
HAL Id: hal-03210572
https://hal.science/hal-03210572v1

Submitted on 28 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Singularity Conditions for Continuum Parallel Robots
Sébastien Briot, Alexandre Goldsztejn

To cite this version:
Sébastien Briot, Alexandre Goldsztejn. Singularity Conditions for Continuum Parallel Robots. IEEE
Transactions on Robotics, 2022, 38 (1), pp.507-525. �10.1109/TRO.2021.3076830�. �hal-03210572�

https://hal.science/hal-03210572v1
https://hal.archives-ouvertes.fr


1

Singularity Conditions for Continuum Parallel
Robots

Sébastien Briot1 and Alexandre Goldsztejn1

Abstract—Research on continuum parallel robots has been
essentially devoted to the computation of their geometrico-static
models and of their performance in terms of workspace size,
accuracy, compliance, force transmission and manipulability.
Their singularity analysis has been limited to the identification
of a limited number of singular configurations, without any
deep investigation of the physical phenomena occuring in these
singularities.

In this paper, we define the singularity conditions for contin-
uum parallel robots. We provide a straightforward interpretation
of the phenomena occurring in singularities. Especially, we prove
that some singularities appear when the robot potential energy
has a local isovalue. Because of this property, we show that these
singularities separate the stable configurations from the unstable
ones in the workspace. Moreover, on such singularities, the robot
can freely move along a given direction without any constraint
under the action of small perturbations.

We illustrate the singularity phenomena and their effects by
simulations performed with two different continuum parallel
robots.

Index Terms—Continuum parallel robots, Kinemato-statics,
Singularity, Stability

NOMENCLATURE OF THE MAIN SYMBOLS

λ Vector of Lagrange multipliers.
Φ Vector of constraint equations.
1p Identity matrix of dimension p.
A, P, U Robot kinematic Jacobian matrices related to

the variables qa, qp and qu.
cB , cr Passive joints constraints.
ch, ch Quaternions constraints.
fi, mi Force and moment applied on the body i.
g Gravity field.
H, Hr Full and reduced Hessian matrices.
h Vector of all robot legs quaternions.
hi Quaternion associated with the frame Fi.
L, ` Lengths of a rod and of a finite element.
L A Lagrangian function.
pi, pQ Positions of the origin of the frame Fi, and

of the point Q.
qa, qp, qu Motor, controlled and uncontrolled variables.
qau, qpu Vectors [qT

a , qT
u ]T and [qT

p , qT
u ]T .

R, T Rotation and homogeneous transformation
matrices.

Ve, Vg, Vw Potential energies due to deformations, grav-
ity or external wrenches.

Z A matrix spanning the null space of ∇qpu
ΦT .

1S. Briot and A. Goldsztejn are with the Laboratoire des Sciences
du Numérique at the CNRS, Nantes, France. {Sebastien.Briot,
Alexandre.Goldsztejn}@ls2n.fr

I. INTRODUCTION

In order to improve the limited interaction capacities of
rigid-link robot manipulators, researchers have proposed a new
type of robot manipulators named continuum robots [1]. The
concept for designing these robots was inspired by biological
systems such as trunks, tentacles, chameleon tongues or also
snakes [2]. Continuum robots are of interest for many appli-
cations related to manipulation in confined, or hard-to-reach
workspace; especially, their use seems to be very promising
for applications in minimally invasive surgery [3].

Most of continuum robots are designed with a serial ar-
chitecture, in which rigid bodies and joints are replaced by
a serial assembly of slender rods deformed by wires [4],
[5], electromagnets [6], [7], fluidic actuators [8]–[10], shape
memory alloy based actuators [11], [12], electro-active poly-
mers [13], [14] or other types of actuation (e.g. concentric tube
robots [15]–[17] or also multi-backbone robots [18]–[20]).

The concept of continuum parallel robots was first in-
troduced in [21], [22]. These robots are made of several
flexible elastic links arranged in parallel, connected at one
extremity to a motor, and at the other extremity to a rigid
moving platform. In [21], [22], continuum Gough-Stewart-like
platforms were studied. Since these first works, several other
architectures have been proposed: several continuum planar
parallel robots have been detailed in [23]–[28] while a spatial
three degrees-of-freedom (dof) has been studied in [29]. The
concept of reconfigurable continuum parallel robots has also
been investigated in [30].

The study of the continuum parallel robots started with
the investigation of their geometrico-static modeling. In [21],
[22], the robot legs were modeled using the Cosserat’s rod
theory, and the system of nonlinear ordinary differential equa-
tions characterizing the robot’s equilibrium configurations was
solved by a purely numerical approach. The works [23]–[26]
are based on the the Kirchoff’s rod theory, and the authors
proposed a quasi-analytical description of the robot equilib-
rium configurations. This quasi-analytical form was obtained
under the strict conditions that external wrenches apply on the
platform only and deformations are planar. Moreover, in [23]–
[26], wrenches applied on other bodies cannot be handled,
and spatial robots cannot be modeled. However, the approach
allows for finding all legs buckling modes.

Performances of these robots were investigated in several
works. The papers [21], [26], [28], [29], [31] computed the
workspace of several designs. Positioning error was studied
in [28], [29]. In [28], the authors proposed a design able
to reach nanometer accuracy, which is validated through
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experimentations. Several indices of performance based on
a numerical estimation of robot kinetostatic matrices were
defined in [22] for studying the properties in terms of robot
compliance, force transmission, and manipulability. The robot
elastic stability was also investigated in several papers. The
work [32] proposed a numerical test for evaluating stability,
and defined a heuristic metric. More specifically, based on the
analysis of the non-discretized ordinary differential equations
(ODEs) characterizing the robot deformation, the authors
showed that the robot static configuration is a minimizer of
the potential energy, and that its stability can be assessed by
analyzing the second-order conditions of calculus of varia-
tions. The authors of [26] identified several unstable configu-
rations of continuum planar parallel robots. Additionally, they
showed that some of the identified unstable configurations
might correspond to singular configurations associated with
the degeneracy of a local stiffness matrix. A few singular
configurations of a compliance matrix (relating variations of
wrenches applied to the robot platform with variations of the
platform configuration) for a Gough-Stewart-like continuum
parallel robots were also detected in [22], without any further
analysis of the singularity problem.

Singularity analysis of robots is a crucial issue, because
near singularities, robots lose some performance (for instance,
ability to move along one given direction, or even stiffness
and accuracy [33]). This is especially true for parallel robots,
for which singularity analysis is more complex than for serial
robots. Therefore, a lot of efforts have been dedicated to
defining the singularities of rigid-link parallel robots [34]–[37],
understanding the physical phenomena involved in them [38],
[39], and finding the robot geometric configurations leading
to them [40], [41] or their location in the workspace [42],
[43]. Indeed, the parallel robot community has gained a
deep understanding of singularities, their impact on the robot
behavior, their analysis and their computation. The design of
a parallel manipulator nowadays starts by the characterization
and the computation of its parallel singularities.

On the opposite, singularities of continuum robots have been
little investigated. Indeed, one of the main differences is that,
contrary to their rigid-link counterparts, singular configura-
tions cannot be found by studying the robot geometry: elas-
ticity properties are also involved, meaning that the geometric
tools developed for detecting singularities [40], [41] cannot ap-
ply anymore. Singularities of serial-like continuum robots have
been studied for several designs (e.g. [9], [16], [44], [45]). As
for rigid serial robots, the authors of these works showed that
they correspond to a loss of mobility for the robot end-effector,
and thus they define the workspace boundaries. However, to
the best of our knowledge, the study of the singularities of
continuum parallel robots is for the moment restricted to the
detection of a few singular configurations for a limited number
of robot architectures, like in [22], [26], [46]. Moreover,
there remained a lack of a deep physical interpretation of the
phenomena occurring in these detected singularities. We will
show further that these physical phenomena are not limited
to the problem of the loss of mobility. Indeed, this paper
analyses the singularities of continuum parallel robots from
the rigid parallel robot community point of view, allowing

defining Type 1, Type 2 and Type 3 singularities [34] for
continuum parallel robots in a coherent and meaningful way.
As for rigid parallel robots, these singularities are shown to
have a strong impact on workspace reachability, accuracy and
stiffness performances.

In this paper, we define the singularity conditions for
generic continuum parallel robots. This definition is based on
the analysis of the expressions of the robot kinemato-static
model1, which results from differentiating the geometrico-
static model. In order to compute the kinemato-static model,
we first obtained the expressions of the total robot poten-
tial energy. Then, by computing the gradient and Hessian
of the energy with respect to motor, end-effector and legs
coordinates, the geometrico- and kinemato-static models can
be obtained. We will show that the continuum parallel robots
have several types of singularities: some of them correspond to
workspace boundaries, some other to joint space boundaries,
this latter being shown to be related to limits of stability in
this paper.

By relating the expression of the Hessian matrix of the
potential energy to the expression of some Jacobian matrices
involved in the robot kinemato-static model, we were also able
to provide an interpretation of the robot’s behavior in singular-
ities. Especially, we prove that some singularities appear when
the Hessian matrix of the potential energy is rank deficient,
i.e. when the robot potential energy has a local isovalue
or, equivalently, when the robot reaches a limit of stability.
Because of this property, we show that these singularities
separate the workspace into different areas, some of them
containing only stable configurations, the other containing only
unstable ones. Moreover, on this singularity, the robot can
freely move along a given direction without any constraint
under the action of small perturbations.

It should be mentioned that, by reading both papers [22]
and [32] in series, a link between singularities and limit
of stability can be foreseen. Indeed, in [22], a singularity
of a compliance matrix is observed (see Appendix B for
the analysis of this singularity). In addition, in [32], it is
shown that the instability is characterized by the degeneracy
of a matrix relating the variation of the forces and the local
motion of the deformable beam, which could be seen as
a compliance matrix. However, those two matrices, even if
somehow characterizing the same properties, are not equal, and
therefore the link between singularities and limit of stability
remains to be clearly established.

