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Introduction

The numerical resolution of non-linear PDEs is a crucial issue in many applications. In particular, stochastic control problems can be formulated by mean of the Hamilton-Jacobi-Bellman (HJB) equations with terminal condition. In this paper, we focus more particularly on control problems raised by demand-side management in power systems. The difficulties come especially from the high dimensionality of the state space, which motivates the use of probabilistic representations. The main issue of numerical schemes is then to concentrate the computing effort in specific regions of interest in the state space. In classical regression Monte-Carlo approaches, the solution is evaluated backwardly in time from the final time to the initial time, while the regression grid is generated forwardly from the initial time to the final one. In this paper, we propose a fully backward probabilistic approach which allows to generate adaptively the regression grid, as the solution is evaluated, taking advantage of the calculations already performed. Besides, there is no need to store the entire grid, since the points are generated as they are used for calculations. Our grid will be indeed simulated according to the time-reversal of some diffusion starting from a judicious terminal distribution.

We are interested in semilinear PDEs of the type

∂ t v(t, x) + H(t, x, v(t, x), ∇ x v(t, x)) + 1 2 T r[σσ ⊤ (t)∇ 2 x v(t, x)] = 0, (t, x) ∈ [0, T [×R d v(T, x) = g(x),
(1.1) eq:PDE_Intro

where in particular σ is a deterministic non-degenerate matrix-valued function. Under suitable conditions, there exists a unique viscosity solution v of ( eq:PDE_Intro 1.1) in the class of continuous functions with polynomial growth. One classical probabilistic representation of v is provided by Forward-Backward SDEs (FBSDEs), see e.g. pardouxgeilo [START_REF] Pardoux | Backward stochastic differential equations and viscosity solutions of systems of semilinear parabolic and elliptic PDEs of second order[END_REF]. First a forward diffusion is fixed, with an arbitrary drift b dX t = b(t, X t )dt + σ(t)dW t .

(1.2) ForwE

Then the solution of ( eq:PDE_Intro 1.1) is represented by v(s, x) = Y s,x s , where (Y, Z) = (Y s,x , Z s,x ) is the unique solution of the BSDE

Y t = g(X T ) + T t F (r, X r , Y r , Z r )dr - T t Z r dW r , (1.3) BSDEIntro 
with X = X s,x being the solution of ( ForwE 1.

2) starting at time s with value x and F being related to H by F (t, x, y, z) := H(t, x, y, σ -1 (t) ⊤ z)b(t, x), σ -1 (t) ⊤ z .

(1.4) Eq_F

Considering a time discretization mesh t k = kδt, with δt = T n and k = 0, • • • , n, for a given positive integer n, labart [START_REF] Gobet | Error expansion for the discretization of backward stochastic differential equations[END_REF] proved that one can approximate (Y t k , Z t k ) by ( Ŷk , Ẑk ) such that Ŷn = g(X T ) and

for k = 0, • • • , n -1        Ŷk = E n ℓ=k+1 F (t ℓ , X t ℓ , Ŷℓ , Ẑℓ-1 )δt + g(X T ) X t k Ẑk = 1 δt E Ŷk+1 (W t k+1 -W t k ) X t k .
(1.5) CondExp

Most of probabilistic numerical schemes (see e.g. regression Monte-Carlo

GobetWarin,bender12 [START_REF] Gobet | A regression-based Monte Carlo method to solve backward stochastic differential equations[END_REF][START_REF] Ch | Least-squares Monte Carlo for backward SDEs[END_REF], Kernel Monte-Carlo BouchardTouzi [START_REF] Bouchard | Discrete-time approximation and Monte Carlo simulation of backward stochastic differential equations[END_REF], Quantization

DelarueMenozzi [START_REF] Delarue | An interpolated stochastic algorithm for quasi-linear PDEs[END_REF]) rely on that representation. The common idea is then articulated in two steps. First, one generates a grid discretizing the forward process ( ). Then, one calculates the conditional expectations (

1. The degree of freedom in the choice of the forward diffusion X is difficult to exploit although it has a major impact on the numerical scheme efficiency: how to chose a reasonable drift b without a priori information on v ?

2. The entire grid discretizing the forward process has to be stored in memory to be revisited backwardly in time in order to compute the solution process (Y, Z). This approach naturally raises some huge memory issues which in general limit drastically the number of Monte-Carlo runs and time steps, hence the accuracy of the procedure.

To overcome such limitations some approaches were proposed in the domain of mathematical finance, in particular for the evaluation of American style options. One technique, intended to deal with the memory problem, relies on bridge simulation, see e.g.

ribeiro03, sabino20 [START_REF] Ribeiro | Valuing path-dependent options in the variance-gamma model by Monte Carlo with a gamma bridge[END_REF][START_REF] Sabino | Forward or backward simulation? A comparative study[END_REF]. However, this approach requires specific developments for each price model (based for instance on the Brownian bridge for Brownian prices or on the gamma bridge for variance gamma prices) and remains difficult to generalize to a wide class of models. To address the efficiency issue, bender07 [START_REF] Ch | A forward scheme for backward SDEs[END_REF] developed a scheme based on Picard's type iterations that avoids the use of nested conditional expectations backwardly in time, which are replaced by nested conditional expectations along the iterations. In the same line, gobet10bis [START_REF] Gobet | Solving BSDE with adaptive control variate[END_REF] proposes an adaptive variance reduction technique which combines Picard's iterations and control variate to solve the BSDE. A parallel version of that algorithm was proposed in labart13 [START_REF] Labart | A parallel algorithm for solving BSDEs[END_REF]. However, those approaches require, at each iteration, to approximate the solution on the whole time horizon. Similarly, importance sampling and Girsanov's theorem, were considered to force the exploration of the space towards areas of interest bender10 [START_REF] Ch | Importance sampling for backward SDEs[END_REF]. In particular, this type of approach was derived in the case of stochastic control in exarchos [START_REF] Exarchos | Stochastic optimal control via forward and backward stochastic differential equations and importance sampling[END_REF] providing an iterative scheme that is capable of learning the optimally controlled drift. Here again, that method requires several estimations of the value function on the whole time horizon. Besides gobet17 [START_REF] Gobet | Adaptive importance sampling in least-squares Monte Carlo algorithms for backward stochastic differential equations[END_REF] proposed an adaptive importance sampling scheme for FBSDEs allowing to select the drift adaptively, as the calculations are performed backwardly.

Unfortunately, that approach is limited to situations where the driver F does not depend on Z. In the present paper, we introduce a new adaptive approach to address both the memory problem and the efficiency issue (related to the drift selection) in the general case where the driver may depend on X, Y and Z.

We propose to choose adaptively the drift b at the same time as we discover the function v such that [START_REF] Callaway | Achieving controllability of electric loads[END_REF] RepFormulaInt by simulating the time-reversal of a solution X of ( 

v (t, X t ) = E T t H (s, X s , v (s, X s ) , ∇ x v (s, X s )) -b (s, X s ) , ∇ x v (s, X s ) ds + g (X T ) X t , (1. 
                 ξ 0 ∼ ν, ξ t = ξ 0 - t 0 b (T -s, ξ s ) + σσ ⊤ (T -s) Q (T -s) -1 (ξ s -m (T -s)) ds + t 0 σ (T -s) dβ s , m(T -t) = E (ξ t ) , Q(T -t) = Cov (ξ t ) for t ∈]0, T ]. (1.7) Rev-SDEIntro
By Proposition We expect that this approach is particularly well-suited when the final cost has a strong impact on the global cost and when the terminal cost function is localized in a small region of the space, so that the initial distribution ν can be chosen in an appropriate way. Finally, in Section Sexample 6 we illustrate the interest of this new algorithm applied to the problem of controlling the consumption of a large number of thermostatic loads in order to minimize an aggregative cost. We compare our approach to the classical regression Monte-Carlo scheme based on a forward grid. In the whole paper, we say that a function

Notations

SNotat

∈ S + d (R), √ A denotes the unique element of S + d (R) such that ( √ A) 2 = A.

For a given continuous function

f : [0, T ] → R d (resp. g : [0, T ] → M d (R)), we set ||f || ∞ := sup t∈[0,T ] |f (t)| (resp. ||g|| ∞ := sup t∈[0,T ] ||g (t)||). C 1,2 [0, T ], R d (resp. C 0,1 [0, T ], R d )
v : [0, T ] × R d → R has polynomial growth if there exists q, K > 0 such that for all (t, x) ∈ [0, T ] × R d |v (t, x)| ≤ K (1 + |x| q ) .
When v verifies previous property with q = 1, we say that it has linear growth.

For a given random vector X defined on a probability space (Ω, F, P), E P (X) (resp. Cov P (X) := E P (X -E P (X)) (X -E P (X)) ⊤ ) will denote its expectation (resp. its covariance matrix) under P. When self-explanatory, the subscript will be omitted in the sequel. For a given (m, Q) ∈ R d × S + d (R), N (m, Q) denotes the Gaussian probability on R d with mean m and covariance matrix Q. For any stochastic process X, F X will denote its canonical filtration. X will denote the timereversal process X T -• .

Representation of semilinear PDEs

Section

Around two backward ODEs

R41

Let a (resp. c) be Borel bounded functions from

[0, T ] to M d (R) (resp. R d ).
In the sequel we will fix a Gaussian Borel probability ν on R d with mean mν and covariance matrix Qν . We consider the functions

m ν : [0, T ] → R d and Q ν : [0, T ] → S d (R) denoting respectively the unique solutions of the backward ODEs    d dt m ν (t) = a (t) m ν (t) + c (t) , t ∈ [0, T ] m ν (T ) = mν , (3.1) ODE_m    d dt Q ν (t) = Q ν (t) a (t) ⊤ + a (t) Q ν (t) + Σ (t) , t ∈ [0, T ] Q ν (T ) = Qν , (3.2) ODE_Q
for which existence and uniqueness hold since they are linear.

