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ABSTRACT

Weakly supervised object detection (WSOD) using only image-level annotations has attracted a grow-
ing attention over the past few years. Whereas such task is typically addressed with a domain-specific
solution focused on natural images, we show that a simple multiple instance approach applied on pre–
trained deep features yields excellent performances on non-photographic datasets, possibly including
new classes. The approach does not include any fine-tuning or cross-domain learning and is therefore
efficient and possibly applicable to arbitrary datasets and classes. We investigate several flavors of
the proposed approach, some including multi-layers perceptron and polyhedral classifiers. Despite its
simplicity, our method shows competitive results on a range of publicly available datasets, including
paintings (People-Art, IconArt), watercolors, cliparts and comics and allows to quickly learn unseen
visual categories.

© 2021 Elsevier Ltd. All rights reserved.

. Introduction

The task of object detection has witnessed great progresses
ver the last few years, most notably through the development
f clever and pragmatic combinations of region proposal meth-
ds and deep neural network architectures (Ren et al., 2015).
evertheless, the training of such architectures is well known
necessitate huge databases of manually annotated images. In
e case of object detection, these annotations are extremely

ostly. It requires around one minute for a non expert to draw
bounding box around an object (Su et al., 2016). For more

pecialized datasets, such as artworks databases for instance,
xperts are likely to be reluctant to such annotations. The usual
ay to annotate such databases is to rely on specialized micro-
sks platforms such as Amazon Mechanical Turk. This, by

reating social exploitation and excessive precariousness, poses
erious ethical concerns (Tubaro and Casilli, 2019). For these
easons, reducing the annotation stage is of great importance. In
articular, many Weakly Supervised Object Detection (WSOD)
ethods have been developed (Bilen and Vedaldi, 2016; Zhu

t al., 2017; Tang et al., 2018b) in order to train detection ar-

∗∗Corresponding author:
e-mail: nicolas.gonthier@telecom-paris.fr (Nicolas Gonthier)

chitectures using annotations only at image level, thus avoidi
the precise localization of objects.

On the other hand, many different image modality exist
which object detection is desirable. Such modality include ph
tographs taken in difficult conditions, as it is common in
case of autonomous driving (Vu et al., 2019), different imagi
modality as in medical (Yang et al., 2019) or satellite ima
ing (Li et al., 2018) or even hand created images such as a
works, clipart, etc. In such cases, available databases may
small and it is essential to be able to reuse information gather
on existing large photographic databases, a strategy known
domain adaptation (Saenko et al., 2010).

In particular, methods for the weakly supervised detection
objects have been developed to deal with domain adaptati
But while this problem has been extensively studied for pho
graphic images, much less attention has been paid to WSO
in the case of strong domain shifts, as in the case of no
photographic images, possibly including domain-specific
sual category. Some works focus on cross-domain weakly
pervised object detection (i.e. where bounding boxes are ava
able for the same visual category but in an other domain th
the target one), as in (Inoue et al., 2018; Fu et al., 2020).

Methods that detect objects in photographs have been d
veloped thanks to massive image databases on which seve
 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
ttps://creativecommons.org/licenses/by-nc/4.0/
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lasses (such as cats, people, cars) have been manually localised
ith bounding boxes. The PASCAL VOC (Everingham et al.,
010) and MS COCO (Lin et al., 2014) datasets have been
rucial in the development of detection methods and the more
ecent Google Open Image Dataset (2M images, 15M boxes
or 600 classes) is expected to push further the limits of detec-
on. Even though large databases of artistic images have been
uild by many cultural institutions or academic research teams,
.g. (Rijksmuseum, 2018; MET, 2018; Wilber et al., 2017),
ese databases include image-level annotations and, to the best

f our knowledge, none includes location annotations. Besides,
anually annotating such large databases is tedious and must

e performed each time a new category is searched for. There
therefore a strong need for methods permitting the weakly su-

ervised detection of objects for non-photographic images. In
articular, only a few studies have been dedicated to the case of
ainting or drawings.
Moreover, these studies are mostly dedicated to the cross de-

iction problem: they learn to detect the same objects in pho-
graphs and in paintings, in particular man-made objects (cars,

ottles ...) or animals. While these may be useful in some
ontexts, it is obviously needed, e.g. for art historian, to de-
ct more specific objects or attributes such as ruins or nudity,

nd characters of iconographic interest such as Mary, Jesus as
child or the crucifixion of Jesus, for instance. These last

ategories can hardly be directly inherited from photographic
atabases.
In this work, we take interest in weakly supervised object

etection in the case of extreme domain shifts, namely non-
hotographic images, possibly addressing the detection of new,
ever seen classes. We claim that an efficient way to perform
is task is to rely on a simple Multiple Instance Learning (MIL)

aradigm that is applied directly to the deep features of a pre-
ained network. This approach does not involve any cross-
omain learning step and can therefore be applied to arbitrary
atasets and classes. Beside being efficient, as we will see in the
xperimental section, such a strategy also enables one to have
elatively small training times. First, no fine-tuning is involved
nd second, we introduce a MIL strategy that is much lighter
an the classical SVM approaches (Andrews et al., 2003).
In order to illustrate the usefulness and efficiency of the ap-

roach, we focus on databases of man-made images, namely
aintings, drawings, cliparts or comics. This poses a serious
hallenge because of both the lack or scarcity1 of annotated
atabases and the great variety of depicting styles. Being able

detect objects in such image modality has become an impor-
nt issue, mostly because of the large digitization campaigns
f fine arts. These include digital scans and photographs of

1Classical databases used for training networks are made of millions of natu-
l images (Imagenet (Russakovsky et al., 2015)(millions of images), PASCAL
OC (Everingham et al., 2010), MS COCO (Lin et al., 2014) Google Open
age Dataset (9M images) (Kuznetsova et al., 2020)). In contrast, datasets

r recognition in non-photographic images are rare and usually only contain-
g image-level annotations, as in the iMet dataset (375k) (Zhang et al., 2019)

r BAM! (2.5M) (Wilber et al., 2017). The very few datasets with bounding
oxes such as PeopleArt (Westlake et al., 2016), used later in this paper, are
ery small.

artworks (mainly done by the museums and other public
stitutions) and scans of archive photographs (such as the C
Foundation archive (Seguin et al., 2018)).

In a previous conference paper (Gonthier et al., 2018)
have shown that the proposed method is a valid strategy wh
dealing with extreme domain shifts. In this paper, we fully d
velop the approach, exploring several extensions of the mo
such as a multi-layers version of the Multiple Instance perce
tron and a polyhedral version obtained by aggregating seve
linear classifiers. We also thoroughly evaluate the performanc
of the approach by comparing it to several state-of-the-art a
proaches on databases with challenging domain shifts, inclu
ing paintings, drawings and cliparts. The experimental secti
shows that in such cases, the approach outperforms metho
specially developed for the considered databases, as well
classical MIL approaches and some state-of-the-art WSOD a
proaches.

The paper is organized as follows. In the next section we
view WSOD algorithms and MIL methods as well as some de
learning applications to recognition tasks in non-photorealis
images. In section 3, we then present our algorithm as well
some of its variants. In section 4, extensive experiments
presented, including comparisons to alternative algorithms a
study of sensitivity of our method to its parameters.

2. Related Work

In this section we first review some state-of-the-art WSO
algorithms (an exhaustive review of this field is beyond
scope of the paper) and then explore MIL methods. Even
ally, we make a brief survey of applications of deep learni
for visual recognition in non-photographic images.

2.1. Weakly Supervised Object Detection

Computer vision methods often treat WSOD as a Multi
Instance Learning (MIL) problem (Dietterich et al., 1997),
pecially in realistic cases where objects are not necessarily ce
tered and with cluttered background (Nguyen et al., 2009; S
and Tao Xiang, 2011; Song et al., 2014; Bilen and Vedal
2016). In such cases, the image is viewed as a collection
potential instances of the object to be found (for example cro
of various sizes and positions).

A sketch of a typical weakly supervised detector is as f
lows:

1. Proposal generation: extract a certain number of regio
of interest from the image.

2. Feature extraction: compute a feature vector per regi
(off the shelf, handcrafted, CNN based. . . ).

3. Classification: this is often done with a MIL algorithm
obtain an instance classifier.

These general steps can be alternated or entangled (for exa
ple to enhance the region proposition or feature extraction pa
based on the performance of the final classifier). In (Song et
2014) steps 1 and 2 are handled by extracting the features (a
regions) proposed by RCNN (Girshick et al., 2014) . These f
tures are passed to a smoothed version of SVM that serves a
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IL algorithm. Particular attention is paid to the initialization
hase, which is crucial due to the fact that the MIL problem is
ssentially non-convex even if the SVM algorithm is.

