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A fully backward representation of semilinear PDEs applied

to the control of thermostatic loads in power systems

LUCAS IZYDORCZYK *, NADIA OUDJANE † AND FRANCESCO RUSSO ‡

April 27th 2021

Abstract

We propose a fully backward representation of semilinear PDEs with application to stochas-

tic control. Based on this, we develop a fully backward Monte-Carlo scheme allowing to gen-

erate the regression grid, backwardly in time, as the value function is computed. This offers

two key advantages in terms of computational efficiency and memory. First, the grid is gen-

erated adaptively in the areas of interest and second, there is no need to store the entire grid.

The performances of this technique are compared in simulations to the traditional Monte-Carlo

forward-backward approach on a control problem of thermostatic loads.

Key words and phrases: Ornstein-Uhlenbeck processes; probabilistic representation of PDEs;

time-reversal of diffusion; stochastic control; HJB equation; regression Monte-Carlo scheme; demand-

side management.

2020 AMS-classification: 60H10; 60H30; 60J60; 65C05; 49L25; 35K58.

1 Introduction

The numerical resolution of non-linear PDEs is a crucial issue in many applications. In particu-

lar, stochastic control problems can be formulated by mean of the Hamilton-Jacobi-Bellman (HJB)

equations with terminal condition. In this paper, we focus more particularly on control problems

raised by demand-side management in power systems. The difficulties come especially from the

high dimensionality of the state space, which motivates the use of probabilistic representations.

The main issue of numerical schemes is then to concentrate the computing effort in specific re-

gions of interest in the state space. In classical regression Monte-Carlo approaches, the solution
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is evaluated backwardly in time from the final time to the initial time, while the regression grid

is generated forwardly from the initial time to the final one. In this paper, we propose a fully

backward probabilistic approach which allows to generate adaptively the regression grid, as the

solution is evaluated, taking advantage of the calculations already performed. Besides, there is

no need to store the entire grid, since the points are generated as they are used for calculations.

Our grid will be indeed simulated according to the time-reversal of some diffusion starting from

a judicious terminal distribution.

We are interested in semilinear PDEs of the type
{

∂tv(t, x) +H(t, x, v(t, x),∇xv(t, x)) +
1
2Tr[σσ

⊤(t)∇2
xv(t, x)] = 0, (t, x) ∈ [0, T [×Rd

v(T, x) = g(x),
(1.1)

where in particular σ is a deterministic non-degenerate matrix-valued function. Under suitable

conditions, there exists a unique viscosity solution v of (1.1) in the class of continuous functions

with polynomial growth. One classical probabilistic representation of v is provided by Forward-

Backward SDEs (FBSDEs), see e.g. [29]. First a forward diffusion is fixed, with an arbitrary drift

b̃

dXt = b̃(t,Xt)dt+ σ(t)dWt. (1.2)

Then the solution of (1.1) is represented by v(s, x) = Y s,x
s , where (Y,Z) = (Y s,x, Zs,x) is the unique

solution of the BSDE

Yt = g(XT ) +

∫ T

t

F (r,Xr , Yr, Zr)dr −
∫ T

t

ZrdWr, (1.3)

with X = Xs,x being the solution of (1.2) starting at time s with value x and F being related to H

by

F (t, x, y, z) := H(t, x, y,
(
σ−1 (t)

)⊤
z)−

〈
b̃(t, x),

(
σ−1 (t)

)⊤
z
〉
. (1.4)

Considering a time discretization mesh tk = kδt, with δt = T
n

and k = 0, · · · , n, for a given positive

integer n, [12] proved that one can approximate (Ytk , Ztk) by (Ŷk, Ẑk) such that Ŷn = g(XT ) and

for k = 0, · · · , n− 1





Ŷk = E

(
n∑

ℓ=k+1

F (tℓ,Xtℓ , Ŷℓ, Ẑℓ−1)δt+ g(XT )

∣∣∣∣∣Xtk

)

Ẑk =
1

δt
E

(
Ŷk+1(Wtk+1

−Wtk)
∣∣∣Xtk

)
.

(1.5)

Most of probabilistic numerical schemes (see e.g. regression Monte-Carlo [14, 3], Kernel Monte-

Carlo [4], Quantization [8]) rely on that representation. The common idea is then articulated in

two steps. First, one generates a grid discretizing the forward process (1.2) in space and time on

[0, T ], (by Monte-Carlo simulations or Quantization, etc.). Then, one calculates the conditional

expectations (1.5) on the grid points in order to estimate (Ŷ , Ẑ). These techniques have generally

two limitations.

2



1. The degree of freedom in the choice of the forward diffusion X is difficult to exploit although

it has a major impact on the numerical scheme efficiency: how to chose a reasonable drift b̃

without a priori information on v ?

2. The entire grid discretizing the forward process has to be stored in memory to be revisited

backwardly in time in order to compute the solution process (Y,Z). This approach naturally

raises some huge memory issues which in general limit drastically the number of Monte-

Carlo runs and time steps, hence the accuracy of the procedure.

To overcome such limitations some approaches were proposed in the domain of mathematical fi-

nance, in particular for the evaluation of American style options. One technique, intended to deal

with the memory problem, relies on bridge simulation, see e.g. [33, 34]. However, this approach

requires specific developments for each price model (based for instance on the Brownian bridge

for Brownian prices or on the gamma bridge for variance gamma prices) and remains difficult to

generalize to a wide class of models. To address the efficiency issue, [1] developed a scheme based

on Picard’s type iterations that avoids the use of nested conditional expectations backwardly in

time, which are replaced by nested conditional expectations along the iterations. In the same line,

[13] proposes an adaptive variance reduction technique which combines Picard’s iterations and

control variate to solve the BSDE. A parallel version of that algorithm was proposed in [26]. How-

ever, those approaches require, at each iteration, to approximate the solution on the whole time

horizon. Similarly, importance sampling and Girsanov’s theorem, were considered to force the ex-

ploration of the space towards areas of interest [2]. In particular, this type of approach was derived

in the case of stochastic control in [10] providing an iterative scheme that is capable of learning the

optimally controlled drift. Here again, that method requires several estimations of the value func-

tion on the whole time horizon. Besides [16] proposed an adaptive importance sampling scheme

for FBSDEs allowing to select the drift adaptively, as the calculations are performed backwardly.

Unfortunately, that approach is limited to situations where the driver F does not depend on Z . In

the present paper, we introduce a new adaptive approach to address both the memory problem

and the efficiency issue (related to the drift selection) in the general case where the driver may

depend on X,Y and Z .

We propose to choose adaptively the drift b̃ at the same time as we discover the function v such

that

v (t,Xt) = E

(∫ T

t

H (s,Xs, v (s,Xs) ,∇xv (s,Xs))−
〈
b̃ (s,Xs) ,∇xv (s,Xs)

〉
ds+ g (XT )

∣∣∣∣Xt

)
,

(1.6)

by simulating the time-reversal of a solution X of (1.2) starting from the distribution of XT . More

specifically, to take advantage of the Ornstein-Uhlenbeck setting, we choose the drift b̃ to be affine

w.r.t. the space variable. We fix a Gaussian distribution ν and look for solutions ξ of the McKean
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SDE




ξ0 ∼ ν,

ξt = ξ0 −
∫ t

0
b̃ (T − s, ξs) + σσ⊤ (T − s)Q (T − s)−1 (ξs −m (T − s)) ds+

∫ t

0
σ (T − s) dβs,

m(T − t) = E (ξt) ,

Q(T − t) = Cov (ξt) for t ∈]0, T ].
(1.7)

By Proposition 3.7, (1.7) admits exactly one solution ξ, provided Assumption 1 in Section 3.1 is

verified. That assumption depends on the covariance matrix of ν, the drift b̃ and the volatility

σ. Indeed, one important limitation is that the covariance matrix should be chosen carefully to

ensure that the process is well-defined until T . Point 2. of Proposition 3.7 and Lemma 3.6 say

that the time-reversal process ξ̂, i.e. ξ̂t := ξT−t, is an Ornstein-Uhlenbeck process solution of (1.2)

such that the law of X0 is Gaussian with mean m(0) and covariance Q(0). This leads to the first

result of this paper which consists of the fully backward representation stated in Theorem 3.10.

The proof is based on Feynman-Kac type formula instead of BSDEs and it does not require explic-

itly the uniqueness of viscosity solution of the PDE (1.1). The second contribution of the paper is

Corollary 4.4 which is the “instantiation” of Theorem 3.10 in the framework of stochastic control,

i.e. the representation of its value function (solution of a Hamilton-Jacobi-Bellman equation). This

holds when the running and terminal cost have polynomial growth with respect to the state space

variable. We also suppose that the value function is of class C0,1 whose gradient has polynomial

growth. In particular, we derive in Corollary 4.6, a representation involving the gap between the

optimally controlled drift and the instrumental drift b̃. In Section 5, we present a fully backward

Monte-Carlo regression scheme, where the instrumental drift is adaptively updated in order to

mimic the optimally controlled dynamics, see Algorithm 1. We expect that this approach is partic-

ularly well-suited when the final cost has a strong impact on the global cost and when the terminal

cost function is localized in a small region of the space, so that the initial distribution ν can be cho-

sen in an appropriate way. Finally, in Section 6 we illustrate the interest of this new algorithm

applied to the problem of controlling the consumption of a large number of thermostatic loads

in order to minimize an aggregative cost. We compare our approach to the classical regression

Monte-Carlo scheme based on a forward grid.

2 Notations

Let us fix T > 0, d, k ∈ N∗. For a given p ∈ N∗, [[1, p]] denotes the set of all integers between

1 and p included. 〈·, ·〉 denotes the usual scalar product on Rd and |·| the associated norm. El-

ements of Rd are supposed to be column vectors. Md (R) stands for the set of d × d matrices,

Sd (R) for the subset of symmetric matrices, S+
d (R) the subset of symmetric positive semi-definite

matrices (in particular with non-negative eigenvalues) and S++
d (R) for the subset of strictly pos-
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itive definite symmetric matrices. For a given A ∈ Md (R), A⊤ will denote its transpose, Tr (A)

its trace, Sp (A) its spectrum, i.e. the set of its eigenvalues, eA :=
∑∞

k=0
Ak

k! its exponential and

||A|| := supx∈Rd,|x|=1 |Ax|. For a given A ∈ S+
d (R),

√
A denotes the unique element of S+

d (R) such

that (
√
A)2 = A.

For a given continuous function f : [0, T ] 7→ Rd (resp. g : [0, T ] 7→ Md (R)), we set ||f ||∞ :=

supt∈[0,T ] |f (t)| (resp. ||g||∞ := supt∈[0,T ] ||g (t)||). C1,2
(
[0, T ],Rd

)
(resp. C0,1

(
[0, T ],Rd

)
) denotes

the set of real-valued functions defined on [0, T ] × Rd being continuously differentiable in time

and twice continuously differentiable in space (resp. continuous in time and continuously differ-

entiable in space). C0
(
[0, T ] × Rd

)
(resp C1

(
Rd
)
) denotes the set of continuous (resp continuously

differentiable) real-valued functions defined on [0, T ] × Rd (resp. Rd). ∇x will denote the gradi-

ent operator and ∇2
x the Hessian matrix. For each p ∈ N, Pp

(
Rd
)

denotes the set of polynomial

functions on Rd with degree p.