We introduce an hypothesis on ν which will be used in the sequel.

ass_nu Assumption 1. Q ν (0) ∈ S + d (R). Easy computations imply for all t ∈ [0, T ] m ν (t) = A (t) A (T ) -1 mν - T t A (s) -1 c (s) ds , (3.3) m_explicit Q ν (t) = A (t) A (T ) -1 Qν A (T ) -1 ⊤ - T t A (s) -1 Σ (s) A (s) -1 ⊤ ds A (t) ⊤ , (3.4) Q_explicit where A (t) , t ∈ [0, T ] is the unique solution of the matrix ODE    d dt A (t) = a (t) A (t) , t ∈ [0, T ] A (0) = I d . (3.5) ODE_funda
We recall that for all t ∈ [0, T ], A (t) is invertible and the matrix valued function t → A(t 

) -1 solves the ODE    d dt A (t) -1 = -A (t) -1 a (t) , t ∈ [0, T ] A (0) -1 = I d , (3.6 
Q ν (t) = A (t) Q ν (0) + t 0 A (s) -1 Σ (s) A (s) -1 ⊤ ds A (t) ⊤ , t ∈ [0, T ]. (3.9) Q_explicit_fw
Combining ( Q_explicit_fwd 3.9) and the fact σ (t) is invertible for all t ∈ [0, T ], we remark that

Q ν (t) belongs to S ++ d (R) for all t ∈]0, T ].
Finally we give a condition depending on A, σ, Qν and T to ensure the measure ν fulfills Assumption ass_nu 1.

os_cond Proposition 3.2. Suppose that

min Sp Qν ≥ T 0 ||σ (s)|| 2 A (T ) A (s) -1 ⊤ 2 ds. (3.10) cond_pos
Then,

Q ν (0) ∈ S + d (R) . (3.11) P42Concl
Proof. Since A (T ) is invertible and

Q ν (0) belongs to S d (R), ( P42Concl 
3.11) is equivalent to A (T ) Q ν (0) A (T ) ⊤ ∈ S + d (R) . (3.12) EP42
To prove ( EP42 3.12), taking into account ( Q_explicit 3.4), it suffices to show that the matrix

Qν - T 0 A (T ) A (s) -1 Σ (s) A (T ) A (s) -1 ⊤ ds ∈ S + d (R) ,
or, equivalently, that for all x ∈ R d RmCov Remark 3.4. Let X be a solution of

λ := x ⊤ Qν x - T 0 x ⊤ A (T ) A (s) -1 Σ (s) A (T ) A (s) -1 ⊤ xds ≥ 0. (3.13) TxQx Let x ∈ R d , λ ≥ min Sp Qν |x| 2 - T 0 σ (s) ⊤ A (T ) A (s) -1 ⊤ x 2 ds, ≥ min Sp Qν - T 0 σ (s) ⊤ 2 A (T ) A (s) -1 ⊤ 2 ds |x| 2 , ≥ 0, since ( cond_pos 3 
X t = X 0 + t 0 b (s, X s ) ds + t 0 σ (s) dW s , t ∈ [0, T [, (3.15) EOUIntro
where σ is a deterministic matrix-valued function and b the piecewise affine function

b(t, x) = a(t)x + c(t), t ∈ [0, T ],
and X 0 be a square integrable r.v. It is well-known that X is a square integrable process. Let, for every t ∈ [0, T ], m(t) = E (X t ) and Q(t) the covariance matrix of X t . Setting mν = E (X T ) and Qν the covariance matrix of X T . Then 

m = m ν , Q = Q ν . ( 3 

The representation formula for a general semilinear PDE

S42

In the whole paper σ will be a continuous function defined on [0, T ] with values in M d (R) such that for all t ∈ [0, T ], σ (t) is invertible. We will set

Σ := σσ ⊤ . Let b : [0, T ] × R d → R d and b c : [0, T ] × R d × R d × S ++ d (R) → R d defined by b c : (t, x, m, Q) → Σ(t)Q -1 (x -m) , b : (t, x) → a (t) x + c (t) , (3.17) E42
where a, c were defined at Section 

∂ t v (t, x) + 1 2 T r Σ (t) ∇ 2 x v (t, x) + H (t, x, v (t, x) , ∇ x v (t, x)) = 0, (t, x) ∈ [0, T [×R d v (T, •) = g. (3.18) SLPDE
To formulate the result we consider the following assumption.

ass_g Assumption 2. g is continuous and has polynomial growth.

Let ν be a Gaussian Borel probability on R d with mean mν and covariance Qν . Let t → m ν (t) defined in ( m_explicit 3.3), t → Q ν (t) be given by ( We fix a filtered probability space Ω, F, (F t ) t∈[0,T ] , P on which are defined a d-dimensional

Brownian motion β and a random vector ξ 0 distributed according to ν and independent of β.

Let ξ be the unique strong solution of 

ξ t = ξ 0 - t 0 b (T -s, ξ s ) + b c (T -s, ξ s , m ν (T -s) , Q ν (T -s)) ds + t 0 σ (T -s) dβ s , t ∈ [0, T [. ( 3 
X t = X 0 + t 0 b (s, X s ) ds + t 0 σ (s) dW s , t ∈ [0, T [, (3.20) direct_OU where W is an F ξ -Brownian motion independent of X 0 ∼ N (m ν (0) , Q ν (0)).
2. ξ extends continuously to [0, T ].

Proof. i) The SDE ( direct_OU 3.20) admits in particular existence in law. Let X be a solution of ( direct_OU 3.20). To prove the first statement, we first show that the laws of ξ and X coincide.

For this it is enough to prove that X = X T -• and the solution ξ of ( [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF] and by uniqueness of the ODE ( ODE_m 3.1) (resp.

( ODE_Q 3.2)) with initial condition m ν (0) (resp. Q ν (0)), we get E (X t ) = m ν (t) and Cov (X t ) = Q ν (t)
for all t ∈ [0, T ]. By Problem 6.2, Chapter 5 in karatshreve [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF]) X is a Gaussian process so ii) We proceed now with the proof of the first statement. Let X be a solution of ( direct_OU 3.20), so that we know that W is a Brownian motion independent of X 0 . On the other hand the process

ξ t ∼ N (m ν (t) , Q ν (t)) , t ∈ [0, T ]. ( 3 
M X t := X t -X 0 - t 0 b(u, X u )du, t ∈ [0, T ].
is an F X -martingale with quadratic variation

[M X , (M X ) ⊤ ] = • 0 Σ(u)du.
We have

W ≡ • 0 σ -1 (u)dM X u . (3.22) EM11 Since [W, W ⊤ ] t ≡ tI d , by Lévy's characterization theorem, W is a standard (F X t )-Brownian motion. We set M ξ t := ξt -ξ0 - t 0 b(u, ξu )du, t ∈ [0, T ],
and we denote W ξ :=

• 0 σ -1 (u)dM ξ u . Taking i) into account and the fact that ξ and X have the same law, then W and W ξ are identically distributed and so W ξ is an F ξ -Brownian motion. Moreover the couple (X 0 , W ) has the same distribution as ( ξ0 , W ξ ). Consequently W ξ is an F ξ -standard Brownian motion (independent of ξ0 ) and the statement 1. follows.

iii) It remains to prove the second statement. For this we show

E T 0 b c s, ξ s , m ν (s) , Q ν (s) ds < ∞. ( 3 

.23) finiteMean

On the one hand, for all t ∈]0, T ],

b c t, ξ t , m ν (t) , Q ν (t) = Σ (t) Q ν (t) -1 Q ν (t) -1 ξ t -m ν (t) ≤ ||Σ|| ∞ Q ν (t) -1 Q ν (t) -1 ξ t -m ν (t) = ||Σ|| ∞ ||Q ν (t)|| Q ν (t) -1 ξ t -m ν (t) , remembering that Q ν (t) belongs to S ++ d (R).
On the other hand, by (

ENormXi 3.21) Q ν (t) -1 ξ t -m ν (t) ∼ |Z| where Z ∼ N (0, I d ). Then, ( finiteMean 3.23) is verified if we show T 0 1 ||Q ν (t)|| dt < ∞. (3.24) finiteMeanBis If Q ν (0) = 0, then for all t ∈]0, T ], for all t ∈]0, T ], Remark rem_nondegen 3.1 implies Q ν (t) t = A (t) 1 t t 0 A (s) -1 Σ (s) A (s) -1 ⊤ ds A (t) ⊤ -→ t→0 Σ (0) . If Q ν (0) = 0, then for all ]0, T ], again Remark rem_nondegen 3.1 yields ||Q ν (t)|| t ≥ A (t) Q ν (0) t A (t) ⊤ -A (t) 1 t t 0 A (s) -1 Σ (s) A (s) -1 ⊤ ds A (t) ⊤ -→ t→0 +∞,
where we have also used the fact A (0) = I d and the fact

1 t t 0 A (s) -1 Σ (s) A (s) -1 T ds tends to Σ (0) as t tends to 0 thanks to the continuity of Σ, A -1 on [0, T ].
Hence, for all t ∈]0, T ],

lim t→0 √ t ||Q ν (t)|| =      1 √ ||Σ(0)|| , if Q ν (0) = 0 0, otherwise. (3.25) 
This yields ( Though, this will not be exploited in the algorithm proposed at Section verified. In particular we have the following.

McKean Proposition 3.7.

1. There is at most one solution (ξ, m, Q) of ( Rev-SDEIntro 1.7). 1. Let ξ be the unique solution of (

Suppose the validity of Assumption

Rev-SDE 3.19). Then (ξ, m ν , Q ν ) is a solution of ( Rev-SDEIntro 1.7). Proof. 1. Let (ξ, m, Q) be a solution of ( Rev-SDEIntro 1.7). By definition, ξ solves an SDE of type ( direct_OU 3.20) re- placing a by a Σ : s → -a (T -s) -Σ (T -s) Q (T -s) -1 and c by c Σ : s → -c (T -s) + Σ (T -s) Q (T -s) -1 m (T -s).
By Problem 6.1 Section 5 in karatshreve [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF], the function

t → E (ξ t ) (= m (T -t)) (resp. t → Cov (ξ t ) (= Q (T -t))
) solves the first line of ( 

m (T -t) = E (ξ 0 ) - t 0 a (T -s) m (T -s) + c (T -s) ds, (3.26) Id-rev-m Q (T -t) = Cov (ξ 0 ) - t 0 Q (T -s) a (T -s) ⊤ + a (T -s) Q (T -s) ds - t 0 Σ (T -s) ds, (3.27) Id-rev-Q remarking that a Σ (t) m (T -t) + c Σ (t) = -a (T -t) m (T -t) -c (T -t) , Q (T -t) a Σ (t) ⊤ +a Σ (T -t) Q (t) = -Q (T -t) a (T -t) ⊤ -a (T -t) Q (T -t)-2Σ (T -t) .
Applying the change of variable t → Tt in identities ( shows the validity of item 1.