More recent methods tend to entangle all the mentioned
teps in an end-to-end manner. For instance, some CNN based
ethods group feature extraction and classification (Bilen and
edaldi, 2016; Diba et al., 2017; Kantorov et al., 2016; Tang
t al., 2017a) whereas others group the three steps together
Zhu et al., 2017). Bilen and Vedaldi (2016) propose a Weakly
upervised Deep Detection Network (WSDDN) based on Fast
CNN (Girshick, 2015). It consists in transforming a pre-
ained network by replacing its classification part by a two
treams network (a region ranking stream and a classification
ne) combined with a weighted MIL pooling strategy. This
ork has been improved in many ways (Wan et al., 2018; Kan-
rov et al., 2016; Zhang et al., 2018a,b; Dong et al., 2017; Wan

t al., 2019). For instance, Tang et al. (2017b) refine the predic-
on iteratively through multistage instance classifier. Later, this
odel was improved by adding a clustering of the region pro-

osals (Tang et al., 2018b). In (Wan et al., 2018), the WSDDN
odel has been improved by adding two entropy term at the
ss function to minimize the randomness of object localization

uring learning, whereas in Wan et al. (2019), the authors pro-
ose to tackle the non-convexity of the MIL pooling by using a
eries of smoothed loss functions.

In (Li et al., 2016), a two steps strategy is proposed, first col-
cting good regions by a mask-out classification, then selecting
e best positive region in each image by a MIL formulation

nd then fine-tuning a detector with those propositions acting
s ground truth bounding boxes. This pseudo-labeling step is
ften used in the weakly supervised pipeline. In (Zhu et al.,
017) a region proposal generator is built using weak supervi-
ion. The feature maps are transformed into a graph then into
n objectness score map. This objectness score ponderates the
eature maps that are subsequently fed to a classification layer.
n (Arun et al., 2019) the authors proposed to train two collab-
rative networks one of it being a Conditional Network with
oisy extra-channel. The goal is to jointly minimize the dissim-
arity between the prediction distribution and the conditional
istribution.
It is worth noting that although CNN feature maps contain

ome localization information (Oquab et al., 2015), the main
ifficulty for weakly supervised detection is the construction
f an efficient box proposal model. Most works in the field
se effective unsupervised methods for region proposals such as
elective Search (Uijlings et al., 2013) or EdgeBoxes (Zitnick
nd Dollár, 2014).

.2. Generic Multiple-Instance Learning
As stated above, the problem of weakly supervised object

etection can be recast into a multiple instance learning (MIL)
roblem (Dietterich et al., 1997). More precisely, we are inter-
sted in instance classification as opposed to bag classification.
e want to find an object among several candidate boxes in or-

er to detect the object of interest. In (Andrews et al., 2003) a
olution based on iterative applications of a Support Vector Ma-
hine (SVM) has been proposed to solve the MIL problem. Ac-
ally two flavors are considered, mi-SVM and MI-SVM. In the

Fig. 1. Comparison of standard SVM based MIL models. The blue dot
lines show the hyperplanes learned by the models, and the blue circles sh
the instances used during the SVM training. Figure must be seen in col

case of mi-SVM, each element of positive bags is assigned a
bel and the SVM margin is imposed at the instance level. In
case of MI-SVM, the SVM margin is imposed the most posit
element of each positive bag and to the least negative elem
of each negative bag. In both cases, at test time, the learn
classifier can be applied at the instance level. In (Felzenszw
et al., 2010) a reformulation of MI-SVM is proposed and cal
latent SVM (LSVM). But in this work, a bag of instance re
resents the set of parts of an object and the MIL formulation
used to train an object detector with a fully-supervised traini

Several heuristics to solve the non convex-problem posed
the MIL have been proposed. For example, in (Gehler a
Chapelle, 2007) is introduced a new objective function that
to estimate the quantity of positive examples in a positive b
before using deterministic annealing to optimize it. In contr
to the MI-SVM method, the algorithm can consider several
ements as positive in the positive bag. In (Joulin and Ba
2012), the authors propose a convex relaxation of the softm
loss. A comprehensive review of SVM based MIL methods c
be found in (Doran and Ray, 2014). From this review it appe
that mi-SVM and MI-SVM are still competitive on the tas
studied there.

Figure 1 summarizes the instances on which the SVM m
gins are imposed in the most popular SVM based MIL metho

Another approach to the MIL problem is to use neural n
works whose architecture treats each instance symmetrica
before an explicit aggregation (max, average) is perform
From this point a classical neural network performs a clas
fication task (Ramon and Raedt, 2000; Zhou and Zhang, 200
An improvement using more recent deep learning buildi
blocks is proposed in (Wang et al., 2018). The aforemention
works did not focus on the instance classification performan
They all, by design, provide an instance classification netwo
(present the network with a bag consisting of one item).

From a recent survey (Carbonneau et al., 2016a) on multi
Instance Learning it appears that the most efficient algorithm
an instance level classification seems to be a clever variation
bagging and multiple classifiers to deal with multi-modal d
tributions (Carbonneau et al., 2016b).

Based on these surveys, we are driven to propose a meth
that mimics an SVM within a neural network. The main diff
ence between our approach and the SVM based MIL metho
is that iterations are performed during the training of the neu
network and the multi-modal nature of the objects to be fou
drives us to consider multiple linear classifiers of each cons
ered class.
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.3. Deep Learning for visual recognition in non-photographic
images

As almost all applications of computer vision, tasks dealing
ith hand-drawn or computer generated non-photographic im-

ges benefited from the resurgence of neural networks. One
oint in common between all works in the field is the reuse
f architectures that where originally designed for photographs
lassification. Some works use the pre-final features of a net-
ork as the only features retained to represent an image and
o not fine-tune the network for the task at hand. Other meth-
ds allow for a certain amount of fine-tuning and add a specific
etwork after the original architecture. Another significant dif-
erence between the papers we are going to cite is whether or
ot the considered classes where present in the training dataset
f the original network. In the simplest setting, features from a
re-trained network are retained and used to train a linear SVM
Crowley and Zisserman, 2014; Crowley, 2016), the task being
e recognition of classes already present in the original training

et the network was pre-trained on.
Several works have also shown that pre-trained CNN archi-

cture can be efficiently transferred for learning new semantic
isual categories, those networks either being used as features
xtractors (Crowley and Zisserman, 2014; Crowley, 2016) or
eing fine-tuned (Yin et al., 2016; Strezoski and Worning, 2018;
ilber et al., 2017).
A large body of works investigate the fine-tuning of CNN for

tyle recognition (Lecoutre et al., 2017; Mao et al., 2017; El-
ammal et al., 2018), material (Sabatelli et al., 2018), scene
Florea et al., 2017) or author classification (van Noord and
ostma, 2017). The use of CNN also opens the way to ef-
cient artwork analysis tasks, such as visual links retrieval
Seguin et al., 2016), posture estimation (Jenicek and Chum,
019), visual question answering (Bongini et al., 2020) and in-
tance recognition (Shen et al., 2019; Del Chiaro et al., 2019).
ome works try to tackle several of those tasks at the same
me (Garcia et al., 2019; Bianco et al., 2019). A survey about
achine learning for cultural heritage have been recently pub-
shed (Fiorucci et al., 2020).
The object detection problem (recognize and locate an ob-

ct) in artworks has been less studied. In (Westlake et al.,
016) and (Strezoski and Worning, 2018) it is proposed to fine-
ned a detection network in a fully supervised manner to detect

eople and classical Pascal VOC classes, respectively. In (In-
ue et al., 2018), an efficient pipeline is proposed to train a de-
ctor on new artistic modalities in a semi-supervised manner.
his approach requires natural images with bounding boxes an-
otation of those classes and involves a relatively costly style
ansfer procedure. In particular, this method only allows the
etection of object classes that are present and have been an-
otated in natural images. This specific problem have been re-
ently studied by different research teams (Saito et al., 2019; Fu
t al., 2020). The same is true for many works focusing on rec-
gnizing the same object categories in different modalities (Li
t al., 2017; Wilber et al., 2017; Thomas and Kovashka, 2018).
nly very few work have focused on visual categories that are
ew and specific to artworks (Lang et al., 2019; Gonthier et al.,
018). In (Lang et al., 2019), the authors proposed an interac-

tive search engine to detect objects in artistic images for obj
categories such as praying hands, cross or grape. In (Gonth
et al., 2018), the authors proposed a simple MIL classifier co
pled with Faster RCNN (Ren et al., 2015) to weakly learn
detect new visual categories such as Mary or Saint Sebasti
The present work extends the MIL model proposed in this p
per by allowing polyhedral classification and evaluate its p
formances on various modality such as paintings, drawings
cliparts.

3. Multiple instance perceptron for the weakly supervis
detection of objects

In this section, we first give the general motivation behi
this work, before recalling the classical MIL framework a
then introducing our approach.

3.1. Motivation

As explained earlier, we tackle in this paper the problem
weakly supervised object detection (WSOD) in the followi
sense : we assume that for each image to be analyzed, boun
ing boxes are available, together with a global classification
formation. Figure 2 illustrates the situation we face at traini
time. For each image and for a given category, we are give
set of bounding boxes and a global label, equal to +1 (the vis
category of interest is present at least once in the image) or
(the category is not present in this image).