In the whole paper, we say that a function v : [0, T ] × Rd 7→ R has polynomial growth if there exists

q,K > 0 such that for all (t, x) ∈ [0, T ]× Rd

|v (t, x)| ≤ K (1 + |x|q) .

When v verifies previous property with q = 1, we say that it has linear growth.

For a given random vector X defined on a probability space (Ω,F ,P), EP (X) (resp. CovP (X) :=

EP

(
(X − EP (X)) (X − EP (X))⊤

)
) will denote its expectation (resp. its covariance matrix) under

P. When self-explanatory, the subscript will be omitted in the sequel. For a given (m,Q) ∈ Rd ×
S+
d (R), N (m,Q) denotes the Gaussian probability on Rd with mean m and covariance matrix Q.

For any stochastic process X, FX will denote its canonical filtration. X̂ will denote the time-

reversal process XT−·.

3 Representation of semilinear PDEs

3.1 Around two backward ODEs

Let a (resp. c) be Borel bounded functions from [0, T ] to Md (R) (resp. Rd).

In the sequel we will fix a Gaussian Borel probability ν on Rd with mean m̄ν and covariance matrix

Q̄ν . We consider the functions mν : [0, T ] 7→ Rd and Qν : [0, T ] 7→ Sd (R) denoting respectively the

unique solutions of the backward ODEs




d
dt
mν (t) = a (t)mν (t) + c (t) , t ∈ [0, T ]

mν (T ) = m̄ν ,
(3.1)





d
dt
Qν (t) = Qν (t) a (t)⊤ + a (t)Qν (t) + Σ (t) , t ∈ [0, T ]

Qν (T ) = Q̄ν ,
(3.2)

for which existence and uniqueness hold since they are linear.
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We introduce an hypothesis on ν which will be used in the sequel.

Assumption 1. Qν(0) ∈ S+d (R).

Easy computations imply for all t ∈ [0, T ]

mν (t) = A (t)

(
A (T )−1 m̄ν −

∫ T

t

A (s)−1 c (s) ds

)
, (3.3)

Qν (t) = A (t)

(
A (T )−1 Q̄ν

(
A (T )−1

)⊤
−
∫ T

t

A (s)−1Σ (s)
(
A (s)−1

)⊤
ds

)
A (t)⊤ , (3.4)

where A (t) , t ∈ [0, T ] is the unique solution of the matrix ODE




d
dt
A (t) = a (t)A (t) , t ∈ [0, T ]

A (0) = Id.
(3.5)

We recall that for all t ∈ [0, T ], A (t) is invertible and the matrix valued function t 7→ A(t)−1 solves

the ODE 



d
dt
A (t)−1 = −A (t)−1 a (t) , t ∈ [0, T ]

A (0)−1 = Id,
(3.6)

see Chapter 8 in [5] for similar and further properties.

Note that in the case a (t) = a, t ∈ [0, T ] for a given a ∈ Md (R), then A : t → eat and identities

(3.3), (3.4) simplify as follows:

mν (t) = e−a(T−t)m̄ν −
∫ T

t

e−a(s−t)c (s) ds, (3.7)

Qν (t) = e−a(T−t)Q̄νe−a⊤(T−t) −
∫ T

t

e−a(s−t)Σ (s) e−a⊤(s−t)ds, (3.8)

for all t ∈ [0, T ].

Remark 3.1. Suppose that Qν (0) belongs to S+
d (R). Identity (3.4) gives in particular

Qν (t) = A (t)

(
Qν (0) +

∫ t

0
A (s)−1Σ (s)

(
A (s)−1

)⊤
ds

)
A (t)⊤ , t ∈ [0, T ]. (3.9)

Combining (3.9) and the fact σ (t) is invertible for all t ∈ [0, T ], we remark that Qν (t) belongs to S++
d (R)

for all t ∈]0, T ].

Finally we give a condition depending onA, σ, Q̄ν and T to ensure the measure ν fulfills Assump-

tion 1.

Proposition 3.2. Suppose that

minSp
(
Q̄ν
)
≥
∫ T

0
||σ (s)||2

∣∣∣∣
∣∣∣∣
(
A (T )A (s)−1

)⊤∣∣∣∣
∣∣∣∣
2

ds. (3.10)

Then,

Qν (0) ∈ S+
d (R) . (3.11)
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Proof. Since A (T ) is invertible and Qν (0) belongs to Sd (R), (3.11) is equivalent to

A (T )Qν (0)A (T )⊤ ∈ S+
d (R) . (3.12)

To prove (3.12), taking into account (3.4), it suffices to show that the matrix

Q̄ν −
∫ T

0
A (T )A (s)−1 Σ (s)

(
A (T )A (s)−1

)⊤
ds ∈ S+

d (R) ,

or, equivalently, that for all x ∈ Rd

λ := x⊤Q̄νx−
∫ T

0
x⊤A (T )A (s)−1 Σ (s)

(
A (T )A (s)−1

)⊤
xds ≥ 0. (3.13)

Let x ∈ Rd,

λ ≥ minSp
(
Q̄ν
)
|x|2 −

∫ T

0

∣∣∣∣σ (s)⊤
(
A (T )A (s)−1

)⊤
x

∣∣∣∣
2

ds,

≥
(
minSp

(
Q̄ν
)
−
∫ T

0

∣∣∣
∣∣∣σ (s)⊤

∣∣∣
∣∣∣
2
∣∣∣∣
∣∣∣∣
(
A (T )A (s)−1

)⊤∣∣∣∣
∣∣∣∣
2

ds

)
|x|2 ,

≥ 0,

since (3.10) holds. This ends the proof.

Remark 3.3. In the case a (t) = a, t ∈ [0, T ] for a given a ∈ Md (R), Condition (3.10) is satisfied in

particular if

minSp
(
Q̄ν
)
≥
∣∣∣
∣∣∣σ⊤

∣∣∣
∣∣∣
2

∞

∫ T

0

∣∣∣
∣∣∣e−a⊤s

∣∣∣
∣∣∣
2
ds (3.14)

is verified.

Remark 3.4. Let X be a solution of

Xt = X0 +

∫ t

0
b̃ (s,Xs) ds+

∫ t

0
σ (s) dWs, t ∈ [0, T [, (3.15)

where σ is a deterministic matrix-valued function and b̃ the piecewise affine function

b̃(t, x) = a(t)x+ c(t), t ∈ [0, T ],

and X0 be a square integrable r.v. It is well-known that X is a square integrable process. Let, for every

t ∈ [0, T ], m(t) = E (Xt) and Q(t) the covariance matrix of Xt. Setting m̄ν = E (XT ) and Q̄ν the

covariance matrix of XT . Then

m = mν , Q = Qν . (3.16)

Indeed, by Problem 6.1 in Chapter 5 in [24] m (resp. Q) is solution of (3.1) (resp. (3.2)). (3.16) follows by

uniqueness of previous ODEs.
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3.2 The representation formula for a general semilinear PDE

In the whole paper σ will be a continuous function defined on [0, T ] with values in Md (R) such

that for all t ∈ [0, T ], σ (t) is invertible. We will set Σ := σσ⊤.

Let b̃ : [0, T ]× Rd 7→ Rd and bc : [0, T ]× Rd × Rd × S++
d (R) 7→ Rd defined by

bc : (t, x,m,Q) 7→ Σ(t)Q−1 (x−m) , b̃ : (t, x) 7→ a (t)x+ c (t) , (3.17)

where a, c were defined at Section 3.1. Let H : [0, T ]×Rd×R×Rd → R and g : Rd → R. The goal of

this subsection is to provide a probabilistic representation of viscosity solutions, being continuous

in time and continuously differentiable in space, of the semilinear PDE

{
∂tv (t, x) +

1
2Tr

(
Σ (t)∇2

xv (t, x)
)
+H (t, x, v (t, x) ,∇xv (t, x)) = 0, (t, x) ∈ [0, T [×Rd

v (T, ·) = g.
(3.18)

To formulate the result we consider the following assumption.

Assumption 2. g is continuous and has polynomial growth.

Let ν be a Gaussian Borel probability on Rd with mean m̄ν and covariance Q̄ν . Let t 7→ mν(t)

defined in (3.3), t 7→ Qν(t) be given by (3.4) and suppose that ν fulfills Assumption 1.

We fix a filtered probability space
(
Ω,F , (Ft)t∈[0,T ] ,P

)
on which are defined a d-dimensional

Brownian motion β and a random vector ξ0 distributed according to ν and independent of β.

Let ξ be the unique strong solution of

ξt = ξ0 −
∫ t

0
b̃ (T − s, ξs) + bc (T − s, ξs,m

ν (T − s) , Qν (T − s)) ds+

∫ t

0
σ (T − s) dβs, t ∈ [0, T [.

(3.19)

Remark 3.5. (3.19) admits a unique strong solution on [0, T [ since its drift is affine with time-dependent

continuous coefficients.

Lemma 3.6. 1. The process ξ̂ := ξT−· solves the SDE

Xt = X0 +

∫ t

0
b̃ (s,Xs) ds+

∫ t

0
σ (s) dWs, t ∈ [0, T [, (3.20)

where W is an FX̂-Brownian motion and X0 ∼ N (mν (0) , Qν (0)).

2. ξ̂ extends continuously to [0, T ].

Proof. 1. The SDE (3.20) admits in particular existence in law. Let X be a solution of (3.20). To

prove the first statement, it suffices to show that the laws of ξ̂ and X coincide. For this it is

enough to prove that X̂ = XT−· and the solution ξ of (3.19) are identically distributed. By

Problem 6.1 in Chapter 5 in [24] and by uniqueness of the ODE (3.1) (resp. (3.2)) with initial

8



condition mν (0) (resp. Qν (0)), we get E (Xt) = mν(t) and Cov (Xt) = Qν(t) for all t ∈ [0, T ].

By Problem 6.2, Chapter 5 in [24]) X is a Gaussian process so

ξ̂t ∼ N (mν (t) , Qν (t)) , t ∈ [0, T ]. (3.21)

By (3.21) and Theorem 2.1 in [19], X̂ is a solution (in law) of (3.19) on [0, T [. Pathwise unique-

ness for (3.19) implies uniqueness in law on [0, T [ and the first statement of Lemma 3.6 is

established.

