PL = Dqp
∇qpu

L(q,λ) ∈ R(n+m)×n,
• UL = Dqu

∇qpu
L(q,λ) ∈ R(n+m)×m,

• ΛL = Dλ∇qpu
L(q,λ) = ∇qpu

Φ(q) ∈ R(n+m)×nΦ ,
• AΦ = Dqa

Φ(q) ∈ RnΦ×n,
• PΦ = DqpΦ(q) ∈ RnΦ×n, and
• UΦ = DquΦ(q) ∈ RnΦ×m.
The expressions of the gradients ∇qa

Φ, ∇qp
Φ and ∇qu

Φ
are given in Section IV, while the expressions of the AL, PL
and UL are provided in Section V.

The system of equation (44), (45) is composed of n+m+nΦ
equations and 2n + m + nΦ unknowns, which are ∆qa,
∆qp, ∆qu, ∆λ. For the kinemato-static analysis, there is
little interest to characterize the variations ∆λ wrt to the

others. Furthermore, as explained previously, the degeneracy
of the matrix ΛL = ∇qpuΦ(q) is unlikely and uninteresting
in practice. Therefore, it is worthy to eliminate the multipliers
variations ∆λ from the system of equations, reaching this way
a kinemato-static model with n + m equations and 2n + m
unknowns closer to the physical intuition. This can be done
by left-multiplying the equation (44) by the transposed of the
nullspace Z of the matrix ΛT

L = ∇qpu
Φ(q)T , thus leading to

the wanted kinemato-static model, which relates directly the
variations ∆qa, ∆qp and ∆qu:

ZTAL∆qa + ZTPL∆qp + ZTUL∆qu = 0 (46)
AΦ ∆qa + PΦ ∆qp + UΦ ∆qu = 0 (47)

Grouping equations (46) and (47), we obtain the final expres-
sion of the kinemato-static model

A ∆qa + P ∆qp + U ∆qu = 0, (48)

where

A =

[
ZTAL
AΦ

]
, P =

[
ZTPL
PΦ

]
and U =

[
ZTUL
UΦ

]
. (49)

Next Sections deals with the computations of all gradients
and Hessian necessary for writing the geometric-static and
kinemato-static models of the continuum parallel robot.

IV. GRADIENTS OF THE POTENTIAL ENERGY AND OF THE
CONSTRAINTS

In this section, we provide the expressions of the gradients
of the potential energy and of the constraints, based on the
expressions used in Section II. These expressions are used for
computing the geometrico-static model of the robot. We start
with the gradients of the potential energy.

A. Gradients of the potential energy

The gradients of the potential energy wrt the variables
(h,pP ,hP ) are given by:

∇pP Vtot = −fP (50)

∇hP Vtot = −0 (51)

∇hVtot =

∇h1
(Ve1 + Vg1 + Vw1)

...
∇hn(Ven + Vgn + Vwn)

 (52)

The different terms in ∇hVtot are detailed below. First, the
gradient ∇hiVei takes the following form:

∇hiVei =


ai1 + bi2

...
ai(Ni−2) + bi(Ni−1)

ai(Ni−1)

 (53)
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in which

aij = 2

3∑
k=1

Kik

`ei
BkhijAijk (54)

bij = −2

3∑
k=1

Kik

`ei
Bkhi(j+1)Aijk (55)

for
Aijk = −2hTi(j+1)B

T
k hij − ûijk, (56)

where matrices Bk are defined in (13).
The gradient ∇hiVgi in (52) is given by

∇hiVgi = −
Ni∑
j=2

mij(∇hip
T
ij +

`ei
2
∇hid

T
ij3)g (57)

where

(
∇hid

T
ij3

)T
=

hi2 ... hij ... hiNi
[ ]03×4 . . . Dij3 . . . 03×4 (58)

and

(
∇hip

T
ij

)T
= `ei

hi2 ... hi(j−1) hij ... hiNi
[ ]Di2,3 . . . Di(j−1),3 03×4 . . . 03×4

(59)
where the expressions Di(j−1),3 can be obtained from (11).
Finally, the gradient ∇hiVwi in (52) can be written as

∇hiVwi = −
Ni∑
j=2

(
(∇hip

T
ij)

T fij)
)

(60)

B. Gradients of the constraints with respect to the variables
(h,pP ,hP )

The gradients of the constraints Φ wrt the variables
(h,pP ,hP ) can be decomposed as follows:

∇hΦ =
[
∇hchl ∇hchp ∇hcB ∇hcr

]
(61)

∇pPΦ =
[
∇pP chl ∇pP chp ∇pP cB ∇pP cr

]
(62)

∇hPΦ =
[
∇hP chl ∇hP chp ∇hP cB ∇hP cr

]
(63)

where ∇hchp = 0, ∇pP chl = 0, ∇pP chp = 0, ∇pP cr = 0
and ∇hP chl = 0, chl, chp, cB and , cr being defined in Sec-
tion II-C. The other gradients appearing in these expressions
are detailed below. First, the expression of ∇hchl is given by

∇hchl =


∇h1

ch1 0 . . . 0
0 ∇h2

ch2 . . . 0
...

...
. . .

...
0 0 . . . ∇hnchn

 (64)

with

∇hichi = 2


hi2 04×1 . . . 04×1

04×1 hi3 . . . 04×1

...
...

. . .
...

04×1 04×1 . . . hiNi

 (65)

∇hcB can be decomposed as follows:

∇hcB =


∇h1

cB1 0 . . . 0
0 ∇h2cB2 . . . 0
...

...
. . .

...
0 0 . . . ∇hncBn

 (66)

with
(∇hicBi)

T = −`ei
[
Di2,3 . . . DiNi,3

]
(67)

The expressions of ∇pP cB and ∇hP cB are:

∇pP cB =
[
13 . . . 13

]
(68)

∇hP cB =
[
∇hP cB1

. . . ∇hP cBn
]

(69)

with 13 the identity matrix of dimension 3. ∇hP chp and
∇hP cBi take the following form:

∇hP chp = 2hP , (70)

∇hP cBi =

3∑
k=1

rikD
T
pk (71)

where rPBi = [ri1 ri2 ri3]T and Dpk can be found by using
the definitions of the matrices in (9) to (11) applied to the
quaternion hP .

Finally, the gradients ∇hcr and ∇hP cr exist if only if the
joint at Bi is not spherical.
• In case the joint at the tip of leg i is rigid, then cri can

be rewritten as

cri(hP ,hiNi) =


eT2

(
RT
offi

0RT
Pd1,iNi

)
eT3

(
RT
offi

0RT
Pd2,iNi

)
eT1

(
RT
offi

0RT
Pd3,iNi

)
 = 0 (72)

where 0RiNi = [d1,iNi d2,iNi d3,iNi ]. Moreover, denot-
ing the result of the product eTkRT

offi
as eTkRT

offi
=

[β1ki β2ki β3ki], and taking into account that 0RP =
[d1,P d2,P d3,P ], then

cri(hP ,hiNi) =(β12i d1,P + β22i d2,P + β32i d3,P )Td1,iNi

(β13i d1,P + β23i d2,P + β33i d3,P )Td2,iNi

(β11i d1,P + β21i d2,P + β31i d3,P )Td3,iNi

 (73)

Finally, using (9) to (10), and noticing that the only non
null gradients for cri are∇hiNi

cri and∇hP cri, we found
that:

∇hiNi
cri =[

DT
iNi,1

γ2i DT
iNi,2

γ3i DT
iNi,3

γ1i

]
(74)

with γki = β1ki d1,P + β2ki d2,P + β3ki d3,P . Then,
noticing that γki = dk,iNi (because, from (33),
eTk

(
RT
offi

0RT
P

0RiNi

)
ek = γTkidk,iNi = 1 and γki =

eTkRT
offi

0RT
P is necessarily a unit vector), then

∇hiNi
cri =

[
DT
iNi,1

d2,iNi DT
iNi,2

d3,iNi DT
iNi,3

d1,iNi

]
= 2


−hiNi,4 −hiNi,2 −hiNi,3
hiNi,3 hiNi,1 −hiNi,4
−hiNi,2 hiNi,4 hiNi,1
hiNi,1 −hiNi,3 hiNi,2

 (75)
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Similarly, it also comes that

∇hP cri =
[
Ψi1 Ψi2 Ψi3

]
(76)

with Ψij = (β1kiDP,1 + β2kiDP,2 + β3kiDP,3)Tdj,iNi ,
where {k, j} = {2, 1}, {k, j} = {3, 2} or {k, j} =
{1, 3}.