Since we are especially interested by non-photographic i
ages, for which databases may be limited, we wish to keep
learning step as light as possible. We therefore choose to co
bine a pre-trained detector with a classical MIL strategy. F
the task of instance level classification, this approach can
used to weakly transfer an object detector to a new domain
to new visual category.

Now, the MIL framework involves the minimisation o
non-convex energy, which results in heavy computational cos
For this reason, efficient relaxation schemes have been p
posed (Joulin and Bach, 2012). In this paper we propose
simple and fast heuristic to this problem, together with seve
variants. This, combined with the fact that we avoid fine-tuni
by using features extracted from pre-trained CNNs, permit
flexible on-the-fly learning of new category in a few minutes

Fig. 2. Illustration of positive and negative sets of detections (bound
boxes) for the angel category.
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.2. The MIL framework
We give here some basic notations related to Multiple In-

tance Learning. Let B = {B1, B2, . . . BN} denotes a set of
bags, each bag Bi being a collection of feature vectors (in-

tances) : {Xi,1, Xi,2, . . . Xi,Ki } where Xi,k ∈ RM . To each feature
i,k is associated a label yi,k. In the MIL framework, each bag
associated a label which is positive if at least one instance is

ositive, and negative if all instances are negative. That is, the
ags labels Yi are defined as :

Yi =

{
+1 if ∃ k ∈ {1, . . . ,Ki} : yi,k = +1
−1 if ∀k ∈ {1, . . . ,Ki} : yi,k = −1

n this paper we consider the task of instance level classifica-
on, that is the task of infering the unknown instance labels yi,k

rom the known bag labels. Another classical MIL problem is
e one of bag-level classification.
In an object detection setting each feature vector will repre-

ent a region. As in a typical classification problem, the goal is
learn a prediction function fw, parametrized by w, so that the

redicted output fw(X) = Ŷ minimizes the empirical risk. The
pical way to do so is to minimize a loss function that measures
e correctness of the prediction over the training examples.
There are two main ways to tackle the fact that we only have

ag level ground truth information.
First, one can aggregate all the predictions of one bag to a

ingle prediction (at bag level) during training. Hence we can
rite ŷi = g({ŷi,k}k∈{1...Ki}) with g an aggregation function over
e elements of a bag i. In this case, the loss function can be
ritten as L(Yi, ŷi) = l(Yi, g({ŷi,k}k∈{1...Ki})).
Second, one can consider each instance of a bag individu-

lly (as in the mi-SVM case, see Figure 1) and the loss function
an be written as L(Yi, {ŷi,k}k∈{1...Ki}) = g(l(hi,k(Yi), {ŷi,k}k∈{1...Ki}))
here g is an aggregation function (usually an average), l a
enalty function and hi,k a modification function of the label
ssociated to the instance k and depending on the bag label Yi,
sually named a latent label (see (Felzenszwalb et al., 2010)).
f we consider that the label of a bag is equal to the label of
s instances, hi,k is the identity, otherwise it is a function from
−1, 1} to {−1, 1} depending on the bag and the instance.

.3. A multiple instance perceptron
In contrast with classical approaches to the MIL problem,

uch as (Andrews et al., 2003; Carbonneau et al., 2016b), based
n costly iterations of SVM or complex bagging methods, we
ropose a simple heuristic to solve the multiple instance prob-
m. It is a multiple instance extension of the perceptron

Rosenblatt, 1958) with a maximum taken over the instances
f a bag. Our model can be seen as a latent perceptron if we use
e same designation as (Felzenszwalb et al., 2010).
We denote our model MI-max as introduced in (Gonthier

t al., 2018). As we consider each class individually, we focus
n the case of binary classification.

We build on a linear model fw(Xi,k) = WT Xi,k + b with W ∈
M , b ∈ R, which we combine with a maximum aggregation

unction g = maxk∈{1...Ki} and a per example loss function equal

l(y, ŷ) = 1 − y Tanh(ŷ) = 1 − Tanh(yŷ). (1)

We also use a regularization term on the norm of W and
weighting of the two classes, so that the complete loss functi
is:

L(W, b) = 2 −
N∑

i=1

Yi

nYi

Tanh
(

max
k∈{1...Ki}

(
WT Xi,k + b

))
+C||W ||

with n1 the number of positive examples in the training set a
n−1 the number of negative examples.

As mentioned before, the intuition behind this formulation
that minimizing L(W, b) amounts to seek a hyperplane separ
ing the most positive element of each positive image from
least negative element of the negative image (i.e. from all
amples in the negative bags). Also this loss seeks to maxim
the margin.

If the hyperplane WT X + b = 0 exactly separates the m
positive examples of each positive bag from the set of all exa
ples of all negative bags, then replacing C,W and b by λC, 1

λ

and 1
λ
b respectively and taking λ to 0 will lead to a loss as clo

to 0 as desired. This implies that if the MIL problem adm
an exact linear solution, then our loss accepts it provided C
small enough. In the worst case scenario, its value is 4 (plus
regularization term).

One advantage of this formulation is that it can be tack
by a simple gradient descent, therefore avoiding the very cos
iterative procedures of other MIL solutions such as (Andre
et al., 2003). Taking the max over all instance of a bag is akin
what is done in MI-SVM (mentioned in section 2.2) when af
each full training of an SVM, a new representative element
each bag is selected for the next SVM training. We can swi
to a stochastic gradient descent by iterating on random batch
when the dataset is too big. Of course, since our loss is n
convex, we are not guaranteed to find the global minimizer
the function. To tackle this problem, we run r times the mo
with a random initialization and pick the best one on the traini
set evaluation of the loss function.

If we refer to the simple description of the WSOD standa
pipeline, we only focus on the multiple instance classificati
task and not on the boxes proposals algorithms, features extr
tion or refinement methods mentioned section 2.1.

3.4. From multiple instance learning to weakly supervised o
ject detection in images

In the context of Weakly Supervised Object Detecti
(WSOD), each bag i corresponds to an image and each instan
k corresponds to a candidate region to be labeled. We here
sume that candidate regions are returned by a classical detecti
network, together with a high level semantic feature vector
size M Xi,k and a class-agnostic objectness score si,k. We igno
the classification ability of the detection network: no classifi
tion label is used.

For simplicity, we consider only one class. Assume we ha
N images, with K bounding boxes. When an image is a posit
example (the visual category is present), it is given an imag
level label Yi = +1 when it is ); otherwise it is given the la
Yi = −1. The number of positive examples in the training se
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enoted by n1, and the number of negative ones by n−1. Train-
g a WSOD model from scratch, especially when the database
rather small and from another domain, is a very hard prob-

m. Thus, reusing as much as possible models that have been
ained on large datasets is advisable. In this paper, we will rely
n the faster RCNN detection network but other networks could
e used. We assume that features are associated to each box.
e do not rely on any classification information, but we assume
at an objectness score is associated to each box. The idea is
give more importance to the classification of boxes with the

ighest score. We observed that using the class-agnostic ob-
ctness score attached to each proposed box consistently gave
etter results (see section 4.3.1). We chose to multiply each

T Xi,k + b by the objectness score of the region k before taking
e maximum:

fw(Xi,k) =
(
si,k + ǫ

) (
WT Xi,k + b

)
, (3)

ith ǫ ≥ 0 and where si,k is the class-agnostic objectness score
f the region k, as returned by the detection network. The mo-
vation behind this formulation is that the score si,k, roughly a
lue that there is an object in box k, provides a prioritization
etween boxes. The same idea is used in the WSDDN model
Bilen and Vedaldi, 2016) or in MELM (Wan et al., 2018).

At test time, the instance level decision is made as before ac-
ording to the sign of

(
W⋆T x + b⋆

)
, since multiplication by a

ositive score does not change the sign. Indeed, the hyperplane
⋆, b⋆ is chosen to separate two classes and the loss L aims

t maximizing the margin with respect to this hyperplane. It
tands to reason that the instance level classification must be re-
ted to the relative position of the instance and the hyperplane.
evertheless, we will propose in section 4 a non maximal sup-
ression strategy that will once again use the objectness score to
lter the boxes proposed for each class. More precisely the non
aximal suppression algorithm will use the following score:

S (x) = Tanh{(s(x) + ǫ)
(
W⋆T x + b⋆

)
} (4)

hich mixes the objectness score s(x) and the signed distance
rom the hyperplane W⋆T x + b⋆.

We now present two natural extensions of our core model.
e first make use a neural network to transform the bare fea-
res Xi,k, so that the transformed features can be more relevant
the task at hand. Then, we investigate the interest of a poly-

edral separation instead of a hyperplane for classification.

.5. Extensions of our model

.5.1. One hidden layer network
In this extension, called MI-max-HL, the bare features Xi,k

re transformed by a hidden layer before the MI-max approach
applied. This can be summarized by modifying the function

w as follows:

fw(Xi,k) = ΩT
(
Tanh

(
WT Xi,k + b

))
+ β,

ith W ∈ RL×M , b ∈ RL, Ω ∈ RL, β ∈ R and L the dimension of
e hidden layer. When compared with MI-max the parameters
be learned are Ω, β,W, b for a total dimension of L + 1 + L ×
+L = L× (M+2)+1 compared to the original M+1 scalars.

