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ABSTRACT

Weakly supervised object detection (WSOD) using only image-level annotations has attracted a grow-
ing attention over the past few years. Whereas such task is typically addressed with a domain-specific
solution focused on natural images, we show that a simple multiple instance approach applied on pre—
trained deep features yields excellent performances on non-photographic datasets, possibly including
new classes. The approach does not include any fine-tuning or cross-domain learning and is therefore
efficient and possibly applicable to arbitrary datasets and classes. We investigate several flavors of
the proposed approach, some including multi-layers perceptron and polyhedral classifiers. Despite its
simplicity, our method shows competitive results on a range of publicly available datasets, including
paintings (People-Art, IconArt), watercolors, cliparts and comics and allows to quickly learn unseen

visual categories.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

The task of object detection has witnessed great progresses
over the last few years, most notably through the development
of clever and pragmatic combinations of region proposal meth-
ods and deep neural network architectures (Ren et al., 2015).
Nevertheless, the training of such architectures is well known
to necessitate huge databases of manually annotated images. In
the case of object detection, these annotations are extremely
costly. It requires around one minute for a non expert to draw
a bounding box around an object (Su et al., 2016). For more
specialized datasets, such as artworks databases for instance,
experts are likely to be reluctant to such annotations. The usual
way to annotate such databases is to rely on specialized micro-
tasks platforms such as Amazon Mechanical Turk. This, by
creating social exploitation and excessive precariousness, poses
serious ethical concerns (Tubaro and Casilli, 2019). For these
reasons, reducing the annotation stage is of great importance. In
particular, many Weakly Supervised Object Detection (WSOD)
methods have been developed (Bilen and Vedaldi, 2016; Zhu
et al., 2017; Tang et al., 2018b) in order to train detection ar-
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chitectures using annotations only at image level, thus avoiding
the precise localization of objects.

On the other hand, many different image modality exist for
which object detection is desirable. Such modality include pho-
tographs taken in difficult conditions, as it is common in the
case of autonomous driving (Vu et al., 2019), different imaging
modality as in medical (Yang et al., 2019) or satellite imag-
ing (Li et al., 2018) or even hand created images such as art-
works, clipart, etc. In such cases, available databases may be
small and it is essential to be able to reuse information gathered
on existing large photographic databases, a strategy known as
domain adaptation (Saenko et al., 2010).

In particular, methods for the weakly supervised detection of
objects have been developed to deal with domain adaptation.
But while this problem has been extensively studied for photo-
graphic images, much less attention has been paid to WSOD
in the case of strong domain shifts, as in the case of non-
photographic images, possibly including domain-specific vi-
sual category. Some works focus on cross-domain weakly su-
pervised object detection (i.e. where bounding boxes are avail-
able for the same visual category but in an other domain than
the target one), as in (Inoue et al., 2018; Fu et al., 2020).

Methods that detect objects in photographs have been de-
veloped thanks to massive image databases on which several
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classes (such as cats, people, cars) have been manually localised
with bounding boxes. The PASCAL VOC (Everingham et al.,
2010) and MS COCO (Lin et al., 2014) datasets have been
crucial in the development of detection methods and the more
recent Google Open Image Dataset (2M images, 15M boxes
for 600 classes) is expected to push further the limits of detec-
tion. Even though large databases of artistic images have been
build by many cultural institutions or academic research teams,
e.g. (Rijksmuseum, 2018; MET, 2018; Wilber et al., 2017),
these databases include image-level annotations and, to the best
of our knowledge, none includes location annotations. Besides,
manually annotating such large databases is tedious and must
be performed each time a new category is searched for. There
is therefore a strong need for methods permitting the weakly su-
pervised detection of objects for non-photographic images. In
particular, only a few studies have been dedicated to the case of
painting or drawings.

Moreover, these studies are mostly dedicated to the cross de-
piction problem: they learn to detect the same objects in pho-
tographs and in paintings, in particular man-made objects (cars,
bottles ...) or animals. While these may be useful in some
contexts, it is obviously needed, e.g. for art historian, to de-
tect more specific objects or attributes such as ruins or nudity,
and characters of iconographic interest such as Mary, Jesus as
a child or the crucifixion of Jesus, for instance. These last
categories can hardly be directly inherited from photographic
databases.