2. Let ξ be the unique solution of (

Rev-SDE 3.19).
Then, the time-reversed process ξ solves ( direct_OU 3.20) and 

ξ T ∼ N (m ν (0) , Q ν (0)), thanks
E ξ t = m ν (t), Cov ξ t = Q ν (t) for all t ∈ [0, T [. This concludes the proof of item 2.
RIOR Remark 3.8.

In

LucasOR [START_REF] Izydorczyk | Fokker-Planck equations with terminal condition and related McKean probabilistic representation[END_REF] we have discussed existence and uniqueness of more general McKean problems involving the densities of the marginal laws instead of expectation and covariance matrix, where the solution is the time-reversal of some (not necessarily Gaussian) diffusion.

In particular, in Section 4.5 of

LucasOR [START_REF] Izydorczyk | Fokker-Planck equations with terminal condition and related McKean probabilistic representation[END_REF] we have investigated existence and uniqueness of

           Y t = Y 0 - t 0 b (T -r, Y r ) dr + t 0 div y (Σ i. (T -r) p r (Y r )) p r (Y r ) i∈[[1,d]] dr + t 0 σ (T -r) dβ r , p t density law of p t = law of Y t , t ∈]0, T[, Y 0 ∼ p T = ν, (3.28) MKIntro
where β is a m-dimensional Brownian motion and Σ = σσ ⊤ , whose solution is the couple (Y, p).

Moreover, when the solution exists, there is a probability-valued function u defined on [0, T ] solution of the Fokker-Planck equation

       ∂ t u = 1 2 d i,j=1 ∂ 2 ij (σσ ⊤ ) i,j (t)u -div b(t, x)u u(T ) = ν.
(3.29) EDPTerm0Bis

3. Suppose that ν is a Gaussian law on R d . It is possible to show that Assumption We continue with a preliminary lemma. Let W be a Brownian motion. For each (s, x) ∈ [0, T ]× R d , X s,x will denote below the process

X s,x t := x + t s σ(r)dW r , t ∈ [s, T ].
t-Lemma Lemma 3.9. Suppose the validity of Assumption

ass_g 2. Let v : [0, T ] × R d → R of class C 0,1 [0, T ], R d , with
polynomial growth and such that the function

H v : (t, x) → H (t, x, v (t, x) , ∇ x v (t, x)) is continuous
with polynomial growth. Then, the following assertions are equivalent.

1. v is a viscosity solution of ( SLPDE 3.18).

For each

(s, x) ∈ [0, T ] × R d , v (s, x) = E T s H (r, X s,x r , v (r, X s,x r ) , ∇ x v (r, X s,x r )) dr + g X s,x T . (3.30) Id-vflow 3. v is of class C 1,2 [0, T [, R d and is a (classical) solution of ( SLPDE 3.18).
Proof. Let v as in the lemma statement.

a) We set

w v (s, x) := E g(X s,x T ) + T s H v (r, X s,x r )dr , (s, x) ∈ [0, T [×R d . (3.31) E310bis We show first that w v is a (classical) solution in C 1,2 [0, T [, R d ∩ C 0 [0, T ] × R d with poly- nomial growth of the linear PDE ∂ t w (t, x) + 1 2 T r[σσ ⊤ (t)∇ 2 x w (t, x)] + H v (t, x) = 0, (t, x) ∈ [0, T [×R d w(T, •) = g. (3.32) lin_heat_PDE
Indeed w v can be rewritten as 1. Suppose the validity of Assumption ass_g 2. Suppose also that H is continuous with polynomial growth in x and linear growth in (y, z). In addition, we suppose that H is Lipschitz in (y, z) uniformly in (t, x) and suppose that for all R > 0, there exists m R : R → R + , tending to 0 at 0 + such that Ishii_uniq [START_REF] Ishii | On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic pde's[END_REF].

w (s, x) = R d g (z) p T (s, z -x) dz + T s R d H v (r, z) p r (s, z -x) dzdr, (s, x) ∈ [0, T [×R d , (3.33) 
[9], that for each r ∈ [0, T ], p r : [0, r[×R d → R is a smooth solution of ∂ t p r (t, z) + 1 2 T r Σ (t) ∇ 2 x p r (t, z) = 0, (t, z) ∈ [0, r[×R d . ( 3 
             ξ t = ξ 0 - t 0 b (T -s, ξ s ) + b c (T -s, ξ s , m ν (T -s) , Q ν (T -s)) ds + t 0 σ (T -s) dβ s , ξ 0 ∼ ν, v t, ξ t = E T t H s, ξ s , v s, ξ s , ∇ x v s, ξ s -b s, ξ s , ∇ x v s, ξ s ds + g ξ T ξ t .
H t, x ′ , y, z -H (t, x, y, z) ≤ m R x ′ -x (1 + |z|) , for all t ∈ [0, T ], z ∈ R d and |x| , |x ′ | , |y| ≤ R.

Proof (of Theorem

SLPDE-Rep

3.10).

Let v as in the statement.

1. Lemma HP_lemma 3.6 implies that there exists an F ξ -Brownian motion W such that, under P,

ξ t = ξ 0 + t 0 b s, ξ s ds + t 0 σ (s) dW s , t ∈ [0, T ], (3.36) OU-xi where ξ 0 ∼ N (m ν (0) , Q ν (0)).
In particular

E sup t∈[0,T ] ξ s p < ∞, ∀p ≥ 1. (3.37) EexpXi
This, together with Assumption ass_g 2 and the polynomial growth of H v also imply that the r.v.

T 0 H s, ξ s , v s, ξ s , ∇ x v s, ξ s -b s, ξ s , ∇ x v s, ξ s ds + g( ξ T )
is square integrable.

2. We give now an equivalent formulation of ( RepFormula 3.35) using a change of probability measure.

We set

L s := σ (s) -1 b s, ξ s , s ∈ [0, T ].
We denote by Q, the probability equivalent to P on

F ξ T defined by dQ dP = E -d i=1 • 0 L i s dW i s T
, being well-defined thanks to Lemma We remark that,

ξ t = ξ 0 + t 0 σ (s) d W s , t ∈ [0, T ], (3. 

39) OU-xiBis

where

W := W + • 0 L s ds, (3.40) ETildeW
which is a Brownian motion under Q thanks to Girsanov's Theorem 5.1 in karatshreve [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF]. By item 1.

T 0 H s, ξ s , v(s, ξ s ), ∇ x v s, ξ s ds + g( ξ T ),
is obviously also square integrable under Q.

We set

H s := H s, ξ s , v s, ξ s , ∇ x v s, ξ s , s ∈ [0, T ],
for the sake of brevity.

We remark first that for each given s ∈ 

[0, T ], b s, ξ s , ∇ x v s, ξ s = σ (s) σ (s) -1 b s, ξ s , ∇ x v s, ξ s = L s , σ (s) ⊤ ∇ x v s, ξ s . ( 3 
v t, ξ t = E T t H s -L s , σ (s) ⊤ ∇ x v s, ξ s ds + g ξ T F ξ t ,
which can be rewritten

v t, ξ t = M t - t 0 H s -L s , σ (s) ⊤ ∇ x v s, ξ s ds,
where M is the P-martingale

M t = E T 0 H s -L s , σ (s) ⊤ ∇ x v s, ξ s ds + g ξ T F ξ t , t ∈ [0, T ]. (3.42) P-mart
Similarly, (

RepFormulaBis 3.38) is equivalent to v t, ξ t = Mt - t 0 H s ds,
where M is the Q-martingale

Mt = E Q T 0 H s ds + g ξ T F ξ t , t ∈ [0, T ]. (3.43) Q-mart
To show the aforementioned equivalence, it suffices now to show

Mt -M t = t 0 L s , σ (s) ⊤ ∇ x v s, ξ s ds, t ∈ [0, T ].
On the one hand, Theorem 1.7 Chapter 8 in RevuzYorBook [START_REF] Revuz | of Grundlehren der Mathematischen Wissenschaften[END_REF] implies that the process

M := M + d i=1 [M, • 0 L i s dW i s ] is a Q-local martingale.
On the other hand, for each i ∈ [ [1, d]] by Proposition 3.10 in gr [START_REF] Gozzi | Weak Dirichlet processes with a stochastic control perspective[END_REF] we have

[M, • 0 L i s dW i s ] = [v •, ξ , • 0 L i s dW i s ] = • 0 L i s σ (s) ⊤ ∇ x v s, ξ s i ds, combining ( Q-mart
3.43) with the usual properties of covariation for semimartingales. This means that

M = M + • 0 L s , σ (s) ⊤ ∇ x v s, ξ s ds is a Q-local martingale. Now, M T = M T + T 0 L s , σ (s) ⊤ ∇ x v s, ξ s ds = T 0 H s ds + g ξ T ,
thanks to ( P-mart 3.42). Since M and M are Q-local martingales being equal at t = T , we have M = M . This shows the validity of point 2.

For each

(s, x) ∈ [0, T ] × R d , we set X s,x := x + • s σ (r) d W r
where W is the Q-Brownian motion defined in ( ETildeW 3.40). Associated with v, we consider the continuous function

w v (t, x) := E Q T t H r, X t,x r , v r, X t,x r , ∇ x v r, X t,x r dr + g X t,x T , (t, x) ∈ [0, T ]×R d .
We observe that v fulfills ( RepFormulaBis 3.38) if and only if for all (t, x)

∈ [0, T ] × R d v(t, x) = w v (t, x) . (3.44) E436
Indeed this follows by the freezing lemma of the conditional expectation, the fact that ξ t is independent of the random field X 3.9 applied under the probability Q, in particular to the equivalence between item 1. and item 3.

Representation of stochastic control problems section

Let us briefly recall the link between stochastic control and non-linear PDEs given by the Hamilton-Jacobi-Bellman (HJB) equation. We refer for instance to gozzibook, Pham09, touzibook [START_REF] Fabbri | Stochastic optimal control in infinite dimension[END_REF][START_REF] Pham | Continuous-time stochastic control and optimization with financial applications[END_REF][START_REF] Touzi | Optimal stochastic control, stochastic target problems, and backward SDE[END_REF] for more details.