The paper is organized as follows. The next section deals
with the computation of the potential energy of the continuum
parallel robots. It is shown that the potential energy function
depends on an augmented set of generalized coordinates which
are not independent because of the closed-loop nature of the
robot. In Section III, we derive the implicit geometrico-static
model which is obtained thanks to the Lagrange conditions for
minimizing a function under constraints. This implicit model
must be solved numerically, and the stability conditions of its

1Following [47], we prefer to replace the word kinetostatic by the word
kinemato-static: Indeed, the former is an assembly of the words kinetics and
statics, and is not related with our present interest in kinematics, i.e. with the
study of the motion.
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solutions are detailed. This implicit geometrico-static model is
used to derive the kinemato-static model in Section IV, from
which conditions of singularity are deduced. Case studies are
then analyzed in Section V. Finally, in Section VI, conclusions
are drawn.

Notations

The Jacobian matrix Df(x) ∈ Rm×n of a function f :
Rn → Rm is used to build linear approximations f(x +
h) = f(x) + Df(x)h + o(h). The ith line of the Jacobian
matrix contains the derivatives with respect to each variable
of the ith component of the function: Df(x)i,j = ∂fi

∂xj
. The

gradient of the f also contains partial derivatives but ordered
differently: ∇f(x) = Df(x)T . This convention usually used
in the framework of optimization allows the gradient of a
scalar valued function to be a vector, which is convenient
in the context of optimization. Second order derivatives of
a scalar valued function f(x) are stacked together in the
Hessian matrix ∇2f(x), whose entry (i, j) is ∂2f(x)

∂xi∂xj
. Note

that by Schwarz theorem, differentiation with respect to two
variables commutes and the Hessian matrix is symmetric. The
Hessian matrix can be defined by two consecutive derivations,
but using gradient and derivative: ∇2f(x) = D∇f(x).
Using two derivatives consecutively instead leads to the third
order tensor of second derivatives, which is less intuitive.
In particular, non-square Hessian matrices can be defined by
∇2

x,yf(x,y) = Dx∇yf(x,y).

II. POTENTIAL ENERGY OF THE CONTINUUM PARALLEL
ROBOT

In this section, we provide the explicit expressions for the
potential energy of the general class of continuum parallel
robots described in Section II-A, which includes [22], [26].
We present the expressions of the potential energy of one
single flexible rod in Section II-B, followed by the closed-
loop mechanism potential energy involving several flexible
rods and the platform in Section II-C. Finally, we discuss
the mandatory discretization process of continuum parallel
robots in Section II-D2 and provide a generic discretized
parametrization of the robot configuration and potential energy
in Section II-D1.

A. Description of the continuum parallel robot

Let us describe the generic continuum parallel robot archi-
tecture that we consider in this paper (Fig. 1): it is a robot
which is made of n slender flexible rods (called legs). An
extremity of each rod is connected to a motor at one end
(points Ai, i = 1, ..., n), the other extremity to the moving
platform via a joint (at points Bi, i = 1, ..., n), which is
either a passive revolute joint, a passive spherical joint or a
fixed joint, as proposed in [22], [26]. The legs can be either
of constant length and connected at points Ai to an active
revolute or prismatic joint as it was done in [26], or of variable
length, i.e. acting like a soft cylinder fixed on the ground
at point Ai as proposed in [22]. Other types of legs could
be considered, by modifying the equations of the constraints

leg 1

leg i

leg n

motor 1
motor i

motor n

rigid
platform

Ai

A1 An

P
Bi

B1 Bn

fixed base

hP

fP

mP

Fig. 1. A general continuum parallel robot

and the Jacobian matrices associated to the motions of the
motors. The robot moving platform, on which is located the
end-effector, is considered to be rigid.

The variable associated with the motor displacement for the
leg i is denoted by qai. All motor variables are grouped in the
vector qa. The variables associated with the platform motion
are pp, the location of the platform center of mass P , and
hp = hp1 + hp2

~i + hp3
~j + hp4

~k the unit quaternion (i.e.
hT

p hp = 1) characterizing the platform orientation (Fig. 1).
Let us now compute the potential energy of the robot legs,

which can be modeled as flexible rods of constant length
clamped at points A1 to An when the motors are fixed.

B. Potential energy of a single flexible rod

In this paper, we take the same hypotheses as in [26]: the
rods are modeled using the Kirchoff assumptions (shear is ne-
glected) and the rod elongation is considered to be negligible.
More general assumptions, like the Cosserat ones [22], could
be used without changing the definitions of the singularity
conditions further.

We derive here the equations for the 3D problem. Equations
for the 2D case can be found in [48]. Let us consider the leg
i of the robot. It can be modeled as a slender rod of length
Li (Fig. 2) clamped into the ground at point Ai, made of an
isotropic material and having a constant cross-section along
its longitudinal direction. The robot base frame is denoted as
F0 : (O, d01, d02, d03). The local configuration of a rod
cross-section located at the curvilinear abscissa s is defined
by the frame Fc : (S, di1(s), di2(s), di3(s)), in which
di3(s) is the vector tangent to the cross-section at s. The
configuration of the frame Fc with respect to (w.r.t.) the frame
F0 is provided by the homogeneous transformation matrix 0Ts

defined by:
0Ts =

[
0Rs pi(s)
0 1

]
(1)

in which

0Rs =
[
0di1(s) 0di2(s) 0di3(s)

]
(2)

is the rotation matrix between F0 and Fc and pi(s) is the
position of S in F0. Note that, in what follows, superscript
“0” (“c”, resp.) before any vector or matrix means that they
are expressed in the frame F0 (Fc, resp.).
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Fig. 2. Parameterization of the continuum clamped-free slender rod

The curvature and torsion of the rod can be represented by
the Darboux vector ui(s), defined as:

ui =

3∑
k=1

uik dik (3)

with [49]

ui1 = −dT
i2 d′i3, ui2 = −dT

i3 d′i1, ui3 = −dT
i1 d′i2 (4)

in which (.)′ denotes the derivative w.r.t. the variable s, i.e.
(.)′ = ∂(.)/∂s.

For an isotropic material, the rod deformation energy is then
given by [50]:

Vei =
1

2

∫ Li

0

(cui − cûi)
TKi(

cui − cûi) ds (5)

where ûi = [ûi1 ûi2 ûi3]T is the (constant) pre-curvature of
the rod, Li is the rod length, and the matrix Ki is defined by:

Ki = diag([Ei Ii1, Ei Ii2, Gi Ii0]), (6)

in which Ei is the material Young’s modulus, Gi is its shear
modulus, Ii1 (Ii2, resp.) is the area moment of inertia of the
cross-section around di1 (di2, resp.), and Ii0 = Ii1 + Ii2.

Let us now compute the potential energy due to the external
wrenches. We assume that these wrenches are conservative and
that only two types of external effects are applied on the rod:
• gravitational effects due to the gravity field g and
• any other external distributed forces.
The potential energy due to gravity is given by:

Vgi = −gT ρi

∫ Li

0

pi(s) ds (7)

with ρi the material linear density.
Let us finally denote as fi a force distributed on the rod.

The potential energy due to fi is thus given by:

Vwi = −
∫ Li

0

fTi pi(s)ds (8)

As a result, the total potential energy is equal to:

Vrodi
=

Ni∑
j=1

(Veij + Vgij + Vwij) (9)

It should be noted that the total potential energy Vrodi is
provided in (9) under an integral form with the use of some

functions which are unknowns (except at their boundaries due
to the knowledge of the actuator position qai), in particular
ui(s). Note that pi(s) can be obtained if ui(s) is known.

C. Potential energy of the closed-loop mechanism

Considering now the full continuum parallel robot, its total
potential energy is given by:

Vtot = Vplatform +

n∑
i=1

Vrodi (10)

where Vplatform is the potential energy of the platform con-
sidered here as rigid. Its expression is given by

Vplatform = −fTp (pp − p̂p) (11)

fp is a constant force exerted on the robot platform at point
P (fp includes the effect of the gravity field – recall that
P is considered to the platform center of mass). A force
fQ applied on the platform at any point Q with location
pQ could be added as well, using the potential energy
−fTQ (pQ− p̂Q) = fTQ (pp + 0Rp

−−→
PQ− p̂Q), but we disregard

it in the rest of the computations. Moreover, 3D moment
being non conservative [51], we do not consider them for
the computation of the energy. However, they could easily be
added later in Section III-A by using the Principle of Virtual
Works. We have not included these additional technical details
for the sake of clarity.

As a result, Vtot is a function of pp (and hp in a general
case), of the leg deformation, and of course, of the motor
locations qa. It also depends on the loading, but the loading
being considered constant, we do not add a variable in order
to represent it.

Obviously, due to the closed kinematic chain geometric con-
straints (and of the quaternion constraints), variables pp and
hp are related by the following expressions (for i = 1, . . . , n):

chp =hT
p hp − 1 = 0 (12)

cBi =pp + 0Rp rPBi
− pBi

(Li) = 0 (13)

where rPBi
is the vector

−−→
PBi expressed in the platform frame,

and 0Rp is the rotation matrix between the robot fixed frame
F0 and the moving platform frame while pBi

(Li) is the
location of point Bi obtained after computing the deformation
of the leg i.

If the joint at Bi is spherical, Eqs. (12) and (13) are
enough in order to characterize the platform constraints. If
other joints are used (rigid or revolute joints), other constraints
detailed [22] could be used.

In what follows, we stack all constraints in the vector Φ.