In this work, we take interest in weakly supervised object
detection in the case of extreme domain shifts, namely non-
photographic images, possibly addressing the detection of new,
never seen classes. We claim that an efficient way to perform
this task is to rely on a simple Multiple Instance Learning (MIL)
paradigm that is applied directly to the deep features of a pre-
trained network. This approach does not involve any cross-
domain learning step and can therefore be applied to arbitrary
datasets and classes. Beside being efficient, as we will see in the
experimental section, such a strategy also enables one to have
relatively small training times. First, no fine-tuning is involved
and second, we introduce a MIL strategy that is much lighter
than the classical SVM approaches (Andrews et al., 2003).

In order to illustrate the usefulness and efficiency of the ap-
proach, we focus on databases of man-made images, namely
paintings, drawings, cliparts or comics. This poses a serious
challenge because of both the lack or scarcity' of annotated
databases and the great variety of depicting styles. Being able
to detect objects in such image modality has become an impor-
tant issue, mostly because of the large digitization campaigns
of fine arts. These include digital scans and photographs of

I Classical databases used for training networks are made of millions of natu-
ral images (Imagenet (Russakovsky et al., 2015)(millions of images), PASCAL
VOC (Everingham et al., 2010), MS COCO (Lin et al., 2014) Google Open
Image Dataset (9M images) (Kuznetsova et al., 2020)). In contrast, datasets
for recognition in non-photographic images are rare and usually only contain-
ing image-level annotations, as in the iMet dataset (375k) (Zhang et al., 2019)
or BAM! (2.5M) (Wilber et al., 2017). The very few datasets with bounding
boxes such as PeopleArt (Westlake et al., 2016), used later in this paper, are
very small.
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artworks (mainly done by the museums and other public in-
stitutions) and scans of archive photographs (such as the Cini
Foundation archive (Seguin et al., 2018)).

In a previous conference paper (Gonthier et al., 2018) we
have shown that the proposed method is a valid strategy when
dealing with extreme domain shifts. In this paper, we fully de-
velop the approach, exploring several extensions of the model
such as a multi-layers version of the Multiple Instance percep-
tron and a polyhedral version obtained by aggregating several
linear classifiers. We also thoroughly evaluate the performances
of the approach by comparing it to several state-of-the-art ap-
proaches on databases with challenging domain shifts, includ-
ing paintings, drawings and cliparts. The experimental section
shows that in such cases, the approach outperforms methods
specially developed for the considered databases, as well as
classical MIL approaches and some state-of-the-art WSOD ap-
proaches.

The paper is organized as follows. In the next section we re-
view WSOD algorithms and MIL methods as well as some deep
learning applications to recognition tasks in non-photorealistic
images. In section 3, we then present our algorithm as well as
some of its variants. In section 4, extensive experiments are
presented, including comparisons to alternative algorithms and
study of sensitivity of our method to its parameters.

2. Related Work

In this section we first review some state-of-the-art WSOD
algorithms (an exhaustive review of this field is beyond the
scope of the paper) and then explore MIL methods. Eventu-
ally, we make a brief survey of applications of deep learning
for visual recognition in non-photographic images.

2.1. Weakly Supervised Object Detection

Computer vision methods often treat WSOD as a Multiple
Instance Learning (MIL) problem (Dietterich et al., 1997), es-
pecially in realistic cases where objects are not necessarily cen-
tered and with cluttered background (Nguyen et al., 2009; Siva
and Tao Xiang, 2011; Song et al., 2014; Bilen and Vedaldi,
2016). In such cases, the image is viewed as a collection of
potential instances of the object to be found (for example crops
of various sizes and positions).

A sketch of a typical weakly supervised detector is as fol-
lows:

1. Proposal generation: extract a certain number of regions
of interest from the image.

2. Feature extraction: compute a feature vector per region
(off the shelf, handcrafted, CNN based. . .).

3. Classification: this is often done with a MIL algorithm to
obtain an instance classifier.

These general steps can be alternated or entangled (for exam-
ple to enhance the region proposition or feature extraction parts
based on the performance of the final classifier). In (Song et al.,
2014) steps 1 and 2 are handled by extracting the features (and
regions) proposed by RCNN (Girshick et al., 2014) . These fea-
tures are passed to a smoothed version of SVM that serves as a



MIL algorithm. Particular attention is paid to the initialization
phase, which is crucial due to the fact that the MIL problem is
essentially non-convex even if the SVM algorithm is.