• In case the joint at the tip of leg i is revolute, then cri
can be rewritten as

cri(hP ,hiNi) =

[
eT3 RT

offi1
0RT

P
0RiNi Roffi2e1

eT3 RT
offi1

0RT
P

0RiNi Roffi2e2

]
=

[
0aTi

0RiNi Roffi2e1
0aTi

0RiNi Roffi2e2

]
(77)

Denoting the result of the product eTkRT
offi1

as
eTkRT

offi2
= [β1ki2 β2ki2 β3ki2] = βTk2 (which is a

constant vector), and taking into account that 0RiNi =
[d1,iNi d2,iNi d3,iNi], then

cri(hP ,hiNi) =

[
0aTi

0RiNi β12
0aTi

0RiNi β22

]
(78)

Using (9) to (10), and noticing that the only non null
gradients for cri are ∇hiNi

cri and ∇hP cri, we found
that:

∇hiNicri =
[
ηi1 ηi2

]
(79)

with ηij = (β1ki2DiNi,1 + β2ki2DiNi,2 +
β3ki2DiNi,3)T 0ai.
Similarly, it also comes that

∇hP cri =
[
µi1 µi2

]
(80)

with µik = (ai1DP,1 + ai2DP,2 + ai3DP,3)Tβk2, where
0ai = [ai1 ai2 ai3]T .

C. Gradients of the constraints with respect to the variables
qa

The robot being composed of one motor per leg, the gradient
∇qa

Φ takes the following form

∇qaΦ =
[
∇qachl ∇qachp ∇qacB ∇qacr

]
(81)

where ∇qachl = 0, ∇qachp = 0 and ∇qacr = 0. ∇qacB
can be decomposed as follows:

∇qacB =


∇qa1

cB1 0 . . . 0
0 ∇qa2cB2 . . . 0
...

...
. . .

...
0 0 . . . ∇qancBn

 (82)

The expression of ∇qaicBi will take different forms, depend-
ing on the choice of the motor for the leg:
• If the leg i is connected to a prismatic joint (Fig. 2(b))

∇qaicBi = −∇qaipTAi (83)

• If the leg i is connected to a revolute joint (Fig. 2(a))

∇qaicBi = −`ei∇qaidTi13 (84)

• If the motor changes the length of the leg i (Fig. 2(c))

∇qaicBi = − 1

Ni

Ni∑
j=1

dTi13 (85)

V. HESSIAN OF THE LAGRANGIAN, AND DERIVATIVE OF
∇qpuL WITH RESPECT TO qa

In this section, we provide the expressions of the Hessian of
the Lagrangian wrt variables in (h,pP ,hP ), and of the deriva-
tive of ∇qpu

L with respect to qa, based on the expressions
used in Section II. These expressions are used for computing
the geometrico-static model of the robot. We start with the
Hessian of the potential energy.

A. Hessian of the potential energy
The Hessian HV of the potential energy wrt the variables

(h,pP ,hP ) can be decomposed as follows:

HV =

∇2
h,hVtot 0 0

0 ∇2
pP ,pP Vtot 0

0 0 ∇2
hP ,hP

Vtot

 (86)

in which
∇2

pP ,pP Vtot = 0 (87)

∇2
hP ,hP Vtot = 0 (88)

∇2
h,hVtot =

∇
2
h1,h1

Vtot . . . 0
...

. . .
...

0 . . . ∇2
hn,hn

Vtot

 (89)

where ∇2
hi,hi

Vtot = ∇2
hi,hi

(Vei + Vgi + Vwi).
The Hessian ∇2

hi,hi
Vei is given by

∇2
hi,hiVei =


Ei1 FT

i2 . . . 0 0
Fi2 Ei2 . . . 0 0

...
...

. . .
...

...
0 0 . . . Ei(N−2) FT

i(Ni−1)

0 0 . . . Fi(Ni−1) Ei(Ni−1)

 (90)

in which

Eij = Mij + Ni(j+1) (91)

Fij = −4

3∑
k=1

Kik

`ei

(
(Bkhij)(Bkhi(j+1))

T −BkAijk/2
)

(92)

Mij = −4

3∑
k=1

Kik

`ei
(Bkhij)(B

T
k hij)

T (93)

Nij = 4

3∑
k=1

Kik

`ei
(Bkhi(j+1))(Bkhi(j+1))

T (94)

The Hessian ∇2
hi,hi

Vgi takes the expression

∇2
hi,hiVgi = −

Ni∑
j=2

mij(∇2
hi,hi(p

T
ijg) +

`e
2
∇2

hi,hi(d
T
ij3g))

(95)

where

∇2
hi,hi(d

T
ij3g) =

hi2 ... hij ... hiNi


0 . . . 0 . . . 0 hi2

...
. . .