2. It remains to prove the second statement. For this we show

E

(∫ T

0

∣∣∣bc
(
s, ξ̂s,m

ν (s) , Qν (s)
)∣∣∣ ds

)
<∞. (3.22)

On the one hand, for all t ∈]0, T ],
∣∣∣bc
(
t, ξ̂t,m

ν (t) , Qν (t)
)∣∣∣ =

∣∣∣∣Σ (t)

√
Qν (t)−1

√
Qν (t)−1

(
ξ̂t −mν (t)

)∣∣∣∣

≤ ||Σ||∞
√∣∣∣
∣∣∣Qν (t)−1

∣∣∣
∣∣∣
∣∣∣∣
√

Qν (t)−1
(
ξ̂t −mν (t)

)∣∣∣∣

=
||Σ||∞√
||Qν (t)||

∣∣∣∣
√
Qν (t)−1

(
ξ̂t −mν (t)

)∣∣∣∣ ,

remembering that Qν (t) belongs to S++
d (R).

On the other hand, by (3.21)
∣∣∣∣
√

Qν (t)−1
(
ξ̂t −mν (t)

)∣∣∣∣ ∼ |Z| where Z ∼ N (0, Id). Then,

(3.22) is verified if we show ∫ T

0

1√
||Qν (t)||

dt <∞. (3.23)

If Qν (0) = 0, then for all t ∈]0, T ], for all t ∈]0, T ], Remark 3.1 implies

Qν (t)

t
= A (t)

(
1

t

∫ t

0
A (s)−1 Σ (s)

(
A (s)−1

)⊤
ds

)
A (t)⊤ −→

t→0
Σ (0) .

If Qν (0) 6= 0, then for all ]0, T ], again Remark 3.1 yields

||Qν (t)||
t

≥
∣∣∣∣
∣∣∣∣
∣∣∣∣A (t)

Qν (0)

t
A (t)⊤

∣∣∣∣
∣∣∣∣−
∣∣∣∣
∣∣∣∣A (t)

(
1

t

∫ t

0
A (s)−1Σ (s)

(
A (s)−1

)⊤
ds

)
A (t)⊤

∣∣∣∣
∣∣∣∣
∣∣∣∣ −→t→0

+∞,

where we have also used the fact A (0) = Id and the fact 1
t

∫ t

0 A (s)−1 Σ (s)
(
A (s)−1

)T
ds

tends to Σ (0) as t tends to 0 thanks to the continuity of Σ,A−1 on [0, T ].

Hence, for all t ∈]0, T ],

lim
t→0

√
t√

||Qν (t)||
=





1√
||Σ(0)||

, if Qν (0) = 0

0, otherwise.
(3.24)

This yields (3.23) which implies (3.22); consequently the solution X of (3.19) prolongates to

t = T and item 2. is proved.
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Though, this will not be exploited in the algorithm proposed at Section 5, it is interesting to note

that the process ξ introduced in (3.19) can also be seen as the solution of a McKean SDE. Propo-

sition 3.7 below shows that (1.7) admits existence and uniqueness if and only if Assumption 1 is

verified. In particular we have the following.

Proposition 3.7. 1. There is at most one solution (ξ,m,Q) of (1.7).

2. Suppose the validity of Assumption 1. Let ξ be the unique solution of (3.19). Then (ξ,mν , Qν) is a

solution of (1.7).

Proof. 1. Let (ξ,m,Q) be a solution of (1.7). By definition, ξ solves an SDE of type (3.20) re-

placing a by aΣ : s 7→ −a (T − s) − Σ (T − s)Q (T − s)−1 and c by cΣ : s 7→ −c (T − s) +

Σ (T − s)Q (T − s)−1m (T − s).

By Problem 6.1 Section 5 in [24], the function t 7→ E (ξt) (= m (T − t)) (resp. t 7→ Cov (ξt) (=

Q (T − t))) solves the first line of (3.1) (resp. (3.2)) replacing a by aΣ and c by cΣ. Then, the

following identities hold for all t ∈]0, T ]:

m (T − t) = E (ξ0)−
∫ t

0
a (T − s)m (T − s) + c (T − s) ds, (3.25)

Q (T − t) = Cov (ξ0)−
∫ t

0
Q (T − s) a (T − s)⊤ + a (T − s)Q (T − s) ds−

∫ t

0
Σ (T − s) ds,

(3.26)

remarking that

aΣ (t)m (T − t) + cΣ (t) = −a (T − t)m (T − t)− c (T − t) ,

Q (T − t) aΣ (t)⊤+aΣ (T − t)Q (t) = −Q (T − t) a (T − t)⊤−a (T − t)Q (T − t)−2Σ (T − t) .

Applying the change of variable t 7→ T − t in identities (3.25) and (3.26), we show that m

(resp. Q) solves the backward ODE (3.1) (resp. (3.2)), which is well-posed. We recall that ξ0
is distributed according to ν. Then, m = mν and Q = Qν , see the beginning of Section 3.1.

As a consequence, ξ solves (3.19) and is uniquely determined thanks to Remark 3.5. This

shows the validity of item 1.

2. Let ξ be the unique solution of (3.19). Then, the time-reversed process ξ̂ solves (3.20) and

ξT ∼ N (mν (0) , Qν (0)), thanks to item 1. of Lemma 3.6. Now, by Remark 3.4, we have

E

(
ξ̂t

)
= mν (t), Cov

(
ξ̂t

)
= Qν (t) for all t ∈ [0, T [. This concludes the proof of item 2.

Remark 3.8. 1. In [22] we have discussed existence and uniqueness of more general McKean problems

involving the densities of the marginal laws instead of expectation and covariance matrix, where the

solution is the time-reversal of some (not necessarily Gaussian) diffusion.
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2. In particular, in Section 4.5 of [22] we have investigated existence and uniqueness of





Yt = Y0 −
∫ t

0
b̃ (T − r, Yr) dr +

∫ t

0

{
divy (Σi. (T − r) pr (Yr))

pr (Yr)

}

i∈[[1,d]]

dr +

∫ t

0
σ (T − r) dβr,

pt density law of pt = law of Yt, t ∈]0,T[,
Y0 ∼ pT = ν,

(3.27)

where β is a m-dimensional Brownian motion and Σ = σσ⊤, whose solution is the couple (Y,p).

Moreover, when the solution exists, there is a probability-valued function u defined on [0, T ] solution

of the Fokker-Planck equation





∂tu = 1
2

d∑

i,j=1

∂2
ij

(
(σσ⊤)i,j(t)u

)
− div

(
b̃(t, x)u

)

u(T ) = ν.

(3.28)

3. Suppose that ν is a Gaussian law on Rd. It is possible to show that Assumption 1 is equivalent to

the existence of a probability-valued solution u of (3.28). In this case the McKean problems (1.7) and

(3.27) are equivalent. In particular the component Y of the solution of (3.27) is Gaussian.

We continue with a preliminary lemma. Let W be a Brownian motion. For each (s, x) ∈ [0, T ]×Rd,

Xs,x will denote below the process

Xs,x
t := x+

∫ t

s

σ(r)dWr, t ∈ [s, T ].

Lemma 3.9. Suppose the validity of Assumption 2. Let v : [0, T ]×Rd → R of class C0,1
(
[0, T ],Rd

)
, with

polynomial growth and such that the function Hv : (t, x) 7→ H (t, x, v (t, x) ,∇xv (t, x)) is continuous

with polynomial growth. Then, the following assertions are equivalent.

1. v is a viscosity solution of (3.18).

2. For each (s, x) ∈ [0, T ]× Rd,

v (s, x) = E

(∫ T

s

H (r,Xs,x
r , v (r,Xs,x

r ) ,∇xv (r,X
s,x
r )) dr + g

(
Xs,x

T

))
. (3.29)

3. v is of class C1,2
(
[0, T [,Rd

)
and is a (classical) solution of (3.18).

Proof. Let v as in the lemma statement.

a) We set

wv(s, x) := E

(
g(Xs,x

T ) +

∫ T

s

Hv(r,Xs,x
r )dr

)
, (s, x) ∈ [0, T [×Rd. (3.30)

11



We show first that wv is a (classical) solution in C1,2
(
[0, T [,Rd

)
∩ C0

(
[0, T ]× Rd

)
with poly-

nomial growth of the linear PDE
{

∂tw (t, x) + 1
2Tr[σσ

⊤(t)∇2
xw (t, x)] +Hv (t, x) = 0, (t, x) ∈ [0, T [×Rd

w(T, ·) = g.
(3.31)

Indeed wv can be rewritten as

w (s, x) =

∫

Rd

g (z) pT (s, z − x) dz +

∫ T

s

∫

Rd

Hv (r, z) pr (s, z − x) dzdr, (s, x) ∈ [0, T [×Rd,

(3.32)

where for each r ∈ [0, T ], s ∈ [0, r[, pr (s, ·) is the density of the r.v.
∫ r

s
σ(u)dWu, i.e. a

Gaussian r.v. with mean zero and covariance
∫ r

s
Σ (u) du. Moreover, it is well-known, see

e.g. Remark 3.2 in [9], that for each r ∈ [0, T ], pr : [0, r[×Rd → R is a smooth solution of

∂tpr(t, z) +
1

2
Tr
(
Σ (t)∇2

xpr (t, z)
)
= 0, (t, z) ∈ [0, r[×Rd. (3.33)

Consequently, by usual integration theorems allowing to commute derivation and integrals,

one shows (3.31).

b) Consequently wv is a viscosity solution (3.31).

c) If 1. holds then v is also a viscosity solution of (3.31). By point 1. of Remark 3.12, equation

(3.31) admits at most one continuous viscosity solution with polynomial growth. So v = wv

which means 2.

d) If 2. holds then v = wv and by b) v is a viscosity solution of (3.31) and therefore of (3.18).

e) 3. implies obviously 1. Viceversa, if item 1. holds, a) implies that wv is a classical solution

of (3.31); b) and the uniqueness of viscosity solutions for previous linear equation implies

v = wv and finally item 3.

We state now the announced representation result.

Theorem 3.10. Suppose the validity of Assumption 2. Let ν be a Gaussian probability fulfilling Assump-

tion 1 with associated functions mν and Qν .

Let v ∈ C0,1
(
[0, T ],Rd;R

)
with polynomial growth and such that Hv : (t, x) 7→ H (t, x, v (t, x) ,∇xv (t, x))

is continuous with polynomial growth. Then, v is a viscosity solution of (3.18) if and only if for all t ∈ [0, T ]




ξt = ξ0 −
∫ t

0
b̃ (T − s, ξs) + bc (T − s, ξs,m

ν (T − s) , Qν (T − s)) ds+

∫ t

0
σ (T − s) dβs,

ξ0 ∼ ν,

v
(
t, ξ̂t

)
= E

(∫ T

t

H
(
s, ξ̂s, v

(
s, ξ̂s

)
,∇xv

(
s, ξ̂s

))
−
〈
b̃
(
s, ξ̂s

)
,∇xv

(
s, ξ̂s

)〉
ds+ g

(
ξ̂T

)∣∣∣∣ξ̂t
)
.

