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ABSTRACT The oxidation of alcohols and aldehydes is crucial for detoxification and ef-
ficient catabolism of various volatile organic compounds (VOCs). Thus, many Gram-
negative bacteria have evolved periplasmic oxidation systems based on pyrroloquinoline
quinone-dependent alcohol dehydrogenases (PQQ-ADHs) that are often functionally
redundant. Here we report the first description and characterization of a lanthanide-
dependent PQQ-ADH (PedH) in a nonmethylotrophic bacterium based on the use of
purified enzymes from the soil-dwelling model organism Pseudomonas putida KT2440.
PedH (PP_2679) exhibits enzyme activity on a range of substrates similar to that of its
Ca2�-dependent counterpart PedE (PP_2674), including linear and aromatic primary and
secondary alcohols, as well as aldehydes, but only in the presence of lanthanide ions, in-
cluding La3�, Ce3�, Pr3�, Sm3�, or Nd3�. Reporter assays revealed that PedH not only
has a catalytic function but is also involved in the transcriptional regulation of pedE and
pedH, most likely acting as a sensory module. Notably, the underlying regulatory net-
work is responsive to as little as 1 to 10 nM lanthanum, a concentration assumed to be
of ecological relevance. The present study further demonstrates that the PQQ-
dependent oxidation system is crucial for efficient growth with a variety of volatile
alcohols. From these results, we conclude that functional redundancy and in-
verse regulation of PedE and PedH represent an adaptive strategy of P. putida
KT2440 to optimize growth with volatile alcohols in response to the availability of dif-
ferent lanthanides.

IMPORTANCE Because of their low bioavailability, lanthanides have long been
considered biologically inert. In recent years, however, the identification of lan-
thanides as a cofactor in methylotrophic bacteria has attracted tremendous interest
among various biological fields. The present study reveals that one of the two PQQ-
ADHs produced by the model organism P. putida KT2440 also utilizes lanthanides as
a cofactor, thus expanding the scope of lanthanide-employing bacteria beyond the
methylotrophs. Similar to the system described in methylotrophic bacteria, a complex
regulatory network is involved in lanthanide-responsive switching between the two
PQQ-ADHs encoded by P. putida KT2440. We further show that the functional produc-
tion of at least one of the enzymes is crucial for efficient growth with several volatile al-
cohols. Overall, our study provides a novel understanding of the redundancy of PQQ-
ADHs observed in many organisms and further highlights the importance of lanthanides
for bacterial metabolism, particularly in soil environments.
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As a soil-dwelling organism, Pseudomonas putida can encounter a large diversity of
volatile organic compounds (VOCs) from different sources (1–3). The ecological

role of many VOCs is not clearly defined, but the number of known specific functions
is rapidly increasing. These functions include the growth promotion of plants; antiher-
bivore, antibacterial, and antifungal activities; and signaling both within the same
species and between different species (4–7). Among many other chemicals, VOCs
include cyclic, acyclic, aromatic, and terpenoid structures with alcohol and aldehyde
moieties, which are derived mainly from the metabolism of bacterial, yeast, fungal, or
plant species. Beside their specific molecular function, they can also serve as carbon
and energy sources for a wide range of microorganisms. To use volatile alcohols and
aldehydes efficiently, it is advantageous if their metabolism is initiated by pyrroloquino-
line quinone-dependent alcohol dehydrogenases (PQQ-ADHs), for at least two different
reasons. First, by using a periplasmic oxidation system, the organism is able to rapidly
detoxify the often harmful chemicals without prior transport into the cytoplasm (8, 9).
Second, the periplasmic location of the enzymes allows the rapid capture of a volatile
carbon source by the conversion to and accumulation of acidic products with de-
creased volatility.

The reaction mechanism of PQQ-ADHs is still not completely resolved but most
likely proceeds via an ion-assisted direct hydride transfer from the substrate to C-5 of
the noncovalently bound cofactor PQQ (10–12). PQQ-ADHs can be divided into differ-
ent subclasses, depending either on their molecular composition (quinoproteins or
quinohemoproteins) or whether they are membrane bound or freely soluble within the
periplasm (13). Many organisms express different classes or even multiple PQQ-ADHs of
the same type, indicating the importance of these enzymes (14–16). The genome of
P. putida KT2440 encodes two PQQ-ADHs, namely, PP_2674 (pedE) and PP_2679 (pedH),
which have been shown to be involved in the metabolism of different substrates
(17–19). PedE is a homolog of ExaA from Pseudomonas aeruginosa, which is the most
intensively studied member of the class of soluble ethanol dehydrogenases (20–24).
ExaA and homologs thereof accept a wide variety of substrates and rely on a Ca2� ion
in the active site, in addition to the PQQ cofactor, for the oxidation of primary and
secondary alcohols, as well as aldehydes (18, 24). Despite their broad substrate range,
ExaA-like enzymes show only very poor conversion of methanol. Not surprisingly,
methano- and methylotrophic bacteria, which can use methane and methanol as a
source of carbon and energy, encode a different type of PQQ-dependent enzyme, the
MxaF-type of methanol dehydrogenase (MxaF-MDH) (25, 26). These enzymes display
high substrate specificity for methanol and formaldehyde and also depend on Ca2� as
a cofactor (27). Interestingly, methano- and methylotrophic bacteria encode an addi-
tional type of PQQ-dependent MDH, the XoxF-type, which utilizes rare earth metals
(REMs) of the lanthanide series as cofactors instead of calcium (28–30).