Let A ⊂ R k compact and denote by A 0 the set of all A-valued progressively measurable processes

(α t ) t∈[0,T ] ,
namely the set of admissible controls.

We consider now state processes (X s,x,α t ) s≤t≤T,α∈A 0 starting at time s ∈ [0, T ] with value x ∈ R d , solutions of the controlled SDE We also introduce the cost function

dX t = b (t, X t , α t ) dt + σ (t) dW t , ( 4 
|b (t, x 2 , a) -b (t, x 1 , a)| ≤ K |x 2 -x 1 | , (t, x 1 , x 2 , a) ∈ [0, T ] × R d × R d × A.

Note that Assumption

J : [0, T ] × R d × A 0 → R defined by J(s, x, α) := E g(X s,x,α T ) + T s f r, X s,x,α r , α r dr , (s, x, α) ∈ [0, T ] × R d × A 0 , (4.2) cost_function
where the function f :

[0, T ] × R d × A → R (running cost) is supposed to fulfill what follows.
sts_ass Assumption 4. The function f is continuous and there exists m, M ≥ 0 such that

|f (t, x, a)| ≤ M (1 + |x| m ) , (t, x, a) ∈ [0, T ] × R d × A.
Supposing the validity of Assumptions 2. The value function v is a viscosity solution of the Hamilton-Jacobi-Bellman equation

∂ t v(t, x) + H(t, x, ∇ x v(t, x)) + 1 2 T r[σσ ⊤ (t)∇ 2 x v(t, x)] = 0, (t, x) ∈ [0, T [×R d v(T, •) = g, (4.4 

) eq:HJB

where H denotes the real-valued function defined on In that context, the value function v is in particular absolutely continuous and for every t ∈ [0, T ],

[0, T ] × R d × R d by H(t, x, δ) := inf a∈A {f (t, x, a) + b(t, x, a), δ } , (t, x, δ) ∈ [0, T ] × R d × R d , (4.5 
for almost every x ∈ R d , v (t, •) is differentiable and ∇ x v(t, •) exists.
2. Suppose in addition that the functions f , g and b are of class C 1 (in the space variable) and the validity of Assumption markov_optimal_control 6. Then ∇ x v(t, •) has polynomial growth as we show below. Indeed, by usual dominated convergence arguments, we can show that for each

(t, α) ∈ [0, T ] × A 0 , x → J (t, x, α)
is differentiable with gradient

∇ x J (t, x, α) = E Y t,x,α T ∇ x g X t,x,α T + T t Y t,x,α r ∇ x f r, X t,x,α r , α r dr , (4.6) obj_func_grad 
where Y t,x,α is the unique matrix-valued process fulfilling

Y t,x,α r = I d + r t ∇ x b s, X t,x,α s , α s Y t,x,α s ds, r ∈ [t, T ],
where

∇ x b := ∂ x j b i (i,j)∈[[1,d]] 2 .
Combining what precedes with Lemma env_thm 7.3 stated in the Appendix, we deduce that for all t ∈ [0, T ], Proof. We recall that H v has polynomial growth by Remark We introduce a supplementary hypothesis on the value function v.

for almost every x ∈ R d ∇ x v (t, x) = ∇ x J (t, x, α * (t, x)) , (4.7) 
control Assumption 6. There exists a Borel function α

* : [0, T ] × R d → A such that H (t, x, ∇ x v (t, x)) = b (t, x, α * (t, x)) , ∇ x v (t, x) + f (t, x, α * (t, x)) , (t, x) ∈ [0, T ] × R d .
We 

4.3)

supposed to be of class C 0,1 such that (t, x) → H (t, x, ∇ x v (t, x)) has polynomial growth.

Then, the Borel function α * introduced in Assumption markov_optimal_control 6 defines an optimal feedback function for the considered control problem in the sense that for each 

x ∈ R d , v (0, x) = J 0, x, α * •, Xx . ( 4 
v (0, x) = v T 0 , Xx T 0 + T 0 0 f r, Xx r , α * r, Xx r dr -M T 0 , (4.10) Eq_T0
where 

M t = t 0 ∇ x v r, Xx r ⊤ σ (r) dW r , t ∈ [0, T [.
             ξ t = ξ 0 - t 0 b (T -s, ξ s ) + b c (T -s, ξ s , m ν (T -s) , Q ν (T -s)) ds + t 0 σ (T -s) dβ s , ξ 0 ∼ ν, v t, ξ t = E T t f s, ξ s , α * s, ξ s -b s, ξ s -b * s, ξ s , ∇ x v s, ξ s ds + g ξ T ξ t ,

A heuristic algorithm

S5

In this section, we propose a heuristic algorithm to solve the control problem described in Section 

[[0, n]]. For k = n -1, n -2, • • • , 0, select arbitrarily mk+1 , c k+1 ∈ R d and Qk+1 ∈ S + d (R), a k+1 ∈ M d (R) such that Q k (t k ) := e -a k+1 δt
Qk+1 e -a ⊤ k+1 δt - 

t k+1 t k e -a k+1 (s-t k ) Σ (s) e -a ⊤ k+1 (s-t k ) ds ∈ S + d (R
                                                 ξk+1 ∼ N ( mk+1 , Qk+1 ) Y k+1 = v(t k+1 , ξk+1 ) m k (t) = e -a k+1 (t k+1 -t) mk+1 - t k+1 t e -a k+1 (s-t) ds c k+1 Q k (t) = e -a k+1 (t k+1 -t) Qk+1 e -a ⊤ k+1 (t k+1 -t) - t k+1 t e -a k+1 (s-t) Σ (s) e -a ⊤ k+1 (s-t) ds ξ k,T -t = ξk+1 - T -t t n-(k+1) a k+1 ξ k,s + c k+1 + b c (T -s, ξ k,s , m k (T -s), Q k (T -s)) ds + T -t t n-(k+1) σ(T -s)dβ s ξk,t = ξ k,T -t v(t, ξk,t ) = E t k+1 t F k s, ξk,s , ∇ x v(s, ξk,s ) ds + Y k+1 ξk,t .
(5.1) eq:discrete

In the above recursion, 

β
F k defined on [t k , t k+1 ] × R d × R d is such that, F k (t, x, δ) := H(t, x, δ) -a k+1 x + c k+1 , δ = min a∈A {f (t, x, a) + b(t, x, a), δ } -a k+1 x + c k+1 , δ .
(5.2) eq:Fk

The idea now is to apply a classical numerical method based on linear regressions to approximate the solution to ( eq:discrete 

Q k = e -a k+1 δt Qk+1 e -a ⊤ k+1 δt -Σ(t k+1 )δt ∈ S + d (R) .
(5.3) eq:Q

Then we propose to approximate v(t k , •) by v k obtained by an explicit time discretization scheme of ( eq:discrete 5.1) with time step δt = T n as follows.

           ξk+1 ∼ N ( mk+1 , Qk+1 ) Y k+1 = v k+1 ( ξk+1 ) ξ k = ξk+1 -a k+1 ξk+1 + c k+1 + b c (t k+1 , ξk+1 , mk+1 , Qk+1 ) δt + σ(t k+1 ) √ δtε k v k (ξ k ) = E F k t k+1 , ξk+1 , ∇ x v k+1 ( ξk+1 ) δt + Y k+1 ξ k ,
(5.4) eq:discreteb where (ε k ) 0≤k≤n-1 are i.i.d. d-dimensional standard Gaussian variables. As in the classical literature, see e.g.

GobetWarin [START_REF] Gobet | A regression-based Monte Carlo method to solve backward stochastic differential equations[END_REF], we propose to approximate the conditional expectation appearing in ( eq:discreteb

5.4) using

Monte-Carlo least squares regression based on a grid constituted by N independent simulations

(ξ i k , ξi k+1 ) 1≤i≤N for k ∈ [[0, n -1]].
In that literature, one generally simulates forwardly that grid. The interest of such fully backward representations ( eq:discrete

5.1)-(

eq:discreteb 5.4), where the grid (ξ i k , ξi k+1 ) 1≤i≤N is defined backwardly in time, (like the value function), is twofold.

• In terms of computer memory: at each time instant k + 1, the values of the grid are generated on the fly, (ξ i k , ξi k+1 ) 1≤i≤N . Contrary to the standard approach, there is no need to store the whole grid over the whole set of grid instants k ∈ [[0, n -1]].

• In terms of the relevance of the grid: at each grid instant, k + 1 the information acquired on the value function v(t k+1 , •) and optimal control strategy α * (t k+1 , •) can be used to adaptively optimize the grid parameter (a k+1 , c k+1 , mk+1 , Qk+1 ) in order to explore relevant regions of the state space.

We develop some arguments to justify the relevance mentioned above. Indeed, as already announced, the target idea is to generate the grid used for regression computations according to the optimally controlled process dynamics. If this were possible, the sensitivity of the driver F k w.r.t. the third variable ∇ x v would vanish. In fact the driver sensitivity w.r.t. ∇ x v is known to be one major cause of the propagation of numerical errors in approximation schemes, see e.g. gobet16 [START_REF] Gobet | Linear regression MDP scheme for discrete backward stochastic differential equations under general conditions[END_REF].