D. Discretized model

Subsection II-D1 describes the generic parametrization that
is used in the paper, and the corresponding notations. Subsec-
tion II-D2 discusses classical approaches for discretization of
the Cosserat rod potential energy.
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1) Parametrization of the discretized model: The potential
energy (10) depends on functional variables ui(s) (i =
1, . . . , n). A practical way to analyse it is to discretize the
functional variable ui(s): they are each parametrized by a
vector hi ∈ RNi of Ni real numbers. All these parameters
are stacked into a vector h ∈ R

∑
Ni .

As expected, we will see below that the number of coor-
dinates of the platform position and orientation that can be
controlled is exactly the number n = dim qa of actuated
motors. Therefore, we define qp ∈ Rn as the vector containing
the coordinates to be controlled. Usually, it contains a subset of
(pp,hp) of the platform position and orientation coordinates,
but it may contain other types of variables, like in [52] where
the authors controlled the five dof of the end-effector plus
the robot collisions with six motors. Other types of variables
(e.g. related to robot stiffness, leg curvature, etc) could also be
defined. We stack all remaining coordinates amongst (pp,hp)
and h to obtain the vector qu ∈ Rm of uncontrolled co-
ordinates. For notational convenience, we furthermore define
qpu = (qp,qu) ∈ Rn+m and q = (qa,qp,qu) ∈ Rn+n+m.
These coordinates are related by the system of equations
Φ(q) = 0, which contains geometric constraints as well
as parametrization constraints like quaternion normalizations.
The number of equations in Φ(q) = 0 is denoted by nΦ ≤
n+m. The integers n, m and nΦ can be related to all variable
numbers defined previously2. As already explained above, the
total potential energy is denoted by Vtot and depends on all
configuration variables q.

2) Discussion on discretization processes: In [22], [53],
the potential energy dependence on a non-discretized pose
leads to a geometrico-static model of continuum parallel
robots involving ODEs. The numerical strategy for solving
the corresponding boundary value problems and evaluating
the required robot Jacobian matrices relies on ODE solvers,
which actually discretize the continuous model. In this work,
we adopt a different strategy, based on a discretization of the
potential energy equations. In addition of the conceptual and
mathematical simplicity of having a finite number of pose
coordinates in the potential energy expression, the numerical
solving process does not include any ODE solver, which ease
its implementation. This does not change the generality of
the results in the definition and the physical interpretation of
singularities. Singularities of continuum parallel robots are
too complex to be formally investigated. The accuracy of
the numerical investigations will depend on the discretization
method and step-size, similarly to the ODE solver accuracy
dependence on the ODE solver tolerance parameter.

There are several ways to discretize the potential energy,
e.g., finite elements (e.g. [54], [55] for good surveys), as-
sumed modes [56] or NURBS (Non-uniform rational basis

2For instance in the spatial case with n = 6 actuated legs modeled with
Ni = N elements and passive spherical joints connecting the legs to the
platform, we have qa ∈ R6, (pp,hp) ∈ R7 but qp ∈ R6 (usually qp

contains pp and three coordinates of hp) and therefore h ∈ R4(N−1)n

and qu ∈ Rm with m = 4(N − 1)n + 1 (since qu contains h and the
coordinate of hp that is not included in qp). Finally, if h contains quaternions,
nΦ = (N − 1)n+ 1 + 3n since we have N − 1 quaternion constraints for
each leg plus one quaternion constraint for the platform, and 3 constraints per
leg for the spherical joints.

splines, e.g. [57]). The simulations presented in Section V
have been computed using finite differences3, mainly aiming
the simplicity of the derivation of the formal expression of the
potential energies. Finite differences is a common way to solve
the equations of continuum robots [50], [59]–[61], and more
generally, to find the deformations of Cosserat rods [62]–[66].
They were also used in [48] for computing the geometrico-
static model of a continuum planar parallel robot, and results
showed that the accuracy of pose prediction is of less than
1 mm of error (for legs of 1 m discretized with 50 elements
each) with respect to a pose computed by solving the system
of constrained ODEs with a shooting method, like in [22].

III. GEOMETRICO-STATIC MODEL

In the static context, configurations are acceptable provided
that for fixed motor positions qa they are stable equilibrium
with respect to internal and external forces. This leads to
the definitions of the geometrico-static model, which relates
fixed motor positions and stable configurations, as well as of
the related forward and inverse problems. In Section III-A,
we derive the equations of the geometrico-static model. The
stability of its solutions is discussed Section III-B. For the sake
of clarity, external wrenches do not appear explicitly in this
generic model that we propose. They play formally the same
role as active joints coordinates, i.e., they are fixed to constant
values for the derivation of the geometrico-static model.

A. The geometrico-static model and its forward and inverse
problems

a) The geometrico-static model: As mentioned previ-
ously, acceptable robot configurations are static equilibria for
fixed qa. This requirement is satisfied if and only if qpu is
a local minimizer of the potential energy Vtot(q) associated
to the system. Since coordinates q are related by the system
of equations Φ(q) = 0, the local extrema (e.g., minimizer,
maximizer or saddle point) of the potential energy are char-
acterized by the Lagrange conditions [67]. Local minimizers
have to satisfy additional conditions related to second order
derivatives, which are detailed in Section III-B.

Lagrange conditions provide the following characterization
of local extrema: Under the condition that the gradients of the
equality constraint are linearly independent, i.e., ∇qpu

Φ(q)
is full rank, q is a local extrema if and only if there exist
multipliers λ ∈ RnΦ such that

∇qpu
Vtot(q) +∇qpu

Φ(q)λ = 0 (14)
Φ(q) = 0. (15)

This system of equations represents the implicit geometrico-
static model. The explicit expressions of these equations can
be obtained in an analytical way4. Note that the expression in

3All details for obtaining the expression of the potential energy Vtot in (10)
and all of its first and second derivatives, i.e. all expressions of the geometrico-
static and kinemato-static models defined thereafter, computed with finite
differences are provided in the technical report [58].

4Although the implicit geometrico-static model has a closed form ex-
pression, its solutions do not have any closed form. Therefore, some local
numerical descent-like method will have to be used to solve it in Section V.
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the left-hand side of Equation (14) is the gradient ∇qpu
L(q,λ)

of the so-called Lagrangian function

L(q,λ) = Vtot(q) + Φ(q)Tλ (16)

associated to the equality constrained optimization problem.
As usually when using Lagrange conditions for solving an
equality-constrained optimization problem, the configurations
q that make ∇qpu

Φ(q) not full rank have to be investigated
since they may turn out to be local minimizers that do not
satisfy the Lagrange conditions (14)–(15), but in our context
they lead to uninteresting configurations that might appear
only when several legs are fully extended (see Section IV-B4).

b) The forward and inverse geometrico-static problems:
The implicit geometrico-static model (14)–(15) is a system
of n+m+ nΦ equations and 2n+m+ nΦ unknowns. As a
consequence, fixing n variables to desired values gives rise to a
square system of equations, having generically a finite number
of solutions. The forward geometrico-static problem consists
in fixing the n motor positions qa to some desired values and
to compute the corresponding n controlled coordinates, the
uncontrolled coordinates qpu and the Lagrange multipliers λ
so that (q,λ) = (qa,qp,qu,λ) is solution to the implicit
geometrico-static model (14)–(15). The inverse geometrico-
static problem consists in fixing the n controlled coordinates
qp to some desired values and to compute the corresponding
n motor positions qa, the uncontrolled coordinates qu and the
Lagrange multipliers λ so that (q,λ) is solution to the implicit
geometrico-static model (14)–(15).

In both cases, the computed configurations qa, qp and qu

are only local extrema that must be additionally checked to
be local minimizers of the potential energy, i.e., to be actual
stable configurations. The computed multipliers λ are not
useful in practice, but they actually have to be computed
when solving Lagrange conditions associated to an equality
constrained optimization problem and they are necessary to
assess the stability of the associated solution. The conditions
for the stability of the computed local extrema are detailed in
the next section.

B. Stability of the solutions
The local extrema q = (qa,qp,qu) computed using the

implicit geometrico-static model (14)–(15) are stable if and
only if they correspond to local minimizers of the potential
energy subject to the constraints Φ(q) = 0. The second
order Lagrange conditions provide sufficient conditions for
this, which are now recalled. See, e.g., [67] for a detailed
description.

We consider a local extrema q∗pu associated to fixed motor
positions q∗a. As previously, we suppose from now on that
∇qpuΦ(q∗) is of full rank. Checking whether a local extrema
q∗ is a local minimizer or not requires determining the second
order behavior of the potential energy versus the constraints
curvature inside the tangent space of the constraints. To this
end, one must have computed the Lagrange multipliers λ∗

corresponding to q∗, and furthermore we must have computed
both:
• The Hessian matrix H = ∇qpu,qpu

L(q∗pu,λ
∗) of the

Lagrangian function. It has n+m lines and columns and

expresses the second order interaction of the potential
energy and the constraints in a neighborhood of q∗pu.

• A matrix Z whose columns span the null space of
∇qpu

Φ(q∗)T . This matrix has n+m− nΦ orthonormal
columns of size n+m, and satisfies ∇qpu

Φ(q∗)T Z = 0.
Under the previously stated condition that ∇qpuΦ(q∗) is full
rank, the columns of Z also span the tangent space of the
manifold defined by the constraints Φ(qa,qpu) = 0 in the
space of qpu, for qa fixed to q∗a. As a consequence, the
restriction to this tangent space of the second order information
encoded in the Hessian matrix H is obtained by a change of
basis using the columns of Z, leading to the formulation of
the reduced Hessian matrix

Hr = ZTHZ. (17)

Formally, feasible variations ∆qpu in a neighborhood of qpu,
i.e., variations in the tangent space of the constraints, have the
form ∆qpu = Z∆v for some ∆v. Then we have

Vtot(qa,qpu +Z∆v) ≈ Vtot(qa,qpu)+
1

2
∆vT Hr∆v. (18)

Since (18) provides a quadratic approximation of the energy
in the tangent space of the constraints, the matrix Hr can be
interpreted as the Hessian of the energy with respect to a set
of generalized coordinates. Although this is a classical result
in optimization, Appendix A provides the mathematical details
to obtain (18) in a way that it enlightens this relationship. As
a consequence, the stability properties of the potential energy
Vtot(q) subject to the constraint Φ(q) = 0 are deduced from
the unconstrained stability conditions applied to the reduced
Hessian Hr:
• If all eigenvalues of Hr are positive, q∗pu is a mini-

mum of the potential energy leading to a stable solution
(Fig. 3(a)).