Since their discovery, several XoxF-type MDHs from different methano- and methy-
lotrophs have been identified and characterized (31–33). Phylogenetic analysis of
available sequence information suggests that lanthanide dependency is an ancestral
feature of PQQ-ADHs and that these enzymes are more abundant than their Ca2�-
dependent counterparts (15, 34). In addition, a very recent publication described the
first lanthanide-dependent ethanol dehydrogenase in Methylobacterium extorquens
AM1 (16). As a consequence, REM-dependent enzymes and the microorganisms that
produce them have sparked a lot of academic and commercial interest, as they might
be exploited in a broad variety of biotechnological fields (35, 36). Potential applications
range from the development of new biocatalysts and biosensors to the use of the
associated microorganisms in REM biomining, bioleaching, and recycling processes.
However, so far, lanthanide-dependent PQQ-ADHs have been limited to methano- and
methylotrophic bacteria.

Here, we offer the first description and detailed characterization of a lanthanide-
dependent PQQ-ADH (PedH) in the nonmethylotrophic bacterium P. putida KT2440,
which is a model organism for industrial and environmental applications (37–40). We
demonstrate that PedH exhibits enzymatic activity only in the presence of lanthanides,
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including, but not limited to, lanthanum, praseodymium, and cerium, and show that
this enzyme has a substrate range similar to that of PedE, the recently characterized
Ca2�-dependent PQQ-ADH from KT2440 (18). By the use of deletion mutants and
transcriptional reporter fusions, we provide evidence that the functional redundancy of
the PQQ-ADHs reflects the variable availability of lanthanides in the natural environ-
ment of P. putida KT2440 and show that these enzymes are crucial for efficient growth
with a variety of volatile alcohols. Finally, we reveal that PedH plays an important role
in the regulatory switch between the transcription of pedH and that of pedE, most likely
acting as a sensory module. From these data, we conclude that KT2440 responds to
lanthanide availability with the inverse transcriptional regulation of the two PQQ-ADHs
to optimize growth with volatile alcoholic and aldehyde substrates.

RESULTS
Biochemical characterization of PedE and PedH. Like many other organisms,

P. putida KT2440 harbors more than one gene annotated as a PQQ-ADH, namely,
PP_2674 (PedE/QedH; GenInfo Identifier [GI]: 26989393) and PP_2679 (PedH; GI:
26989398). To study the rationale for this redundancy, we purified and characterized
the corresponding enzymes. A one-step affinity chromatography method produced
soluble C-terminally His-tagged PedE and PedH to visible purity (see Fig. S1 in the
supplemental material) from cell lysates of Escherichia coli BL21(DE3). Under optimized
reaction conditions, which include the presence of 1 mM Ca2�, the specific activities of
purified PedE with a variety of substrates were determined (Table 1). For all linear
primary alcohols and aldehydes, comparably high enzyme activities ranging from 1.9 �

0.2 to 6.7 � 0.9 U mg�1 were found. Similarly, 2-phenylethanol, the secondary alcohol
2-butanol, cinnamyl alcohol, and the acyclic sesquiterpene farnesol were efficiently
converted, with specific activities ranging from 6.7 � 1.1 to 2.0 � 0.3 U mg�1.
Methanol, 2,3-butanediol, and ethanolamine were poor substrates for the enzyme, with
about 10-fold lower specific activity than ethanol or 2-phenylethanol. Of all of the
substrates tested, cinnamyl aldehyde was the only compound with which no PedE
activity was detected.

When we assayed purified PedH under the optimized reaction conditions used for
PedE, no activity was observed with any of the substrates tested (data not shown).
Comparison of the active sites of both enzymes using homology models based on the
crystal structure of the ethanol dehydrogenase ExaA of P. aeruginosa (PDB code 1FLG)

TABLE 1 Specific activities of PedE and PedH with various alcohols and aldehydes

Substrate Mean specific activity (U mg�1) � SDd

PedE PedH

Methanol 0.61 � 0.10 0.80 � 0.05
Ethanol 6.7 � 0.9 11.0 � 0.3
Ethanolamine 0.55 � 0.09 1.6 � 0.2
1-Butanol 5.8 � 0.1 11.5 � 0.7
2-Butanol 4.4 � 0.7 7.6 � 0.4
2,3-Butanediol 0.39 � 0.03 0.78 � 0.04
1-Hexanol 5.2 � 0.1 10.4 � 1.1
1-Octanola 3.5 � 0.2 4.7 � 0.7
2-Phenylethanol 6.7 � 1.1 10.2 � 1.4
Acetaldehyde 4.7 � 0.5 6.7 � 0.4
Butyraldehyde 6.1 � 0.4 10.3 � 0.6
Hexanala 3.8 � 0.1 6.2 � 0.3
Octanala 1.9 � 0.2 3.6 � 0.6
Cinnamyl alcohola 2.4 � 0.1 3.9 � 0.1
Cinnamaldehydeb NDc NDc