Replacing ∇ x v k+1 ( ξk+1 ) by a perturbation ∇ x v k+1 ( ξk+1 ) + h in the last equation of ( eq:discreteb

5.4) we obtain

v h k (ξ k ) := E F k t k+1 , ξk+1 , ∇ x v k+1 ( ξk+1 ) + h δt + Y k+1 | ξ k .
The impact on v k (ξ k ) can crudely be evaluated by computing the error

E[|v h k (ξ k ) -v k (ξ k )| 2 ]
. Supposing that no perturbation is impacting Y k+1 , fact which will be heuristically justified in Remark rem:step5 5.2 1., we have

E(|v h k (ξ k ) -v k (ξ k )| 2 ) ≤ E F k t k+1 , ξk+1 , ∇ x v k+1 ( ξk+1 ) -F k t k+1 , ξk+1 , ∇ x v k+1 ( ξk+1 ) + h 2 .
Suppose from now on the existence of a Borel function (t, x, δ) → a * (t, x, δ), such that 

H(t, x, δ) := {f (t, x, a * (t, x, δ)) + b(t, x, a * (t, x, δ)), δ } , (t, x, δ) ∈ [0, T ] × R d × R d . (5.5) a * In this case one has α * (t, x) = a * (t, x, ∇ x v(t, x)), (t, x) ∈ [0, T ] × R d × R d ,
F k (t, x, δ) := H(t, x, δ)-a k+1 x+c k+1 , δ = {f (t, x, a * (t, x, δ)) + b(t, x, a * (t, x, δ)), δ }-a k+1 x+c k+1 , δ .
(5.6) eq:FkBis A suitable application of the envelope theorem gives

∂F k ∂δ (t, x, δ) = b(t, x, a * (t, x, δ)) -(a k+1 x + c k+1 ) , (5.7 
) eq:partialF which yields

E |v h k (ξ k ) -v k (ξ k )| 2 ≤ E 1 0 ∂F k ∂δ (t k+1 , ξk+1 , ∇ x v k+1 ( ξk+1 ) + θh)dθ , h 2 = E 1 0 b t k+1 , ξk+1 , a * (t k+1 , ξk+1 , ∇ x v k+1 ( ξk+1 ) + θh) dθ -(a k+1 ξk+1 + c k+1 ) , h 2 ≤ |h| 2 E 1 0 b t k+1 , ξk+1 , a * (t k+1 , ξk+1 , ∇ x v k+1 ( ξk+1 ) + θh) dθ -(a k+1 ξk+1 + c k+1 ) 2 .
The above relation highlights the fact that the original idea consisting in generating the grid according to a dynamics approaching the optimally controlled process dynamics reduces the propagation of the error induced by the Monte-Carlo regression scheme in terms of least square criteria.

RFBSDEs Remark 5.1. The above relation also shows that previous idea can be read in the more general perspective of the probabilistic representation of a solution v to a semilinear PDE of the type ( eq:PDE_Intro 1.1), via an FBSDE. In that general context, one expects the selected drift of the forward process in the FBSDE to reduce the impact of the sensitivity of the FBSDE driver with respect to ∇ x v.

Based on that observation, we propose a heuristic algorithm where parameters (a k+1 , c k+1 ) are adaptively chosen as

(a k+1 , c k+1 ) ∈ arg min a,c E b t k+1 , ξk+1 , a * (t k+1 , ξk+1 , ∇ x v k+1 ( ξk+1 ) -(a ξk+1 + c) 2 .
(5.8) eq:ac

In the above algorithm, the random variables

(ε i k , k ∈ [[0, n -1]] , i ∈ [[1, N ]]) are i.i.d. according to N (0, I d ); P roj S + d (R) : S d (R) → S + d (R)
denotes the Frobenius projection operator on the closed and convex space of semidefinite matrices; for each p ∈ N, P p R d denotes the set of polynomial functions on R d with degree p. m:step5 Remark 5.2.

1. Note that in Step 4, as soon as

Q k ∈ S + d (R) then (Y i k+1 )
1≤i≤N results from the update made at previous iteration at Step 8. That updating rule corresponds to the multi-step forward dynamic programming approach gobet16 [START_REF] Gobet | Linear regression MDP scheme for discrete backward stochastic differential equations under general conditions[END_REF] which is well-known for not inducing any additional bias error that would propagate backwardly during iterations. However, when

Q k / ∈ S + d (R), in
Step 4, then we have to modify Qk+1 , re-generate new variables (ξ i k+1 ) 1≤i≤N i.i.d. ∼ N ( mk+1 , Qk+1 ) and use the update Y i k+1 = v k+1 (ξ i k+1 ) which adds a bias error. Fortunately, in our numerical simulations it appeared easy to chose a first covariance matrix Qn so that for all k ∈ [[0, n -1]] we had Q k ∈ S + d . In that situation, the error propagation is only due to the sensitivity of the driver w.r.t. ∇ x v which is precisely minimized by our heuristics. 3. In terms of memory, as already mentioned, we do not have to store the whole regression grid on the whole time horizon constituted of ndN reals but only to consider dN reals at each instant.

The complexity of Algorithm

Algorithm 1 Fully Backward Monte-Carlo Regression scheme

Initialization Set v n = g; k = n -1; select arbitrarily ( mn , Qn ) ∈ R d × S + d (R); generate (ξ i n ) 1≤i≤N i.i.d. ∼ N ( mn , Qn ); set Y i n = g(ξ i n ), for all i ∈ [[1, N ]]. while k ≥ 0 do 1. α i k+1 = arg min a∈A f t k+1 , ξ i k+1 , a + b t k , ξ i k+1 , a , ∇ x v k+1 ξ i k+1 , for all i ∈ [[1, N ]]. 2. (a k+1 , c k+1 ) = arg min (a,c)∈M d (R)×R d 1 N N i=1 aξ i k+1 + c -b t k+1 , ξ i k+1 , α i k+1 2 .
3. mk = e -a k+1 δt mk+1c k+1 δt.

4. Q k = e -a k+1 δt Qk+1 e -a ⊤ k+1 δt -Σ (t k+1 ) δt. • If Q k ∈ S + d (R): set Qk = Q k , • Else : set Qk = P roj S + d (R) (Q k ); recompute Qk+1 = e a k+1 δt Qk + Σ(t k+1 )δt e a ⊤ k+1 δt ; regenerate (ξ i k+1 ) 1≤i≤N i.i.d. ∼ N ( mk+1 , Qk+1 ); set Y i k+1 = v k+1 (ξ i k+1 ), for all i ∈ [[1, N ]].

Set e

i k+1 = a k+1 ξ i k+1 + c k+1 -b t k+1 , ξ i k+1 , α i k+1 , for all i ∈ [[1, N ]]. 6. ξ i k = ξ i k+1 -a k+1 ξ i k+1 + c k+1 + b c t k+1 , ξ i k+1 , mk+1 , Qk+1 δt + σ (t k+1 ) ε i k √ δt, for all i ∈ [[1, N ]] 7. v k = arg min P ∈Pp(R d ) 1 N N i=1 Y i k+1 + f t k+1 , ξ i k+1 , α i k+1 -e i k+1 , ∇ x v k+1 ξ i k+1 δt -P ξ i k 2 .
8. 6 Stochastic control of thermostatically controlled loads example

Y i k = Y i k+1 + f t k+1 , ξ i k+1 , α i k+1 -e i k+1 , ∇ x v k+1 ξ i k+1 δt, for all i ∈ [[1, N ]] 9. k -1 ← k.

Model description

With the massive integration of variable renewable energies (like wind farms or solar panels) into power systems, balancing supply and demand in a real time basis requires to develop new leverages. A technical solution is to develop load control schemes in order to automatically adapt consumption to generation. In this section, we propose to apply Algorithm algo 1 in order to control a large heterogeneous population of air-conditioners on a time horizon [0, T ] such that the overall consumption of the population follows a given target profile, while preserving the rooms temperatures within users comfort bounds.

We consider a hierarchical control scheme introduced in callaway [START_REF] Callaway | Achieving controllability of electric loads[END_REF], where the population is aggregated into d clusters of N i homogeneous loads (with same air-conditioners and rooms characteristics)

for i∈ [ [1, d]]. For each cluster i ∈ [ [1, d]], a local controller decides at each time step to turn ON or OFF optimally some air-conditioners of cluster i, in order to satisfy a prescribed proportion of devices with status ON in the cluster. The prescribed proportion of devices ON in each cluster, at each time step, is computed by a central controller controlling the average rooms temperatures in each cluster,

X i := 1 N i N i j=1 X i,j
, where X i,j t is the room temperature associated to load j ∈ [[1, N i ]] of cluster i ∈ [ [1, d]]. (X i,j t ) 0≤t≤T is supposed to follow the usual thermal dynamics (see grangereau, seguret [START_REF] Gobet | Federated stochastic control of numerous heterogeneous energy storage systems[END_REF][START_REF] Seguret | Decomposition of high dimensional aggregative stochastic control problems[END_REF] and references therein)

X i,j t = x i,j 0 + t 0 -θ i (X i,j s -x i out ) -κ i P i max α i,j s ds + σ i,j W i,j t , t ∈ [0, T ], (6.1) controlStatei 
where for any j ∈ [[1, N i ], σ i,j > 0, W i,j ) are independent real Brownian motions representing model errors and temperature fluctuations inside the room due to local behavior (window, door opening etc.); x i,j 0 is the initial temperature; κ i is the heat exchange parameter; x i out denotes the outdoor air temperature; 1/θ i > 0 is the thermal time constant; P i max > 0 denotes the maximal power consumption; α i,j s ∈ {0, 1} is the status OFF or ON of load (i, j) at time instant s ∈ [0, T ]. We are interested in the problem of the central controller who considers the aggregated state process X := (X i ) 1≤i≤d , whose dynamics is obtained by averaging dynamics

( controlStateij 6.1) over j ∈ [[1, N i ]], for any i ∈ [[1, d]], X i t = x i 0 + t 0 -θ i (X i s -x i out ) -κ i P i max α i s ds + σ i W i t , t ∈ [0, T ], (6.2) controlState
where the control process α s = (α i s ) 1≤i≤d , s ∈ [0, T ] taking values in [0, 1] prescribes the proportions of devices ON in each cluster; • the running cost defined on

x i 0 = 1 N i N i j=1 x i,j 0 ; (σ i ) 2 = 1 N 2 i N i j=1 (σ i,j ) 2 ; (W i ) 1≤i≤d is a d-dimensional
[0, T ] × R d × [0, 1] d , f (t, x, a) := λ d i=1 ρ i a i -r t 2 + 1 d d i=1 γ i (ρ i a i ) 2 + η i (x i -x i max ) 2 + + η i (x i min -x i ) 2 + ,
where ρ i :=

N i P i max d j=1 N j P j max ; d
i=1 ρ i a i gives the overall current consumption of the population as a proportion of the maximum consumption d j=1 N j P j max ; r : [0, T ] → R + * denotes the target consumption profile for the overall consumption as a proportion of the maximum consumption d j=1 N j P j max ; λ > 0 quantifies the incentive for the overall consumption to track the target consumption profile r; γ i > 0 quantifies the quadratic penalty favoring smooth consumption profiles for cluster i; η i > 0 is a parameter penalizing excursions outside of the comfort interval [x i min , x i max ] for cluster i average temperature. 

