Cardiotoxicity after breast cancer radiotherapy: relationship between cardiac doses and early myocardial dysfunction (BACCARAT study) Valentin Walker, 2nd year PhD student Institut de Radioprotection et de Sureté Nucléaire (IRSN) Olivier Lairez, Olivier Fondard, Atul Pathak, Christain Chevelle, Gaëlle Jimenez, Jeremy Camilleri, David Broggio, Sylvie Derreumaux, Marie- Odiel Bernier, Dominique Laurier, Jean Ferrières, Sophie Jacob ICRR 2019 - Wednesday 28th August ## **BACKGROUND** - Radiotherapy (RT): a major component of breast cancer treatment ¹ - Breast cancer (BC) RT: irradiation of the heart during the treatment ² - Heart irradiation: associated with long term cardiac complication - Long before the detection of cardiac complication, early cardiovascular dysfunctions can appear ³ - 2D speckle-tracking echocardiography (2DSTE): Allows early detection of left ventricular dysfunction with longitudinal strain measurement ⁴ ^{1.} Clarke M. et al. Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet Lond Engl 2005 Dec 17;366(9503):2087–2106. PMID:16360786 ^{2.} Jacob S, Ferrières J. Breast cancer radiotherapy: A case of double jeopardy. Arch Cardiovasc Dis 2016 Nov;109(11):587-590. PMID:27836785 ^{3.} Erven K. et al. Subclinical Cardiotoxicity Detected by Strain Rate Imaging up to 14 months After Breast Radiation Therapy. Int J Radiat Oncol. 2013;85:1172-8. ^{4.15.} Lo Q, Hee L, Batumalai V, Allman C, MacDonald P, Lonergan D, et al. Strain Imaging Detects Dose-Dependent Segmental Cardiac Dysfunction in the Acute Phase After Breast Irradiation. Int J Radiat Oncol. 2017;99:182–90. # **RESEARCH QUESTION** - Early cardiotoxicity induced by current RT methods for the treatment of breast cancer? - Subclinical evolution ? ## **Objective** Use two-dimensional speckle tracking echocardiography to assess whether myocardial changes occurring after breast cancer RT are associated with doses absorbed by the heart and its substructures ## PATIENTS AND METHODS (1/4) ## ■ The BACCARAT study 5 - Prospective monocentric cohort: inclusions at the Clinique Pasteur in Toulouse, France (2015-2017) - 114 patients included with unilateral breast cancer - ➤ No history of cardiovascular disease or cancer - ➤ Treated by RT (3D-CRT), without chemotherapy - ➤ Aged 40 to 75 years old - End of follow-up early 2020 # PATIENTS AND METHODS (2/4) ## BACCARAT: from inclusion to 24-month follow-up Inclusion Left or right breast cancer without metastases Chemotherapy free No history of cardiovascular disease Before RT **V0** Initial assessment Blood sample 1 CARDIO 1 Echocardiography CTCA **Personal dosimetry** **V1** At the end of RT **Blood sample 2** **V6** 6 months after RT **Blood sample 3** **CARDIO 2** Echocardiography **V24** 24 months after RT **Blood sample 4** CARDIO 3 Echocardiography CTCA # PATIENTS AND METHODS (3/4) - Concerning myocardial strain: available before RT and 6 months after RT - Measured via Two-dimensional speckle tracking echocardiography (2DSTE) - Allows the analysis of the Global Longitudinal Strain (GLS) # PATIENTS AND METHODS (4/4) ## Cardiac dosimetry - Work performed by D. Broggio and S. Derreumaux (IRSN) - Several structures (whole heart, left ventricle, the left anterior descending artery ...) with mean, D2, min-max dose... + Dose-Volume Histogram (DVH) ## RESULTS (1/3) - The study consisted of 79 females patients with unilateral breast cancer - Mean age = 58 ± 9 years - Most patients underwent breast conserving surgery (97%) - Most patient received hormonal therapy (76%) #### Dosimetric data from patients in the BACCARAT study | | | Left-sided BC patients