Farnesolb 2.0 � 0.3 3.8 � 0.5
aSubstrate concentration of 10 mM in DMSO.
bSubstrate concentration of 500 mM in DMSO.
cND, activity below detection limit.
dData are presented as the mean value of three independent measurements and the corresponding standard
deviation. A substrate concentration of 10 mM in H2O was used if not indicated otherwise.
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revealed that, similar to other characterized representatives of the PQQ-dependent
ethanol dehydrogenase type, the PedE protein harbors a serine residue at amino acid
position 295 that is involved in the coordination of the Ca2� ion (Fig. 1A). In contrast,
in PedH, this residue is an aspartate (Fig. 1B). As this aspartate residue has recently been
associated with the coordination of trivalent lanthanide ions in the active site of
PQQ-dependent methanol and ethanol dehydrogenases in methylotrophs (15, 16), we
tested PedH for activity with ethanol in the presence of a variety of REMs (Fig. 2). From
these experiments we found that PedH showed no activity when 1 �M Er3�, Sc3�, Y3�,
or Yb3� was added to the reaction mixture. However, in the presence of the lanthanide
La3�, Ce3�, Pr3�, Nd3�, Sm3�, Gd3�, or Tb3� at 1 �M, enzymatic activity was detected,
with maximal specific activity observed with Pr3� and Nd3� and only very low activity
observed with Gd3� and Tb3�.

Under optimized conditions, which included supplementation with 1 �M Pr3�

instead of Ca2�, PedH showed an activity pattern similar to that of PedE (Table 1) but
exhibited about 2-fold higher specific activity. Further, the functional concentration
range of the metal cofactor differed dramatically for the two enzymes (Fig. S2A). While
PedE showed enzyme activity at concentrations of 10 �M to 10 mM CaCl2, with a peak
in activity at 1 mM, PedH activity was found with lanthanide concentrations as low as
10 nM and up to 100 �M, with a peak in activity at 1 �M. From these data, we
calculated the dissociation constant (Kd) for various metals and the corresponding
enzymes and found that PedH has an 850- to 2,500-fold higher binding affinity for
lanthanides (Kd � 25 to 75 nM; Fig. S2B2) than PedE does for Ca2� (Kd � 64 �M;

FIG 1 Homology models of PedE (A) (GI: 26989393) and PedH (B) (GI: 26989398) generated with
SWISS-MODEL on the basis of the crystal structure of ExaA from P. aeruginosa (PDB code 1FLG) and
visualized with PyMOL (70). The catalytic cation (yellow or violet sphere)-coordinating amino acids and
the PQQ cofactor are shown as sticks with an element color code (C, cyan; O, red; N, blue). The amino
acid at position 295 in PedE and PedH is highlighted by using a different color code (C, light red).

FIG 2 Specific activities of PedH in the presence of various REM ions at 1 �M with 10 mM ethanol as
the substrate. Activities below the detection limit are indicated (*). Data are presented as the mean value
of three replicates, and error bars represent the corresponding standard deviation.
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Fig. S2B1). The subsequent determination of kinetic parameters with ethanol showed
that the maximal velocity (Vmax) of PedH was approximately 1.7-fold higher than that
of PedE (10.6 versus 6.1 U mg�1; Fig. 3). However, the corresponding binding constant
(KM) of PedE was 2-fold lower than that of PedH (85 versus 177 �M). A similar pattern
was found with acetaldehyde and 2-phenylethanol, but with catalytic efficiencies
approximately 1.6-fold (2-phenylethanol) and 10- to 15-fold (acetaldehyde) lower than
those measured with ethanol. Statistical analysis (two-tailed t test; � � 0.05; n � 3;
GraphPad Prism version 7.03) revealed that all Vmax and KM values, except for the KM

with ethanol, were significantly different (P � 0.05) between PedE and PedH; however,
no significant difference in catalytic efficiency (kcat/KM ratio) was observed.

Growth with volatile alcohols in the presence or absence of lanthanides. In a
next step, individual (ΔpedE, ΔpedH, and Δpqq) and combinatorial (ΔpedE ΔpedH)
deletion mutants were tested for growth with several VOCs in an agar plate assay in the
presence or absence of 20 �M lanthanum (Fig. 4A). Strains KT2440 (type strain) and
KT2440* (Δupp strain used as the parental strain for knockout mutants) and a ΔpedH
mutant grew efficiently with ethanol, 1-butanol, and 2-phenylethanol in the absence of
La3�. A ΔpedE strain displayed no growth under this condition. Even more interestingly,
the addition of 20 �M La3� to the agar medium not only resulted in growth of the
ΔpedE strain but also restricted the growth of the ΔpedH strain. The ΔpedE ΔpedH
double mutant and the Δpqq mutant, which is deficient in PQQ biosynthesis, showed
no growth under both conditions. These experiments revealed that efficient growth
with all of the alcohols tested, except the microbial fermentation product 2,3-
butanediol, was dependent on the functional expression of PedE or PedH.