...
. . .

...
0 . . . Γ . . . 0 hij

...
. . .

...
. . .

...
0 . . . 0 . . . 0 hiNi

(96)
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with

Γ = 2


gz −gy gx 0
−gy −gz 0 gx
gx 0 −gz gy
0 gx gy gz

 (97)

in which gx, gy and gz are the three components of g in the
world frame, the gravity field, defined by g = [gx gy gz]

T ,
and,

∇2
hi,hi(p

T
ijg) = `ei

j−1∑
k=2

∇2
hi,hi(d

T
ik3g) (98)

Finally, the Hessian ∇2
hi,hi

Vwi in (89) can be written as

∇2
hi,hiVwi = −

Ni∑
j=2

(
∇2

hi,hi(p
T
ijfij)

)
(99)

where

∇2
hi,hi(p

T
ijfij) = `ei

j−1∑
k=1

∇2
hi,hi(d

T
ik3fij) (100)

with

∇2
hi,hi(d

T
ij3fij) =

hi2 ... hij ... hiNi


0 . . . 0 . . . 0 hi2

...
. . .

...
. . .

...
0 . . . Γij . . . 0 hij

...
. . .

...
. . .

...
0 . . . 0 . . . 0 hiNi

(101)
in which

Γij = 2


fijz −fijy fijx 0
−fijy −fijz 0 fijx
fijx 0 −fijz fijy

0 fijx fijy fijz

 (102)

B. Hessian of the Lagrangian

The Hessian H of the Lagrangian wrt the variables qr =
(h,pP ,hP ) is equal to

H = HV +

mφ∑
k=1

λk∇2
qr,qr

Φk (103)

where Φk is the kth component of Φ. Let us compute the
Hessians of the different constraints. The Hessian of the
constraint chij in (29) is given by:

∇2
qr,qr

chij = 2

h12 ... hij ... hnNn PP hP



0 . . . 0 . . . 0 0 0 hi2

...
. . .

...
. . .

...
...

...
0 . . . 14 . . . 0 0 0 hij

...
. . .

...
. . .

...
...

...
0 . . . 0 . . . 0 0 0 hnNn

0 . . . 0 . . . 0 0 0 pP

0 . . . 0 . . . 0 0 0 hP

(104)

where 14 is the identity matrix of dimension 4. The Hessian
of the constraint chp in (30) is given by:

∇2
qr,qr

chp = 2

h PP hP[ ]0 0 0 h
0 0 0 pP

0 0 14 hP

(105)

The Hessian of the constraint cBi in (31) is given by:

∇2
qr,qr

c
(k)
Bi =

h1 ... hi ... hn PP hP



0 . . . 0 . . . 0 0 0 h1

...
. . .

...
. . .

...
...

...
0 . . . C

(k)
bij . . . 0 0 0 hi

...
. . .

...
. . .

...
...

...
0 . . . 0 . . . 0 0 0 hn

0 . . . 0 . . . 0 0 0 pP

0 . . . 0 . . . 0 0 C
(k)
p hP

(106)
c

(k)
Bi being the kth component of c

(k)
Bi , with

C
(k)
bij = −`ei

Ni∑
t=2

∇2
hi,hi(d

T
it3lk) (107)

where lk is defined by lk = [l1k l2k l3k]T , with lmk = δmk,
δmk being the Kroenecker symbol, and

∇2
hi,hi(d

T
ij3lk) =

hi2 ... hij ... hiNi


0 . . . 0 . . . 0 hi2

...
. . .

...
. . .

...
0 . . . Ωk3 . . . 0 hij

...
. . .

...
. . .

...
0 . . . 0 . . . 0 hiNi

(108)
in which

Ωk3 = 2


l3k −l2k l1k 0
−l2k −l3k 0 l1k
l1k 0 −l3k l2k
0 l1k l2k l3k

 (109)

and

C(k)
p =

3∑
t=1

rit Ωkt (110)

in which Ωk3 is provided in (109) and

Ωk1 = 2


l1k 0 −l3k l2k
0 l1k l2k l3k
−l3k l2k −l1k 0
l2k l3k 0 −l1k

 (111)

Ωk2 = 2


l2k l3k 0 −l1k
l3k −l2k l1k 0
0 l1k l2k l3k
−l1k 0 l3k −l2k

 (112)

Finally, the Hessians∇2
qr,qr

c
(k)
ri (k being the kth component

of cri) do not exist if the joint at Bi is spherical. We do
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not provide their expressions for the other types of joints, but
they can be straightforwardly derivated from expressions (34)
and (37).