(3.34)
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Remark 3.11. The affine drift b̃ remains a degree of freedom of the representation. In Section 5, in the

framework of the Hamilton-Jacobi-Bellman PDEs are given elements to choose rationally b̃.

Remark 3.12. We remark that previous representation (3.34) is valid even if uniqueness does not hold for

the semilinear PDE (3.18). In that case even the equation (3.34) does not admit uniqueness. However,

we provide below some typical situations for which (3.18) admits at most one viscosity solution, within

different classes of solutions.

1. Suppose the validity of Assumption 2. Suppose also that H is continuous with polynomial growth

in x and linear growth in (y, z). In addition, we suppose that H is Lipschitz in (y, z) uniformly in

(t, x) and suppose that for all R > 0, there exists mR : R→ R+, tending to 0 at 0+ such that

∣∣H
(
t, x′, y, z

)
−H (t, x, y, z)

∣∣ ≤ mR

(∣∣x′ − x
∣∣ (1 + |z|)

)
,

for all t ∈ [0, T ], z ∈ Rd and |x| , |x′| , |y| ≤ R. Then, by Theorem 5.1 in [30], implies that (3.18)

admits at most one continuous viscosity solution with polynomial growth. In fact that theorem states

uniqueness even in a wider class of solutions.

2. The first theorem in [23] formulates a uniqueness result in a suitable class of bounded uniformly

continuous solutions. Alternative assumptions are available to ensure uniqueness in different classes

of unbounded functions, for fully non-linear parabolic Cauchy problems. See for instance Corollary 2

in [21], Theorem 3.1 in [28], [7], [20].

Proof (of Theorem 3.10).

Let v as in the statement.

1. Lemma 3.6 implies that there exists an F ξ̂-Brownian motion W such that, under P,

ξ̂t = ξ̂0 +

∫ t

0
b̃
(
s, ξ̂s

)
ds+

∫ t

0
σ (s) dWs, t ∈ [0, T ], (3.35)

where ξ̂0 ∼ N (mν (0) , Qν (0)). In particular

E

(
sup

t∈[0,T ]

∣∣∣ξ̂s
∣∣∣
p

)
<∞, ∀p ≥ 1. (3.36)

This, together with Assumption 2 and the polynomial growth of Hv also imply that the r.v.
∫ T

0
H
(
s, ξ̂s, v

(
s, ξ̂s

)
,∇xv

(
s, ξ̂s

))
−
〈
b̃
(
s, ξ̂s

)
,∇xv

(
s, ξ̂s

)〉
ds+ g(ξ̂T )

is square integrable.

2. We give now an equivalent formulation of (3.34) using a change of probability measure.

We set Ls := σ (s)−1 b̃
(
s, ξ̂s

)
, s ∈ [0, T ]. We denote by Q, the probability equivalent to P on

F ξ̂
T defined by dQ

dP
= E

(
−∑d

i=1

∫ ·
0 L

i
sdW

i
s

)
T

, being well-defined thanks to Lemma 7.1.
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The goal is to show that v fulfills (3.34) if and only if it fulfills for all t ∈ [0, T ]

v
(
t, ξ̂t

)
= EQ

(∫ T

t

H
(
s, ξ̂s, v

(
s, ξ̂s

)
,∇xv

(
s, ξ̂s

))
ds+ g

(
ξ̂T

)∣∣∣∣ξ̂t
)
. (3.37)

We remark that,

ξ̂t = ξ̂0 +

∫ t

0
σ (s) dW̃s, t ∈ [0, T ], (3.38)

where

W̃ := W +

∫ ·

0
Lsds, (3.39)

which is a Brownian motion under Q thanks to Girsanov’s Theorem 5.1 in [24]. By item 1.
∫ T

0
H
(
s, ξ̂s, v(s, ξ̂s),∇xv

(
s, ξ̂s

))
ds+ g(ξ̂T ),

is obviously also square integrable under Q.

We set Hs := H
(
s, ξ̂s, v

(
s, ξ̂s

)
,∇xv

(
s, ξ̂s

))
, s ∈ [0, T ], for the sake of brevity.

We remark first that for each given s ∈ [0, T ],
〈
b̃
(
s, ξ̂s

)
,∇xv

(
s, ξ̂s

)〉
=
〈
σ (s)σ (s)−1 b̃

(
s, ξ̂s

)
,∇xv

(
s, ξ̂s

)〉
=
〈
Ls, σ (s)⊤∇xv

(
s, ξ̂s

)〉
.

(3.40)

Then, (3.40) combined with the Markov property of ξ̂ implies that (3.34) is equivalent to

v
(
t, ξ̂t

)
= E

(∫ T

t

(
Hs −

〈
Ls, σ (s)⊤∇xv

(
s, ξ̂s

)〉)
ds+ g

(
ξ̂T

)∣∣∣∣F
ξ̂
t

)
,

which can be rewritten

v
(
t, ξ̂t

)
= Mt −

∫ t

0

(
Hs −

〈
Ls, σ (s)⊤∇xv

(
s, ξ̂s

)〉)
ds,

where M is the P-martingale

Mt = E

(∫ T

0
Hs −

〈
Ls, σ (s)⊤∇xv

(
s, ξ̂s

)〉
ds+ g

(
ξ̂T

)∣∣∣∣F
ξ̂
t

)
, t ∈ [0, T ]. (3.41)

Similarly, (3.37) is equivalent to

v
(
t, ξ̂t

)
= M̄t −

∫ t

0
Hsds,

where M̄ is the Q-martingale

M̄t = EQ

(∫ T

0
Hsds + g

(
ξ̂T

)∣∣∣∣F
ξ̂
t

)
, t ∈ [0, T ]. (3.42)

To show the aforementioned equivalence, it suffices now to show

Mt − M̄t =

∫ t

0

〈
Ls, σ (s)⊤∇xv

(
s, ξ̂s

)〉
ds, t ∈ [0, T ].
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On the one hand, Theorem 1.7 Chapter 8 in [32] implies that the process M̃ := M+
∑d

i=1[M,
∫ ·
0 L

i
sdW

i
s ]

is a Q-local martingale. On the other hand, for each i ∈ [[1, d]] by Proposition 3.10 in [18] we

have

[M,

∫ ·

0
Li
sdW

i
s ] = [v

(
·, ξ̂
)
,

∫ ·

0
Li
sdW

i
s ]

=

∫ ·

0
Li
s

(
σ (s)⊤∇xv

(
s, ξ̂s

))
i
ds,

combining (3.42) with the usual properties of covariation for semimartingales. This means

that

M̃ = M +

∫ ·

0

〈
Ls, σ (s)⊤∇xv

(
s, ξ̂s

)〉
ds

is a Q-local martingale. Now,

M̃T = MT +

∫ T

0

〈
Ls, σ (s)⊤∇xv

(
s, ξ̂s

)〉
ds

=

∫ T

0
Hsds+ g

(
ξ̂T

)
,

thanks to (3.41). Since M̄ and M̃ are Q-local martingales being equal at t = T , we have

M̄ = M̃ . This shows the validity of point 2.

3. For each (s, x) ∈ [0, T ] × Rd, we set Xs,x := x +
∫ ·
s
σ (r) dW̃r where W̃ is the Q-Brownian

motion defined in (3.39). Associated with v, we consider the continuous function

wv (t, x) := EQ

(∫ T

t

H
(
r,Xt,x

r , v
(
r,Xt,x

r

)
,∇xv

(
r,Xt,x

r

))
dr + g

(
Xt,x

T

))
, (t, x) ∈ [0, T ]×Rd.

We observe that v fulfills (3.37) if and only if for all (t, x) ∈ [0, T ] × Rd

v(t, x) = wv (t, x) . (3.43)

Indeed this follows by the freezing lemma of the conditional expectation, the fact that ξ̂t is

independent of the random field
(
Xt,x

s

)
t≤s≤T,x∈Rd

and the flow property

Xt,ξ̂t
s = ξ̂s, s ∈ [t, T ].

4. It remains to show that (3.43) is satisfied if and only if v is a viscosity solution of (3.18). This

is the object of Lemma 3.9 applied under the probability Q, in particular to the equivalence

between item 1. and item 3.
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4 Representation of stochastic control problems

Let us briefly recall the link between stochastic control and non-linear PDEs given by the Hamilton-

Jacobi-Bellman (HJB) equation. We refer for instance to [11, 31, 36] for more details.

Let A ⊂ Rk compact and denote by A0 the set of all A-valued progressively measurable processes

(αt)t∈[0,T ], namely the set of admissible controls.

We consider now state processes (Xs,x,α
t )s≤t≤T,α∈A0 starting at time s ∈ [0, T ] with value x ∈ Rd,

solutions of the controlled SDE

dXt = b (t,Xt, αt) dt+ σ (t) dWt, (4.1)

where W is a d-dimensional Brownian motion and b : [0, T ] × Rd × A 7→ Rd is supposed to fulfill

the following.

Assumption 3. The function b is continuous and there exists K ≥ 0 such that

|b (t, x2, a)− b (t, x1, a)| ≤ K |x2 − x1| , (t, x1, x2, a) ∈ [0, T ]× Rd × Rd ×A.

Note that Assumption 3 implies b to have linear growth in space uniformly in time and in the

control. Consequently, (4.1) starting at time s with value x admits a unique solution for each

α ∈ A0, for each (s, x) ∈ [0, T ] × Rd, by the same arguments as in Theorem 3.1 in [36].

We also introduce the cost function J : [0, T ] × Rd ×A0 → R defined by

J(s, x, α) := E

(
g(Xs,x,α

T ) +

∫ T

s

f
(
r,Xs,x,α

r , αr

)
dr

)
, (s, x, α) ∈ [0, T ]× Rd ×A0, (4.2)

where the function f : [0, T ] × Rd ×A 7→ R (running cost) is supposed to fulfill what follows.

Assumption 4. The function f is continuous and there exists m,M ≥ 0 such that

|f (t, x, a)| ≤M (1 + |x|m) , (t, x, a) ∈ [0, T ] × Rd ×A.

Supposing the validity of Assumptions 3 and 4 together with Assumption 2 on the function

g : Rd 7→ R (terminal cost), we are interested in minimizing, over control processes α ∈ A0 the

functions α 7→ J (0, x, α) for every x ∈ Rd.

To tackle this finite horizon stochastic control problem, the usual approach consists in introducing

the associated value (or Bellman) function v : [0, T ] × Rd → R representing the minimum expected

costs, starting from any time t ∈ [0, T ] at any state x ∈ Rd, i.e.

v(t, x) := inf
α∈A0

J (t, x, α) , (t, x) ∈ [0, T ]× Rd . (4.3)

Note that the terminal condition is known, which fixes v (T, ·) = g, whereas v (0, ·) corresponds to

the solution of the original minimization problem.
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Remark 4.1. Suppose the validity of Assumptions 2, 3 and 4.

1. The function v is continuous on [0, T ] × Rd and has polynomial growth, see Theorem 5. Chapter 3.

in [25].