To validate these findings, experiments testing growth in liquid M9 medium with
2-phenylethanol as the sole carbon and energy source in the presence or absence of
20 �M La3� were performed (Fig. 4B1 to B4). Plastic Erlenmeyer flasks were used to
avoid potential contaminations of REMs from the glassware (33). Growth of the liquid
cultures followed a pattern similar to that observed in the agar plate assay. While strain
KT2440* (Fig. 4B1) showed growth after an 18- to 20-h lag phase and a peak in optical
density (OD) at about 35 h under both conditions, the absence and presence of
lanthanum, the ΔpedE ΔpedH double mutant (Fig. 4B4) did not display growth under

FIG 3 Kinetic parameter determination. (A to C) Michaelis-Menten plots showing the specific activities of the enzymes
PedE (black circles) and PedH (white circles) in various concentrations of ethanol (A), acetaldehyde (B), and 2-phenylethanol
(C). For PedE, 1 mM CaCl2 and 50 �M PQQ were used in the reaction mixture, while for PedH, 1 �M PrCl3 and 1 �M PQQ
were used. The data are shown as the mean value of triplicate measurements with error bars representing the standard
deviation. The maximum velocities (Vmax), substrate affinities (KM), and catalytic efficiencies (kcat/KM, were kcat is the
turnover frequency per cofactor molecule) of PedE (D) and PedH (E) for different substrates were derived from panels A
to C by nonlinear regression to a Michaelis-Menten model (continuous lines for PedH and dashed lines for PedE). Kinetic
constants are presented as best-fit values � the standard errors.
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either condition. Growth of the ΔpedE strain (Fig. 4B3) was observed exclusively in the
presence of lanthanum. Lastly, the ΔpedH strain (Fig. 4B2) showed growth similar to
that of strain KT2440* in the absence of lanthanum, but no growth was detected when
20 �M La3� was added.

Transcriptional regulation of pedE and pedH determines growth with alcoholic
volatiles. The previous experiments proved that for efficient growth with various VOCs,
the functional expression of at least one of the PQQ-ADHs is essential. The growth
inhibition of the ΔpedH strain in the presence of lanthanum indicated a potential
repression of the pedE gene in the presence of lanthanides, similar to recent reports on
different methylotrophic bacteria (41–43). To test this hypothesis, we constructed two
reporter strains suitable for probing pedE and pedH promoter activities in KT2440*.
When these strains were tested with 1 mM 2-phenylethanol in M9 medium (Fig. 5A), the
addition of up to 10 nM La3� did not affect pedE promoter activity compared to that
measured in the absence of lanthanum. In contrast, the presence of 100 nM to 100 �M
La3� resulted in reduced pedE promoter activity. An inverse pattern was found for the
pedH promoter. Here, very low activities were detected in the presence of up to 10 nM
La3�. Upon the addition of lanthanum at �100 nM, expression from the pedE promoter
was induced, with a peak at 10 �M.

The importance of the transcriptional regulation of pedE and pedH was further
tested by growth experiments with 2-phenylethanol in liquid M9 medium (Fig. 5B).

FIG 4 (A) Growth with various substrates (10-�l drop of a 1:1 mixture with DMSO) on M9 agar plates. Growth was
quantified with a digital imaging system after 48 h with combined white light and UV illumination (excitation wavelength.
254 nm). All pictures were sized, isolated from the background, and corrected for sharpness (�50%), brightness (�20%),
and contrast (�40%). (B1 to B4) growth of KT2440* (Δupp strain used as the parental strain for knockout mutants; B1,
circles), a ΔpedE strain (B2, diamonds), a ΔpedH strain (B3, squares), and a ΔpedE ΔpedH strain (B4, triangles) in M9 medium
with 5 mM 2-phenylethanol in the absence (black symbols) or presence (open symbols) of 20 �M La3�. Bacteria were
grown in 25 ml (125-ml plastic Erlenmeyer flasks) at 30°C with shaking at 180 rpm (Multifors), and growth was quantified
by OD600 measurements. Data represent the mean of two individual cultures with error bars representing the correspond-
ing range. All error bars are depicted but might not be visible because of the size of the corresponding symbol used for
the mean value.
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Growth of KT2440* was not affected by the addition of up to 100 �M lanthanum. On
the other hand, the ΔpedH strain showed a linear decrease in growth in the presence
of increasing La3� concentrations up to 1 �M and no measurable growth when La3�

was present in the medium at �10 �M. In contrast, growth of the ΔpedE strain was
observed only in the presence of La3� at �10 �M. The ΔpedE ΔpedH strain did not grow
under any of the conditions tested. A similar correlation between growth and pedE and
pedH promoter activity was observed with Ce3�, Pr3�, Nd3�, and Sm3� (Fig. S3).