• If all eigenvalues of Hr are negative, q∗pu is a maximum
of the potential energy leading to an unstable solution
(Fig. 3(b)).

• If some eigenvalues of Hr positive and some other
negative, q∗pu is a saddle point of the potential energy
also leading to an unstable solution (Fig. 3(c)).

• If at least one eigenvalue of Hr is zero, the stability
of q∗pu cannot be assessed by the second order model,
and there is an isovalue of the potential energy along the
directions represented by the eigenvectors associated with
the null eigenvalues (Fig. 3(d)).

This latter case is associated to a singularity condition, as
explained in the next section, which is dedicated to the
singularity analysis.

IV. KINEMATO-STATIC MODELING AND SINGULARITY
CONDITIONS

In this Section, we give the expression of the kinemato-static
model and we provide the conditions of singularity. Again for
the sake of clarity, the kinemato-static model is derived here
without considering external wrenches, which are considered
to be constant. Furthermore, external wrenches are not in-
volved in the definition of singularities. The straightforward
extension of the kinemato-static model to include external
wrenches and their variations are presented in Appendix B.
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Fig. 3. Stability of the solution for a potential energy function Vtot of two
generalized coordinates x1 and x2

A. Derivation of the kinemato-static equations

The kinemato-static model of the robot can be obtained by
differentiating the equations (14) and (15) w.r.t. all variables
qa ∈ Rn, qp ∈ Rn and qu ∈ Rm, and with respect to
multipliers λ ∈ RnΦ as well. We obtain the following linear
relations relating the variations ∆qa, ∆qp, ∆qu and ∆λ of
variables and multipliers:

AL∆qa + PL∆qp + UL∆qu + ΛL∆λ = 0 (19)
AΦ ∆qa + PΦ ∆qp + UΦ ∆qu = 0 (20)

where
• AL = Dqa ∇qpu L(q,λ) ∈ R(n+m)×n,
• PL = Dqp ∇qpu L(q,λ) ∈ R(n+m)×n,
• UL = Dqu ∇qpu L(q,λ) ∈ R(n+m)×m,
• ΛL = Dλ∇qpu L(q,λ) = ∇qpuΦ(q) ∈ R(n+m)×nΦ ,
• AΦ = DqaΦ(q) ∈ RnΦ×n,
• PΦ = Dqp

Φ(q) ∈ RnΦ×n, and
• UΦ = Dqu

Φ(q) ∈ RnΦ×m.
Note that grouping together PL and UL leads to the standard
Hessian matrix of the Lagrangian function:[

PL UL
]

= Dqpu ∇qpu L(q,λ) = ∇2
qpu,qpu

L(q,λ) = H.
(21)

This relationship between the matrices PL and UL involved in
the kinemato-static model and the Hessian of the Lagrangian
of total potential energy gives rise to a characterization of
Type 2 singularities in terms of potential energy. This is
detailed in Section IV-B (see Equation (30)).

The system of equation (19), (20) is composed of n+m+nΦ

equations and 2n + m + nΦ unknowns, which are ∆qa,
∆qp, ∆qu, ∆λ. For the kinemato-static analysis, there is
little interest to characterize the variations ∆λ w.r.t. to the
others. Furthermore, as explained further in Section IV-B4,
the degeneracy of the matrix ΛL = ∇qpu

Φ(q) is unlikely and
uninteresting in practice. Therefore, it is worthy to eliminate

the multipliers variations ∆λ from the system of equations,
reaching this way a kinemato-static model with n+m equa-
tions and 2n + m unknowns closer to the physical intuition.
Eliminating ∆λ using Gaussian elimination does not lead
to any usable explicit formula. Therefore, we use instead
the nullspace Z of the matrix ΛT

L = ∇qpuΦ(q)T , which
satisfies ZTΛL = 0 by definition of the nullspace. Under the
assumption that ΛL is full rank, the matrix [Z ΛL] is square of
size n + m and nonsingular. Therefore, left-multiplying (19)
by the nonsingular square matrix [Z ΛL]

T gives rise to an
equivalent system:

[ALPLULΛL]

[
∆q
∆λ

]
= 0 ⇐⇒[

ZT

ΛT
L

]
[ALPLULΛL]

[
∆q
∆λ

]
= 0

(22)

By expanding this block-matrix product and using ZTΛL = 0,
we obtain the following block-triangularized system equivalent
to (19):

ZT [ALPLUL] ∆q = 0 (23)

ΛT
L [ALPLUL] ∆q + ΛT

L ΛL∆λ = 0. (24)

As explained in the previous section, the matrix Z has n +
m−nΦ columns. Therefore ZTAL, ZTPL and ZTUL all have
n + m − nΦ rows. On the other hand, AΦ , PΦ and UΦ all
have nΦ rows. Therefore, we can group Equation (23) and
Equation (20) to obtain the final expression of the kinemato-
static model

A ∆qa + P ∆qp + U ∆qu = 0, (25)

where A ∈ R(n+m)×n, P ∈ R(n+m)×n, U ∈ R(n+m)×m, and

A =

[
ZTAL
AΦ

]
, P =

[
ZTPL
PΦ

]
and U =

[
ZTUL
UΦ

]
. (26)

Once a solution ∆q of (25) has been computed, the cor-
responding multiplier variations can be obtained by left-
multiplying (24) by (ΛT

L ΛL)−1, leading to

∆λ = −Λ+
L [ALPLUL] ∆q. (27)

Note that the same elimination process could be used to
eliminate the variables ∆qu from (25) provided that U is full
rank. This would lead to a direct linear relationship between
∆qa and ∆qp, as in [22], [53]. However, the variables qu

and their variations ∆qu are meaningful and eliminating them
may hide some singularities (namely leg singularities defined
in Section IV-B).

The kinemato-static model (25) has 2n + m unknowns
and n + m linear equations. Therefore, a square system of
equations is obtained by fixing either ∆qa or ∆qp, leading to
the forward and inverse kinemato-static problems:
• Forward kinemato-static problem: Given ∆qa ∈ Rn,

compute ∆qp and ∆qu by solving the linear system (25),
which becomes a system of n+m equations and n+m
unknowns. Provided that matrix

[
P U

]
is nonsingular,

the solution of the forward kinemato-static problem is[
∆qp

∆qu

]
= −

[
P U

]−1
A ∆qa. (28)
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• Inverse kinemato-static problem: Given ∆qp ∈ Rn,
compute ∆qa and ∆qu by solving the linear system (25),
which becomes again a system of n + m equations
and n + m unknowns. Provided that matrix

[
A U

]
is

nonsingular, the solution of the inverse kinemato-static
problem is [

∆qa

∆qu

]
= −

[
A U

]−1
P ∆qp. (29)

The non-solvability of the forward and inverse kinemato-
static problems due to the nonregularity of the matrices to
be inverted in (28) and (29) leads to the main conditions of
singularities, which are analyzed in the next Section.

B. Singularity conditions

1) Singularities of the matrix [A U], for matrices A and
U full rank: When this matrix is singular, there exist small
non null motions ∆qa and ∆qu that belong to the kernel
of the matrix [A U], for which ∆qp is equal to 0. This
means that, for such configurations, the end-effector cannot
move along some desired controlled directions. Additionally,
in the neighborhood of these areas, a large displacement of the
motors will lead to a small displacement of the end-effector.

In [34] for rigid parallel robots, singularities of the inverse
geometric model are called as Type 1 singularities. Similarly,
in the rest of the paper, we denote as Type 1 singularities the
singularities studied in this subsection.

2) Singularities of the matrix [P U], for matrices P and U
full rank: When this matrix is singular, there exist small non
null motions ∆qp and ∆qu that belong to the kernel of the
matrix [P U], for which ∆qa is equal to 0. This means that,
in such configurations, for certain motions of the legs and of
the platform, there is no motion of the motors. Additionally, in
the neighborhood of these areas, a small displacement of the
motors will lead to a large displacement of the end-effector.

In [34] for rigid parallel robots, singularities of the forward
geometric model are called as Type 2 singularities. In the
same vein, in the rest of the paper, we denote as Type 2
singularities the singularities studied in this subsection. These
singularities correspond to the boundaries of the robot active
joint space5, and for which the end-effector cannot anymore
resist to wrenches applied along given directions (Fig. 4(b)).

As explained earlier, Eq. (21) relates Type 2 singularities
to the potential energy. Formally, from Eqs. (21) and (26), we
obtain

[P U] =

[
ZTH

∇qp
Φ(q)T ∇qu

Φ(q)T

]
=

[
ZTH

∇qpu
Φ(q)T

]
.