C. Derivative of ∇qpu
L with respect to qa

The robot being composed of one motor per leg, the
derivative of ∇qpu

L with respect to qa can be decomposed
as follows:

Dqa∇qpuL =


∂

∂qa1
∇h1L . . . 0
...

. . .
...

0 . . . ∂
∂qan
∇hnL

0 . . . 0

 (113)

The expression of ∂
∂qai
∇hiL will take different forms, depend-

ing on the choice of the motor for the leg:
• If the leg i is connected to a prismatic joint (Fig. 2(b))

∂

∂qai
∇hiL = 0 (114)

• If the leg i is connected to a prismatic joint (Fig. 2(a))

∂

∂qai
∇hiL =

[
Fi1
0

]
∂hi1
∂qai

(115)

Fi1 being defined in (92);
• If the motor changes the length of the leg i (Fig. 2(c))

∂

∂qai
∇hiL =

∂

∂qai
∇hiVei +

1

Ni
∇hiVgi

− 1

Ni

Ni∑
j=2

(∇hipij)
T fij +

∂

∂qai
∇hiΦλ (116)

where

∂

∂qai
∇hiVei =


∂ai1
∂qai

+ ∂bi2
∂qai

...
∂ai(Ni−2)

∂qai
+

∂bi(Ni−1)

∂qai
∂ai(Ni−1)

∂qai

 (117)

in which

∂aij
∂qai

= 2

3∑
k=1

Kik

`ei
Bkhij

(
−Ni
`ei

Aijk + ûijk

)
(118)

∂bij
∂qai

= 2

3∑
k=1

Kik

`ei
Bkhi(j+1)

(
Ni
`ei

Aijk − ûijk
)

(119)

and the only non null term in ∂
∂qai
∇hiΦ is ∂

∂qai
∇hicBi

which is equal to 1
Ni
∇hicBi. The expressions of the other

terms in (116) can be found in the previous sections.

VI. STUDY OF THE LOSS OF RANK OF THE GRADIENT OF
THE CONSTRAINTS

A. Gradient of the constraints chl and chp

Due to its block-diagonal structure, ∇hchl if and only if one
block on the diagonal is degenerated. However, those blocks
are given in (65) are made of a stacking by blocks on the
diagonal the quaternions hij. The only possibility for ∇hchl

to be rank deficient is thus that at least a quaternion hij is
null, which can of course never appear.

A similar condition can be found for chp. Thus, the gradi-
ents of the constraints chl and chp can never be rank deficient.
This is not the case of the gradient of the constraints cB which
is studied in the next Section.

B. Gradient of the constraint cB

Let us rewrite the gradient of the constraint cB below:

 ∇hcB
∇pP cB
∇hP cB

 =



∇h1
cB1 0 . . . 0

0 ∇h2
cB2 . . . 0

...
...

. . .
...

0 0 . . . ∇hncBn
13 13 . . . 13

∇hP cB1
∇hP cB2

. . . ∇hP cBn


(120)

First, let us remark the following property for the transpose
of the gradient of the constraint cBi:

−∇hicBiḣi = ∇pP cBiṗP +∇hP cBiḣP =
d

dt

−−→
OBi (121)

i.e. they relate the velocities (in quasi-static motions) of hi
or pP and hP to the velocity of point Bi. As a result, the
right-hand side of the previous equation can also be rewritten
as:

∇pP cBiṗP + [
−−→
PBi]

T
×ωP =

d

dt

−−→
OBi (122)

where [
−−→
PBi]× is the skew symmetric matrix associated with

the vector
−−→
PBi and ωP is the platform rotational velocity.

Because the quaternions are a singularity-free representation
of the orientation (and, as a result, their derivatives are
singularity-free representation of the angular velocities), then
the loss of rank of the matrix in (120) appears for the same
condition as the following matrix:

Ξ =



∇h1
cB1 0 . . . 0

0 ∇h2cB2 . . . 0
...

...
. . .