These results demonstrate that KT2440 inversely regulates pedE and pedH promoter
activity in response to various lanthanide concentrations and suggests that this regu-
lation is the primary determinant of growth. However, in comparison with earlier
studies with M. extorquens AM1, the effective lanthanide concentration needed for
growth was much higher (10 �M versus 5 nM) (41). As lanthanides are known to form
very poorly soluble complexes with phosphate and hydroxide ions, we wondered
whether this difference was caused by the minimal medium used for growth (MP versus
M9). When the experiments were repeated with MP medium, the same general trend
and correlation of promoter activity and growth were found that were described for M9
medium (Fig. 6A and B). However, one difference was that the effective lanthanum
concentrations needed to trigger a transcriptional response and growth were consid-
erably lower (1 and 10 nM). Another difference was that at a concentration of 10 nM
La3�, minimal growth of both single mutant strains was observed. The latter observa-
tion indicated that environmental conditions might exist under which PedE and PedH
are both functionally produced. To further test this hypothesis, an additional growth
experiment was performed that indeed showed growth of both single mutants in a
concentration range of 1 to 15 nM La3� after prolonged (48 h) incubation (Fig. S9).

Impact of PedE and PedH on transcriptional regulation. In M. extorquens AM1,
the transcription of MDHs is regulated, at least partially, by the PQQ-dependent
enzymes themselves (44). To test whether similar outside-in signaling is also present in
P. putida KT2440, expression from the pedE and pedH promoters was quantified during
growth with 2-phenylethanol in MP medium (Fig. 7). In the absence of lanthanum, the
ΔpedH strain showed a 4-fold induction of pedE promoter activity, whereas the ΔpedE
strain exhibited a slight (0.5-fold) decrease in expression from the pedE promoter
compared to that of KT2440* (Fig. 7A). The presence of 10 nM La3� resulted in a strong

FIG 5 (A) Activities of the pedE (dark gray bars) and pedH (light gray bars) promoters in strain KT2440* during
incubation in liquid M9 medium supplemented with 1 mM 2-phenylethanol in the presence of various concen-
trations of La3�. Promoter activities are in relative light units (RLU � 107) normalized to the OD600. (B) The growth
of KT2440* (black circles), a ΔpedE strain (black diamonds), a ΔpedH strain (black squares), and a ΔpedE ΔpedH strain
(black triangles) in liquid M9 medium with 5 mM 2-phenylethanol in the presence of different concentrations of
La3� was determined as the OD600 after incubation at 30°C for 24 h. Data are presented as mean values of biological
triplicates, and error bars represent the corresponding standard deviations.
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reduction of pedE promoter activity in all of the strains tested (21-fold for KT2440*,
6-fold for the ΔpedE strain, 127-fold for the ΔpedH strain) compared to the control
without lanthanum. In comparison with expression from the pedE promoter, expression
from the pedH promoter was considerably lower for all of the strains in the absence of
lanthanum (Fig. 7B). However, when lanthanum was present, strong induction of pedH
promoter activity in strain KT2440* (37-fold) and the ΔpedE strain (29-fold) was de-
tected. Notably, the expression from the pedH promoter was dramatically reduced
(2-fold versus 37-fold) in the ΔpedH strain in comparison with that in the strains capable
of producing a functional PedH protein.

FIG 6 (A) Activities of the pedE (dark gray bars) and pedH (light gray bars) promoters in strain KT2440* during incubation
in liquid MP medium supplemented with 1 mM 2-phenylethanol in the presence of various concentrations of La3�.
Promoter activities are in relative light units (RLU � 107) normalized to the OD600. (B) The growth of KT2440* (black circles),
a ΔpedE strain (black diamonds), a ΔpedH strain (black squares), and a ΔpedE ΔpedH strain (black triangles) in liquid MP
medium with 5 mM 2-phenylethanol in the presence of different La3� concentrations was determined as the OD600 after
incubation at 30°C for 24 h. Data are presented as the mean values of biological triplicates, and error bars represent the
corresponding standard deviations.

FIG 7 Activities of the pedE (A) and pedH (B) promoters in strain KT2440* (Δupp strain used as the parental strain
for knockout mutants), a ΔpedE strain, and a ΔpedH strain in liquid MP medium with 1 mM 2-phenylethanol in the
absence (dark gray bars) or presence (light gray bars) of 10 nM La3�. Promoter activities are in relative light units
(RLU � 107) normalized to the OD600. Data are presented as the mean values of biological triplicates, and error bars
represent the corresponding standard deviations. The promoter activities of each strain in the presence or absence
of lanthanides were statistically analyzed (two-tailed t test; � � 0.05; n � 3; GraphPad Prism version 7.03) and found
to be significantly different (P � 0.01).
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DISCUSSION

Lanthanide-dependent enzymes have so far been found exclusively within methy-
lotrophic organisms (16, 28–30, 32, 33). Using purified enzymes, we discovered that
PedH, one of the two PQQ-ADHs produced by the nonmethylotrophic model organism
P. putida KT2440, is also a lanthanide-dependent enzyme that utilizes La3�, Ce3�, Pr3�,
Nd3�, Sm3�, Gd3�, and Tb3� as metal cofactors. The highest catalytic rates were
observed with Pr3� and Nd3�. Notably, with lanthanides with atomic masses higher
than that of Nd3�, the specific activity decreased gradually, eventually resulting in no
detectable activity with the heaviest lanthanides tested (Er3� and Yb3�). An analogous
effect was previously reported by Pol et al., who investigated the impact of different
lanthanides on the growth rate of Methylacidiphilum fumariolicum SolV (33). A possible
explanation for these observations is that the decreased atomic radius, which is a
consequence of lanthanide contraction, keeps the heavier lanthanides from being
functionally incorporated into the active site of PedH (45).