More recent methods tend to entangle all the mentioned
steps in an end-to-end manner. For instance, some CNN based
methods group feature extraction and classification (Bilen and
Vedaldi, 2016; Diba et al., 2017; Kantorov et al., 2016; Tang
et al., 2017a) whereas others group the three steps together
(Zhu et al., 2017). Bilen and Vedaldi (2016) propose a Weakly
Supervised Deep Detection Network (WSDDN) based on Fast
RCNN (Girshick, 2015). It consists in transforming a pre-
trained network by replacing its classification part by a two
streams network (a region ranking stream and a classification
one) combined with a weighted MIL pooling strategy. This
work has been improved in many ways (Wan et al., 2018; Kan-
torov et al., 2016; Zhang et al., 2018a,b; Dong et al., 2017; Wan
et al., 2019). For instance, Tang et al. (2017b) refine the predic-
tion iteratively through multistage instance classifier. Later, this
model was improved by adding a clustering of the region pro-
posals (Tang et al., 2018b). In (Wan et al., 2018), the WSDDN
model has been improved by adding two entropy term at the
loss function to minimize the randomness of object localization
during learning, whereas in Wan et al. (2019), the authors pro-
pose to tackle the non-convexity of the MIL pooling by using a
series of smoothed loss functions.

In (Li et al., 2016), a two steps strategy is proposed, first col-
lecting good regions by a mask-out classification, then selecting
the best positive region in each image by a MIL formulation
and then fine-tuning a detector with those propositions acting
as ground truth bounding boxes. This pseudo-labeling step is
often used in the weakly supervised pipeline. In (Zhu et al.,
2017) a region proposal generator is built using weak supervi-
sion. The feature maps are transformed into a graph then into
an objectness score map. This objectness score ponderates the
feature maps that are subsequently fed to a classification layer.
In (Arun et al., 2019) the authors proposed to train two collab-
orative networks one of it being a Conditional Network with
noisy extra-channel. The goal is to jointly minimize the dissim-
ilarity between the prediction distribution and the conditional
distribution.

It is worth noting that although CNN feature maps contain
some localization information (Oquab et al., 2015), the main
difficulty for weakly supervised detection is the construction
of an efficient box proposal model. Most works in the field
use effective unsupervised methods for region proposals such as
Selective Search (Uijlings et al., 2013) or EdgeBoxes (Zitnick
and Dollar, 2014).

2.2. Generic Multiple-Instance Learning

As stated above, the problem of weakly supervised object
detection can be recast into a multiple instance learning (MIL)
problem (Dietterich et al., 1997). More precisely, we are inter-
ested in instance classification as opposed to bag classification.
We want to find an object among several candidate boxes in or-
der to detect the object of interest. In (Andrews et al., 2003) a
solution based on iterative applications of a Support Vector Ma-
chine (SVM) has been proposed to solve the MIL problem. Ac-
tually two flavors are considered, mi-SVM and MI-SVM. In the

Q positive bag
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@ positive instance
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() instance used during
mi-SVM MI-SVM LSVM g

Fig. 1. Comparison of standard SVM based MIL models. The blue dotted
lines show the hyperplanes learned by the models, and the blue circles show
the instances used during the SVM training. Figure must be seen in color.

case of mi-SVM, each element of positive bags is assigned a la-
bel and the SVM margin is imposed at the instance level. In the
case of MI-SVM, the SVM margin is imposed the most positive
element of each positive bag and to the least negative element
of each negative bag. In both cases, at test time, the learned
classifier can be applied at the instance level. In (Felzenszwalb
etal., 2010) a reformulation of MI-SVM is proposed and called
latent SVM (LSVM). But in this work, a bag of instance rep-
resents the set of parts of an object and the MIL formulation is
used to train an object detector with a fully-supervised training.

Several heuristics to solve the non convex-problem posed by
the MIL have been proposed. For example, in (Gehler and
Chapelle, 2007) is introduced a new objective function that try
to estimate the quantity of positive examples in a positive bag,
before using deterministic annealing to optimize it. In contrast
to the MI-SVM method, the algorithm can consider several el-
ements as positive in the positive bag. In (Joulin and Bach,
2012), the authors propose a convex relaxation of the softmax
loss. A comprehensive review of SVM based MIL methods can
be found in (Doran and Ray, 2014). From this review it appears
that mi-SVM and MI-SVM are still competitive on the tasks
studied there.

Figure 1 summarizes the instances on which the SVM mar-
gins are imposed in the most popular SVM based MIL methods.