We keep the function Tanh as activation function to be coher
with the previous model; using a ReLU instead has little eff
on the performance.

3.5.2. Multiple linear classifier model
As mentioned in the introduction, an improvement of the l

ear model consists in learning several hyperplanes in paral
so that the binary classification is performed in a collaborat
manner instead of selecting the best hyperplane. The con
butions of several hyperplanes are gathered with a maximu
function, so that the model can be defined as:

fw(Xi,k) = max j∈{1...r}
(
WT

j Xi,k + b j

)

At each iteration of the gradient descent only one of the co
ple (W j, b j) is updated. For the inference the r hyperplanes
used.

This model, named Polyhedral MI-max yields a conca
polyhedral boundary between the two classes. The concept
convex polyhedral separability has been introduced by Megid
(1988) and well studied in the framework of polyhedral a
piece-wise linear classifier. In our case, this allows one to
more complex boundary at a modest extra-cost compared t
kernel SVM.

These models will be experimentally compared in section

3.6. Discussions
The MIL part of our model MI-max-HL is close in spirit

the multiple instance neural networks proposed by Ramon a
Raedt (2000) and Zhou and Zhang (2002)2 and further extend
in (Wang et al., 2018). The best way to aggregate instance le
predictions in order to find a classifier separating each of
individual vectors Xi,k of each bag at test time is still an ope
problem. Some works use the max operator (Zhou and Zha
2002), the average operator or the Log-Sum-Exponential (R
mon and Raedt, 2000) for the pooling. Indeed, since the tra
ing is done with only bag level information, at test time
learned classifier must be able to handle each instance alm
independently from the others because of the variety of obje
that may appear in the test image.

None of these works use such approach for instance le
classification and even less for weakly supervised object det
tion. We include in the experimental comparisons some app
cations (that we will call MI net or mi net (Wang et al., 201
of this MIL methodology to the same deep features used in o
method. These can be seen as variations on the general a
proach proposed in this paper.

4. Experiments

4.1. Experimental Setup
Features extraction: We use the Faster RCNN detecti

network (Ren et al., 2015) as a feature extractor and regi
proposal algorithm. We extract 300 regions per image alo
with their high-level features3 and the class-agnostic objectn

2These models involve a sigmoid activation and they are trained wit
quadratic loss l(y, ŷ) = (y − ŷ)2 and no re-initialization (r = 0).

3The output of layer fc7 often called 2048-D.
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rate
core attached to each proposed box by the Region Proposal
etwork (RPN). Let us stress that, by using Faster R-CNN, our

ystem uses a subpart that has been trained on databases with
ounding boxes ground truth. In WSOD setups such as (Bilen
nd Vedaldi, 2016; Zhu et al., 2017; Tang et al., 2018a), the
odels have not seen any bounding boxes, even on different
odality. Observe nevertheless that, in contrast with domain

daptation methods such as (Inoue et al., 2018), our method
llows the detection of new classes.

According to Kornblith et al. (2018), the ResNet family of
etworks appears to be the best architecture for transfer learning
y feature extraction. Among this family we chose ResNet 152
yers trained on MS COCO (Lin et al., 2014). Therefore, the
ackbone we used has been trained on ImageNet, then fine-
ned on MS COCO. Remember that we chose not to fine-tune
e backbone in order to provide a fast and flexible tool that can

e used on small data sets. As a consequence, the backbone
f our model only saw photographs for its two-phase training
ImageNet, MS COCO).

Parameters of the models: For training our MIL models, we
se a batch size of 1000 examples (for smaller sets, all features
re loaded into the GPU), 300 iterations of gradient descent for
e linear model, performed with a constant learning rate of

.01 and ǫ = 0.01 and C = 1 (equations (3) and (2)). The com-
lete training takes about 6 minutes for 7 classes on the IconArt
ataset (Gonthier et al., 2018) with 12 random starting points
er class using a consumer GPU (GTX 1080Ti). In the case of
olyhedral MI-max and MI-max-HL we used 3000 iterations
hich increase the training time to 1 hour. For MI-max-HL, we
se a maximum batch size of 500 elements. Actually, the ran-
om restarts and classes are performed in parallel to take advan-
ge of the presence of the features in the GPU memory, thus

educing the GPU-CPU transfer times. Typically, 20 classes
an be learned in parallel on a standard GPU, due to the light
eight of the model. One of other the advantage of not fine-
ning the network is that there is no need to store the heavy
eights of the new trained model.

.2. Results and comparison to other methods

In this section, we perform weakly supervised object detec-
on experiments on different databases.We compare our differ-
nt models MI-max, Polyhedral MI-max and MI-max-HL, to
e three types of methods.
The first group of methods are those specifically targeted at
SOD using fine-tuned networks. We have included state-of-
e-art methods for which a source code is available: Soft Pro-

osal Network4 (SPN (Zhu et al., 2017)) and Proposal Clus-
r Learning5 (PCL (Tang et al., 2018a)). For some of the
atasets, we also include results from the Weakly supervised

4Trained with the following hyperparameters: batch size = 16, learning rate
0.01, multi-scale strategy with image of sizes 112, 224 and 560, with 20

pochs. There is no regularization term in this method.
5Trained with the following hyperparameters: batch size = 2, learning rate

0.001, decay=0.0005, step decay = 7, momemtum of 0.9 and defaut number
f clusters (3), with 13 epochs. Those parameters correspond to the ones used
y the authors for the Pascal VOC07 dataset. There is no regularization term in
is method either.

detection network (WSDDN (Bilen and Vedaldi, 2016)) fro
(Inoue et al., 2018). For those datasets we also show the perf
mance obtained by the mixed supervised method with dom
adaptation proposed by (Inoue et al., 2018), a method that
sume that datasets with bounding boxes for the same classes
different modality are available.

The second family of methods are generic MIL-methods
rectly applied to the set of deep features vectors generated
Faster RCNN. Observe that these methods ignore the obje
ness scores returned by the detection network. The first on
are MI-SVM and mi-SVM6 from (Andrews et al., 2003). The
two methods require to train several SVMs and are therefo
costly. In some cases (for the datasets PeopleArt and IconA
we performed a PCA on the training set to reduce the numb
of components from 2048 to around 650 dimensions by keepi
90% of the variance (to fit the SVM in the CPU memory). W
experimentally observed on the other datasets that this dime
sionality reduction doesn’t reduce the performances. Even
ally, the computationally lighter MI Net, MI Net with Deep S
pervision (DS) or Residual Connection (RC) and mi Net fro
(Wang et al., 2018) are also considered7. Although those mo
els are designed for bag level classification, we used them
instance level prediction. Again, these can be seen as varia
on the method we develop in this paper (the weakly detecti
of objects is not addressed in (Wang et al., 2018)).

The last type of methods are those who (before any trainin
use the objectness score of the proposed regions to keep on
one feature vector for each positive image. The method MA
keeps one feature vector per image and learns a linear SV
classifier that separates the positive vectors from the negat
one (Crowley and Zisserman, 2016). The variant MAXA a
keeps one vector per positive image but uses all vectors fro
the negative ones. Again, a linear SVM is learned. In bo
cases a 3-fold cross validation is performed for determining
main hyperparameter of the SVM.

At test time, the labels and the bounding boxes are used
evaluate the performance of the methods in term of Avera
Precision par class. The generated boxes are filtered by a NM
with an IoU threshold of 0.3 (Everingham et al., 2010) and
confidence threshold of 0.05 for all methods.

As explained above, we concentrate on non-photograp
databases for which a ground truth is available for object d
tection on the test set. We report in Tables tables 2 to 7 the p
formances for the weakly supervised object detection task fo
different non-photographic datasets: PeopleArt (Westlake et
2016), Watercolor2k, Clipart1k, Comic2k (Inoue et al., 201

6We allow up to 50 iterations of the algorithm (i.e. the complete trainin
a SVM for each class). We experimentally observe that the re-initialization
the model does not improve the performance in our case.

7For this method, we consider the following hyperparameters: three fu
connected layers with 256, 128 and 64 hidden units, a kernel l2 regulariza
with a weight equal to 0.005, an initial learning rate equal to 0.001 wit
momentum of 0.9 and a decay of 10−4 for 20 epochs

8The performance comes from the original paper (Inoue et al., 2018).
9The performance comes from the original paper (Inoue et al., 2018).

10The performance comes from the original paper (Inoue et al., 2018).
11Trained with the following hyperparameters: batch size = 2, learning
= 0.001, epochs = 13 and number of clusters by default.
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Table 1. Overall information of the evaluated datasets.