Note that b verifies Assumption

Simulation results

S62

Consider the central controller problem on a time horizon T = 3600s, with a population of heterogeneous air-conditioners composed of d = 1, 2, 5, 10, 15, 20 clusters with N i = 20 identical loads in each cluster. We specify the chosen parameters. In each case, κ = 2.5 • C/J and σ

i = 0.1 • Cs 1 2 ; x out = 27 • C; θ i [s -1 ] is chosen arbitrarily in [0.1, 0.97]; P i max [W ] is chosen arbitrarily in [0.5, 5]; x 0 = x[ • C] is chosen arbitrarily in [16, 27]; x min = x-1.5 • C; x max = x + 1.5 • C; η = 1( • C) -2 ; λ = 20;
γ i is chosen arbitrarily in [0.5, 1.5]. The target profile, r, used in simulations is obtained as the sum of a nominal profile corresponding to the standard (uncontrolled) behavior of air-conditioners and a deviation: r = r nom + dev. The standard dynamics of an (uncontrolled) air-conditioner is driven by a cycling rule of ON/OFF decisions intended to keep the room temperature in [x i min , x i max ]. When the air-conditioner is ON, it stays ON at P i max until the temperature reaches x i min then it switches OFF until the temperature reaches x i max . Then, the air-conditioner turns ON again and begins a new cycle. The nominal profile r nom has been generated by averaging the consumption of 1000 sets of d clusters of N i heterogeneous air-conditioners simulated independently according to ( controlStateij 6.1), with (α i,j t ) 0≤t≤T following the cycling rule of ON/OFF decisions and with independent initial conditions for temperature x i,j 0 ∼ N (x i 0 , 1) and ON/OFF status α i,j 0 ∈ {0, 1}. The deviation profile dev t = 20 100 * sin( 2πt T ) induces a maximal deviation of 20% from the nominal profile and integrates to zero on the time horizon [0, T ] so that the target profile corresponds to the same energy consumed on the period [0, T ] as the nominal profile.

The time step is δt = 60s. We have implemented Algorithm 1 with a backward grid initiated with N (m n = x, Q n = I d ). For comparison, we have also implemented the standard Monte-Carlo regression scheme using a forward grid simulated according to ( controlState 6.2) with a deterministic control α s approximating the nominal dynamics (according to the ON/OFF cycling rule) described previously. In both cases, we have used second order polynomials (p = 2) as basis functions for regressions. We have considered N = 10 2 , 10 3 , 5 × 10 3 , 10 4 , 2 × 10 4 , 5 × 10 4 , 10 5 Monte-Carlo paths for the regression grids. To evaluate the statistical performances of the forward and backward grids, we have implemented each algorithm independently N grid = 100 times for each value of N . For each run, i = 1, • • • , N grid , the value functions estimate (v i k ) 0≤k≤n (and the corresponding gradients) was used to implement the associated strategy

α i = (α i k ) 0≤k≤n on M = 1000 i.i.d. simulations of the Brownian motion W , ω 1 , • • • , ω j , • • • , ω M . Then the result- ing cost J (α i , ω j ) := g(X 0,x 0 ,α i T (ω j )) + T 0 f (r, X 0,x 0 ,α i r (ω j ), α r )dr has been computed. The ex- pected cost has been estimated as E[J (α i , ω j )] ≈ Ĵ := 1 M N grid N grid i=1 M j=1 J (α i , ω j ) . The vari- ance of Ĵ is estimated by σ2
Ĵ obtained by replacing, expectations and variances by their empirical approximation based on the sample, 2) the empirical mean Ĵ and within parenthesis the empirical standard deviation σ Ĵ obtained for each considered pair (d, N ) for the forward grid (resp.

J (α i , ω j ), , i ∈ [[1, N grid ]] j ∈ [[1, M ]] , in the expression σ2 Ĵ ≈ V ar( Ĵ) = 1 M N grid E V ar J (α i , ω j ) |α i + 1 N grid V ar E J (α i , ω j ) |α i ,

backward grid).

One can observe that the backward grid performs surprisingly well providing with high precision the lowest expected cost achieved by both methods (or almost) with only N = 5 × 10 3 paths whatever the dimension d of the control problem. This is consistent with our intuition based on the idea that localizing the grid around the optimally controlled process paths would bring efficiency and reduce the impact of dimension. The particularity of this problem is that the optimally controlled process is naturally localized in a small region of the state space because, on the one hand a target value, x, is prescribed for the terminal temperatures (by the terminal cost) and on the other hand a target profile is assigned for the overall power consumption. The backward grid has the advantage of being initiated around the target state and of following dynamics approaching the optimal strategy. This allows to concentrate the backward grid in the small region of interest so that restricting the regression basis to polynomials of order p = 2 seems already enough to obtain reasonable results. However, one can observe some cases where the forward grid (for N = 10 5 and d ≤ 5) has performed slightly better than the backward grid. This can be interpreted by the fact that the forward grid knows the initial condition x 0 while the backward grid has no information about it. To further improve the performances Algorithm algo 1, an idea would be to find a way to exploit that information on the initial condition. This could constitute the subject of future research. 7.61(3e -4 ) 7.77(2e -4 ) 7.39(1e -3 ) 6.18(3e -3 ) 8.19(6e -3 ) 7.87(1e -2 ) 5 × 10 3 7.61(3e -4 ) 7.77(2e -4 ) 7.38(8e -4 ) 6.17(1e -3 ) 8.15(2e -3 ) 7.74(3e -3 ) 10 4 7.61(3e -4 ) 7.77(2e -4 ) 7.38(5e -4 ) 6.17(1e -3 ) 8.15(2e -3 ) 7.73(3e -3 ) 2 × 10 4 7.61(3e -4 ) 7.77(2e -4 ) 7.38(3e -4 ) 6.17(8e -4 ) 8.15(1e -3 ) 7.73(2e -3 ) 5 × 10 4 7.60(3e -4 ) 7.79(1e -4 ) 7.38(2e -4 ) 6.16(5e -4 ) 8.14(8e -4 ) 7.72(1e -3 ) 10 5 7.61(3e -4 ) 7.79(1e -4 ) 7.39(2e -4 ) 6.16(4e -4 ) 8.14(7e -4 ) 7.72(9e -4 ) Table 2: Mean Ĵ (standard deviation, σ Ĵ ) of the simulated cost with the backward grid strategy Proof. Following Corollary 5.14 in karatshreve [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF], it is sufficient to find a constant time step subdivision Cov (X 0 )).

N

(
Taking into account the fact that m X is bounded (since continuous), it suffices to find a subdivision such that

E exp 1 2 Kδ |Z| 2 < ∞,
where Z ∼ N (0, I d ) and

K := 4 σ -1 2 ∞ ||a|| 2 ∞ Q X ∞ > 0.
This is the case in particular if Kδ < 1, which ends the proof. together with Gronwall's lemma. In view of ( interm-ineg 7.4), the point is proved if 1 0 E ∇ x g aX t,x,α T + (1a) X t,y,α T da is bounded uniformly in t, x, y, α. This follows from polynomial growth of ∇ x g, classical moment estimates for sup s∈[t,T ] X t,z,α s , z ∈ R d (see for example Corollary 2.5.12 in krylov [START_REF] Krylov | of Stochastic Modelling and Applied Probability[END_REF]) and the fact x, y lie in a compact set. such that for all λ ∈ Λ, F (•, λ) and V : x → sup λ∈Λ F (x, λ) are differentiable at the point x. Suppose also that Λ * (x) = {λ ∈ Λ, V (x) = F (x, λ)} is not empty. Then,

∇ x V (x) = ∇ x F (x, λ * x ) ,
for every λ * x ∈ Λ * (x).

Proof. Let x as in the proposition statement and h ∈ R d . Let λ * x ∈ Λ * (x). Then, using in particular the differentiability of F (•, λ *

x ) at the point x, we get

V (x + h) -V (x) ≥ F (x + h, λ * x ) -F (x, λ * x ) = ∇ x F (x, λ *
x ) , h + o 0 (|h|). 

∇ x V (x) -∇ x F (x, λ * x ) , h |h| -→ h→0 0,
which forces ∇ x V (x) = ∇ x F (x, λ * x ). This ends the proof.

ForwE 1 . 2 )

 12 in space and time on [0, T ], (by Monte-Carlo simulations or Quantization, etc.

ForwE 1 . 2 )

 12 starting from the distribution of X T . More specifically, to take advantage of the Ornstein-Uhlenbeck setting, we choose the drift b to be affine w.r.t. the space variable. We fix a Gaussian distribution ν and look for solutions ξ of the McKean SDE

3 ForwE 1 . 2 )

 312 assumption depends on the covariance matrix of ν, the drift b and the volatility σ. Indeed, one important limitation is that the covariance matrix should be chosen carefully to ensure that the process is well-defined until T . Point 2. of PropositionMcKeanthat the time-reversal process ξ, i.e. ξt := ξ T -t , is an Ornstein-Uhlenbeck process solution of ( such that the law of X 0 is Gaussian with mean m(0) and covariance Q(0). This leads to the first result of this paper which consists of the fully backward representation stated in Theorem SLPDE-Rep 3.10. The proof is based on Feynman-Kac type formula instead of BSDEs and it does not require explicitly the uniqueness of viscosity solution of the PDE ( eq:PDE_Intro 1.1). The second contribution of the paper is Corollary RepFormulaControl 4.4 which is the "instantiation" of Theorem SLPDE-Rep 3.10 in the framework of stochastic control,i.e. the representation of its value function (solution of a Hamilton-Jacobi-Bellman equation). This holds when the running and terminal cost have polynomial growth with respect to the state space variable. We also suppose that the value function is of class C 0,1 whose gradient has polynomial growth. In particular, we derive in Corollary HJB_corro 4.6, a representation involving the gap between the optimally controlled drift and the instrumental drift b. In Section S5 5, we present a fully backward Monte-Carlo regression scheme, where the instrumental drift is adaptively updated in order to mimic the optimally controlled dynamics, see Algorithm algo 1.