Another approach to the MIL problem is to use neural net-
works whose architecture treats each instance symmetrically,
before an explicit aggregation (max, average) is performed.
From this point a classical neural network performs a classi-
fication task (Ramon and Raedt, 2000; Zhou and Zhang, 2002).
An improvement using more recent deep learning building
blocks is proposed in (Wang et al., 2018). The aforementioned
works did not focus on the instance classification performance.
They all, by design, provide an instance classification network
(present the network with a bag consisting of one item).

From a recent survey (Carbonneau et al., 2016a) on multiple
Instance Learning it appears that the most efficient algorithm for
an instance level classification seems to be a clever variation of
bagging and multiple classifiers to deal with multi-modal dis-
tributions (Carbonneau et al., 2016b).

Based on these surveys, we are driven to propose a method
that mimics an SVM within a neural network. The main differ-
ence between our approach and the SVM based MIL methods
is that iterations are performed during the training of the neural
network and the multi-modal nature of the objects to be found
drives us to consider multiple linear classifiers of each consid-
ered class.



2.3. Deep Learning for visual recognition in non-photographic
images

As almost all applications of computer vision, tasks dealing
with hand-drawn or computer generated non-photographic im-
ages benefited from the resurgence of neural networks. One
point in common between all works in the field is the reuse
of architectures that where originally designed for photographs
classification. Some works use the pre-final features of a net-
work as the only features retained to represent an image and
do not fine-tune the network for the task at hand. Other meth-
ods allow for a certain amount of fine-tuning and add a specific
network after the original architecture. Another significant dif-
ference between the papers we are going to cite is whether or
not the considered classes where present in the training dataset
of the original network. In the simplest setting, features from a
pre-trained network are retained and used to train a linear SVM
(Crowley and Zisserman, 2014; Crowley, 2016), the task being
the recognition of classes already present in the original training
set the network was pre-trained on.

Several works have also shown that pre-trained CNN archi-
tecture can be efficiently transferred for learning new semantic
visual categories, those networks either being used as features
extractors (Crowley and Zisserman, 2014; Crowley, 2016) or
being fine-tuned (Yin et al., 2016; Strezoski and Worning, 2018;
Wilber et al., 2017).

A large body of works investigate the fine-tuning of CNN for
style recognition (Lecoutre et al., 2017; Mao et al., 2017; EI-
gammal et al., 2018), material (Sabatelli et al., 2018), scene
(Florea et al., 2017) or author classification (van Noord and
Postma, 2017). The use of CNN also opens the way to ef-
ficient artwork analysis tasks, such as visual links retrieval
(Seguin et al., 2016), posture estimation (Jenicek and Chum,
2019), visual question answering (Bongini et al., 2020) and in-
stance recognition (Shen et al., 2019; Del Chiaro et al., 2019).
Some works try to tackle several of those tasks at the same
time (Garcia et al., 2019; Bianco et al., 2019). A survey about
machine learning for cultural heritage have been recently pub-
lished (Fiorucci et al., 2020).

The object detection problem (recognize and locate an ob-
ject) in artworks has been less studied. In (Westlake et al.,
2016) and (Strezoski and Worning, 2018) it is proposed to fine-
tuned a detection network in a fully supervised manner to detect
people and classical Pascal VOC classes, respectively. In (In-
oue et al., 2018), an efficient pipeline is proposed to train a de-
tector on new artistic modalities in a semi-supervised manner.
This approach requires natural images with bounding boxes an-
notation of those classes and involves a relatively costly style
transfer procedure. In particular, this method only allows the
detection of object classes that are present and have been an-
notated in natural images. This specific problem have been re-
cently studied by different research teams (Saito et al., 2019; Fu
et al., 2020). The same is true for many works focusing on rec-
ognizing the same object categories in different modalities (Li
et al., 2017; Wilber et al., 2017; Thomas and Kovashka, 2018).
Only very few work have focused on visual categories that are
new and specific to artworks (Lang et al., 2019; Gonthier et al.,
2018). In (Lang et al., 2019), the authors proposed an interac-
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tive search engine to detect objects in artistic images for object
categories such as praying hands, cross or grape. In (Gonthier
et al., 2018), the authors proposed a simple MIL classifier cou-
pled with Faster RCNN (Ren et al., 2015) to weakly learn to
detect new visual categories such as Mary or Saint Sebastian.
The present work extends the MIL model proposed in this pa-
per by allowing polyhedral classification and evaluate its per-
formances on various modality such as paintings, drawings or
cliparts.