2. The value function v is a viscosity solution of the Hamilton-Jacobi-Bellman equation

{
∂tv(t, x) +H(t, x,∇xv(t, x)) +

1
2Tr[σσ

⊤(t)∇2
xv(t, x)] = 0, (t, x) ∈ [0, T [×Rd

v(T, ·) = g,
(4.4)

where H denotes the real-valued function defined on [0, T ]× Rd × Rd by

H(t, x, δ) := inf
a∈A
{f(t, x, a) + 〈b(t, x, a), δ〉} , (t, x, δ) ∈ [0, T ]× Rd × Rd, (4.5)

see for example Theorem 7.4 in [36].

3. By definition, it is obvious that (x, z) 7→ H(t, x, z) has polynomial growth uniformly with respect to

t. It is also clear that H is continuous.

4. Under Assumptions 2, 3 and 4, the PDE (4.4) admits at most one viscosity solution in the class

of continuous solutions with polynomial growth, see Theorem II.3 in [27]. Since v has polynomial

growth, the value function v is the unique viscosity solution of (4.4) in the considered class.

We formulate below another assumption for the value function v.

Assumption 5. v is of class C0,1
(
[0, T ],Rd

)
such that ∇xv has polynomial growth.

Remark 4.2. Under Assumption 5, using Remark 4.1 3. that the function (t, x) 7→ Hv (t, x) := H (t, x,∇xv (t, x))

is continuous with polynomial growth.

Remark 4.3. 1. Assumption 5 is not so restrictive, since whenever g and f are locally Lipschitz with

polynomial growth gradient (in space), then v is locally Lipschitz in the space variable. To prove this,

it suffices to show that J is locally Lipschitz in x uniformly in t and α. A proof of this fact is given in

Lemma 7.2 stated in the Appendix.

In that context, the value function v is in particular absolutely continuous and for every t ∈ [0, T ],

for almost every x ∈ Rd, v (t, ·) is differentiable and∇xv(t, ·) exists.

2. Suppose in addition that the functions f , g and b are of class C1 (in the space variable) and the

validity of Assumption 6. Then∇xv(t, ·) has polynomial growth as we show below. Indeed, by usual

dominated convergence arguments, we can show that for each (t, α) ∈ [0, T ] × A0, x 7→ J (t, x, α)

is differentiable with gradient

∇xJ (t, x, α) = E

(
Y t,x,α
T ∇xg

(
Xt,x,α

T

)
+

∫ T

t

Y t,x,α
r ∇xf

(
r,Xt,x,α

r , αr

)
dr

)
, (4.6)
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where Y t,x,α is the unique matrix-valued process fulfilling

Y t,x,α
r = Id +

∫ r

t

∇xb
(
s,Xt,x,α

s , αs

)
Y t,x,α
s ds, r ∈ [t, T ],

where ∇xb :=
(
∂xj

bi
)
(i,j)∈[[1,d]]2

.

Combining what precedes with Lemma 7.3 stated in the Appendix, we deduce that for all t ∈ [0, T ],

for almost every x ∈ Rd

∇xv (t, x) = ∇xJ (t, x, α∗ (t, x)) , (4.7)

where α∗ is the Borel function introduced in Assumption 6. In view of (4.6) and (4.7), ∇xv has

polynomial growth.

Corollary 4.4. Let ν be a Gaussian probability measure fulfilling Assumption 1 with associated functions

mν and Qν . We suppose the validity of Assumptions 2, 3, 4. Among the functions v : [0, T ] × Rd → R

fulfilling Assumption 5, the value function is the unique one which is solution of (3.34). (In this framework

H only depends on∇xv and not on v).

Proof. We recall that Hv has polynomial growth by Remark 4.2 1. Otherwise, on the one hand,

by Remark 4.1 and the direct implication in Theorem 3.10, v fulfills (3.34). On the other hand, if a

function v fulfills (3.34) then, by the converse implication of Theorem 3.10 v is a viscosity solution

of (4.4). By Remark 4.1 3., v can only be the value function.

We introduce a supplementary hypothesis on the value function v.

Assumption 6. There exists a Borel function α∗ : [0, T ]× Rd → A such that

H (t, x,∇xv (t, x)) = 〈b (t, x, α∗ (t, x)) ,∇xv (t, x)〉+ f (t, x, α∗ (t, x)) , (t, x) ∈ [0, T ]× Rd.

We state (and show below) a verification type result involving α∗ without any further regularity

assumptions on the value function. That result is somehow classical, but it is not obvious to find

it in the literature (see e.g. Chapter 5 of [36] or [17]), with our assumptions. So, for the consistency

of the paper we provide a proof. Note to begin that the Borel function b∗ : (t, x)→ b (t, x, α∗ (t, x))

has linear growth thanks to Assumption 3. As a consequence, the closed loop equation

dX̄t = b∗
(
t, X̄t

)
dt+ σ (t) dWt, (4.8)

admits a unique strong solution X̄x starting at time 0 with value x, for each x ∈ Rd, see Theorem

6 in [37].

Proposition 4.5. Suppose the validity of Assumptions 2, 3, 4. Let v be the value function defined in (4.3)

supposed to be of class C0,1 such that (t, x) 7→ H (t, x,∇xv (t, x)) has polynomial growth.

Then, the Borel function α∗ introduced in Assumption 6 defines an optimal feedback function for the con-

sidered control problem in the sense that for each x ∈ Rd,

v (0, x) = J
(
0, x, α∗

(
·, X̄x

))
. (4.9)
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Proof (of Proposition 4.5). Let x ∈ Rd.

1. v is a continuous viscosity solution with polynomial growth of (4.4) and so of (3.18), with

(t, x, y, z) 7→ H (t, x, z) for the non linearity. By Remark 4.1 we know that Hv is continuous

and by assumption it has polynomial growth. So we apply Lemma 3.9 to deduce that v is of

class C1,2
(
[0, T [,Rd

)
and is a classical solution of (4.4).

2. Applying Itô’s formula to v
(
·, X̄x

)
between 0 and T0 ∈ [0, T [ and using the fact v is a classical

solution of (4.4) combined with Assumption 6, we obtain

v (0, x) = v
(
T0, X̄

x
T0

)
+

∫ T0

0
f
(
r, X̄x

r , α
∗
(
r, X̄x

r

))
dr −MT0 , (4.10)

where

Mt =

∫ t

0
∇xv

(
r, X̄x

r

)⊤
σ (r) dWr, t ∈ [0, T [.

By the usual BDG (Burkholder-Davies-Gundy) and Jensen’s arguments, supt∈[0,T ] |X̄x
t | has

all its moments. So, (4.10) implies that the local martingale M extends continuously to a true

martingale on [0, T ] still denoted by M verifying supt∈[0,T ] |Mt| ∈ L1. Indeed v is continuous

on [0, T ] × Rd and v (resp. f ) has polynomial growth in space (resp. in the second and third

variable). Therefore M is a true martingale. Sending T0 to T , (4.10) holds with T0 replaced

by T and v
(
T0, X̄

x
T0

)
replaced by g

(
X̄x

T

)
. Taking the expectation, we obtain

v (0, x) = E

(
g
(
X̄x

T

)
+

∫ T

0
f
(
r, X̄x

r , α
∗
(
r, X̄x

r

))
dr

)
. (4.11)

3. The process α∗
t := α∗

(
t, X̄x

t

)
, t ∈ [0, T ], belongs to the set A0 of admissible controls and

X = X̄x, is a solution of (4.1). Invoking pathwise uniqueness for (4.1), we obtain X0,x,α∗

coincides with X̄x. Then, (4.11) implies (4.9).

We formulate now a corollary in which is given a representation formula for the value function v

involving the optimal feedback function α∗.

Corollary 4.6. Let ν be a Gaussian probability measure fulfilling Assumption 1 with associated functions

mν and Qν . We suppose the validity of Assumptions 2, 3, 4. Among the functions fulfilling Assumptions

5 and 6, the value function v is the unique one which is solution of




ξt = ξ0 −
∫ t

0
b̃ (T − s, ξs) + bc (T − s, ξs,m

ν (T − s) , Qν (T − s)) ds+

∫ t

0
σ (T − s) dβs,

ξ0 ∼ ν,

v
(
t, ξ̂t

)
= E

(∫ T

t

f
(
s, ξ̂s, α

∗
(
s, ξ̂s

))
−
〈
b̃
(
s, ξ̂s

)
− b∗

(
s, ξ̂s

)
,∇xv

(
s, ξ̂s

)〉
ds + g

(
ξ̂T

)∣∣∣∣ξ̂t
)
,

(4.12)

for all t ∈ [0, T ].
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Proof. The result is a direct consequence of Corollary 4.4, replacing the function H by its expression

given in Assumption 6.

5 A heuristic algorithm

In this section, we propose a heuristic algorithm to solve the control problem described in Section

4. In what follows, the terminal cost function g is supposed to belong to C1
(
Rd
)
.

Consider a regular time grid with time step δt := T
n

and grid instants tk = kδt for any k ∈
[[0, n]]. For k = n − 1, n − 2, · · · , 0, select arbitrarily m̄k+1 , ck+1 ∈ Rd and Q̄k+1 ∈ S+

d (R), ak+1 ∈
Md(R) such that Qk(tk) := e−ak+1δtQ̄k+1e

−a⊤
k+1δt −

∫ tk+1

tk

e−ak+1(s−tk)Σ (s) e−a⊤
k+1(s−tk)ds ∈ S+

d (R) .

By Corollary 4.6, applied substituting [0, T ] with [tk, tk+1], the solution of (4.4) on [tk, tk+1], with

terminal condition v(tk+1, ·), can be represented for t ∈ [tk, tk+1] by




ξ̄k+1 ∼ N (m̄k+1, Q̄k+1)

Yk+1 = v(tk+1, ξ̄k+1)

mk(t) = e−ak+1(tk+1−t)m̄k+1 − ck+1

∫ tk+1

t

e−ak+1(s−t)ds

Qk(t) = e−ak+1(tk+1−t)Q̄k+1e
−a⊤

k+1(tk+1−t) −
∫ tk+1

t

e−ak+1(s−t)Σ (s) e−a⊤
k+1(s−t)ds

ξk,T−t = ξ̄k+1 −
∫ T−t

tn−(k+1)

(
ak+1ξk,s + ck+1 + bc(T − s, ξk,s,mk(T − s), Qk(T − s))

)
ds

+

∫ T−t

tn−(k+1)

σ(T − s)dβs

ξ̂k,t = ξk,T−t

v(t, ξ̂k,t) = E

(∫ tk+1

t

Fk

(
s, ξ̂k,s,∇xv(s, ξ̂k,s)

)
ds+ Yk+1

∣∣∣∣ξ̂k,t
)
.