Reference Dataset # Images # Images # Instances # Classes Min # Images Classes from Classes from
in train in test in test per class natural images Pascal VOC

(Westlake et al., 2016) PeopleArt 3007 1616 1137 1 968 Yes Yes
(Inoue et al., 2018) Watercolor2k 1000 1000 3315 6 27 Yes Yes
(Inoue et al., 2018) Clipart1k 500 500 3615 20 21 Yes Yes
(Inoue et al., 2018) Comic2k 1000 1000 6389 6 87 Yes Yes

(Thomas and Kovashka, 2018) CASPA paintings 1045 1033 1486 36 8 Yes 6 out of 8
(Gonthier et al., 2018) IconArt 2978 1480 3009 7 75 No No

able 2. People-Art (test set) Average precision (%). Comparison of the proposed MI-max, Polyhedral MI-max and mi-perceptron methods to alterna
pproaches. In red the best weakly supervised method.

Network Method Model person

VGG16-IM Weakly supervised SPN (Zhu et al., 2017) 10.0
fine tuning PCL (Tang et al., 2018a) 3.4

RES-
152-

COCO

Features
extraction

MAX (Crowley and Zisserman, 2016) 25.9
MAXA 48.9

MI-SVM (Andrews et al., 2003) 13.3
mi-SVM (Andrews et al., 2003) 5.6

MI Net (Wang et al., 2018) 33.0 ± 6.0
MI Net with DS (Wang et al., 2018) 19.5 ± 11.4
MI Net with RC (Wang et al., 2018) 12.5 ± 8.3

mi Net (Wang et al., 2018) 26.5 ± 8.5
MI-max 55.5 ± 1.0

Polyhedral MI-max 58.3 ± 1.2
MI-max-HL 57.3 ± 2.0

conArt (Gonthier et al., 2018) and CASPApaintings (Thomas
nd Kovashka, 2018). CASPApaintings is the paintings subset
f the CASPA dataset12 proposed in (Thomas and Kovashka,
018) with bounding boxes associated to 8 visual categories
only animals) for most of the images.

When the method is not too costly we provide standard devi-
tion and mean score computed on 10 runs of it.

First, we can see that for all databases, the end-to-end weakly
upervised methods (WSDDN, SPN and PCL) yield relatively
oor results. Possible explanations are that the model overfits
n the training set or that the model is stuck in bad local min-

a, so that the weakly supervised setting is not adequate with
relatively small training dataset. Moreover in the case of PCL,
e boxes are proposed by the Selective Search algorithm (Ui-
ings et al., 2013) which, as shown in Table 11, completely
ails on the considered non-photographic datasets. That alone
an explain the poor results of PCL on those datasets. Recall
lso that these methods do use features inherited from systems
uch as FasterCNN that are pretrained with bounding box an-
otations.
When comparing the performances of the different multiple
stance neural networks, we can see that MI Net (Maximum
ag Margin Formulation) outperforms the other MIL networks
n three datasets. Moreover the multiple instance neural net-
ork outperforms the multiple instance SVM (mi-SVM and
I-SVM), which can be due to the fact that a linear SVM that

re not complex enough.

12http://people.cs.pitt.edu/∼chris/artistic objects/

We can notice that the Maximum Pattern margin metho
(mi-SVM and mi Net) never perform better that the Bag marg
ones. This is rather unexpected since those models are design
to better take into account the whole positive bag by assigni
an individual label per instance. These models appear to
badly suited for the task of weakly supervised detection in no
photographic databases.

When comparing our MI-max and Polyhedral MI-max mo
els to the baseline MAX and MAXA, we observe that our mo
els consistently perform better. Nevertheless the MAXA mo
performs well especially on the IconArt or CASPApaintin
databases, probably because this model uses all the regions
the negatives images, yielding good discrimination of bac
ground regions during inference. The MAX baseline som
times provides equivalent performances to more complex me
ods (such as MI-SVM or MI Net), illustrating the fact that
objectness score (used for selecting candidates in MAX) co
tains useful information. Also observe that it is faster to tr
a multiple instance perceptron than several linear SVMs, as
needed for MI-SVM or mi-SVM. This is quantified in Secti
4.2.1.

Finally, we observe that both our models MI-max and Po
hedral MI-max provides better results than the others metho
on PeopleArt, CASPApaintings, Comic2k, Clipart1k and W
tercolor2k datasets.

The dataset IconArt appear to be much more challengi
In this case, our multiple instance methods provide equival
performances compared to the multiple instance networks. T
best performance is obtained by the MI Net, the MI-max-H
performance being very similar.
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able 3. Watercolor2k (test set) Average precision (%). Comparison of the proposed MI-max, Polyhedral MI-max and mi-perceptron methods to alter
ve approaches. In green the best mixed supervised method and in red the best weakly supervised one.

Net Method Model bike bird car cat dog person mean
SSD Mixed + DA DT+PL (Inoue et al., 2018) 8 76.5 54.9 46.0 37.4 38.5 72.3 54.3⋆

VGG16
IM

Weakly
supervised
fine-tuning

WSDDN (Bilen and Vedaldi, 2016) 8 1.5 26.0 14.6 0.4 0.5 33.3 12.7
SPN (Zhu et al., 2017) 0.0 18.9 0.0 0.0 0.0 23.6 7.1

PCL (Tang et al., 2018a) 0.0 0.0 0.0 0.0 0.0 0.0 0.0

RES-
152-

COCO

Features
extraction

MAX (Crowley and Zisserman, 2016) 76.0 33.8 33.0 20.8 22.7 19.8 34.3
MAXA 60.6 39.2 39.6 30.9 32.0 61.2 43.9

MI-SVM (Andrews et al., 2003) 66.8 20.9 7.6 14.1 8.5 13.2 21.8
mi-SVM (Andrews et al., 2003) 10.6 10.9 1.4 2.0 0.8 5.9 5.3

MI Net (Wang et al., 2018) 77.6 32.4 35.5 24.7 16.2 18.0 34.1 ± 1.0
MI Net with DS (Wang et al., 2018) 73.4 22.4 25.8 17.6 11.2 10.3 26.8 ± 2.4
MI Net with RC (Wang et al., 2018) 32.3 19.2 20.1 6.7 6.8 15.4 16.7 ± 6.3

mi Net (Wang et al., 2018) 66.4 30.3 14.9 14.4 8.6 20.5 25.8 ± 3.5
MI-max 84.1 47.4 48.2 30.9 27.9 58.2 49.5 ± 0.9

Polyhedral MI-max 77.8 44.7 45.5 25.6 26.7 59.2 46.6 ± 1.3
MI-max-HL 79.3 46.1 43.6 26.9 28.8 57.0 47.0 ± 1.6

.2.1. Execution Time
One advantage of our method is the relativel short time

eeded for training, as can be seen in Table 8. As can be ex-
ected, the SPN and PCL methods are the longest to train due

the fine-tuning of the whole network. Observe also that the
aingin time for our method MI-max is almost independent of
e number of classes and restarts, which is a strong advan-
ge compared to the MI-SVM, mi-SVM, MI Net and mi Net
odels which all need one full training per class and per re-
itialization. The SVM based methods are more costly because
ey don’t take advantage of GPU computational power.
Nevertheless, due to the aggregation of several hyperplan

ith a maximum operator in the Polyhedral MI-max model, we
eed to do 10 time more epochs that when using MI-max, which
xplain the strong overload.

.3. Fine MI-max models Analysis

In this section we discuss the details of our models and some
ariations. In particular, we provide an ablation study where we
nalyze how the choices of a different loss, different set of fea-
res and use of the objectness score impact the performances

f our models. In Section 4.3.2 a thorough investigation of the
ain parameters’ influence is conducted. From this study we

re able to recommend a set of parameters that are suited for
ur models, thus providing the user with a safe baseline for re-
sing them. Then, we experimentally show that our method
lso permits to transfer easily the knowledge between datasets
nd artistic modalities. In section 4.3.3, we also evaluate the
eneralization ability of our models across different modalities
f images (using classes shared by the different datasets). Fi-
ally, in section 4.3.4 some visual results are commented to give
n insight on the strengths and shortcomings of our model.

.3.1. Ablation study
Choice of the loss function: In Table 9, we gather different

ersions of the two models MI-max and Polyhedral MI-max
ith two possible modifications. First we replace the Tanh

based loss in equation (1) by the Hinge loss. Second we su
press the objectness score in the loss function (see section 3.

The first conclusion that can be drawn is that the use of o
jectness score significantly increase the performances of o
models. This is especially true for the PeopleArt dataset wh
the performances very srongly decrease without using the o
jectness score. For the other datasets the performances are
ways significantly lower without the objectness score. Note t
for some classes this drop in detection score is due to the f
that the model detects parts of the object instead of the wh
object when the objectness score is ignored. Such an exam
can be seen in figure 9 section 4.3.4, where the class for Sa
Sebastian is confused with arrows, which is understandable
this case but not desirable. The use of the objectness score of
helps avoiding such partial detection cases.

The second conclusion is that replacing the Tanh based lo
function in equation (1) by a Hinge loss l(y, ŷ) = 1−max(0, 1
yŷ) generally hinders the performances, except for two ca
among the 12 cases of the (dataset,model) possible combin
tions. In particular the Polyhedral MI-max methods never be
efits from a different loss function. This may be due to the f
that, given the difficulty of the task, errors are likely to happ
and the Tanh function may be more robust and forgiving th
the Hing loss which will try hard to correct any errors, esp
cially those with a high negative margin.