3. Multiple instance perceptron for the weakly supervised
detection of objects

In this section, we first give the general motivation behind
this work, before recalling the classical MIL framework and
then introducing our approach.

3.1. Motivation

As explained earlier, we tackle in this paper the problem of
weakly supervised object detection (WSOD) in the following
sense : we assume that for each image to be analyzed, bound-
ing boxes are available, together with a global classification in-
formation. Figure 2 illustrates the situation we face at training
time. For each image and for a given category, we are given a
set of bounding boxes and a global label, equal to +1 (the visual
category of interest is present at least once in the image) or —1
(the category is not present in this image).

Since we are especially interested by non-photographic im-
ages, for which databases may be limited, we wish to keep the
learning step as light as possible. We therefore choose to com-
bine a pre-trained detector with a classical MIL strategy. For
the task of instance level classification, this approach can be
used to weakly transfer an object detector to a new domain or
to new visual category.

Now, the MIL framework involves the minimisation of a
non-convex energy, which results in heavy computational costs.
For this reason, efficient relaxation schemes have been pro-
posed (Joulin and Bach, 2012). In this paper we propose a
simple and fast heuristic to this problem, together with several
variants. This, combined with the fact that we avoid fine-tuning
by using features extracted from pre-trained CNNs, permits a
flexible on-the-fly learning of new category in a few minutes.

Fig. 2. Illustration of positive and negative sets of detections (bounding
boxes) for the angel category.



3.2. The MIL framework

We give here some basic notations related to Multiple In-
stance Learning. Let 8 = {B),B,,...By} denotes a set of
N bags, each bag B; being a collection of feature vectors (in-
stances) : {X; 1, Xi2,...Xik,} where X;; € RM. To each feature
X is associated a label y; ;. In the MIL framework, each bag
is associated a label which is positive if at least one instance is
positive, and negative if all instances are negative. That is, the
bags labels Y; are defined as :

+1
Yi:{ —1

In this paper we consider the task of instance level classifica-
tion, that is the task of infering the unknown instance labels y;
from the known bag labels. Another classical MIL problem is
the one of bag-level classification.

In an object detection setting each feature vector will repre-
sent a region. As in a typical classification problem, the goal is
to learn a prediction function f,,, parametrized by w, so that the
predicted output £,,(X) = ¥ minimizes the empirical risk. The
typical way to do so is to minimize a loss function that measures
the correctness of the prediction over the training examples.

There are two main ways to tackle the fact that we only have
bag level ground truth information.

First, one can aggregate all the predictions of one bag to a
single prediction (at bag level) during training. Hence we can
write ;i = g({Jixlke(1..k,)) With g an aggregation function over
the elements of a bag i. In this case, the loss function can be
written as L(Y;, $i) = I(Yi, g({Dixheer1...x)-

Second, one can consider each instance of a bag individu-
ally (as in the mi-SVM case, see Figure 1) and the loss function
can be written as L(Y;, ($ixtreq1..k)) = Ui x(YD), (Diskeqr..k)))
where g is an aggregation function (usually an average), [ a
penalty function and h;; a modification function of the label
associated to the instance k and depending on the bag label Y;,
usually named a latent label (see (Felzenszwalb et al., 2010)).
If we consider that the label of a bag is equal to the label of
its instances, h; is the identity, otherwise it is a function from
{—1,1} to {—1, 1} depending on the bag and the instance.

ifAke{l,....K}:yix = +1
ifVke{l,....,Ki} : yix = -1

3.3. A multiple instance perceptron

In contrast with classical approaches to the MIL problem,
such as (Andrews et al., 2003; Carbonneau et al., 2016b), based
on costly iterations of SVM or complex bagging methods, we
propose a simple heuristic to solve the multiple instance prob-
lem. It is a multiple instance extension of the perceptron
(Rosenblatt, 1958) with a maximum taken over the instances
of a bag. Our model can be seen as a latent perceptron if we use
the same designation as (Felzenszwalb et al., 2010).

We denote our model MI-max as introduced in (Gonthier
et al., 2018). As we consider each class individually, we focus
on the case of binary classification.