  Let us fix T > 0, d, k ∈ N * . For a given p ∈ N * , [[1, p]] denotes the set of all integers between 1 and p included. •, • denotes the usual scalar product on R d and |•| the associated norm. Elements of R d are supposed to be column vectors. M d (R) stands for the set of d × d matrices, S d (R) for the subset of symmetric matrices, S + d (R) the subset of symmetric positive semi-definite matrices (in particular with non-negative eigenvalues) and S ++ d (R) for the subset of strictly pos-itive definite symmetric matrices. For a given A ∈ M d (R), A ⊤ will denote its transpose, T r (A) its trace, Sp (A) its spectrum, i.e. the set of its eigenvalues, e A := ∞ k=0 A k k! its exponential and ||A|| := sup x∈R d ,|x|=1 |Ax|. For a given A

  denotes the set of real-valued functions defined on [0, T ] × R d being continuously differentiable in time and twice continuously differentiable in space (resp. continuous in time and continuously differentiable in space). C 0 [0, T ] × R d (resp C 1 R d ) denotes the set of continuous (resp continuously differentiable) real-valued functions defined on [0, T ] × R d (resp. R d ). ∇ x will denote the gradient operator and ∇ 2x the Hessian matrix. For each p ∈ N, P p R d denotes the set of polynomial functions on R d with degree p.

R41 3 . 1 .

 31 Let H : [0, T ]×R d ×R×R d → R and g : R d → R. The goal of this subsection is to provide a probabilistic representation of viscosity solutions, being continuous in time and continuously differentiable in space, of the semilinear PDE

Q_explicit 3 . 4 )

 34 and suppose that ν fulfills Assumption ass_nu 1.

finiteMeanBis 3 .

 3 24) which implies ( finiteMean 3.23); consequently the solution X of ( Rev-SDE 3.19) prolongates to t = T and item 2. is proved.

S5 5 , 1 . 7 )

 517 it is interesting to note that the process ξ introduced in ( Rev-SDE3.19) can also be seen as the solution of a McKean SDE. Propoadmits existence and uniqueness if and only if Assumptionass_nu 1 is

  ass_nu

ODE_m 3 . 1 )

 31 (resp. ( ODE_Q 3.2)) replacing a by a Σ and c by c Σ . Then, the following identities hold for all t ∈]0, T ]:

Id-rev-m 3 .3. 1 .

 31 26) and ( Id-rev-Q 3.27), we show that m (resp. Q) solves the backward ODE ( ODE_m 3.1) (resp. ( ODE_Q 3.2)), which is well-posed. We recall that ξ 0 is distributed according to ν. Then, m = m ν and Q = Q ν , see the beginning of Section R41 As a consequence, ξ solves (

ass_nu 1

 1 is equivalent to the existence of a probability-valued solution u of ( EDPTerm0Bis 3.29). In this case the McKean problems ( Rev-SDEIntro 1.7) and ( MKIntro 3.28) are equivalent. In particular the component Y of the solution of ( MKIntro 3.28) is Gaussian.

  E310where for each r ∈ [0, T ], s ∈ [0, r[, p r (s, •) is the density of the r.v. r s σ(u)dW u , i.e. a Gaussian r.v. with mean zero and covariance r s Σ (u) du. Moreover, it is well-known, see e.g. Remark 3.2 in DGRClassical

( 3 .

 3 35) RepFormula PDE-Rep Remark 3.11. The affine drift b remains a degree of freedom of the representation. In Section S5 5, in the framework of the Hamilton-Jacobi-Bellman PDEs are given elements to choose rationally b. sco_rem Remark 3.12. We remark that previous representation ( RepFormula 3.35) is valid even if uniqueness does not hold for the semilinear PDE ( SLPDE 3.18). In that case even the equation ( RepFormula 3.35) does not admit uniqueness. However, we provide below some typical situations for which ( SLPDE 3.18) admits at most one viscosity solution, within different classes of solutions.

ift_ass Assumption 3 .

 3 .1) controlled_SD where W is a d-dimensional Brownian motion and b : [0, T ] × R d × A → R d is supposed to fulfill the following. The function b is continuous and there exists K ≥ 0 such that

control_drift_ass 3 implies

 3 b to have linear growth in space uniformly in time and in the control. Consequently, ( controlled_SDE 4.1) starting at time s with value x admits a unique solution for each α ∈ A 0 , for each (s, x) ∈ [0, T ] × R d , by the same arguments as in Theorem 3.1 in touzibook [37].

RHamilt Remark 4 . 1 . 1 .

 411 function g : R d → R (terminal cost), we are interested in minimizing, over control processes α ∈ A 0 the functions α → J (0, x, α) for every x ∈ R d .To tackle this finite horizon stochastic control problem, the usual approach consists in introducing the associated value (or Bellman)function v : [0, T ] × R d → R representing the minimum expected costs, starting from any time t ∈ [0, T ] at any state x ∈ R d , i.e. v(t, x) := inf α∈A 0 J (t, x, α) , (t, x) ∈ [0, T ] × R d . (4.3) eq:prob Note that the terminal condition is known, which fixes v (T, •) = g, whereas v (0, •) corresponds to the solution of the original minimization problem. Suppose the validity of Assumptions ass_g The function v is continuous on [0, T ] × R d and has polynomial growth, see Theorem 5. Chapter 3.

6 .Control Corollary 4 . 4 . 4 .

 6444 val_func_grad where α * is the Borel function introduced in Assumption markov_optimal_control In view of ( obj_func_grad 4.6) and ( val_func_grad 4.7), ∇ x v has polynomial growth. Let ν be a Gaussian probability measure fulfilling Assumption ass_nu 1 with associated functions m ν and Q ν . We suppose the validity of Assumptions ass_g Among the functions v : [0, T ] × R d → R fulfilling Assumption optimal_control 5, the value function is the unique one which is solution of ( RepFormula 3.35). (In this framework H only depends on ∇ x v and not on v).

  ). On the other hand, if a function v fulfills ( RepFormula 3.35) then, by the converse implication of Theorem SLPDE-Rep 3.10 v is a viscosity solution of ( eq:HJB 4.4). By Remark RHamilt 4.1 3., v can only be the value function.

3 . 4 .

 34 By the usual BDG (Burkholder-Davies-Gundy) and Jensen's arguments, sup t∈[0,T ] | Xx t | has all its moments. So, ( Eq_T0 4.10) implies that the local martingale M extends continuously to a true martingale on [0, T ] still denoted by M verifying sup t∈[0,T ] |M t | ∈ L 1 . Indeed v is continuous on [0, T ] × R d and v (resp. f ) has polynomial growth in space (resp. in the second and third variable). Therefore M is a true martingale. Sending T 0 to T , ( Eq_T0 4.10) holds with T 0 replaced by T and v T 0 , Xx T 0 replaced by g Xx T . Taking the expectation, we obtain v (0, x) = E g Xx T + The process α * t := α * t, Xx t , t ∈ [0, T ], belongs to the set A 0 of admissible controls and X = Xx , is a solution of ( controlled_SDE 4.1). Invoking pathwise uniqueness for ( controlled_SDE 4.1), we obtain X 0,x,α * coincides with Xx . Then, ( a corollary in which is given a representation formula for the value function v involving the optimal feedback function α * . B_corro Corollary 4.6. Let ν be a Gaussian probability measure fulfilling Assumption ass_nu 1 with associated functions m ν and Q ν . We suppose the validity of Assumptions ass_g Among the functions fulfilling Assumptions optimal_control 5 and markov_optimal_control 6, the value function v is the unique one which is solution of

( 4 .

 4 [START_REF] Gobet | Federated stochastic control of numerous heterogeneous energy storage systems[END_REF] RepFormulaHJB for all t ∈ [0, T ].Proof. The result is a direct consequence of CorollaryRepFormulaControl 4.4, replacing the function H by its expression given in Assumption markov_optimal_control 6.

control_problem_section 4 .

 4 In what follows, the terminal cost function g is supposed to belong to C 1 R d .Consider a regular time grid with time step δt := T n and grid instants t k = kδt for any k ∈

5. 1 )

 1 recursively in time from k = n -1 to k = 0. For each time instant k, select arbitrarily mk+1 , c k+1 ∈ R d and Qk+1 ∈ S + d (R), a k+1 ∈ M d (R) such that

algo 1 ,

 1 is comparable to the traditional Monte-Carlo Regression scheme using a forward grid. Indeed, Algorithm algo 1 requires an additional linear regression calculation of order O(d 2 N ) at Step 2 which is negligible w.r.t. the polynomial regression computations at Step 7 (operated by both algorithms) inducing O(d 4 N ) operations in the specific case considered in simulations where the maximum degree of polynomials is p = 2. When Q k / ∈ S + d , Algorithm algo 1 requires in addition, at Step 4, to implement: a Frobenius projection P roj S + d (R) (Q k ) (O(d 3 )), N multiplications of matrices d × d with vectors d × 1 (O(d 2 N )); and N independent generations of d-dimensional Gaussian random variables. These additional operations induce a complexity of O(d 2 N ) which does not increase the original O(d 4 N ) complexity.

end while algo Remark 5 . 3 .

 53 Suppose that at each time step k ∈ [[0, n -1]] the matrix Q k belongs to S + d (R). Then, Algorithm algo 1 is based on the representation formula appearing in Corollary HJB_corro 4.6, on the whole time interval [0, T ] with piecewise constant coefficients a, c such that a(t), c(t) = a k+1 , c k+1 for each t ∈]t k , t k+1 ], for each k ∈ [[0, n -1]].

2 )

 2 Brownian motion.The central controller problem can be formulated as a specific instantiation of problem ( with the following:• the controlled process X driven by a drift coefficient b := (b i ) 1≤i≤d defined on [0, T ] × R d × [0, 1] d s.t. for any i ∈ [[1, d]] b i (t, x, a) = -θ i x ix i outκ i P i max a i ,with the notation a := (a i ) 1≤i≤d and x := (x i ) 1≤i≤d ; • the terminal cost g(x) := 1 d d i=1 |x ixi | 2 where x ∈ R d denotes given target values for the final average temperatures of each cluster;

7 . 1 A sufficient condition to obtain an equivalent probability anov_OU Lemma 7 . 1 . 0 b 0 σ 0 |L s | 2

 71710002 We recall that b was defined in ( E42 3.17). Let W be an (F t ) t∈[0,T ] -Brownian motion and X be a solution ofX t = X 0 + t (s, X s ) ds + t (s) dW s , t ∈ [0, T ], (7.3) OUBiswhere X 0 is a Gaussian random vector independent of W . SetL t := σ (t) -1 b (t, X t ) , t ∈ [0, T ].Then, the Doléans exponential Eds is an (F t ) t∈[0,T ]martingale.