(5.1)

In the above recursion, β denotes a d-dimensional Brownian motion on [0, T ]; for any k ∈ [[0, n−1]],
(ξk,t)t is a d-dimensional process defined on [tn−(k+1), tn−k] while (ξ̂k,t)t denotes the associated

time reversal defined on [tk, tk+1]; the driver Fk defined on [tk, tk+1]× Rd × Rd is such that,

Fk(t, x, δ) := H(t, x, δ) − 〈ak+1x+ ck+1, δ〉 = min
a∈A
{f(t, x, a) + 〈b(t, x, a), δ〉} − 〈ak+1x+ ck+1, δ〉 .

(5.2)

The idea now is to apply a classical numerical method based on linear regressions to approximate

the solution to (5.1) recursively in time from k = n − 1 to k = 0. For each time instant k, select

arbitrarily m̄k+1 , ck+1 ∈ Rd and Q̄k+1 ∈ S+
d (R), ak+1 ∈Md(R) such that

Qk = e−ak+1δtQ̄k+1e
−a⊤

k+1δt − Σ(tk+1)δt ∈ S+
d (R) . (5.3)

Then we propose to approximate v(tk, ·) by vk obtained by an explicit time discretization scheme
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of (5.1) with time step δt = T
n

as follows.




ξ̄k+1 ∼ N (m̄k+1, Q̄k+1)

Yk+1 = vk+1(ξ̄k+1)

ξk = ξ̄k+1 −
(
ak+1ξ̄k+1 + ck+1 + bc(tk+1, ξ̄k+1, m̄k+1, Q̄k+1)

)
δt+ σ(tk+1)

√
δtεk

vk(ξk) = E
(
Fk

(
tk+1, ξ̄k+1,∇xvk+1(ξ̄k+1)

)
δt+ Yk+1

∣∣ξk
)
,

(5.4)

where (εk)0≤k≤n−1 are i.i.d. d-dimensional standard Gaussian variables. As in the classical litera-

ture, see e.g. [14], we propose to approximate the conditional expectation appearing in (5.4) using

Monte-Carlo least squares regression based on a grid constituted by N independent simulations

(ξik, ξ̄
i
k+1)1≤i≤N for k ∈ [[0, n − 1]]. In that literature, one generally simulates forwardly that grid.

The interest of such fully backward representations (5.1)-(5.4), where the grid (ξik, ξ̄
i
k+1)1≤i≤N is

defined backwardly in time, (like the value function), is twofold.

• In terms of computer memory: at each time instant k+1, the values of the grid are generated

on the fly, (ξik, ξ̄
i
k+1)1≤i≤N . Contrary to the standard approach, there is no need to store the

whole grid over the whole set of grid instants k ∈ [[0, n − 1]].

• In terms of the relevance of the grid: at each grid instant, k + 1 the information acquired on

the value function v(tk+1, ·) and optimal control strategyα∗(tk+1, ·) can be used to adaptively

optimize the grid parameter (ak+1, ck+1, m̄k+1, Q̄k+1) in order to explore relevant regions of

the state space.

We develop some arguments to justify the relevance mentioned above. Indeed, as already an-

nounced, the target idea is to generate the grid used for regression computations according to

the optimally controlled process dynamics. If this were possible, the sensitivity of the driver Fk

w.r.t. the third variable ∇xv would vanish. In fact the driver sensitivity w.r.t. ∇xv is known to be

one major cause of the propagation of numerical errors in approximation schemes, see e.g. [15].

Replacing∇xvk+1(ξ̄k+1) by a perturbation∇xvk+1(ξ̄k+1)+ h in the last equation of (5.4) we obtain

vhk (ξk) := E

(
Fk

(
tk+1, ξ̄k+1,∇xvk+1(ξ̄k+1) + h

)
δt+ Yk+1 | ξk

)
.

The impact on vk(ξk) can crudely be evaluated by computing the error E[|vhk (ξk) − vk(ξk)|2]. Sup-

posing that no perturbation is impacting Yk+1, fact which will be heuristically justified in Remark

5.2 1., we have

E(|vhk (ξk)− vk(ξk)|2) ≤ E

(∣∣Fk

(
tk+1, ξ̄k+1,∇xvk+1(ξ̄k+1)

)
− Fk

(
tk+1, ξ̄k+1,∇xvk+1(ξ̄k+1) + h

) ∣∣2
)
.

Suppose from now on the existence of a Borel function (t, x, δ) 7→ a∗(t, x, δ), such that

H(t, x, δ) := {f(t, x, a∗(t, x, δ)) + 〈b(t, x, a∗(t, x, δ)), δ〉} , (t, x, δ) ∈ [0, T ]× Rd × Rd. (5.5)

In this case one has α∗(t, x) = a∗(t, x,∇xv(t, x)), (t, x) ∈ [0, T ] × Rd × Rd, where α∗ was defined

in Assumption 6. Coming back to (5.2) we get

Fk(t, x, δ) := H(t, x, δ)−〈ak+1x+ck+1, δ〉 = {f(t, x, a∗(t, x, δ)) + 〈b(t, x, a∗(t, x, δ)), δ〉}−〈ak+1x+ck+1, δ〉.
(5.6)
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A suitable application of the envelope theorem gives

∂Fk

∂δ
(t, x, δ) = b(t, x, a∗(t, x, δ)) − (ak+1x+ ck+1) , (5.7)

which yields

E
(
|vhk (ξk)− vk(ξk)|2

)
≤ E

∣∣∣〈
∫ 1

0

∂Fk

∂δ
(tk+1, ξ̄k+1,∇xvk+1(ξ̄k+1) + θh)dθ , h〉

∣∣∣
2

= E

∣∣∣〈
∫ 1

0
b
(
tk+1, ξ̄k+1, a

∗(tk+1, ξ̄k+1,∇xvk+1(ξ̄k+1) + θh)
)
dθ − (ak+1ξ̄k+1 + ck+1) , h〉

∣∣∣
2

≤ |h|2E
∣∣∣
∫ 1

0
b
(
tk+1, ξ̄k+1, a

∗(tk+1, ξ̄k+1,∇xvk+1(ξ̄k+1) + θh)
)
dθ − (ak+1ξ̄k+1 + ck+1)

∣∣∣
2
.

The above relation highlights the fact that the original idea consisting in generating the grid ac-

cording to a dynamics approaching the optimally controlled process dynamics reduces the propa-

gation of the error induced by the Monte-Carlo regression scheme in terms of least square criteria.

Remark 5.1. The above relation also shows that previous idea can be read in the more general perspective

of the probabilistic representation of a solution v to a semilinear PDE of the type (1.1), via an FBSDE. In

that general context, one expects the selected drift of the forward process in the FBSDE to reduce the impact

of the sensitivity of the FBSDE driver with respect to∇xv.

Based on that observation, we propose a heuristic algorithm where parameters (ak+1, ck+1) are

adaptively chosen as

(ak+1, ck+1) ∈ argmin
a,c

E

∣∣∣b
(
tk+1, ξ̄k+1, a

∗(tk+1, ξ̄k+1,∇xvk+1(ξ̄k+1)
)
− (aξ̄k+1 + c)

∣∣∣
2
. (5.8)

In the above algorithm, the random variables (εik , k ∈ [[0, n − 1]] , i ∈ [[1, N ]]) are i.i.d. according

to N (0, Id); ProjS+
d
(R) : Sd (R) 7→ S+

d (R) denotes the Frobenius projection operator on the closed

and convex space of semidefinite matrices; for each p ∈ N, Pp

(
Rd
)

denotes the set of polynomial

functions on Rd with degree p.

Remark 5.2. 1. Note that in Step 4, as soon as Qk ∈ S+
d (R) then (Y i

k+1)1≤i≤N results from the

update made at previous iteration at Step 8. That updating rule corresponds to the multi-step forward

dynamic programming approach [15] which is well-known for not inducing any additional bias error

that would propagate backwardly during iterations. However, when Qk /∈ S+
d (R), in Step 4, then

we have to modify Q̄k+1, re-generate new variables (ξik+1)1≤i≤N i.i.d. ∼ N (m̄k+1, Q̄k+1) and use

the update Y i
k+1 = vk+1(ξ

i
k+1) which adds a bias error. Fortunately, in our numerical simulations it

appeared easy to chose a first covariance matrix Q̄n so that for all k ∈ [[0, n − 1]] we had Qk ∈ S+
d .

In that situation, the error propagation is only due to the sensitivity of the driver w.r.t. ∇xv which is

precisely minimized by our heuristics.

2. The complexity of Algorithm 1, is comparable to the traditional Monte-Carlo Regression scheme us-

ing a forward grid. Indeed, Algorithm 1 requires an additional linear regression calculation of order
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Algorithm 1 Fully Backward Monte-Carlo Regression scheme

Initialization Set vn = g; k = n− 1; select arbitrarily (m̄n, Q̄n) ∈ Rd × S+
d (R); generate (ξin)1≤i≤N

i.i.d. ∼ N (m̄n, Q̄n); set Y i
n = g(ξin), for all i ∈ [[1, N ]].

while k ≥ 0 do

1. αi
k+1 = argmin

a∈A

{
f
(
tk+1, ξ

i
k+1, a

)
+
〈
b
(
tk, ξ

i
k+1, a

)
,∇xvk+1

(
ξik+1

)〉}
, for all i ∈ [[1, N ]].

2. (ak+1, ck+1) = argmin
(a,c)∈Md(R)×Rd

1
N

∑N
i=1

∣∣aξik+1 + c− b
(
tk+1, ξ

i
k+1, α

i
k+1

)∣∣2 .

3. m̄k = e−ak+1δtm̄k+1 − ck+1δt.

4. Qk = e−ak+1δtQ̄k+1e
−a⊤

k+1δt − Σ (tk+1) δt.

• If Qk ∈ S+
d
(R): set Q̄k = Qk,

• Else : set Q̄k = Proj
S+
d
(R)(Qk); recompute Q̄k+1 = eak+1δt

(
Q̄k +Σ(tk+1)δt

)
ea

⊤

k+1δt;

regenerate (ξik+1)1≤i≤N i.i.d. ∼ N (m̄k+1, Q̄k+1); set Y i
k+1 = vk+1(ξ

i
k+1), for all i ∈

[[1, N ]].

5. Set eik+1 = ak+1ξ
i
k+1 + ck+1 − b

(
tk+1, ξ

i
k+1, α

i
k+1

)
, for all i ∈ [[1, N ]].

6. ξik = ξik+1 −
(
ak+1ξ

i
k+1 + ck+1 + bc

(
tk+1, ξ

i
k+1, m̄k+1, Q̄k+1

))
δt + σ (tk+1) ε

i
k

√
δt, for all i ∈

[[1, N ]]

7. vk = argmin
P∈Pp(Rd)

1
N

∑N
i=1

∣∣Y i
k+1 +

(
f
(
tk+1, ξ

i
k+1, α

i
k+1

)
−
〈
eik+1,∇xvk+1

(
ξik+1

)〉)
δt− P

(
ξik
)∣∣2 .