We build on a linear model f£,(X;x) = WX, + b with W €
RM, b € R, which we combine with a maximum aggregation
function g = maxie;..k,) and a per example loss function equal
to

(y,9) =1 =y Tanh(®) = 1 — Tanh(yy). (1)
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We also use a regularization term on the norm of W and a
weighting of the two classes, so that the complete loss function
is:

N
Y, .
LW,b)=2— Z L Tanh( max (W' X + b)) + CIWIP,
ny, kef{l...K;}
(2)

with n; the number of positive examples in the training set and
n_; the number of negative examples.

As mentioned before, the intuition behind this formulation is
that minimizing £(W, b) amounts to seek a hyperplane separat-
ing the most positive element of each positive image from the
least negative element of the negative image (i.e. from all ex-
amples in the negative bags). Also this loss seeks to maximize
the margin.

If the hyperplane W' X + b = 0 exactly separates the most
positive examples of each positive bag from the set of all exam-
ples of all negative bags, then replacing C, W and b by AC, %W
and /—llb respectively and taking A to 0 will lead to a loss as close
to 0 as desired. This implies that if the MIL problem admits
an exact linear solution, then our loss accepts it provided C is
small enough. In the worst case scenario, its value is 4 (plus the
regularization term).

One advantage of this formulation is that it can be tackled
by a simple gradient descent, therefore avoiding the very costly
iterative procedures of other MIL solutions such as (Andrews
etal., 2003). Taking the max over all instance of a bag is akin to
what is done in MI-SVM (mentioned in section 2.2) when after
each full training of an SVM, a new representative element of
each bag is selected for the next SVM training. We can switch
to a stochastic gradient descent by iterating on random batches
when the dataset is too big. Of course, since our loss is not
convex, we are not guaranteed to find the global minimizer of
the function. To tackle this problem, we run r times the model
with a random initialization and pick the best one on the training
set evaluation of the loss function.

If we refer to the simple description of the WSOD standard
pipeline, we only focus on the multiple instance classification
task and not on the boxes proposals algorithms, features extrac-
tion or refinement methods mentioned section 2.1.

i=1

3.4. From multiple instance learning to weakly supervised ob-
Ject detection in images

In the context of Weakly Supervised Object Detection
(WSOD), each bag i corresponds to an image and each instance
k corresponds to a candidate region to be labeled. We here as-
sume that candidate regions are returned by a classical detection
network, together with a high level semantic feature vector of
size M X and a class-agnostic objectness score s; ;. We ignore
the classification ability of the detection network: no classifica-
tion label is used.

For simplicity, we consider only one class. Assume we have
N images, with K bounding boxes. When an image is a positive
example (the visual category is present), it is given an image-
level label Y; = +1 when it is ); otherwise it is given the label
Y; = —1. The number of positive examples in the training set is



denoted by n;, and the number of negative ones by n_;. Train-
ing a WSOD model from scratch, especially when the database
is rather small and from another domain, is a very hard prob-
lem. Thus, reusing as much as possible models that have been
trained on large datasets is advisable. In this paper, we will rely
on the faster RCNN detection network but other networks could
be used. We assume that features are associated to each box.
We do not rely on any classification information, but we assume
that an objectness score is associated to each box. The idea is
to give more importance to the classification of boxes with the
highest score. We observed that using the class-agnostic ob-
jectness score attached to each proposed box consistently gave
better results (see section 4.3.1). We chose to multiply each
WT X, + b by the objectness score of the region k before taking
the maximum:

FoXis) = (sipc+ €) (W Xix + b)), 3)

with € > 0 and where s; is the class-agnostic objectness score
of the region k, as returned by the detection network. The mo-
tivation behind this formulation is that the score s;4, roughly a
clue that there is an object in box k, provides a prioritization
between boxes. The same idea is used in the WSDDN model
(Bilen and Vedaldi, 2016) or in MELM (Wan et al., 2018).

At test time, the instance level decision is made as before ac-
cording to the sign of (W*Tx + b*), since multiplication by a
positive score does not change the sign. Indeed, the hyperplane
W*,b* is chosen to separate two classes and the loss £ aims
at maximizing the margin with respect to this hyperplane. It
stands to reason that the instance level classification must be re-
lated to the relative position of the instance and the hyperplane.
Nevertheless, we will propose in section 4 a non maximal sup-
pression strategy that will once again use the objectness score to
filter the boxes proposed for each class. More precisely the non
maximal suppression algorithm will use the following score:

S (x) = Tanh{(s(x) + €) (W*7x + b*)) )

which mixes the objectness score s(x) and the signed distance
from the hyperplane W*”x + b*.