  ), X is a Gaussian process with mean function m X (resp. covariance function Q X ) solving the first line of equation ( ODE_m3.1) (resp. ( ODE_Q 3.2)) with initial condition E (X 0 ) (resp.

7. 2 7 . 2 . 3 . 1 0EE

 27231 Proof of the local Lipschitz property of the cost functional Jc_Lip_J Lemma Suppose the validity of Assumption control_drift_ass Suppose in addition that the functions g and x → f (t, x, α) , (t, α) ∈ [0, T ] × A 0 are locally Lipschitz with polynomial growth gradient (uniformly in t and α). Then, for each(t, α) ∈ [0, T ] × A 0 , x → J (t, x, α)is locally Lipschitz, uniformly in t and α.Proof. We give here a proof of the local Lipschitz property for the term involving the function g since the other term can be treated in the same way. Let (t, α) ∈ [0, T ] × A 0 and x, y in a compact set of R d . Let K be the Lipschitz constant of b. Using in particular the Cauchy-Schwarz inequality, we getE g X t,x,α T -E g X t,y,α T ≤ ∇ x g aX t,x,α T + (1a) X t,y∇ x g aX t,x,α T + (1a) X t,y,α T da |x -y| (7.4) interm-inegwhere we have used the estimate X t,x,α T -X t,y,α T ≤ e KT |x -y|, following from the identity X t,x,α r -X t,y,α r ≤ |x -y| + K r t X t,x,α s -X t,y,α s ds, r ∈ [t, T ],

7. 3 A

 3 simplified version of the envelope theorem env_thm Lemma 7.3. Let Λ be an arbitrary set and O be an open subset of R d . Let x ∈ R d . Let F : O × Λ → R

( 7 . 5 ) 7 . 5 )

 7575 ineg_1By the differentiability of V at the point x, ( ineg_1 7.5) implies∇ x V (x) -∇ x F (x, λ * x ) , h ≥ o 0 (|h|) . (7.6) o_ineg_1Setting h to -h in ( ineg_1 and proceeding as before, we obtain∇ x V (x) -∇ x F (x, λ * x ) , h ≤ o 0 (|h|) .

3.1. Suppose that

  ) ODE_funda_inv

	see Chapter 8 in	bronson [5] for similar and further properties.	
	Note that in the case a (t) = a, t ∈ [0, T ] for a given a ∈ M d (R), then A : t → e at and identities ( m_explicit 3.3), ( Q_explicit 3.4) simplify as follows:
		m ν (t) = e -a(T -t) mν -	t	T	e -a(s-t) c (s) ds,	(3.7) m_explicit_si
		Q ν (t) = e -a(T -t) Qν e -a ⊤ (T -t) -	t	T	e -a(s-t) Σ (s) e -a ⊤ (s-t) ds,	(3.8) Q_explicit_si
	for all t ∈ [0, T ].	Q ν (0) belongs to S + d (R). Identity ( 3.4) gives in particular Q_explicit

ondegen Remark

  .10) holds. This ends the proof.

	cond_pos 3.10) is satisfied in Remark 3.3. In the case a (t) = a, t ∈ [0, T ] for a given a ∈ M d (R), Condition ( particular if
	min Sp Qν ≥ σ ⊤ 2 ∞	0	T	e a ⊤ s 2	ds	(3.14) cond_pos_simp
	is verified.					

.19) Rev-SDE trongEx Remark 3.5. (

  

	Rev-SDE 3.19) admits a unique strong solution on [0, T [ since its drift is affine with time-dependent
	continuous coefficients.

P_lemma Lemma

3.6. 1

  

. The process ξ := ξ T -• solves the SDE

  .21) ENormXi

	By (

ENormXi 3.21) and Theorem 2.1 in haussmann_pardoux [20], X is a solution (in law) of ( Rev-SDE 3.19) on [0, T [. Pathwise uniqueness for ( Rev-SDE 3.19) implies uniqueness in law on [0, T [ and the first statement of Lemma HP_lemma 3.6 is established.

  .34) eq EDDP

	SLPDE 3.18).
	e) 3. implies obviously 1. Viceversa, if item 1. holds, a) implies that w v is a classical solution
	of ( 3.32); b) and the uniqueness of viscosity solutions for previous linear equation implies lin_heat_PDE
	v = w v and finally item 3.
	We state now the announced representation result.
	Consequently, by usual integration theorems allowing to commute derivation and integrals,
	one shows ( 3.32). lin_heat_PDE

b) Consequently w v is a viscosity solution ( lin_heat_PDE 3.32). c) If 1. holds then v is also a viscosity solution of ( lin_heat_PDE 3.32). By point 1. of Remark uniq_visco_rem 3.12, equation ( lin_heat_PDE 3.32) admits at most one continuous viscosity solution with polynomial growth. So v = w v which means 2. d) If 2. holds then v = w v and by b) v is a viscosity solution of ( lin_heat_PDE 3.32) and therefore of ( PDE-Rep Theorem 3.10. Suppose the validity of Assumption ass_g 2. Let ν be a Gaussian probability fulfilling Assumption ass_nu 1 with associated functions m ν and Q

ν . Let v ∈ C 0,1 [0, T ], R d ; R with polynomial growth and such that H v : (t, x) → H (t, x, v (t, x) , ∇ x v (t, x))

is continuous with polynomial growth. Then, v is a viscosity solution of ( SLPDE 3.18) if and only if for all t ∈ [0, T ]

  Then, by Theorem 5.1 in Alternative assumptions are available to ensure uniqueness in different classes of unbounded functions, for fully non-linear parabolic Cauchy problems. See for instance Corollary 2

	2. The first theorem in
	in	ishiiKobayasi [22], Theorem 3.1 in
		PardPradRao [31], implies that ( 3.18) SLPDE
	admits at most one continuous viscosity solution with polynomial growth. In fact that theorem states
	uniqueness even in a wider class of solutions.

LionsSouganidisJensen

[START_REF] Jensen | A uniqueness result for viscosity solutions of second order fully nonlinear partial differential equations[END_REF] 

formulates a uniqueness result in a suitable class of bounded uniformly continuous solutions. NUNZIANTE

[START_REF] Nunziante | Existence and uniqueness of unbounded viscosity solutions of parabolic equations with discontinuous time-dependence[END_REF]

, userguide_visco

[START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]

,

  .41) EToBegin

	Then, (

EToBegin 3.41) combined with the Markov property of ξ implies that ( RepFormula 3.35) is equivalent to

  state (and show below) a verification type result involving α * without any further regularity assumptions on the value function. That result is somehow classical, but it is not obvious to find

	it in the literature (see e.g. Chapter 5 of	touzibook [37] or gr1 [18]), with our assumptions. So, for the consistency
	of the paper we provide a proof. Note to begin that the Borel function b has linear growth thanks to Assumption control_drift_ass 3. As a consequence, the closed loop equation
	d Xt = b * t, Xt dt + σ (t) dW t ,	(4.8) closed-loop-S
	admits a unique strong solution Xx starting at time 0 with value x, for each x ∈ R d , see Theorem 6 in Veretennikov1982 [38].

* : (t, x) → b (t, x, α * (t, x)) verif Proposition 4.5. Suppose the validity of Assumptions ass_g 2, control_drift_ass 3, control_costs_ass 4. Let v be the value function defined in ( eq:prob

  ) . T ] with [t k , t k+1 ], the solution of ( , t k+1 ], with terminal condition v(t k+1 , •), can be represented for t ∈ [t k , t k+1 ] by

	By Corollary	HJB_corro 4.6, applied substituting [0, eq:HJB 4.4) on [t k

  for each i and j. We have reported on Table

	tab:fwd 1 (resp. Table	tab:bwd

Table 1 :

 1 (0.98) 17.28(1.01) 42.04(1.32) 34.79(0.66) 21.27(0.12) 18.97(0.09) 10 3 7.61(6e -4 ) 8.24(0.07) 14.83(0.64) 28.14(0.64) 37.91(0.60) 34.83(0.45) 5 × 10 3 7.60(3e -4 ) 7.78(2e -3 ) 8.98(0.21) 19.84(0.52) 35.31(0.71) 33.57(0.52) 10 4 7.60(3e -4 ) 7.77(1e -3 ) 7.69(0.06) 16.06(0.38) 32.20(0.63) 30.66(0.59) 2 × 10 4 7.60(3e -4 ) 7.77(2e -4 ) 7.37(0.02) 13.58(0.40) 28.97(0.71) 28.17(0.67) 5 × 10 4 7.60(3e -4 ) 7.79(2e -4 ) 7.28(2e -3 ) 7.96(0.25) 26.69(0.65) 26.21(0.69) 10 5 7.61(3e -4 ) 7.78(1e -4 ) 7.27(8e -4 ) 6.12(0.08) 22.54(0.56) 23.26(0.59) Mean, Ĵ (standard deviation, σ Ĵ ) of the simulated cost with the forward grid strategy ) 7.78(7e -4 ) 7.41(6e -3 ) 7.31(0.12) 28.14(0.18) 26.01(0.12)

		d=1	d=2	d=5	d=10	d=15	d=20
	10 2 8.68tab:fwd					
	N	d=1	d=2	d=5	d=10	d=15	d=20
	10 2 7.61(3e -4 10 3					

  Combining Jensen's inequality and Fubini's theorem, this is fulfilled in particular if for all n ∈ N,where δ := t n+1t n . Let s ∈ [0, T ]. Then, |L s | 2 ≤ 2δ σ -1 2 ∞ ||a|| 2 ∞ |X s | 2 + ||c|| 2 ∞ , Pa.s,since a, c are bounded and σ -1 is also bounded being continuous on [0, T ]. Furthermore, by item 1. of Lemma

	1 δ	t n+1 tn	E exp	δ |L s | 2 2	ds < ∞,
	E exp	2 1	t n+1

t n ) n∈N of [0, T ] such that, for all n ∈ N, tn |L s | 2 ds < ∞.
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