N=64 | | Right-sided BC patients
N=15 | | |----------------|------------------------------|--------------------------------|------------------------|---------------------------------|------------------| | | | Mean ± SD
Median (Q1-Q3) | Range | Mean ± SD
Median (Q1-Q3) | Range | | Heart | Average dose (Gy)
V20 (%) | 3.05 ± 1.31
3 (1 – 6) | 0.87 – 6.37
0 - 10 | 0.65 ± 0.48
0 | 0.25 – 2.17
0 | | Left Ventricle | Average dose (Gy)
V20 (%) | 6.72 ± 3.35
11 (4 – 18) | 1.16 – 13.42
0 - 26 | 0.09 (0.08 – 0.12) | 0.04 - 1.24
0 | # RESULTS (2/3) ### Echocardiographic measurements from patients in the BACCARAT study | | All | Left-sided | Right-sided | |-----------------------------|-------------|-------------|-------------| | | BC patients | BC patients | BC patients | | | N=79 | N=64 | N=15 | | GLS (in %) | | | | | Before RT | -16.1 ± 2.7 | -16.0 ± 2.6 | -16.2 ± 2.8 | | RT+6months | -15.1 ± 3.2 | -15.0 ± 3.0 | -15.2 ± 4.0 | | p-value | 0.01 | 0.02 | 0.26 | | GLS decrease > 10% after RT | 37 (47%) | 31 (48%) | 6 (40%) | | | | | | # RESULTS (3/3) ## Logistic regressions on a cardiotoxicity criterion Subclinical cardiotoxicity event: relative decrease in strain > 10% between 0 and 6 months | | Univariate analysis | | Multivariate analysis* | | |-----------------------------------|---------------------|---------|------------------------|---------| | | OR (95% CI) | p-value | OR (95% CI) | p-value | | Laterality of BC (left vs. right) | 1.41 (0.45 – 4.42) | 0.55 | - | - | | Heart | | | | | | Dmean (Gy) | 1.37 (1.01 – 1.86) | 0.04 | 1.21 (0.87 – 1.71) | 0.26 | | V20 (%) | 1.20 (1.01 – 1.43) | 0.04 | 1.13 (0.93 – 1.36) | 0.23 | | Left Ventricle | | | | | | Dmean (Gy) | 1.14 (1.01 – 1.28) | 0.03 | 1.09 (0.96 – 1.25) | 0.17 | | V20 (%) | 1.08 (1.01 – 1.14) | 0.02 | 1.05 (0.99 – 1.12) | 0.12 | | LV V20 > 15% (%) | 5.10 (1.73 – 15.00) | 0.03 | 3.49 (1.12 – 10.91) | 0.03 | ^{*}Adjusted for BMI, hypercholesterolemia and Hormonotherapy. ## DISCUSSION - A decrease in strain as previously observed (Erven et al., Lo et al., etc.) - Relationship between heart dose and subclinical myocardial deformation - Multivariate analysis: no significant associations after adjustment for nonradiation factors - Results to be confirmed with longer follow-up: need for information at V24 - Largest population at the moment but.... - ... Still relatively small (MEDIRAD EARLY HEART ⁶ study) ^{6.} Walker Vetal. Early Detection of Cardiovascular Changes After Radiotherapy for Breast Cancer: Protocol for a European Multicenter Prospective Cohort Study (MEDIRAD EARLY HEART Study) JMIR Res Protoc 2018:7(10):e 178 # **CONCLUSION / PERSPECTIVES** ■ First study to investigate the associations between BC RTinduced cardiac doses and subclinical LV dysfunction ## LV exposure should be further investigated: - Patients with V20 of the LV >15% - Important excess risk of subclinical LV dysfunction - Ongoing collection of 24-month 2DSTE data # THANK YOU FOR YOUR ATTENTION #### **Contact:** valentin.walker@irsn.fr walker.v.57@gmail.com Acknowledgements: Fédération Française de Cardiologie, Électricité de France (EDF) Conflict of interest: none declared