We now present two natural extensions of our core model.
We first make use a neural network to transform the bare fea-
tures X;, so that the transformed features can be more relevant
to the task at hand. Then, we investigate the interest of a poly-
hedral separation instead of a hyperplane for classification.

3.5. Extensions of our model

3.5.1. One hidden layer network

In this extension, called MI-max-HL, the bare features X;
are transformed by a hidden layer before the MI-max approach
is applied. This can be summarized by modifying the function
fw as follows:

FuXix) = Q" (Tanh (W Xiy + b)) + B,

with W e R p e RLE Qe RL,ﬁ € R and L the dimension of
the hidden layer. When compared with MI-max the parameters
to be learned are Q, 3, W, b for a total dimension of L + 1 + L X
M+ L = LX(M+2)+ 1 compared to the original M + 1 scalars.
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We keep the function T'anh as activation function to be coherent
with the previous model; using a ReL U instead has little effect
on the performance.

3.5.2. Multiple linear classifier model

As mentioned in the introduction, an improvement of the lin-
ear model consists in learning several hyperplanes in parallel,
so that the binary classification is performed in a collaborative
manner instead of selecting the best hyperplane. The contri-
butions of several hyperplanes are gathered with a maximum
function, so that the model can be defined as:

SvXip) = maxjeq .. (WI-TXi_k + bj)

At each iteration of the gradient descent only one of the cou-
ple (W;, b)) is updated. For the inference the r hyperplanes are
used.

This model, named Polyhedral MI-max yields a concave
polyhedral boundary between the two classes. The concept of
convex polyhedral separability has been introduced by Megiddo
(1988) and well studied in the framework of polyhedral and
piece-wise linear classifier. In our case, this allows one to get
more complex boundary at a modest extra-cost compared to a
kernel SVM.

These models will be experimentally compared in section 4.

3.6. Discussions

The MIL part of our model MI-max-HL is close in spirit to
the multiple instance neural networks proposed by Ramon and
Raedt (2000) and Zhou and Zhang (2002)? and further extended
in (Wang et al., 2018). The best way to aggregate instance level
predictions in order to find a classifier separating each of the
individual vectors X; of each bag at test time is still an open-
problem. Some works use the max operator (Zhou and Zhang,
2002), the average operator or the Log-Sum-Exponential (Ra-
mon and Raedt, 2000) for the pooling. Indeed, since the train-
ing is done with only bag level information, at test time the
learned classifier must be able to handle each instance almost
independently from the others because of the variety of objects
that may appear in the test image.

None of these works use such approach for instance level
classification and even less for weakly supervised object detec-
tion. We include in the experimental comparisons some appli-
cations (that we will call MI_net or mi_net (Wang et al., 2018))
of this MIL methodology to the same deep features used in our
method. These can be seen as variations on the general ap-
proach proposed in this paper.

4. Experiments

4.1. Experimental Setup

Features extraction: We use the Faster RCNN detection
network (Ren et al., 2015) as a feature extractor and region
proposal algorithm. We extract 300 regions per image along
with their high-level features® and the class-agnostic objectness

>These models involve a sigmoid activation and they are trained with a
quadratic loss /(y, §) = (y — $)* and no re-initialization (r = 0).
3The output of layer fc7 often called 2048-D.



score attached to each proposed box by the Region Proposal
Network (RPN). Let us stress that, by using Faster R-CNN, our
system uses a subpart that has been trained on databases with
bounding boxes ground truth. In WSOD setups such as (Bilen
and Vedaldi, 2016; Zhu et al., 2017; Tang et al., 2018a), the
models have not seen any bounding boxes, even on different
modality. Observe nevertheless that, in contrast with domain
adaptation methods such as (Inoue et al., 2018), our method
allows the detection of new classes.

According to Kornblith et al. (2018), the ResNet family of
networks appears to be the best architecture for transfer learning
by feature extraction. Among this family we chose ResNet 152
layers trained on MS COCO (Lin et al., 2014). Therefore, the
backbone we used has been trained on ImageNet, then fine-
tuned on MS COCO. Remember that we chose not to fine-tune
the backbone in order to provide a fast and flexible tool that can
be used on small data sets. As a consequence, the backbone
of our model only saw photographs for its two-phase training
(ImageNet, MS COCO).