(30)
As a consequence, in Type 2 singularities [P U] is singular,
and this happens if and only if there exists a vector u 6= 0
such that both ZTHu = 0 and ∇qpuΦ(q)Tu = 0. The matrix
Z being the kernel of ∇qpuΦ(q)T we have u = Zv for some
v 6= 0. Finally, [P U] is singular if and only there exists v 6=

5It is well known in rigid parallel robotics that all joint configurations
cannot be reached by the motors, because of robot mechanical assembly
issues. Besides the active joint space boundaries, characterized by Type 2
singularities, the rigid-link parallel robots cannot be assembled anymore. Their
joint space is thus constrained, unlike those of anthropomorphic serial robots.

unfeasible

motion

motors 

(a) Example of singularity for
[A U], for matrices A and U full
rank: the robot reached the bound-
aries of the workspace

uncontrollable

motion

motors 

(b) Example of singularity for
[P U], for matrices P and U full
rank: the robot gains one uncon-
trollable motion

motors 

motors 

(c) Examples of singularity for ΛL = ∇qpuΦ(q): two legs are straight and
aligned

Fig. 4. Example of different types of singularities illustrated with a RFRFR
robot shown in [26] (see also Section V-A)

0 such that ZTHZv = Hrv = 0. This means that the matrix
[P U] is singular if and only if the matrix Hr is singular.
From the Section III-B, we conclude that these singularities
correspond to isovalues of the potential energy during motions
along the direction v. This also means that the robot can move
along the direction v without any constraints under the action
of small perturbation, i.e. the robot has zero local stiffness
along the direction v. Another consequence is that the set
of stable solutions, which have only positive eigenvalues for
Hr, and the set of unstable solutions, which have at least
one negative eigenvalue for Hr, are necessarily separated by
a set of configurations that have a null eigenvalue for Hr.
In other words, the sets of stable and unstable configurations
are separated by Type 2 singularity loci. Note that however
it may also happen that Type 2 singularities separate sets of
stable configurations as well, or sets of unstable configurations.
The former case is non-typical since a zero eigenvalue would
be surrounded by positive eigenvalues only. The later case is
generic when the number of negative eigenvalues increases,
but of low interest since all these configurations are unstable.

3) [A U] and [P U] are both singular, for matrices
A, P, and U full rank: This type of singularity is similar
to the Type 3 singularities described in [34]. In the same
time, we lose the ability to move along one given direction
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of the workspace while the legs and platform can get an
uncontrollable motion. They will be called Type 3 singularities
in the rest of the paper.

4) Other types of singularities: Based on the analysis of
the equations (19) and (25), other types of singularity may
occur, even if in our explorations presented in Section V, we
did not meet them for the moment:

• The matrix ΛL = ∇qpu
Φ(q) is not full rank: This kind of

singularities will appear when some constraints equations
in Φ becomes redundant. By analyzing the structure of
the gradient of the constraints (the interested reader could
find details in Section VI of the technical report [58]),
singularities of ∇qpu

Φ(q) appear when both following
conditions are satisfied:

– Several legs are fully stretched.
– The system of lines passing through the straight

legs is degenerated (see [33], [68] for conditions of
degeneracy of systems of lines).

Thus, for the RFRFR robot shown in [26], conditions of
singularity for the matrix ∇qpu

Φ(q) are when two legs
are straight and fully aligned. We computed the gradient
of the constraint for this robot in such configurations
and validated that they lead to the rank deficiency of
∇qpu

Φ(q) (Fig. 4(c)). Based on the fact that they appear
only when several legs are fully stretched, such types of
configurations are unlikely to appear in the context of
continuum parallel robots.

• The matrix U is not full rank: There exists a non null
motion ∆qu leading to null motions of the motors and
the platform. This is a leg singularity, similar as the ones
described in [35]–[37] for rigid parallel robots.

• The matrix A is not full rank: There exists a non null
motion ∆qa leading to null motions of the legs and the
platform. This type of singularity seems to be impossible
to meet in practice.

• The matrix P is not full rank: There exists a non null
motion ∆qp leading to null motions of the legs and
the motors. Again, this type of singularity seems to be
impossible to meet in practice.

In the next section, we study the singularities of two
continuum parallel robots.

V. CASE STUDIES

In this Section, we analyze the singularities and their effect
for two types of continuum parallel robots: a planar robot
and a spatial one. We show some preliminary computations
of the stable and unstable end-effector configuration space
and active joint space of these robots through the resolution
of the geometrico-static model. Furthermore, we provide an
analysis of the impact of singularities on these spaces and on
the robots behavior in the neighborhood of the different types
of singularities.

The two robots potential energy are discretized using finite
differences. The Matlab codes for their models are provided
as supplementary materials to this paper.

y

xO
motor 1

A1

P

A2

motor 2

qa2

qa1

Fig. 5. Schematics of the RFRFR robot (to scale) in the leg bluckling mode
(Mode 1) tested for the computation of its end-effector configuration space.

A. The planar RFRFR robot

In this Section, we study the continuum planar parallel
robots made of two rods which has been presented in [23]
(Fig. 5). It is called a RFRFR robot because it is composed
of two actuated revolute (R) joints, each being mounted on
the ground and attached at one extremity of a flexible rod (F ).
Both flexible rods are connected at their extremity through a
passive revolute (R) joint. The pose qp is the coordinates of
the point P , and it will be alternatively denoted by (x, y).

Parameters of the rods are: rods at rest are straight, their
length L is equal to L = 1 m, that have circular cross-sections
of radius 1 mm, and Young’s moduli E = 210 GPa. The
distance `A1A2 between the two motors is `A1A2 = 0.4 m.
No external wrenches are applied, except a force on the end-
effector. The robot is modeled with the planar deformation
assumption used in [23], [48], with 50 elements per legs. It
has been shown in [48] that, with this number of elements,
the accuracy of pose prediction is of less than 1 mm of error
(for legs of 1 m) with respect to a pose computed by solving
the system of constrained ODEs with a shooting method,
like in [22]. Moreover, the computational time for finding a
solution to the inverse or forward geometrico-static models is
rather small (< 10 ms for most of configurations, whatever
the initial guess, on a Pentium 4 2.70 GHz, 16 GB of RAM).

In order to investigate the impact of the singularities defined
in Section IV, we first compute sets of configurations q =
(qa,qp,qu) connected to an initial configuration q0 in which
the impacts of the singularities will be studied and visualized.
Aiming to display the projection of these configurations in the
end-effector configuration space, an initial area of interest is
discretized using a thin grid of pose vectors qp and an initial
pose qp0 is chosen among them. The inverse geometrico-static
problem is then solved for qp0 using a local search6 with
random start. This leads to an initial configuration associated
with the bluckling mode for the robot legs shown in Fig. 5.
Starting from this initial configuration, new configurations are
computed using a flooding algorithm: A new pose vector

6The Levenberg-Marquardt algorithm is used, which is implemented in the
fsolve function of Matlab, taking advantage of the computed expressions of
the Jacobians of the kinemato-static model (section IV-A) in order to speed
up the computation.
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qp is chosen on the grid, for which no full configuration
has been computed yet and which has a grid neighbor with
already calculated full configuration. The inverse geometrico-
static problem is then solved for this qp using the neighbor
qau components as initial guess for the solver, hence having a
high probability that the new configuration is connected to
its neighbor in the configuration space7. This algorithm is
particularly successful far from Type 1 singularities, where
the inverse geometrico-static problem is well conditioned. It
should be noted that this flooding algorithm using a static
grid in the end-effector configuration space works as long
as the robot is not cuspidal [72] for the tested modes of leg
deformations. Its extension to cuspidal robots is possible but
not in the scope of this paper.

For every configurations computed with the flooding algo-
rithm, the inverse condition numbers κ−1

au and κ−1
pu of matrices

[A U] and [P U], respectively, are calculated. Their values
are displayed by color code in Fig. 6 in the robot stable
and unstable end-effector configuration space when no force
is applied on the end-effector. Dark blue zones are zones
with bad inverse condition numbers. It should be mentioned
that, in the present work, we compute condition numbers
of matrices whose components have non-homogeneous units.
This is valid as long as we intend to analyze the degeneracy
of the corresponding matrices, and not to characterize the
physical performance of the robot [73], which is not the case
in this paper.

The results shows that:
• The inverse condition number κ−1

au of [A U] drops down
to zero, i.e. the matrix [A U] loses its rank, near the
end-effector configuration space boundaries (Fig. 6(a)),
as it was predicted in Section IV-B1. They correspond to
Type 1 singularities.

• The zones where the inverse condition number κ−1
pu of

[P U] drops down to zero, i.e. near which the matrix
[P U] loses its rank, appear in the middle and in the
bottom of the end-effector configuration space (Fig. 6(b)).
Type 2 singularities are suspected here.

Similar results, not displayed for reasons of brevity, are
obtained for the same robot with a force f0 of 2 N along
the y-direction applied at the end-effector. We also checked
the value of the inverse condition number of the matrix U for
all computed robot configurations, and it is never lower than
10−3, i.e., there is no singularity of this matrix.

In Figure 7, we show the robot stable and unstable end-
effector configuration space for the robot with and without a
force f0 applied on the end-effector. In these pictures, both
previously computed condition numbers are used to provide
an overview of the Type 1 and Type 2 singularities in the
end-effector configuration space: We highlight in red the areas
where the inverse condition number of [P U] is lower than
2 · 10−5, i.e. near which Type 2 singularities are foreseen
to be present. These red zones separate the end-effector
configuration space into several connected components. When

7Enforcing rigorously this connectivity requires using techniques more
elaborated than local search. Interval techniques can prove such connectivity,
see, e.g., [69]–[71].