Features extraction and region proposals choices: W
have investigated alternative choices for the Faster RCNN’s f
tures and box proposals: for the boxes we used the unsupervis
box proposal algorithm EdgeBoxes (Zitnick and Dollár, 201
and for the features we used a ResNet-152 trained on ImageN
applied to each proposed box. By doing so we must drop the o
jectness score that is not included in the output of EdgeBoxe

We can see in Table 10 the performances of the model M
max (without the objectness score) using those features/box
compared to the Faster RCNN features/boxes (without obje
ness score for fair comparison). Regarding the detection ta
the performances clearly drop when using EdgeBoxes. To f
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er investigate this drop of performance we present in Table 11
e recall score of three box proposals methods (the percentage

f ground-truth boxes that are present in the set of all proposed
oxes). We can see that EdgeBoxes performs very poorly on
data-set like PeopleArt and never matchs the boxes proposed
y Faster RCNN.
For the classification task we can see that the MI-max method

ithout objectness score performs honorably in this setting
hen compared to the use of Faster RCNN’s boxes/features

even slightly better on the IconArt database). This is another
roof that bag-level classification (the aim of the training of a
IL algorithm) is not a good proxy for instance-level classifica-

on (which is the aim of a detection algorithm). The objectness
core can be seen as a very helpful cue to guide the training
f a WSOD method. As shown by Donahue et al. (2014) for
lassification task, transfer learning of deep models trained for
etection tasks is the best way to obtain a detector on new do-
ains even when no bounding boxes are available.

.3.2. Influence of the parameters of the model
In this section, we analyse the influence of the different hy-

erparameters of our MI-max model. We show in Figure 3 the
erformances with respect to each of the three following pa-
ameters: the number of restarts, the batch size and the regular-
ation term C. We vary one parameter at a time while keeping
e others fixed to the already mentioned values (i.e. 11 for the

umber of restarts, 1000 for the batch size and 1.0 for C).
Although the study in (Doran and Ray, 2014) shows that

estarts from random points is not always useful for nonconvex
odels, we find that having about 10 restarts slightly improves
e performances and can be taken as a rule of thumb for our
odels. Notice that the variance of the outcomes is also re-

uced for such a parameter choice. We also found experimen-
lly that restarts for mi-SVM or MI-SVM reduce the perfor-
ance in accordance with the experiments in (Doran and Ray,

014). Then, we observe that increasing the batch size provides
etter results and often yields a reduction of the variance. For
e regularization term, we observe relatively constant perfor-
ances between 1.0 and 2.0. The value 0.5 seems to be the best

or 2 of the datasets (PeopleArt and IconArt, but with a great
ariance). These experiments also show the necessity of using
regularization term in the loss function.

.3.3. Cross modalities Knowledge Transfer
Tables tables 12 and 13 present across-domain performance

or two our models Polyhedral MI-max and MI-max. We
ompute the performances of detection for the classes that are
hared between the different datasets. Those performances (one
un) are compared to the mean performance on the same modal-
y (several runs as before). This experiment illustrates the fact
at our method can be transferred to other modality of images.
his is sometimes called the ”Cross-Depiction Problem” (Hall
t al., 2015): recognizing visual objects regardless of whether
ey are painted or depicted in different artistic style.
First, we can see that the Polyhedral MI-max model trained

n PeopleArt outperforms the one learned on the target modal-
y for 2 of the 3 datasets (first line). This can be due to the fact

the PeopleArt dataset contains many different artistic style. W
also observe that the MI-max model badly fails on those th
datasets and that the Polyhedral MI-max model generalizes b
ter. Observe also that the fact that the class person is well d
tected can also be due to the Faster RCNN features that ha
been trained on a dataset (MS COCO) containing this class.

Finally, we can notice that some datasets such as CASP
paintings and Clipart1k are more challenging that the oth
maybe due to the difference in the modality for the second o

This experiment illustrates the fact that our model Polyhed
MI-max generalize well but also that providing a diverse a
numerous training set can help to get a better detector train
in a weakly supervised manner.

4.3.4. Visual results from the Polyhedral MI-max model.
In order to give some intuitive insight on the ability of

proposed method, we show some visual illustrations of the p
formance of the proposed model Polyhedral MI-max, both
successful and failure cases.

Successful detections: We show successful results on va
ous datasets. In figs. 4 and 5 we show various examples of
visual categories we are able to detect, respectively on Wat
color2k and CASPApainting datasets. On Figure 6, we can s
the large stylistic diversity that the model is able to detect fo
same class, namely person, on the PeopleArt dataset. On F
ure 7, one can see some detections on the challenging IconA
dataset.

Failures examples: We can categorize the failures cases in
five main categories:

1. Discriminative elements are detected instead of the wh
object: the hand for instance in Figure 8 for the Polyh
dral MI-max without score model or the arrows instead
Saint Sebastian in Figure 9) for the MI-max model witho
score.

2. Detection of a whole group instead of individual instanc
(Figure 10).

3. Misclassification of correct bounding box, as in Figure
4. Confusing images (Figure 12, relatively advanced know

edge in art history is needed to know that the child on
left is Saint John the Baptist).
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Fig. 3. Impact of the different hyperparameters on the MI-max model. Figure must be seen in color.

Bike 1.0 Bird 0.994

Car 0.999 Cat 0.983

Dog 0.893 Person 0.963

ig. 4. One successful example per class using our Polyhedral MI-max de-
ction scheme on Watercolor2k test set. We only show boxes whose scores

re over 0.75. Figure must be seen in color.

Bear 0.908 Bird 0.999

Dog 0.995 0.991 0.964 Cow 0.987

Elephant 0.415 Bird 0.410 Cat 0.820

Horse 0.994 Sheep 0.981

Fig. 5. Successful examples of animal detection using Polyhedral MI-m
on CASPA paintings test set (there is no ”person” class in the training s
We only show boxes whose scores are over 0.75, except for the eleph
image. Figure must be seen in color.
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Person 0.965 Person 0.983 0.991 0.984 0.9991

Person 0.996 Person 0.980 0.946

ig. 6. Successful examples using our Polyhedral MI-max detection scheme
n PeopleArt test set. One can observe the strong stylistic differences be-

een the images. We only show boxes whose scores are over 0.75. Figure
ust be seen in color.

Jesus Child 0.795 Nudity 0.924 Saint Sebastian 0.946

Crucifixion 0.962

ig. 7. Successful examples of detection of iconographic characters using
ur Polyhedral MI-max detection scheme on IconArt test set. We only
how boxes whose scores are over 0.75. Figure must be seen in color.

Person 0.753 Bird 0.631

Fig. 8. Failure examples using our our Polyhedral MI-max detect
scheme on different datasets. We only show boxes whose scores are o
0.75. The most discriminative boxes correspond to parts of the whole
jects. On the first image, the gloves are detected instead of a person.
the second one, the back legs and tail are detected as a dog. On the
one, the legs are detected as nudity. Figure must be seen in color.
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MI-max without score

St Sebastian 0.479 St Sebastian 0.221 0.724 0.682 0.485
Nudity 0.167 Nudity 0.402 0.187

MI-max with score

St Sebastian 0.439 0.791 0.173 St Sebastian 0.25 0.462
Nudity 0.6 Nudity 0.565 0.312 0.361

ig. 9. An example of wrongly detected object at test time, when using MI-
ax without or with the objectness score. In the first case, arrows or spike

re detected instead of Saint Sebastian. Figure must be seen in color.

Angel 0.959 Nudity 0.958 0.947

Horse 0.994 0.903 0.926 0.873 0.916 0.908

ig. 10. Failure examples using our our Polyhedral MI-max detection
cheme on different datasets. We only show boxes whose scores are over
.75. Whole groups are detected instead of the instances. Figure must be
een in color.

Dog 0.883 Cat 0.809

Fig. 11. Failure examples using our our Polyhedral MI-max detect
scheme on different datasets. We only show boxes whose scores are o
0.75. Mis-classified boxes: on the first image the bird is classified as a
and on the second one the dog is detected as a cat. Figure must be seen
color.

Person 0.891 Jesus Child 0.797 Nudity 0.912 0.888

Horse 0.981 0.76 0.98

Fig. 12. Failure examples using our our Polyhedral MI-max detect
scheme on different datasets. We only show boxes whose scores are o
0.75. Those are confusing images. In the first one a bear in an human p
ture is detected as a person. In the middle, the horse, the man and ot
animals are deformed. The last one is a confusing case between Saint Jo
the Baptist and Jesus children who are visually similar. Figure must
seen in color.
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Table 4. or
MAX an

Net
SSD

Yolov2
Faster RC

VGG16-

RES-
152-

COCO

5
4

2
8
3
2

Clipart1k (test set) Average precision (%). Comparison of the proposed MI-max, Polyhedral MI-max and mi-perceptron methods to alternative approaches. In those case, we use a line search f
d MAXA. In green the best mixed supervised method and in red the best weakly supervised one.

