Computing the Hilbert Class Fields of Quartic CM Fields Using Complex Multiplication
Résumé
Let K be a quartic CM field, that is, a totally imaginary quadratic extension of a real quadratic number field. In a 1962 article titled On the classfields obtained by complex multiplication of abelian varieties, Shimura considered a particular family {F_K(m) : m ∈ Z >0 } of abelian extensions of K, and showed that the Hilbert class field H_K of K is contained in F_K(m) for some positive integer m. We make this m explicit. We then give an algorithm that computes a set of defining polynomials for the Hilbert class field using the field F_K(m). Our proof-of-concept implementation of this algorithm computes a set of defining polynomials much faster than current implementations of the generic Kummer algorithm for certain examples of quartic CM fields.
Domaines
Théorie des nombres [math.NT]Origine | Fichiers produits par l'(les) auteur(s) |
---|