...
0 0 . . . ∇hncBn
13 13 . . . 13

[
−−→
PB1]× [

−−→
PB2]× . . . [

−−→
PBn]×


(123)

Due to the presence of the identity matrix, the columns of Ξ
(and of the matrix in (120)) corresponding to the the constraint
cBi (i = 1, . . . , n) can never degenerate. Therefore, the
degeneracy of Ξ and, thus, of the gradient of the constraints
cB , appears if and only if there is a linear combinations
between the block-columns corresponding to several legs.
Moreover, because of the block-diagonal structure of ∇hcB ,
degeneracy of Ξ can be obtained if and only if at least two
blocks ∇hicBi and ∇hjcBj (i 6= j) are rank deficient.

Before going further, let us first remark from (122) that, at
a sign, ∇hicBi is the transposed Jacobian of the leg i with
respect to the angular variations represented by the variations
of the leg’s quaternions. This Jacobian can thus be assimilated
to the Jacobian of an hyperredundant serial robot controlled by
a series of active spherical joints. As a result, ∇hicBi is not
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full rank if and only if the leg i is fully stretched. Let us denote
as ui a vector in the nullspace of ∇hicBi appearing when the
leg i is fully stretched. By definition, ui gives the direction
along which the motions of the leg are no more feasible: they
provide the directions along which the leg i are fully stretched.

In what follows, we consider without loss of generality that
legs 1 to k (k ≤ n) are fully stretched, i.e.∇hi is rank deficient
for i = 1, . . . , k. The direction along which leg i is stretched
is given by the unit vector ui. Let us then group in matrix Ξk

the columns of Ξ corresponding to legs 1 to k:

Ξk =



∇h1
cB1 0 . . . 0

0 ∇h2
cB2 . . . 0

...
...

. . .
...

0 0 . . . ∇hncBk
13 13 . . . 13

[
−−→
PB1]× [

−−→
PB2]× . . . [

−−→
PBk]×


(124)

By multiplying Ξk by the vector u = [α1u1
T . . . αkuk

T ]T ,
we get

Ξku =



∇h1
cB1 0 . . . 0

0 ∇h2
cB2 . . . 0

...
...

. . .
...

0 0 . . . ∇hncBk
13 13 . . . 13

[
−−→
PB1]× [

−−→
PB2]× . . . [

−−→
PBk]×




α1u1

α2u2

...
αkuk



=



∇h1cB1u1 0 . . . 0
0 ∇h2cB2u2 . . . 0
...

...
. . .

...
0 0 . . . ∇hncBkuk
u1 u2 . . . uk

[
−−→
PB1]×u1 [

−−→
PB2]×u2 . . . [

−−→
PBk]×uk




α1

α2

...
αk



=



0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0
u1 u2 . . . uk

[
−−→
PB1]×u1 [

−−→
PB2]×u2 . . . [

−−→
PBk]×uk




α1

α2

...
αk


(125)

As a result, Ξk is rank-deficient if and only if there is a
linear combination between the columns of

Lk =

[
u1 u2 . . . uk

[
−−→
PB1]×u1 [

−−→
PB2]×u2 . . . [

−−→
PBk]×uk

]
(126)

Noticing that
[

ui

[
−−→
PBi]×ui

]
is the Plücker representation of a

line with direction ui passing through point Bi, then Lk will
degenerate if the system of lines composing it degenerates.
These conditions are well known, and can be found in [8],
[9]. For instance, if only two legs are stretched, singularity
will appear if the lines passing though them are superposed.

As a general result, we can conclude that the gradient of
the constraint cB will degenerate if and only if:
• several legs are fully stretched

• and the system of lines passing through them is degen-
erated.

C. Gradient of the constraint cr

Based on the same analysis as previously, a necessary
condition of rank-deficiency for the constraints due to the fixed
and revolute joints is that, for at least a leg i, the gradient
∇hiNicri (in both types of joint) is rank deficient. Indeed, it
can be proven that
• for the fixed joint, due to its quaternionic nature, the

determinant of the matrix ∇hiNic
T
ri∇hiNicri is constant

and equal to 64.
• for the revolute joint, due to its quaternionic nature, the

determinant of the matrix ∇hiNic
T
ri∇hiNicri is equal to

16 0aTi
0ai (β12 × β22)T (β12 × β22). Because β12 and

β22 are unit vectors that must be orthogonal, and also
because 0ai is also a unit vector, the determinant of the
matrix ∇hiNic

T
ri∇hiNicri is constant and equal to 16.

As a result, ∇hiNicri can never be rank-deficient, whatever
the type of joints considered
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