Method Model aeroplane bicycle bird boat bottle bus car cat chair cow diningtable dog horse motorbike person pottedplant sheep sofa train tvmonitor mean
Mixed supervised DT+PL (Inoue et al., 2018)9 35.7 61.9 26.2 45.9 29.9 74.0 48.7 2.8 53.0 72.7 50.2 19.3 40.9 83.3 62.4 42.4 22.8 38.5 49.3 59.5 46.0⋆

with domain DT+PL (Inoue et al., 2018)9 39.9⋆

NN adaptation DT+PL (Inoue et al., 2018)9 34.9⋆

IM
Weakly WSDDN (Bilen and Vedaldi, 2016) 9 1.6 3.6 0.6 2.3 0.1 11.7 4.5 0.0 3.2 0.1 2.8 2.3 0.9 0.1 14.4 16.0 4.5 0.7 1.2 18.3 4.4

supervised SPN (Zhu et al., 2017) 0.0 12.5 0.8 0.1 0.0 12.5 1.0 0.0 0.1 4.8 6.4 0.0 5.3 5.0 2.3 0.0 0.0 0.0 22.5 2.5 3.8
fine tuning PCL (Tang et al., 2018a) 0.4 0.0 0.3 1.1 0.1 0.0 5.9 0.0 0.9 0.0 0.3 3.8 0.3 0.0 3.6 1.5 0.0 0.7 0.0 4.4 1.2

Features
extraction

MAX(Crowley and Zisserman, 2016) 15.2 12.6 15.7 23.3 2.2 34.5 19.0 0.0 15.6 7.7 2.4 4.6 24.7 41.9 15.6 32.6 0.4 0.0 46.4 22.9 16.9
MAXA 24.7 29.2 19.7 31.6 6.0 37.0 34.6 0.0 30.6 1.7 4.2 0.9 12.7 53.0 35.4 34.0 0.7 4.9 50.3 29.5 22.0

MI-SVM (Andrews et al., 2003) 10.3 35.8 8.4 22.4 15.5 25.0 28.3 8.7 26.9 4.8 14.3 0.0 18.4 45.0 22.6 16.4 1.5 7.9 51.9 22.4 19.3
mi-SVM no GS (Andrews et al., 2003) 1.0 4.1 8.1 6.4 1.5 4.5 16.0 4.4 10.4 4.1 2.7 0.1 10.6 20.5 6.2 3.1 0.2 2.6 8.6 8.5 6.2

MI Net (Wang et al., 2018) 21.3 45.6 26.8 22.2 37.4 47.6 42.8 18.4 40.0 28.1 21.7 4.3 24.8 24.3 27.9 22.2 7.2 29.7 47.0 53.9 29.7 ± 1.
MI Net with DS (Wang et al., 2018) 12.9 44.1 15.0 12.1 25.1 30.5 11.8 14.0 26.4 14.4 16.8 4.3 8.9 12.6 16.4 15.2 5.1 23.5 30.5 39.1 18.9 ± 2.
MI Net with RC (Wang et al., 2018) 1.6 2.0 0.2 0.0 0.6 0.1 3.2 0.4 0.6 0.6 0.1 0.0 0.5 0.3 2.2 1.9 0.3 0.6 2.3 0.0 0.9 ± 0.8

mi Net (Wang et al., 2018) 20.0 43.6 28.7 23.9 36.3 50.4 43.2 20.2 43.6 34.3 25.7 3.9 22.1 25.2 30.3 9.7 5.3 28.0 41.3 55.2 29.5 ± 1.
MI-max 42.4 46.4 25.0 45.6 45.6 52.6 43.7 24.0 45.5 42.4 29.1 5.9 35.5 52.3 55.5 50.0 2.1 15.7 60.3 47.9 38.4 ± 0.

Polyhedral MI-max 32.6 36.3 15.7 27.8 32.6 52.8 42.3 7.1 41.5 20.8 14.4 2.0 30.5 57.6 54.7 32.9 1.7 10.2 58.1 38.4 30.5 ± 2.
MI-max-HL 31.8 46.6 25.5 31.3 45.1 41.6 43.1 8.6 46.9 33.9 8.7 3.7 29.8 43.5 54.4 51.9 2.7 14.6 48.6 47.7 33.0 ± 1.
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able 5. Comic2k (test set) Average precision (%). Comparison of the proposed MI-max method to alternative approaches. no GS means no Grid Sea
n the hyperparameters of the SVM otherwise it is the case.

Net Method Model bike bird car cat dog person mean

SSD Mixed supervised with DT+PL (Inoue et al., 2018)10
76.5 54.9 46.0 37.4 38.5 72.3 54.3⋆domain adaptation

VGG16-IM
Weakly WSDDN (Bilen and Vedaldi, 2016) 10 1.5 26.0 14.6 0.4 0.5 33.3 12.7

supervised SPN (Zhu et al., 2017) 0.0 0.0 0.0 3.1 0.0 4.1 1.2
fien tuning PCL (Tang et al., 2018a) 0.0 0.0 0.0 0.0 0.0 0.0 0.0

RES-
152-

COCO

Features
extraction

MAX(Crowley and Zisserman, 2016) 15.2 2.7 29.4 2.3 16.8 4.9 11.9
MAXA 36.8 5.6 27.1 8.2 6.1 34.8 19.8

MI-SVM (Andrews et al., 2003) 34.2 3.0 20.0 5.2 2.5 12.9 13.0
mi-SVM no GS (Andrews et al., 2003) 10.8 2.3 5.5 3.2 2.1 3.6 4.6

MI Net (Wang et al., 2018) 42.9 15.5 33.1 11.8 13.4 20.4 22.8 ± 1.1
MI Net with DS (Wang et al., 2018) 40.8 13.3 32.5 5.7 9.1 16.1 19.6 ± 1.6
MI Net with RC (Wang et al., 2018) 19.8 5.4 16.4 2.8 9.8 13.9 11.4 ± 4.4

mi Net (Wang et al., 2018) 42.1 10.9 24.5 8.8 8.8 22.1 19.5 ± 2.1
MI-max 45.3 9.7 33.7 14.4 21.6 37.0 27.0 ± 0.

Polyhedral MI-max 44.9 5.2 26.2 14.1 11.0 38.4 23.3 ± 1.6
MI-max-HL 43.0 5.1 31.5 11.8 13.8 36.4 23.6 ± 0.5

able 6. CASPA paintings (test set) Average precision (%). Comparison of the proposed MI-max method to alternative approaches. no GS means no G
earch on the hyperparameters of the SVM otherwise it is the case.

Net Method Model bear bird cat cow dog elephant horse sheep mean

VGG16-IM Weakly supervised SPN (Zhu et al., 2017) 0.5 0.1 1.6 0.9 0.5 1.4 0.6 0.0 0.7
fine tuning PCL (Tang et al., 2018a) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

RES-
152-

COCO

Features
extraction

MAX(Crowley and Zisserman, 2016) 22.0 2.1 14.5 3.5 14.2 8.8 12.8 0.5 9.8
MAXA 26.3 13.1 26.9 5.4 8.3 18.1 14.9 3.9 14.6

MI-SVM (Andrews et al., 2003) 9.3 0.2 6.7 1.5 0.1 0.6 0.9 0.4 2.5
mi-SVM no GS (Andrews et al., 2003) 1.3 1.6 3.0 0.8 1.0 0.3 1.5 0.3 1.2

MI Net (Wang et al., 2018) 32.8 5.4 14.1 5.2 6.2 15.0 11.1 4.2 11.7 ± 1.
MI Net with DS (Wang et al., 2018) 29.0 1.6 8.3 3.0 3.2 5.9 7.1 2.6 7.6 ± 1.2
MI Net with RC (Wang et al., 2018) 16.9 0.9 6.6 2.6 2.9 8.2 4.7 2.1 5.6 ± 2.1

mi Net (Wang et al., 2018) 26.7 8.9 12.5 1.5 3.4 7.1 5.1 2.4 8.4 ± 1.7
MI-max 28.3 15.7 25.6 5.3 13.7 17.2 18.8 5.1 16.2 ± 0.

Polyhedral MI-max 26.2 16.9 23.9 5.4 10.1 9.7 18.8 4.5 14.4 ± 0.
MI-max-HL 26.5 15.7 26.3 4.8 14.2 10.1 11.5 6.2 14.4 ± 0.

able 7. IconArt detection test set detection average precision (%) at IoU >0.5. Comparison of the proposed MI-max, Polyhedral MI-max and
erceptron methods to alternative approaches. In those case, we use a grid search for MAX and MAXA. In red, the best weakly supervised method.