Kinetic parameters determined with Pr3� and the three model substrates ethanol,
acetaldehyde, and 2-phenylethanol revealed that the Vmax of PedH is about 2-fold
higher than that of its Ca2�-dependent counterpart PedE. It has been proposed that
the increased activity can be explained by the higher Lewis acidity of the lanthanides
compared to calcium (46). Interestingly, we found that the KM values of the lanthanide-
dependent enzyme PedH with acetaldehyde or 2-phenylethanol are significantly lower
than those of the Ca2�-dependent protein PedE. One possible explanation for this
result is the higher polarity that arises in the active pocket of the trivalent cation
coordinating PedH compared to the divalent cation coordinating PedE. Another expla-
nation could be a smaller catalytic pocket because of the larger atomic radius of Pr3�

than of Ca2�. The latter argument was proposed in an earlier report of a study with the
MxaF-type MDH of M. extorquens AM1 as a reason for decreased activities when Ca2�

was replaced with Ba2� (47). In any case, apart from the approximately 2-fold higher
specific activity of PedH compared to PedE, the substrate scopes and catalytic efficien-
cies (kcat/KM) of both enzymes were found to be similar, which suggests that both
enzymes are functionally redundant and differ only in their cofactor dependency.

Functional redundancy is a well-known mechanism to improve robustness in com-
plex systems (48). The fact that many organisms express multiple PQQ-ADHs can be
interpreted as an adaptation to maintain an important function under variable envi-
ronmental conditions or in different microhabitats. Our study is supportive of such a
hypothesis, as we demonstrate that under conditions of high lanthanide availability,
efficient growth of cells with various naturally occurring alcoholic VOCs relies on the
functional production of the lanthanide-dependent ADH PedH. Similarly, for growth in
the absence of lanthanides, functional production of the calcium-dependent ADH PedE
is mandatory. In this context, it is important to note that growth in the agar plate assay
used in this study is restrictive, as it depends on diffusion and evaporation of the
volatile substrates. Thus, the assay most likely cannot discriminate between substrates
for which PedE or PedH function is essential and substrates for which other but less
efficient catabolic routes exist. We found that growth on ethanol (unpublished data)
and 1-butanol (19), but not growth on 2-phenylethanol (this study), is possible but less
efficient for a strain lacking PedE and PedH. From our data and data from a previously
published study (49), we therefore conclude that beside the fact that PedE and PedH
are not essential for growth with short-chain (C2 to C5) aliphatic alcohols, both enzymes
provide rapid conversion of these substrates, which is crucial for efficient growth under
restrictive conditions.

We further show that growth phenotypes strongly correlate with inverse transcrip-
tional regulation of pedE and pedH. Similar results have been reported for several
methylotrophic bacteria (41, 42). When cells of P. putida KT2440 were grown in liquid
MP medium, the addition of as little as 10 nM lanthanides was sufficient to trigger pedE
repression and a strong (20-fold) concomitant induction of pedH. The transcription of
pedH was found to be strongly influenced by the PedH protein itself, implying a role for
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PedH as a lanthanide sensory module. In M. extorquens AM1, the transcription of the
calcium-dependent MDH mxaF strictly relies on the presence of XoxF proteins (41, 44).
Our data demonstrate that this regulation is different in P. putida, as pedE is only
partially repressed by PedH. The fact that pedE repression in the presence of lanthanum
is still observed in the ΔpedH mutant strain, together with the notion that the induction
of pedH is not fully mediated by PedH, strongly suggests the existence of at least one
additional lanthanum-responsive regulatory module. Notably, a very recent study
found that the transmembrane-associated sensory histidine kinase MxaY mediates the
lanthanide-responsive switch of the PQQ-dependent MDHs in Methylomicrobium bury-
atense (43). In P. putida KT2440, the genes for three different membrane-associated
sensory histidine kinases, PedS1 (PP_2664), PedS2 (PP_2671), and PP_2683, are located
in close proximity to pedE and pedH as part of the predicted ErbR (AgmR) regulon (17).
Whether one of these sensor kinases serves a function similar to that of MxaY needs to
be determined in future studies.

From an ecological point of view, it is interesting that growth and inverse regulation
occur even in the presence of high Ca2� concentrations (100 �M) when only nano-
moles of lanthanum are supplied. From these data we conclude, similar to previous
studies with M. buryatense or M. extorquens (32, 41), that the lanthanide-dependent
enzyme PedH is the preferred PQQ-ADH when both metal cofactors are simultaneously
accessible. Nevertheless, it was also demonstrated that at certain low REM concentra-
tions, specific conditions exist under which both single mutants can grow. This sug-
gests that the inverse regulation of the two enzymes is not a strict on-off switch but
rather operates by strongly shifting transcription in favor of one of the enzymes,
depending on the REM concentration.