8. Y i
k = Y i

k+1 +
(
f
(
tk+1, ξ

i
k+1, α

i
k+1

)
−
〈
eik+1,∇xvk+1

(
ξik+1

)〉)
δt, for all i ∈ [[1, N ]]

9. k − 1← k.

end while
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O(d2N) at Step 2 which is negligible w.r.t. the polynomial regression computations at Step 7 (oper-

ated by both algorithms) inducing O(d4N) operations in the specific case considered in simulations

where the maximum degree of polynomials is p = 2. When Qk /∈ S+
d , Algorithm 1 requires in ad-

dition, at Step 4, to implement: a Frobenius projection Proj
S+
d
(R)(Qk) (O(d3)), N multiplications

of matrices d × d with vectors d × 1 (O(d2N)); and N independent generations of d-dimensional

Gaussian random variables. These additional operations induce a complexity of O(d2N) which does

not increase the original O(d4N) complexity.

3. In terms of memory, as already mentioned, we do not have to store the whole regression grid on the

whole time horizon constituted of ndN reals but only to consider dN reals at each instant.

Remark 5.3. Suppose that at each time step k ∈ [[0, n − 1]] the matrix Qk belongs to S+
d (R). Then,

Algorithm 1 is based on the representation formula appearing in Corollary 4.6, on the whole time interval

[0, T ] with piecewise constant coefficients a, c such that a(t), c(t) = ak+1, ck+1 for each t ∈]tk, tk+1], for

each k ∈ [[0, n − 1]].

6 Stochastic control of thermostatically controlled loads

6.1 Model description

With the massive integration of variable renewable energies (like wind farms or solar panels) into

power systems, balancing supply and demand in a real time basis requires to develop new lever-

ages. A technical solution is to develop load control schemes in order to automatically adapt

consumption to generation. In this section, we propose to apply Algorithm 1 in order to control

a large heterogeneous population of air-conditioners on a time horizon [0, T ] such that the overall

consumption of the population follows a given target profile, while preserving the rooms temper-

atures within users comfort bounds.

We consider a hierarchical control scheme introduced in [6], where the population is aggregated

into d clusters of N i homogeneous loads (with same air-conditioners and rooms characteristics)

for i∈ [[1, d]]. For each cluster i ∈ [[1, d]], a local controller decides at each time step to turn ON or

OFF optimally some air-conditioners of cluster i, in order to satisfy a prescribed proportion of de-

vices with status ON in the cluster. The prescribed proportion of devices ON in each cluster, at each

time step, is computed by a central controller controlling the average rooms temperatures in each

cluster, Xi := 1
Ni

∑Ni

j=1X
i,j, where Xi,j

t is the room temperature associated to load j ∈ [[1, Ni]]

of cluster i ∈ [[1, d]]. (Xi,j
t )0≤t≤T is supposed to follow the usual thermal dynamics (see [35] and

references therein)

Xi,j
t = xi,j0 +

∫ t

0

(
− θi(Xi,j

s − xiout)− κiP i
maxα

i,j
s

)
ds+ σi,jW i,j

t , t ∈ [0, T ], (6.1)

where for any j ∈ [[1, Ni], σi,j > 0,
(
W i,j) are independent real Brownian motions representing

model errors and temperature fluctuations inside the room due to local behavior (window, door
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opening etc.); xi,j0 is the initial temperature; κi is the heat exchange parameter; xiout denotes the

outdoor air temperature; 1/θi > 0 is the thermal time constant; P i
max > 0 denotes the maximal

power consumption; αi,j
s ∈ {0, 1} is the status OFF or ON of load (i, j) at time instant s ∈ [0, T ].

We are interested in the problem of the central controller who considers the aggregated state process

X := (Xi)1≤i≤d, whose dynamics is obtained by averaging dynamics (6.1) over j ∈ [[1, Ni]], for any

i ∈ [[1, d]],

Xi
t = xi0 +

∫ t

0

(
− θi(Xi

s − xiout)− κiP i
maxα

i
s

)
ds+ σiW i

t , t ∈ [0, T ], (6.2)

where the control process
(
αs = (αi

s)1≤i≤d , s ∈ [0, T ]
)

taking values in [0, 1] prescribes the pro-

portions of devices ON in each cluster; xi0 = 1
Ni

∑Ni

j=1 x
i,j
0 ; (σi)2 = 1

N2
i

∑Ni

j=1(σ
i,j)2; (W i)1≤i≤d is

a d-dimensional Brownian motion.The central controller problem can be formulated as a specific

instantiation of problem (4.1)-(4.2) with the following:

• the controlled process X driven by a drift coefficient b := (bi)1≤i≤d defined on [0, T ] × Rd ×
[0, 1]d s.t. for any i ∈ [[1, d]] bi(t, x, a) = −θi

(
xi − xiout

)
− κiP i

maxa
i, with the notation a :=

(ai)1≤i≤d and x := (xi)1≤i≤d;

• the terminal cost g(x) := 1
d

∑d
i=1 |xi − x̄i|2 where x̄ ∈ Rd denotes given target values for the

final average temperatures of each cluster;

• the running cost defined on [0, T ] × Rd × [0, 1]d,

f(t, x, a) := λ

(
d∑

i=1

ρiai − rt

)2

+
1

d

d∑

i=1

(
γi(ρiai)2 + ηi(xi − ximax)

2
+ + ηi(ximin − xi)2+

)
,

where ρi := N iP i
max∑d

j=1 N
jP

j
max

;
∑d

i=1 ρ
iai gives the overall current consumption of the population

as a proportion of the maximum consumption
∑d

j=1N
jP j

max; r : [0, T ] 7→ R+
∗ denotes the tar-

get consumption profile for the overall consumption as a proportion of the maximum con-

sumption
∑d

j=1N
jP j

max; λ > 0 quantifies the incentive for the overall consumption to track

the target consumption profile r; γi > 0 quantifies the quadratic penalty favoring smooth

consumption profiles for cluster i; ηi > 0 is a parameter penalizing excursions outside of the

comfort interval [ximin, x
i
max] for cluster i average temperature.

Note that b verifies Assumption 3, f verifies Assumption 4 and g Assumption 2.

6.2 Simulation results

Consider the central controller problem on a time horizon T = 3600s, with a population of hetero-

geneous air-conditioners composed of d = 1, 2, 5, 10, 15, 20 clusters with N i = 20 identical loads

in each cluster. We specify the chosen parameters. In each case, κ = 2.5◦C/J and σi = 0.1◦Cs
1
2 ;

xout = 27◦C; θi[s−1] is chosen arbitrarily in [0.1, 0.97]; P i
max[W ] is chosen arbitrarily in [0.5, 5];

x0 = x̄[◦C] is chosen arbitrarily in [16, 27]; xmin = x̄−1.5◦C; xmax = x̄+1.5◦C; η = 1(◦C)−2; λ = 20;
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γi is chosen arbitrarily in [0.5, 1.5]. The target profile, r, used in simulations is obtained as the sum

of a nominal profile corresponding to the standard (uncontrolled) behavior of air-conditioners and

a deviation: r = rnom + dev. The standard dynamics of an (uncontrolled) air-conditioner is driven

by a cycling rule of ON/OFF decisions intended to keep the room temperature in [ximin, x
i
max].

When the air-conditioner is ON, it stays ON at P i
max until the temperature reaches ximin then it

switches OFF until the temperature reaches ximax. Then, the air-conditioner turns ON again and

begins a new cycle. The nominal profile rnom has been generated by averaging the consumption

of 1000 sets of d clusters of N i heterogeneous air-conditioners simulated independently according

to (6.1), with (αi,j
t )0≤t≤T following the cycling rule of ON/OFF decisions and with independent

initial conditions for temperature xi,j0 ∼ N (xi0, 1) and ON/OFF status αi,j
0 ∈ {0, 1}. The deviation

profile devt =
20
100 ∗ sin(2πtT

) induces a maximal deviation of 20% from the nominal profile and in-

tegrates to zero on the time horizon [0, T ] so that the target profile corresponds to the same energy

consumed on the period [0, T ] as the nominal profile.

The time step is δt = 60s. We have implemented Algorithm 1 with a backward grid initiated

withN (mn = x̄, Qn = Id). For comparison, we have also implemented the standard Monte-Carlo

regression scheme using a forward grid simulated according to (6.2) with a deterministic con-

trol αs approximating the nominal dynamics (according to the ON/OFF cycling rule) described

previously. In both cases, we have used second order polynomials (p = 2) as basis functions

for regressions. We have considered N = 102, 103, 5 × 103, 104, 2 × 104, 5 × 104, 105 Monte-

Carlo paths for the regression grids. To evaluate the statistical performances of the forward

and backward grids, we have implemented each algorithm independently Ngrid = 100 times for

each value of N . For each run, i = 1, · · · , Ngrid, the value functions estimate (vik)0≤k≤n (and

the corresponding gradients) was used to implement the associated strategy αi = (αi
k)0≤k≤n on

M = 1000 i.i.d. simulations of the Brownian motion W , ω1, · · · , ωj , · · · , ωM . Then the result-

ing cost J (αi, ωj) := g(X0,x0,α
i

T (ωj)) +
∫ T

0 f(r,X0,x0,α
i

r (ωj), αr)dr has been computed. The ex-

pected cost has been estimated as E[J (αi, ωj)] ≈ Ĵ := 1
MNgrid

∑Ngrid

i=1

∑M
j=1 J (αi, ωj) . The vari-

ance of Ĵ is estimated by σ̂2
Ĵ

obtained by replacing, expectations and variances by their empirical

approximation based on the sample,
(
J (αi, ωj), , i ∈ [[1, Ngrid]] j ∈ [[1,M ]]

)
, in the expression

σ̂2
Ĵ
≈ V ar(Ĵ) = 1

MNgrid
E
[
V ar

(
J (αi, ωj) |αi

)]
+ 1

Ngrid
V ar

(
E
[
J (αi, ωj) |αi

])
, for each i and j. We

have reported on Table 1 (resp. Table 2) the empirical mean Ĵ and within parenthesis the em-

pirical standard deviation σ̂
Ĵ

obtained for each considered pair (d,N) for the forward grid (resp.

backward grid).

One can observe that the backward grid performs surprisingly well providing with high precision

the lowest expected cost achieved by both methods (or almost) with only N = 5×103 paths what-

ever the dimension d of the control problem. This is consistent with our intuition based on the

idea that localizing the grid around the optimally controlled process paths would bring efficiency

and reduce the impact of dimension. The particularity of this problem is that the optimally con-

trolled process is naturally localized in a small region of the state space because, on the one hand a
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target value, x̄, is prescribed for the terminal temperatures (by the terminal cost) and on the other

hand a target profile is assigned for the overall power consumption. The backward grid has the

advantage of being initiated around the target state and of following dynamics approaching the

optimal strategy. This allows to concentrate the backward grid in the small region of interest so

that restricting the regression basis to polynomials of order p = 2 seems already enough to obtain

reasonable results. However, one can observe some cases where the forward grid (for N = 105 and

d ≤ 5) has performed slightly better than the backward grid. This can be interpreted by the fact

that the forward grid knows the initial condition x0 while the backward grid has no information

about it. To further improve the performances Algorithm 1, an idea would be to find a way to ex-

ploit that information on the initial condition. This could constitute the subject of future research.