(a) Inverse condition number of [A U]

(b) Inverse condition number of [P U]

Fig. 6. Inverse condition numbers for the matrices [A U] and [P U] for the
RFRFR robot, in the leg’s bluckling mode 1, when no force is applied on
the end-effector.

checking the positive-definiteness of the matrix Hr, it also
appeared that the zones of low values of κ−1

pu separate the
connected components in which either all configurations are
stable or unstable. This can be understood because matrix
Hr is singular when [P U] is singular, meaning that when
[P U] is rank-deficient, Hr gets a null eigenvalue. When
exiting the singularity, the sign of this eigenvalue can become
either positive or negative, leading to a zone in which either
all configurations are stable or unstable as long as another
singularity is not met. Indeed, it can be checked for instance
that the zones denoted by A, B and C in Fig. 7 correspond
to zones in which there is 0, 1 and 2 negative eigenvalues of
the matrix Hr, respectively. The red areas computed using
the flooding algorithm provide only an indication of the
presence of Type 2 singularity curves. However, the change
in the number of positive eigenvalues of the matrix [P U]
actually proves the existence of a curve with at least one zero
eigenvalue, and therefore the presence of Type 2 singularity
curves. Finally, contrary to what happens on rigid parallel
robots, it should be mentioned that the location of the Type 2
singularity loci depends on the loading on the robot: This
evolution can be observed in Figs. 7(a) and 7(b) for the robot
with no force or with a force applied on the end-effector.
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(a) with no force applied on the end-effector

(b) with the force f0 applied on the end-effector

Fig. 7. Stable and unstable end-effector configuration space of the RFRFR
robot: in black bold lines: the end-effector configuration space boundaries
corresponding to the singularities of the matrix [A U]; in red, the areas where
the inverse condition number of [P U] is lower than 2 ·10−5, i.e. near which
singularities of [P U] appear.

Then, we adapted the flooding algorithm in order to com-
pute the robot active joint space. A grid in the qa space is
created (instead of a grid in qp) and the forward geometrico-
static model is solved instead of the inverse one. For every
configurations computed with the flooding algorithm, the
inverse condition numbers κ−1

au and κ−1
pu of matrices [A U] and

[P U], respectively, are calculated. Their values are displayed
by color code in Fig. 8 in the robot active joint space when
no force is applied on the end-effector. Dark blue zones are
zones with bad inverse condition numbers.

The results shows that:

• The inverse condition number κ−1
pu of [P U] drops down

to zero, i.e. the matrix [P U] loses its rank, near the
active joint space boundaries (Fig. 8(b)). They correspond
to Type 2 singularities.

• The zones where the inverse condition number κ−1
au of

[A U] drops down to zero, i.e. near which the matrix
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(a) Inverse condition number of [A U]
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(b) Inverse condition number of [P U]

Fig. 8. Inverse condition numbers for the matrices [A U] and [P U] in the
active joint space.

[A U] loses its rank, appear in the middle and in the
bottom of the end-effector configuration space (Fig. 8(a)).
Type 1 singularities are suspected here.

In Figure 9, we show a part of the robot active joint space.
The stability of all computed configurations is checked: all
of them are stable. Again, previously computed condition
numbers are used to provide an overview of the Type 1 and
Type 2 singularities in the end-effector configuration space:
We highlight in green the areas where the inverse condition
number of [A U] is lower than 2.5 · 10−5, i.e. near which
Type 1 singularities are foreseen to be present. These green
zones separate the joint space into several components. Due to
the complexity of the picture, not all components are drawn.
We restrict our analysis to the components associated with the
legs’ modes defined in Figs. 5 and 10. This is why the joint
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space is not completely bounded by Type 2 singularities.
Analyzing the configuration of the robot in each com-

ponents, it appeared that the different zones correspond to
different leg’s bluckling modes corresponding to changes in
the sign of the curvature of at least one leg: Zone 1 is
associated with the robot in the leg’s buckling Mode 1 (Fig. 5:
legs’ curvatures of opposite signs). Indeed, all configurations
in Zone 1 in Fig. 9 are the configurations that we can find
in Zone A in Fig. 7(a): Zone A in the end-effector space
(Fig. 7(a)) corresponds to Zone 1 in the joint space (whose
lower left and upper right ends are actually connected due
to the 2π period therefore matching the circular geometry of
Zone A). Zone 2(a,c) with leg’s buckling Mode 2 (Fig. 10(a):
legs’ curvatures of same signs), Zone 2(b,d) with the leg’s
buckling Mode 3 (Fig. 10(b)), and Zones 3(a,b,c) with the
leg’s buckling Mode 4 (Fig. 10(c): legs’ curvatures of opposite
signs, signs in opposition with Mode 1). Note that Zones 2(c,d)
are not plotted in Fig. 8 for reasons of drawing clarity. Points
I , I ′, I ′′ corresponds to special configurations (rotated by
180 deg from each others) where the legs are not deformed
(Fig. 4(a)), i.e. their curvatures are equal to 0.

Type 1 singularities separate several zones. Boundaries
B4(a,b,c) allow to pass from legs’ mode 4 to legs’ mode 1
but rotated from 180 deg (Zone 1 bis in Fig. 11, which is
equivalent to Zone 1 switched from 180 deg and translated
from π). Other boundaries:
• B1(a,b) separates Mode 1 from robot configurations with

one inflexion point in a leg, different from modes 2 and
3 (Fig. 12(a)).

• B2(a,b) separate Modes 2 and 3 from robot configurations
with two inflexion point in a leg (Fig. 12(b)).

• B3 separates Modes 2 and 3 from robot configurations
with one inflexion point per leg (Fig. 12(c)).

Based on these observations, we formulate the following
conjecture: Type 1 singularities are related to the change of
inflexion points in the legs (the only exception is between
Zones 1 and 3 for which the robot has no inflexion points).
However, at the time we wrote these lines, we are unable to
prove this conjecture.

Thereafter, we computed the variation of the robot potential
energy in the neighborhood of a configuration for which
κ−1

pu = 10−15 shown in Fig. 13(a) (xs = 2.44 · 10−5 m,
ys = 4.965 · 10−2 m when no force is applied on the
end-effector). Near this singular configuration, the number of
negative eigenvalues goes from zero (stable configurations) to
one (unstable configurations). Therefore, [P U] has one zero
eigenvalue, and its nullspace has dimension one. Let us denote
the projection on the end-effector configuration space (x, y)
of this single nullspace vector by ∆xy = [−.22 .98]T , which
is shown in Fig. 13(a). For computing the variation of energy
around this configuration, we make a variation of the variables
qpu (for fixed value of qa) along two directions: The direction
of the nullspace of [P U] and a direction orthogonal to this
nullspace that is also in the nullspace of ∇qpuΦT , so that
both directions are tangent to the solution set of Φ(q) = 0.
The results are presented in Fig. 13(b). They show that the
potential energy of the robot is near an isovalue along the
direction provided by ∆xy , as expected.
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Fig. 9. Active joint space of the RFRFR robot: in red bold lines: the joint
space boundaries corresponding to the singularities of the matrix [P U]; in
green, the areas where the inverse condition number of [A U] is lower than
2.5 · 10−5, i.e. near which singularities of [A U] appear.
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inflexion
point
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Fig. 10. The leg’s bluckling modes corresponding to Zones 2 and 3 in the
active joint space.

We now aim at assessing more precisely the impact of
this singularity and at confirming the meaningfulness of the
vector ∆xy , which is the potential isovalue direction. For
fixed qa, we computed the external force fp applied to the
end-effector required to move it from (xs, ys) to a given
desired close location (x, y). In order to investigate all di-
rections, the desired location is parameterized by (x, y) =
r (cos θ, sin θ) + (xs, ys). In Figure 13(c), we display the
vectors ‖fp(r, θ)‖(cos θ, sin θ) for θ ∈ [0, 2π] and constant
values of r (r = 1 cm, r = 2 cm and r = 4 cm), which
allows analyzing the force amplitude needed to move the end-
effector in a given direction. We also highlight the direction
∆xy which characterizes the instantaneous free motion inside
the singularity. It can be observed that the effort required
to move the end-effector in the direction ∆xy is very small
compared to other directions. The ratio between the greatest
and least values of the external force amplitude for a constant
r is equal to 13 for r = 1 cm, to 7 for r = 2 cm and to 4 for
r = 4 cm. As the value of r increases, we observe a decrease
of the ratio, as well as a slight deviation with respect to ∆xy

of the desired position direction corresponding to the weakest
external force. This is a consequence of the nonlinearity of
the system. This overall confirms the fact that, around Type 2
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Fig. 11. Active joint space of the RFRFR robot with some unrepresented
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and translated from π.

inflexion
point

(a) when passing B1

inflexion
points

(b) when passing B3

inflexion
points

(c) when passing B4

Fig. 12. The leg’s bluckling modes when passing boundaries B1, B3 and B4.

singularities, small external perturbations may lead to large
motions of the end-effector, as described in Section IV-B2.

We also tested the effect of a small variation of the motor an-
gles on the location of the end-effector in the stable configura-
tion area of the end-effector configuration space when no force
is applied on the end-effector (Fig. 7(a)). For all initial points
marked in red in Fig. 14, associated with a initial motor joint
angle value qa0, we ran the forward geometrico-static model
for a large number of configurations qa of the angles chosen
in the interval qa ∈ [qa0 − [0.1 0.1]T , qa0 + [0.1 0.1]T ] rad.
We see that:
• Near zones where κ−1

pu is low, then small displacements of
the motor leads to large displacements of the end-effector
along given directions.

• Near zones where κ−1
au is low (near the end-effector con-

figuration space boundaries), then the same displacement
of the motor leads to almost no displacement of the end-
effector along a given direction.

• There are zones near which the end-effector get a large
displacement along a direction tangent to the end-effector
configuration space boundary, while the displacement is
very small in the orthogonal direction (bottom of the
space). These are zones where both κ−1

au and κ−1
pu are

low (see Figs. 6(a) and 6(b)), i.e. where the robot is near
a singularity of both [A U] and [P U] (Section IV-B3).
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(a) Singular configuration at xs = 2.44 ·
10−5 m, ys = 4.965 ·10−2 m, when no force
is applied on the end-effector, and gained end-
effector motion ∆xy
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(c) Amplitude of the force required to move the end-effector at the location
(x, y) = r (cos θ, sin θ)− (xs, ys): the amplitude given as a function of θ,
for constant values of r (r = 1 cm, r = 2 cm and r = 4 cm).

Fig. 13. Configuration leading to a singularity of [P U], variation of the
potential energy around this configuration, and force required to move the
end-effector on circles around the singular configuration.