REM-utilizing PQQ-ADHs have been suggested to be ancestral and more widespread
than their calcium-dependent homologs (15, 50). This might indicate that calcium-
dependent enzymes have evolved to colonize different and/or additional environmen-
tal niches in which lanthanide availability is less pronounced. Compared to soil envi-
ronments, especially the rhizosphere, lanthanide concentrations in the phyllosphere
and endosphere, as well as in other nonplant higher organisms, are comparably low
(51–54). It is thus tempting to speculate that Ca2�-dependent enzymes are of particular
relevance for interactions with multicellular organisms outside soil environments.

Metabolic interdependencies have been proposed as driving forces for species
co-occurrence and the emergence of mutualism in diverse microbial communities,
impacting their robustness, structure, and function (55–57). This is of particular interest
in the context of periplasmic PQQ-ADHs, as organic alcohols and the corresponding
oxidation products not only are crucial intermediates of the global carbon cycle but can
also exhibit additional functions, including signaling and growth inhibition (4–7, 58). A
recent study reported that regulation of the MxaF- and XoxF-type MDHs in a metha-
notrophic bacterium can be influenced by the presence of a nonmethanotrophic
methylotroph in coculture experiments (59). The authors nicely demonstrate that
during cocultivation in the presence of methane and lanthanides, the methanotrophic
bacterium shifts its gene expression from the xoxF-type to the mxaF-type MDH. As a
result of this change, leakage of methanol from the methanotroph was observed, which
subsequently served as a growth substrate for the nonmethanotrophic partner. Al-
though the mechanism of this phenomenon is not yet resolved, it indicates that
different types of PQQ-ADHs might not only be important for potential interactions
with higher organisms, as discussed above, but also within microbial communities. On
the basis of our data, one can speculate that similar interactions are not limited to
methano- and methylotrophic bacteria but are relevant in a much broader ecological
context.

The discovery of lanthanides as a cofactor in biotechnologically important organ-
isms other than methylotrophic bacteria expands the possible applications one can
envision for REM biomining, bioleaching, and recycling processes (60–65). We believe
that future research on lanthanide-utilizing enzymes and organisms will improve our
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understanding of natural and synthetic microbial communities and could provide a
basis for novel biotechnological tools and processes.

MATERIALS AND METHODS
Bacterial strains, plasmids, and culture conditions. For the strains and plasmids used in this study

and a detailed description of their construction, see Text S1. Unless otherwise noted, P. putida KT2440
and E. coli strains were maintained on solidified (1.5% [wt/vol] agar) LB medium (66). Strains were
routinely cultured in liquid LB medium, a modified M9 salt medium containing 68 mM phosphate buffer
(pH 7), 18.6 mM NH4Cl, 8.6 mM NaCl, 2 mM MgSO4, and 100 �M CaCl2 with a trace element solution
containing Na3-citrate at 51 �M, ZnSO4 at 7 �M, MnCl2 at 5 �M, CuSO4 at 4 �M, FeSO4 at 36 �M, H3BO3

at 5 �M, NaMoO4 at 137 nM, and NiCl2 at 84 nM or modified MP medium (67) containing 100 instead
of 20 �M CaCl2 supplemented with succinate or 2-phenylethanol as the sole source of carbon and energy
at 30°C with shaking. Where indicated, 40 �g ml�1 kanamycin or 15 �g ml�1 gentamicin for E. coli or
40 �g ml�1 kanamycin, 20 �g ml�1 5-fluorouracil, or 30 �g ml�1 gentamicin for P. putida strains was
added to the medium for maintenance and selection, respectively.

Liquid medium growth experiments. All liquid medium growth experiments were carried out with
modified M9 minimal salt medium or MP medium (see above) supplemented with 25 mM succinate or
5 mM 2-phenylethanol as a carbon and energy source. To avoid potential lanthanide contamination from
glassware, all growth experiments were carried out with 125-ml polycarbonate vessels (Corning) or
96-well polypropylene plates with 2-ml-deep wells (Carl Roth). If not stated otherwise, precultures were
grown in 5 ml of minimal medium (15-ml Falcon tubes) supplemented with succinate at 30°C and
180 rpm on a rotary shaker (Minitron; Infors HT). The next day, cultures were washed three times in fresh
minimal medium without a carbon and energy source and used to inoculate 1 ml (for plates with
2-ml-deep wells) or 25 ml (for 125-ml polycarbonate vessels) of fresh medium to an initial OD at 600 nm
(OD600) of 0.01. Subsequently, cultures were supplemented with the carbon and energy source, as well
as various concentrations of lanthanides, and incubated at 30°C and 180 rpm (for 125-ml polycarbonate
vessels) or 800 rpm (for plates with 2-ml-deep wells). For experiments with 125-ml polycarbonate vessels,
growth was monitored by measuring the OD600 at regular intervals with a photometer (BioPhotometer;
Eppendorf). For experiments carried out with 2-ml-deep well plates, OD600 was determined after 24 or
48 h by measuring 200 �l of cell culture transferred to a microtiter plate (Greiner Bio-One) in a microplate
reader (POLARstar Omega; BMG Labtech). All data are presented as the mean value of biological
triplicates with error bars representing the corresponding standard deviation.