Net Method Model angel JCchild crucifixion Mary nudity ruins StSeb mean

VGG16-IM Weakly supervised SPN (Zhu et al., 2017) 0.0 0.8 22.3 12.0 6.8 10.4 1.2 7.7
fien tuning PCL11 (Tang et al., 2018a) 2.9 0.3 1.0 26.3 2.3 7.2 1.4 5.9

RES-
152-

COCO

Features
extraction

MAX(Crowley and Zisserman, 2016) 1.4 1.3 11.5 2.8 3.8 0.3 4.5 3.7
MAXA 1.3 4.4 18.2 28.0 15.3 0.2 16.4 12.0

MI-SVM (Andrews et al., 2003) 0.7 4.4 21.6 0.6 1.0 0.0 0.0 4.0
mi-SVM (Andrews et al., 2003) 1.3 5.1 3.9 3.6 2.9 0.3 2.2 2.8

MI Net (Wang et al., 2018) 9.7 42.6 21.1 6.9 17.6 5.1 2.5 15.1 ± 1.
MI Net with DS (Wang et al., 2018) 8.6 35.6 19.6 5.3 15.9 3.2 3.1 13.0 ± 1.
MI Net with RC (Wang et al., 2018) 8.2 36.9 20.5 4.8 16.2 1.6 0.9 12.7 ± 1.

mi Net (Wang et al., 2018) 8.2 28.4 15.1 11.2 15.8 6.8 4.5 12.9 ± 1.
MI-max 0.3 0.1 42.7 4.4 21.9 0.6 13.7 12.0 ± 0.

Polyhedral MI-max 3.1 9.8 33.0 7.4 29.2 0.1 8.5 13.0 ± 2.
MI-max-HL 4.3 6.7 35.7 15.6 24.0 0.1 15.2 14.5 ± 1.
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Table 8. Execution time of the different models for datasets Watercolor2k and Comic2k, with 1000 images in the training set and 6 visual categories
Method Training Duration Linear to number of class Linear to number of restart

No Boxes proposals
SPN (Zhu et al., 2017) 3000s (20 epochs) No •

Selective Search Bounding Boxes proposal 6600s
PCL (Tang et al., 2018a) 12000s (13 epochs) No •

Faster RCNN Features and boxes proposals 200s
MAX 52s Yes •

MAXA 2000s Yes •
MI-SVM (Andrews et al., 2003) 3000s Yes Yes
mi-SVM (Andrews et al., 2003) 30000s Yes Yes

MI Net (Wang et al., 2018) 1200s (20 epochs) Yes Yes
MI Net with DS (Wang et al., 2018) 1800s (20 epochs) Yes Yes
MI Net with RC (Wang et al., 2018) 1600s (20 epochs) Yes Yes

mi Net (Wang et al., 2018) 1800s (20 epochs) Yes Yes
MI-max 130s (300 epochs) No No

Polyhedral MI-max 1100s (3000 epochs) No No
MI-max-HL 3000s (300 epochs) No Yes

able 9. Mean average precision over the classes of the different datasets (%). Comparison of the proposed MI-max and Polyhedral MI-max methods w
ifferent settings. Standard deviation is computed on 10 runs of the method.

Dataset
MI-max Polyhedral MI-max

Main Model Without score Hinge loss Without score Main Model Without score Hinge loss Without scor
and hinge loss and hinge los

PeopleArt 55.5 ± 1.0 0.9 ± 0.4 57.6 ± 1.0 1.7 ± 0.9 58.3 ± 1.2 10.1 ± 3.3 56.6 ± 4.4 18.1 ± 8.6
Watercolor2k 49.5 ± 0.9 32.8 ± 2.2 46.7 ± 1.5 33.8 ± 1.6 46.6 ± 1.3 18.3 ± 4.7 37.5 ± 2.1 24.8 ± 3.3

Clipart1k 38.4 ± 0.8 24.2 ± 1.6 34.8 ± 1.2 22.2 ± 1.8 30.5 ± 2.3 11.9 ± 2.6 16.5 ± 1.2 5.1 ± 1.1
Comic2k 27.0 ± 0.8 17.4 ± 1.5 25.5 ± 1.1 17.3 ± 1.1 23.3 ± 1.6 11.6 ± 2.8 15.0 ± 1.8 9.5 ± 1.8

CASPA paintings 16.2 ± 0.4 18.7 ± 0.8 16.1 ± 0.5 12.6 ± 0.9 14.4 ± 0.7 8.6 ± 1.4 9.0 ± 0.9 3.2 ± 0.6
IconArt 12.0 ± 0.9 6.7 ± 2.5 14.3 ± 2.1 8.2 ± 2.3 13.0 ± 2.2 6.4 ± 2.3 13.3 ± 2.8 8.3 ± 2.0

able 10. Average precision for detection and classification (%). Two different feature extraction methods are considered in this table (both with
bjectness score).

Dataset Metric Faster RCNN EdgeBoxes

PeopleArt AP IuO >0.5 0.9 ± 0.4 0.0 ± 0.0
Classif AP 92.5 ± 0.3 92.1 ± 0.2

Clipart1k AP IuO >0.5 24.2 ± 1.6 3.1 ± 0.3
Classif AP 59.4 ± 1.7 42.8 ± 1.3

Comic2k AP IuO >0.5 17.4 ± 1.5 1.8 ± 0.3
Classif AP 54.9 ± 2.0 47.9 ± 1.5

Watercolor2k AP IuO >0.5 32.8 ± 2.2 2.7 ± 0.5
Classif AP 78.0 ± 1.2 71.8 ± 1.3

CASPA AP IuO >0.5 12.6 ± 0.5 0.3 ± 0.1
Classif AP 48.6 ± 0.6 45.0 ± 1.2

IconArt AP IuO >0.5 6.7 ± 2.5 5.3 ± 0.3
Classif AP 60.4 ± 1.1 69.2 ± 0.3
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Table 11. Recall (%) at IuO >0.5 of the boxes proposals for the different methods and databases. Mean over the classes.

Dataset RPN of Pre-trained EdgeBoxes Selective Search
Faster RCNN (Ren et al., 2015) (Zitnick and Dollár, 2014) (Uijlings et al., 2013)

Number of boxes 300 300 3000-5000
PeopleArt 94.0 15.4 55.7
Clipart1k 91.4 14.4 49.4
Comic2k 82.7 54.1 46.2

Watercolor2k 93.6 61.4 56.8
CASPA 76.6 34.3 51.6
IconArt 75.9 60.0 56.9

able 12. Mean AP (%) at IuO >0.5 for the common classes between the source and target sets with the MI-max model. In parenthesis the m
erformance obtained by learning the detection on the same set (modality).

source set
target set

PeopleArt Watercolor2k Comic2k Clipart1k CASPApaintings

PeopleArt - 0.0 (58.2) 0.0 (37.0) 0.0 (55.5) /

Watercolor2k 47.4 (55.5) - 25.8 (27.0) 12.2 (33.4) 15.6 (18.3)
Comic2k 50.4 (55.5) 47.3 (49.5) - 10.0 (33.4) 15.0 (18.3)
Clipart1k 36.2 (55.5) 44.3 (49.5) 25.2 (27.0) - 10.8 (14.0)
CASPApaintings / 33.4 (35.4) 12.2 (15.2) 4.7 (22.5) -

able 13. Mean AP (%) at IuO >0.5 for the common classes between the source and target sets with the Polyhedral MI-max model. The mean performa
btained by learning the detection on the same set (modality) is displayed between brackets.

source set
target set

PeopleArt Watercolor2k Comic2k Clipart1k CASPApaintings

PeopleArt - 60.0 (59.2) 42.1 (39.5) 54.3 (55.4) /

Watercolor2k 56.0 (57.3) - 23.1 (24.1) 11.2 (24.6) 13.8 (18.3)
Comic2k 48.9 (57.3) 42.4 (46.6) - 7.2 (24.6) 12.5 (18.3)
Clipart1k 52.0 (57.3) 36.7 (46.6) 19.6 (24.1) - 7.7 (13.6)
CASPApaintings / 27.5 (39.0) 9.9 (18.1) 4.2 (12.5) -
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. Conclusion

In this paper, we confirm that transfer learning of pretrained
NN can provide good model to automatically analyze non
hoto-realistic images databases. This was previously shown
or classification and fully supervised detection tasks, and was
ere investigated in the case of weakly supervised object de-
ction. We proposed a simple and quick model to solve the
ultiple instance problem we are facing. In future works, we

lan to add some constraint in the polyhedral case to force the
yperplanes to be as distinct as possible to get better bound-
ries, to develop on piece-wise linear model. It might be ben-
ficial to take in more than one instance per bag to learn better
etector and catch multi-modal visual category. A more exten-
ive investigation of the different possible features extractor and
oxes proposals algorithms could show the flexibility of our
odel. Another exciting direction is to investigate the poten-
al of weakly supervised learning on large databases with only

age-level annotations. For instance, this framework could be
sed to develop versatile search engine for diverse modalities
f images, avoiding the time consuming annotation task. More-
ver, we plan to supervise the training of weak detector with
fully-trained classifier in order to remove some obvious mis-

lassified box candidate as it can be done in classical WSOD
ethod (Wan et al., 2018). This could help to provide better

etection performances.
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• Multiple instance perceptron on deep features performs well for weakly supervised object detection.

• This model have been evaluated for non-photographic datasets including new classes.

• By aggregating several linear classifiers, we obtained a polyhedral efficient model.

• A detection network trained on natural images provides good features for art ones.

• The proposed model is even robust to extreme domain shifts.
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