Finally, we analyzed the effect of a variation of a force
exerted on the end-effector in the same end-effector configu-
ration space (Fig. 7(a)). For all initial points marked in red in
Fig. 15, associated with a initial motor joint angle value qa0,
we ran the forward geometrico-static model for many forces
fp ∈ [−[0.2 0.2]T , [0.2 0.2]T ] N. Similarly as for the variation
of the actuator location, when κ−1

pu is low, then a small force
applied on the end-effector leads to its large displacement in
a given direction. This is not the case for the other locations,
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Fig. 14. Effect of a small displacement of the actuators for several initial
positions (marked with the red points) for the RFRFR robot, in the mode
1. Zones in blue and green show the displacements of the end-effector around
the initial positions (different types of colors are used in order to distinguish
the superposed zones).

Fig. 15. Effect of the variation of the force applied at the end-effector for
several initial positions (marked with the red points) for the RFRFR robot,
in the mode 1. Zones in blue and green show the displacements of the end-
effector around the initial positions (different types of colors are used in order
to distinguish the superposed zones).

thus showing that there is a loss of the robot stiffness in the
zones where κ−1

pu is low.
All these results show that the robot’s behavior is similar to

the expected behavior near the singularities of matrices [A U]
and [P U] described in Section IV-B, which correspond
respectively to Type 1 and Type 2 singularities.

B. The spatial 6−RFS robot

Here, we study a continuum spatial parallel robots made of
six rods (Fig. 16). The aim of this Section is to show that
our work can also be applied to spatial robots. Therefore, for
reason of brevity, we will not reproduce all results obtained
with the previous case study, but we will focus on the study of
the degeneracy of the matrices [A U] and [P U] in the robot
end-effector configuration space.

x

y

z

O

P

A1

A2

A3

B1B2

B3

qa1

qa6

qa2
qa3

qa4

qa5

xP

yPzP

Fig. 16. Schematics of the 6 − RFS robot (to scale) in the leg bluckling
mode tested for the computation of its end-effector configuration space.

For the studied robot, each rod is connected at the ground
via an actuated revolute joint (points Ai). Its extremity is
linked to a rigid moving platform via a passive spherical joint
(S joint at points Bi). Using the notation introduced in [23],
this robot is thus a 6−RFS robot. Because the robot has six
motors, it is possible to control the position and orientation of
the frame FP : (P, xP , yP , zP ).

In the base frame F0 : (O, x, y, z), positions of points Ai

are given by:
−−→
OAi = rb [cos γi sin γi 0]T (i = 1, 2, 3) with

rb = 0.25 m and γ1 = 0, γ2 = 2π/3, and γ3 = −2π/3. In
the platform frame FP , positions of points Bi are given by:−−→
OBi = rp [cosαi sinαi 0]T (i = 1, 2, 3) with rp = 0.1 m and
α1 = π/3, α2 = π, and α3 = −π/3. Parameters of the rods
are: rods at rest are straight, their length L is equal to L = 1 m,
that have circular cross-sections of radius 1 mm, and Young’s
moduli E = 210 GPa. No external wrenches are applied.
The robot is modeled with the spatial deformation assumption
used in Section II. We use 30 elements per leg, which is a
compromise between accuracy and computation time. In order
to investigate this trade-off, Tab. I shows the pose computed
for different discretizations: as expected, we can observe that
when increasing the number of elements, the pose estimation
tends towards an asymptotic value. There is an error of less
than 3 cm on the platform frame origin estimation between
the cases with 30 and 1920 elements per leg, for a robot made
with legs of 1 m long, which seemed reasonable to us. Indeed,
with 30 elements per leg, the computational time for each
end-effector configuration space shown below (around 30,000
configurations computed per picture) was already between 6
and 8 hours on our Pentium 4 2.70 GHz, 16 GB of RAM.
Therefore, we decided to keep this number of elements which
seemed to us a good trade off between computational time
and model accuracy. Improving the trade-off between the
computation time and the accuracy of pose estimation by using
a better discretization process is not in the scope of this paper.

As previously, in order to investigate the impact of the
singularities defined in Section IV, we compute sets of config-
urations q = (qa,qp,qu) connected to an initial configuration



15

TABLE I
PLATFORM POSE COMPUTED FOR DIFFERENT NUMBERS Ni OF ELEMENTS
PER LEG (Ni IS IDENTICAL FOR EACH LEG), WHEN THE ACTUATORS ARE

AT qa = [54, − 17, 74, − 30, 22, 3] DEG.

Ni x [mm] y [mm] z [mm] φ [deg] θ [deg] ψ [deg]
15 -16.25 3.92 549.08 48.86 31.63 -2.50
30 -23.26 14.64 567.65 51.56 31.75 -2.55
60 -26.89 21.20 578.73 52.42 31.84 -2.52
120 -28.64 23.80 584.73 52.75 31.89 -2.51
240 -29.49 24.94 587.84 52.89 31.91 -2.51
480 -29.91 25.47 589.43 52.95 31.92 -2.51
960 -30.12 25.72 590.23 52.98 31.92 -2.51
1920 -30.15 25.80 590.64 52.98 31.92 -2.51

q0 and we display the projection of these configurations in
the end-effector configuration space. The previous flooding
algorithm is used, but for reasons of computation cost, we
forced it to compute only configurations in xy-slices of
the end-effector configuration space, i.e. we constrained the
platform to keep constant values for its altitude and orientation.

For every configurations computed with the previous flood-
ing algorithm, the inverse condition numbers κ−1

au and κ−1
pu

of matrices [A U] and [P U], respectively, are calculated.
Their values are displayed by color code in Fig. 17 in the
robot end-effector configuration space, for platform altitude
and orientation defined by: z = 0.55 m, φ = π/4 rad,
θ = π/6 rad, and ψ = 0 rad (these three angles are defined in
the ZY Z Euler-angle convention). Dark blue zones are zones
with bad inverse condition numbers.

As for the previous robot, the results shows that:

• The inverse condition number κ−1
au of [A U] drops down

to zero, i.e. the matrix [A U] loses its rank, near the
end-effector configuration space boundaries (Fig. 17(a)),
as it was predicted in Section IV-B1. They correspond to
Type 1 singularities.

• The zones where the inverse condition number κ−1
pu of

[P U] drops down to zero, i.e. near which the matrix
[P U] loses its rank, appear in the middle and in the bot-
tom of the end-effector configuration space (Fig. 17(b)).
Type 2 singularities are suspected here.

Similar results, not displayed for reasons of brevity, are
obtained for the same robot for another platform altitude
and orientation defined by: z = 0.55 m, φ = π/3 rad,
θ = π/12 rad, and ψ = 0 rad, or for a wrench (fx = 0.5 N,
fy = 0.1 N, fz = −0.2 N, mx = 0.1 Nm, my = −0.1 Nm,
mz = 0.05 Nm) applied at the platform frame origin.

In Figure 18, we show the xy-slices of the end-effector
configuration space for the two previously mentioned altitudes
and orientations of the platform, with and without external
wrench applied on the robot. In these pictures, both previously
computed condition numbers are used to provide an overview
of the Type 1 and Type 2 singularities in the end-effector
configuration space: We highlight in red the areas where the
inverse condition number of [P U] is lower than 2 · 10−5, i.e.
near which Type 2 singularities are foreseen to be present. As
previously, these red zones separate the end-effector configura-
tion space into several connected components. When checking
the positive-definiteness of the matrix Hr, it appeared that the

(a) Inverse condition number of [A U]

(b) Inverse condition number of [P U]

Fig. 17. Inverse condition numbers for the matrices [A U] and [P U] for the
6−RFS robot in the xy-slice of the end-effector configuration space obtained
for platform altitude and orientation defined by: z = 0.55 m, φ = π/4 rad,
θ = π/6 rad, and ψ = 0 rad (these three angles are defined in the ZY Z
Euler-angle convention).

zones of low values of κ−1
pu separate the connected components

in which either all configurations are stable or unstable. Again,
although the red areas computed using the flooding algorithm
provide only an indication of the presence of Type 2 singular-
ity curves, the change in the number of positive eigenvalues
of the matrix [P U] actually proves their existence.

We remark again in Figs. 18(a) and 18(b) that the location
of the singularity loci, for a fixed platform orientation, depends
on the value of the external wrenches applied on the robot.

Finally, we replayed the previous simulations for obtaining
the robot orientation end-effector configuration space. An
illustration of this end-effector configuration space is shown in
Fig. 19 (slice φθ of the orientation end-effector configuration
space at ψ = 0 rad, using the ZY Z Euler-angle convention,
for a fixed platform frame origin). Again, the existence of
different zones, separated by low values of the condition
number of [P U], and with differences in the number of
positive eigenvalues of the matrix [P U], proves the existence
of Type 2 singularities.
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(a) for z = 0.55 m, φ = π/4 rad, θ =
π/6 rad, and ψ = 0 rad, no external wrench.

(b) for z = 0.55 m, φ = π/4 rad, θ =
π/6 rad, and ψ = 0 rad, external wrench
(fx = 0.5 N, fy = 0.1 N, fz = −0.2 N,
mx = 0.1 Nm, my = −0.1 Nm, mz =
0.05 Nm) applied at point P .

(c) for z = 0.55 m, φ = π/3 rad, θ =
π/12 rad, and ψ = 0 rad, no external wrench.

Fig. 18. xy-slice of the end-effector configuration space obtained for different platform altitudes and orientations or external wrenches; angles are defined in
the ZY Z Euler-angle convention; in black bold lines: the end-effector configuration space boundaries corresponding to the singularities of the matrix [A U];
in red, the areas where the inverse condition number of [P U] is lower than 2 · 10−5, i.e. near which singularities of [P U] appear.