N d=1 d=2 d=5 d=10 d=15 d=20

102 8.68(0.98) 17.28(1.01) 42.04(1.32) 34.79(0.66) 21.27(0.12) 18.97(0.09)

103 7.61(6e−4) 8.24(0.07) 14.83(0.64) 28.14(0.64) 37.91(0.60) 34.83(0.45)

5× 103 7.60(3e−4) 7.78(2e−3) 8.98(0.21) 19.84(0.52) 35.31(0.71) 33.57(0.52)

104 7.60(3e−4) 7.77(1e−3) 7.69(0.06) 16.06(0.38) 32.20(0.63) 30.66(0.59)

2× 104 7.60(3e−4) 7.77(2e−4) 7.37(0.02) 13.58(0.40) 28.97(0.71) 28.17(0.67)

5× 104 7.60(3e−4) 7.79(2e−4) 7.28(2e−3) 7.96(0.25) 26.69(0.65) 26.21(0.69)

105 7.61(3e−4) 7.78(1e−4) 7.27(8e−4) 6.12(0.08) 22.54(0.56) 23.26(0.59)

Table 1: Mean, Ĵ (standard deviation, σ̂
Ĵ

) of the simulated cost with the forward grid strategy

N d=1 d=2 d=5 d=10 d=15 d=20

102 7.61(3e−4) 7.78(7e−4) 7.41(6e−3) 7.31(0.12) 28.14(0.18) 26.01(0.12)

103 7.61(3e−4) 7.77(2e−4) 7.39(1e−3) 6.18(3e−3) 8.19(6e−3) 7.87(1e−2)

5× 103 7.61(3e−4) 7.77(2e−4) 7.38(8e−4) 6.17(1e−3) 8.15(2e−3) 7.74(3e−3)

104 7.61(3e−4) 7.77(2e−4) 7.38(5e−4) 6.17(1e−3) 8.15(2e−3) 7.73(3e−3)

2× 104 7.61(3e−4) 7.77(2e−4) 7.38(3e−4) 6.17(8e−4) 8.15(1e−3) 7.73(2e−3)

5× 104 7.60(3e−4) 7.79(1e−4) 7.38(2e−4) 6.16(5e−4) 8.14(8e−4) 7.72(1e−3)

105 7.61(3e−4) 7.79(1e−4) 7.39(2e−4) 6.16(4e−4) 8.14(7e−4) 7.72(9e−4)

Table 2: Mean Ĵ (standard deviation, σ̂
Ĵ

) of the simulated cost with the backward grid strategy

7 Appendix
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7.1 A sufficient condition to obtain an equivalent probability

Lemma 7.1. We recall that b̃ was defined in (3.17). Let W be an (Ft)t∈[0,T ]-Brownian motion and X be a

solution of

Xt = X0 +

∫ t

0
b̃ (s,Xs) ds+

∫ t

0
σ (s) dWs, t ∈ [0, T ], (7.3)

where X0 is a Gaussian random vector independent of W . Set Lt := σ (t)−1 b̃ (t,Xt) , t ∈ [0, T ]. Then, the

Doléans exponential E
(
−

d∑

i=1

∫ ·

0
Li
sdW

i
s

)
:= exp

(
−
∫ ·

0

d∑

i=1

Li
sdW

i
s −

1

2

∫ ·

0
|Ls|2 ds

)
is an (Ft)t∈[0,T ]-

martingale.

Proof. Following Corollary 5.14 in [24], it is sufficient to find a constant time step subdivision

(tn)n∈N of [0, T ] such that, for all n ∈ N,

E

(
exp

(
1

2

∫ tn+1

tn

|Ls|2 ds
))

<∞.

Combining Jensen’s inequality and Fubini’s theorem, this is fulfilled in particular if for all n ∈ N,

1

δ

∫ tn+1

tn

E

(
exp

(
δ |Ls|2

2

))
ds <∞,

where δ := tn+1 − tn. Let s ∈ [0, T ]. Then,

|Ls|2 ≤ 2δ
∣∣∣∣σ−1

∣∣∣∣2
∞

(
||a||2∞ |Xs|2 + ||c||2∞

)
, P− a.s,

since a, c are bounded and σ−1 is also bounded being continuous on [0, T ]. Furthermore, by item

1. of Lemma 3.6 and (3.21), X is a Gaussian process with mean function mX (resp. covariance

function QX) solving the first line of equation (3.1) (resp. (3.2)) with initial condition E (X0) (resp.

Cov (X0)).

Taking into account the fact that mX is bounded (since continuous), it suffices to find a subdivision

such that

E

(
exp

(
1

2
Kδ |Z|2

))
<∞,

where Z ∼ N (0, Id) and K := 4
∣∣∣∣σ−1

∣∣∣∣2
∞
||a||2∞

∣∣∣∣QX
∣∣∣∣
∞

> 0. This is the case in particular if

Kδ < 1, which ends the proof.

7.2 Proof of the local Lipschitz property of the cost functional J

Lemma 7.2. Suppose the validity of Assumption 3. Suppose in addition that the functions g and x 7→
f (t, x, α) , (t, α) ∈ [0, T ] ×A0 are locally Lipschitz with polynomial growth gradient (uniformly in t and

α). Then, for each (t, α) ∈ [0, T ]×A0,

x 7→ J (t, x, α)

is locally Lipschitz, uniformly in t and α.
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Proof. We give here a proof of the local Lipschitz property for the term involving the function g

since the other term can be treated in the same way.

Let (t, α) ∈ [0, T ]×A0 and x, y in a compact set of Rd. Let K be the Lipschitz constant of b. Using

in particular the Cauchy-Schwarz inequality, we get

∣∣∣E
(
g
(
Xt,x,α

T

))
− E

(
g
(
Xt,y,α

T

))∣∣∣ ≤
∫ 1

0
E

(∣∣∣∇xg
(
aXt,x,α

T + (1− a)Xt,y,α
T

)∣∣∣
∣∣∣Xt,x,α

T −Xt,y,α
T

∣∣∣
)
da

≤ eKT

∫ 1

0
E

(∣∣∣∇xg
(
aXt,x,α

T + (1− a)Xt,y,α
T

)∣∣∣
)
da |x− y|

(7.4)

where we have used the estimate
∣∣∣Xt,x,α

T −Xt,y,α
T

∣∣∣ ≤ eKT |x− y|, following from the identity

∣∣Xt,x,α
r −Xt,y,α

r

∣∣ ≤ |x− y|+K

∫ r

t

∣∣Xt,x,α
s −Xt,y,α

s

∣∣ ds, r ∈ [t, T ],

together with Gronwall’s lemma. In view of (7.4), the point is proved if

∫ 1

0
E

(∣∣∣∇xg
(
aXt,x,α

T + (1− a)Xt,y,α
T

)∣∣∣
)
da

is bounded uniformly in t, x, y, α. This follows from polynomial growth of ∇xg, classical moment

estimates for sups∈[t,T ]

∣∣∣Xt,z,α
s

∣∣∣ , z ∈ Rd (see for example Corollary 2.5.12 in [25]) and the fact x, y

lie in a compact set.

7.3 A simplified version of the envelope theorem

Lemma 7.3. Let Λ be an arbitrary set and O be an open subset of Rd. Let x ∈ Rd. Let F : O × Λ 7→ R

such that for all λ ∈ Λ, F (·, λ) and V : x 7→ supλ∈Λ F (x, λ) are differentiable at the point x. Suppose

also that Λ∗ (x) = {λ ∈ Λ, V (x) = F (x, λ)} is not empty. Then,

∇xV (x) = ∇xF (x, λ∗
x) ,

for every λ∗
x ∈ Λ∗ (x).

Proof. Let x as in the proposition statement and h ∈ Rd. Let λ∗
x ∈ Λ∗ (x). Then, using in particular

the differentiability of F (·, λ∗
x) at the point x, we get

V (x+ h)− V (x) ≥ F (x+ h, λ∗
x)− F (x, λ∗

x)

= 〈∇xF (x, λ∗
x) , h〉 + o0(|h|). (7.5)

By the differentiability of V at the point x, (7.5) implies

〈∇xV (x)−∇xF (x, λ∗
x) , h〉 ≥ o0 (|h|) . (7.6)
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Setting h to −h in (7.5) and proceeding as before, we obtain

〈∇xV (x)−∇xF (x, λ∗
x) , h〉 ≤ o0 (|h|) . (7.7)

Combining (7.6) and (7.7), we get
〈
∇xV (x)−∇xF (x, λ∗

x) ,
h

|h|

〉
−→
h→0

0,

which forces∇xV (x) = ∇xF (x, λ∗
x). This ends the proof.

Acknowledgments

The work was supported by a public grant as part of the Investissement d’avenir project, reference

ANR-11-LABX-0056-LMH, LabEx LMH, in a joint call with Gaspard Monge Program for optimiza-

tion, operations research and their interactions with data sciences.

References

[1] Ch. Bender and R. Denk. A forward scheme for backward SDEs. Stochastic Processes Appl.,

117(12):1793–1812, 2007.

[2] Ch. Bender and T. Moseler. Importance sampling for backward SDEs. Stochastic Anal. Appl.,

28(2):226–253, 2010.

[3] Ch. Bender and J. Steiner. Least-squares Monte Carlo for backward SDEs. In Numerical

methods in finance. Selected papers based on the presentations at the workshop, Bordeaux, France,

June 2010, pages 257–289. Berlin: Springer, 2012.

[4] B. Bouchard and N. Touzi. Discrete-time approximation and Monte Carlo simulation of back-

ward stochastic differential equations. Stochastic Process. Appl., 111:175–206, 2004.

[5] R. Bronson and G. B. Costa. Matrix Methods: Applied Linear Algebra. Academic Press, 2008.

[6] D. S. Callaway and I. A. Hiskens. Achieving controllability of electric loads. Proceedings of the

IEEE, 99(1):184–199, 2010.

[7] M. G. Crandall, H. Ishii, and P.L. Lions. User’s guide to viscosity solutions of second order

partial differential equations. Bulletin of the American Mathematical Society, 27(1):1–67, 1992.

[8] F. Delarue and S. Menozzi. An interpolated stochastic algorithm for quasi-linear PDEs. Math.

Comp., 77(261):125–158 (electronic), 2008.

30



[9] C. Di Girolami and F. Russo. About classical solutions of the path-dependent heat equation.

Random Oper. Stoch. Equ., 28(1):35–62, 2020.

[10] I. Exarchos and E. A. Theodorou. Stochastic optimal control via forward and backward

stochastic differential equations and importance sampling. Automatica, 87:159–165, 2018.
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