Agar plate assay. For growth on solidified medium (1.5% [wt/vol] agar) with different substrates, M9
medium plates without a carbon source or trace element solution added were freshly prepared with or
without the addition of 20 �M lanthanum chloride. Cell mass of the strains was obtained from LB agar
plates, suspended in M9 medium without a carbon and energy source, and adjusted to an OD of 0.5.
After the plates were dried for 20 min in a laminar-flow cabinet, 10 �l of each cell suspension was
dropped onto the same plate and distributed with an inoculation loop over about 1/6 of each plate’s
surface. When all strains were distributed, a 10-�l drop of a 1:1 (vol/vol) mixture of ethanol, 1-butanol,
2,3-butanediol, 1-octanol, or 2-phenylethanol in dimethyl sulfoxide (DMSO) was placed in the middle of
the plate. Subsequently, the plates were sealed in plastic bags and incubated at room temperature. After
48 h, growth was quantified with a digital imaging system (Vilber Lourmat QUANTUM ST4) at the
standard fluorescence settings with combined white light and UV illumination (excitation wavelength,
254 nm) for 1 s, an aperture of 11, and the preinstalled F590-nm filter. All individual pictures were
subsequently sized, isolated from the background, and corrected for sharpness (�50%), brightness
(�20%), and contrast (�40%) with the graphic formatting function in Microsoft PowerPoint.

Transcriptional reporter assays. For transcriptional reporter assays, P. putida harboring a Tn7-based
pedE-lux or pedH-lux transcriptional reporter fusion was grown overnight in modified M9 or MP medium
with succinate, washed three times in MP medium with no added carbon source, and finally suspended
to an OD600 of 0.1 in MP medium or M9 medium with 1 mM 2-phenylethanol. For luminescence
measurements, 180 �l of cell suspension was added to 20 �l of a 10-fold-concentrated metal salt solution
in white 96-well plates with a clear bottom (�Clear; Greiner Bio-One). Microtiter plates were placed in a
humid box to prevent evaporation and incubated at 30°C with continuous agitation (200 rpm), and light
emission and OD600 were recorded at regular intervals in an FLX-Xenius plate reader (SAFAS, Monaco) for
up to 6 h. For both parameters, the background provided by the MP medium was subtracted and the
luminescence was normalized to the corresponding OD600. Experiments were performed with biological
triplicates, and data are presented as the mean value with error bars representing the corresponding
standard deviation.

Enzymatic activity assays. For details of the PedE and PedH production and purification procedure,
see Text S1. Purified PedE and PedH enzyme activities were measured in 96-well microtiter plates
(Greiner Bio-One) with a dye-linked colorimetric assay based on previous studies (24, 68). Under
optimized conditions (Fig. S4 to S8), one well contained a total volume of 250 �l of assay solution
supplemented with 100 mM Tris HCl (pH 8), 500 �M phenazine methosulfate (PMS), 150 �M 2,6-
dichlorophenol indophenol (DCPIP), 25 mM imidazole, 1 mM CaCl2 for PedE or 1 �M PrCl3 for PedH, 1 �M
PQQ for PedE or 50 �M PQQ for PedH, 12.5 �l of substrate, and 2.5 to 20 �g/ml enzyme. The reaction
was started by addition of the substrate to the reaction mixture, and activity was calculated on the basis
of the change in OD600 within the first minute upon substrate addition. The molar extinction coefficient
of DCPIP was experimentally determined to be 24.1 cm�1 M�1 at pH 8 (Fig. S4). Because of substrate-
independent background activity, the assay solution was incubated for 45 min without a substrate at
30°C prior to enzyme activity measurements. As activities were between 8- and 12-fold higher with
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imidazole than with ammonium chloride or ethylamine, imidazole was used in all experiments (Fig. S5).
Negative-control reactions, including the potential effect of bovine serum albumin or an assay mixture
without the addition of an enzyme, did not show any reduction of DCPIP under the conditions used (data
not shown). All assays were performed in three replicates, and data are presented as the mean value with
error bars representing the corresponding standard deviation.

Metal dependency of the enzymes. To test the metal dependency of PedE and PedH, a setup
similar to that described above was used without CaCl2 for PedE or PrCl3 for PedH in the assay solution.
Different REMs at 1 mM were added prior to incubation at 30°C. These included LaCl3, CeCl3, PrCl3, NdCl3,
SmCl3, GdCl3, ErCl3, YbCl3, ScCl3, and YCl3. Activities were determined in triplicate as described above.

Enzyme kinetics. The kinetic constants of the enzyme substrate combinations were determined with
the enzyme assay described above with various substrate concentrations measured in triplicate. The
resulting activity constants were calculated by fitting the enzyme activities by nonlinear regression to the
Michaelis-Menten equation by the Michaelis-Menten least-square fit method with no constrains in
GraphPad Prism version 7.03 (GraphPad Software, Inc.).

Homology models. The PedE and PedH homology models were built with Swiss-Model (69). As ExaA
has the highest sequence similarity to both PedE (60%) and PedH (49%) of all available crystal structures
in the Swiss-Model template library, the crystal structure of ExaA, the PQQ-ADH of P. aeruginosa (PDB
code 1FLG), was used as a template for model construction (23). Visualization of the models was carried
out with PyMOL (70).
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