Fig. 19. Slice φθ of the orientation end-effector configuration space at ψ =
0 rad (these three angles are defined in the ZY Z Euler-angle convention),
platform frame origin located at x = −0.3 m, y = 0 m, z = 0.55 m; in black
bold lines: the end-effector configuration space boundaries corresponding to
the singularities of the matrix [A U]; in red, the areas where the inverse
condition number of [P U] is lower than 2·10−5, i.e. near which singularities
of [P U] appear.

VI. CONCLUSIONS

In this paper, we have defined the singularity conditions for
generic continuum parallel robots. Based on this definition,
we provided a straightforward interpretation of the phenomena
occurring in singularities. We have classified these singularities
as follows: Type 1, Type 2, Type 3 and legs’ singularities.
More specifically, Type 1 singularities correspond to the
impossibility of the robot to move along given directions,
thus defining the workspace boundaries. We have conjectured
a relationship between Type 1 singularities and changes in
the legs buckling modes, although we were not able to prove
it. Type 2 singularities corresponds to gained motions of the
robot for fixed motor positions, thus defining the active joint
space boundaries. We proved that these singularities appear
when the robot potential energy has a local isovalue. This has

been shown to imply that Type 2 singularities separate the end-
effector configuration space into different areas, some of them
containing only stable configurations, the other containing only
unstable ones. Moreover, on Type 2 singularity, the robot can
freely move along a given direction without any constraint
under the action of small perturbations. Type 3 singularities
are a combination of both Type 1 and Type 2 singularities,
while leg’s singularities lead to free legs’ motions for fixed
positions of both motors and end-effector.

We illustrated the singularity phenomena and their effects by
simulations performed with two different continuum parallel
robots: a planar RFRFR robot, and a spatial 6−RFS robot.

Future works will concern the usage of the analytical
expressions of the kinemato-static model for computing the
singularity loci of continuum parallel robots. Especially, we
believe that it is possible to optimize the design parameters of
the continuum parallel robots in order to obtain robots with
the largest singularity-free workspace as possible, and even,
to design robots without any singularity. We also expect to
define the singularities by the direct analysis of the system
of ODEs characterizing the geometrico-static behavior of
the continuum parallel robots. Finally, we will devote some
efforts on the improvement of our flooding algorithm for
the workspace computation, which, in the present version, is
very sensitive to the tuning of some parameters (solvers used,
maximal number of allowed iterations, etc.), leading to some
potential issues of changes in the robot leg’s mode between
two neighboring configurations, especially near singularities.
The use of certified numerical algorithms, based on interval
analysis, will be explored for solving these issues.

APPENDIX

A. Stability analysis of the solution q∗pu

The analysis of the stability based on the criterion (17)
comes from the following explanation. Taking the second-
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order approximation of the Lagrangian function L = Vtot +
ΦTλ for a fixed value of qa, we have

L(qa,q
∗
pu + ∆qpu,λ

∗ + ∆λ) ≈ L(qa,q
∗
pu,λ

∗)+[
∆qpu

∆λ

]T [∇qpu
L(qa,q

∗
pu,λ

∗)
∇λL(qa,q

∗
pu,λ

∗)

]
+

1

2

[
∆qpu

∆λ

]T
·[

Dqpu
∇qpu

L(qa,q
∗
pu,λ

∗) Dλ∇qpu
L(qa,q

∗
pu,λ

∗)
Dqpu ∇λL(qa,q

∗
pu,λ

∗) 0

] [
∆qpu

∆λ

]
= L(qa,q

∗
pu,λ

∗) +

[
∆qpu

∆λ

]T [∇qpuL(qa,q
∗
pu,λ

∗)

ΦT (qa,q
∗
pu)

]
+

1

2

[
∆qpu

∆λ

]T [
H(qa,q

∗
pu,λ

∗) ∇qpu
Φ(qa,q

∗
pu)

∇qpuΦ(qa,q
∗
pu)T 0

] [
∆qpu

∆λ

]
(31)

If q∗pu and λ∗ are solutions of (14) and (15), then
∇qpu

L(qa,q
∗
pu,λ

∗) = 0 and Φ(qa,q
∗
pu) = 0. Thus, Eq. (31)

can be rewritten as:

L(qa,q
∗
pu + ∆qpu,λ

∗ + ∆λ) ≈ L(qa,q
∗
pu,λ

∗)+

1

2
∆qpu

TH(qa,q
∗
pu,λ

∗)∆qpu+

∆λT∇qpu
Φ(qa,q

∗
pu)T ∆qpu (32)

Because Φ(qa,q
∗
pu) = 0, all small variations ∆qpu of

qpu are contained in the nullspace of ∇qpu
Φ(qa,q

∗
pu)T , i.e.

∇qpu
Φ(qa,q

∗
pu)T ∆qpu = 0, meaning that:

L(qa,q
∗
pu + ∆qpu,λ

∗ + ∆λ) ≈ L(qa,q
∗
pu,λ

∗)+

1

2
∆qpu

TH(qa,q
∗
pu,λ

∗)∆qpu (33)

If (qa,q
∗
pu,λ

∗) is solution to the equations (14) and (15), then
Φ(qa,q

∗
pu) = 0 and L(qa,q

∗
pu,λ

∗) = Vtot(qa,q
∗
pu):

L(qa,q
∗
pu + ∆qpu,λ

∗ + ∆λ) ≈ Vtot(qa,q
∗
pu)+

1

2
∆qpu

TH(qa,q
∗
pu,λ

∗)∆qpu (34)

Moreover, we see that the expression (33) is independent of
the variation ∆λ. Thus L(qa,q

∗
pu + ∆qpu,λ

∗ + ∆λ) =
L(qa,q

∗
pu + ∆qpu,λ

∗). Finally, because the only possible
variations ∆qpu are those contained in the nullspace Z of
∇qpuΦ(qa,q

∗
pu)T , i.e. those admissible by the real system

keeping the constraint equations Φ(qa,q
∗
pu +∆qpu) = 0 true,

it means that

L(qa,q
∗
pu + ∆qpu,λ

∗) = Vtot(qa,q
∗
pu + ∆qpu) (35)

If ∆qpu is contained in the nullspace Z of ∇qpu
Φ(qa,q

∗
pu)T ,

this also means that all ∆qpu can be written as ∆qpu = Z∆v,
with ∆v a vector image of the variation of the true generalized
coordinates of the system. Thus,

Vtot(qa,q
∗
pu + ∆qpu) = Vtot(qa,q

∗
pu + Z∆v)

≈Vtot(qa,q
∗
pu) +

1

2
∆vTZTH(qa,q

∗
pu,λ

∗)Z∆v

=Vtot(qa,q
∗
pu) +

1

2
∆vTHr(qa,q

∗
pu,λ

∗)∆v (36)

and Hr is the Hessian of the potential energy for a set of true
generalized coordinates.

B. Expression of the kinemato-static model involving external
wrenches

The dependence of the potential energy with respect to the
constant wrenches applied to the robot was not displayed
explicitly in Section III. With this explicit dependence,
Equation (14) defining the geometrico-static model becomes

∇qpu
Vtot(q,w) +∇qpu

Φ(q)λ = 0. (37)

Jacobian matrices A, P and U then depends on w as well.
An additional Jacobian matrix

W =

[
ZTDw∇qpu

L
0

]
(38)

has to be introduced in order to take into account the wrench
variations in the kinemato-static model. Then (25) becomes

A ∆qa + P ∆qp + U ∆qu + W∆w = 0. (39)

The forward and inverse kinemato-static problems have re-
spectively the following solutions:[

∆qp

∆qu

]
= −

[
P U

]−1
(A ∆qa + W∆w) . (40)[

∆qa

∆qu

]
= −

[
A U

]−1
(P ∆qp + W∆w) . (41)

This leads to the same singularity definitions and interpreta-
tions as previously.

Additionally, the matrix C =
[
P U

]−1
W involved

in (40) can be related to the compliance matrix provided
in [22]. When considering only variations of the external
wrenches wp applied to the platform only, i.e. ∆w = ∆wp,
as it was the case for the definition of the compliance matrix
in [22], then the matrix W takes the following form (assuming
that vector qpu is ordered such that qpu = [pT

p hT
p hT ]T ):

W = −


ZT

13 0
0 0
0 0


0

 (42)

Then, W is rank deficient if and only if the product

ZT

13 0
0 0
0 0

 is not full rank, i.e. if it exists a vector t of

the form

t =

13 0
0 0
0 0

[α1

α2

]
=

13α1

0
0

 , (43)

for given values of the three dimensional vector α1 defined
such that α1 6= 0, for which that ZT t = 0.

Z being the nullspace of the transpose of the gradient
∇qpu

Φ(q), i.e. ∇qpu
Φ(q)TZ = 0 and also ZT∇qpu

Φ(q) = 0,
this would mean that t must span the image of ∇qpu

Φ(q), i.e.
that we must have

t =

13α1

0
0

 = ∇qpu
Φ(q)u

=

∇pp
Φ(q)

∇hp
Φ(q)

∇hΦ(q)

u =

∇pp
Φ(q)u

∇hp
Φ(q)u

∇hΦ(q)u

 (44)
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for a given non null vector u. The condition ∇hΦ(q)u =
0 means that ∇hΦ(q) must be rank deficient. However, as
shown in the Section VI of [58], this can never appear, except
when several legs are fully extended, which are uninteresting
configurations in practice.

As a result, W can never lose its rank and the condition
number associated with the matrix C goes to infinity only
when matrix

[
P U

]
degenerates. Therefore, the degeneracy

of the compliance matrix found in [22] is thus a Type 2
singularity. A similar analysis leads to the conclusion that the
singular configurations found in [26], which are associated
with the degeneracy of the stiffness matrix that involves[
P U

]
, are also Type 2 singularities. Note finally that

computing the variation ∆w for known variations ∆q has
little interest in practice. Thus, computing the associated
singularities for wrenches other than those applied on the
platform is out of the scope of this paper.
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