Parameters of the models: For training our MIL models, we
use a batch size of 1000 examples (for smaller sets, all features
are loaded into the GPU), 300 iterations of gradient descent for
the linear model, performed with a constant learning rate of
0.01 and € = 0.01 and C = 1 (equations (3) and (2)). The com-
plete training takes about 6 minutes for 7 classes on the IconArt
dataset (Gonthier et al., 2018) with 12 random starting points
per class using a consumer GPU (GTX 1080Ti). In the case of
Polyhedral MI-max and MI-max-HL we used 3000 iterations
which increase the training time to 1 hour. For MI-max-HL, we
use a maximum batch size of 500 elements. Actually, the ran-
dom restarts and classes are performed in parallel to take advan-
tage of the presence of the features in the GPU memory, thus
reducing the GPU-CPU transfer times. Typically, 20 classes
can be learned in parallel on a standard GPU, due to the light
weight of the model. One of other the advantage of not fine-
tuning the network is that there is no need to store the heavy
weights of the new trained model.

4.2. Results and comparison to other methods

In this section, we perform weakly supervised object detec-
tion experiments on different databases.We compare our differ-
ent models MI-max, Polyhedral MI-max and MI-max-HL, to
the three types of methods.

The first group of methods are those specifically targeted at
WSOD using fine-tuned networks. We have included state-of-
the-art methods for which a source code is available: Soft Pro-
posal Network* (SPN (Zhu et al., 2017)) and Proposal Clus-
ter Learning® (PCL (Tang et al., 2018a)). For some of the
datasets, we also include results from the Weakly supervised

#Trained with the following hyperparameters: batch size = 16, learning rate
= 0.01, multi-scale strategy with image of sizes 112, 224 and 560, with 20
epochs. There is no regularization term in this method.

STrained with the following hyperparameters: batch size = 2, learning rate
= 0.001, decay=0.0005, step decay = 7, momemtum of 0.9 and defaut number
of clusters (3), with 13 epochs. Those parameters correspond to the ones used
by the authors for the Pascal VOCO07 dataset. There is no regularization term in
this method either.
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detection network (WSDDN (Bilen and Vedaldi, 2016)) from
(Inoue et al., 2018). For those datasets we also show the perfor-
mance obtained by the mixed supervised method with domain
adaptation proposed by (Inoue et al., 2018), a method that as-
sume that datasets with bounding boxes for the same classes on
different modality are available.

The second family of methods are generic MIL-methods di-
rectly applied to the set of deep features vectors generated by
Faster RCNN. Observe that these methods ignore the object-
ness scores returned by the detection network. The first ones
are MI-SVM and mi-SVM® from (Andrews et al., 2003). These
two methods require to train several SVMs and are therefore
costly. In some cases (for the datasets PeopleArt and IconArt)
we performed a PCA on the training set to reduce the number
of components from 2048 to around 650 dimensions by keeping
90% of the variance (to fit the SVM in the CPU memory). We
experimentally observed on the other datasets that this dimen-
sionality reduction doesn’t reduce the performances. Eventu-
ally, the computationally lighter MI_Net, MI_Net with Deep Su-
pervision (DS) or Residual Connection (RC) and mi_Net from
(Wang et al., 2018) are also considered’. Although those mod-
els are designed for bag level classification, we used them for
instance level prediction. Again, these can be seen as variants
on the method we develop in this paper (the weakly detection
of objects is not addressed in (Wang et al., 2018)).

The last type of methods are those who (before any training)
use the objectness score of the proposed regions to keep only
one feature vector for each positive image. The method MAX
keeps one feature vector per image and learns a linear SVM
classifier that separates the positive vectors from the negative
one (Crowley and Zisserman, 2016). The variant MAXA also
keeps one vector per positive image but uses all vectors from
the negative ones. Again, a linear SVM is learned. In both
cases a 3-fold cross validation is performed for determining the
main hyperparameter of the SVM.

At test time, the labels and the bounding boxes are used to
evaluate the performance of the methods in term of Average
Precision par class. The generated boxes are filtered by a NMS
with an IoU threshold of 0.3 (Everingham et al., 2010) and a
confidence threshold of 0.05 for all methods.

As explained above, we concentrate on non-photographic
databases for which a ground truth is available for object de-
tection on the test set. We report in Tables tables 2 to 7 the per-
formances for the weakly supervised object detection task for 6
different non-photographic datasets: PeopleArt (Westlake et al.,
2016), Watercolor2k, Clipartlk, Comic2k (Inoue et al., 2018),

SWe allow up to 50 iterations of the algorithm (i.e. the complete training of
a SVM for each class). We experimentally observe that the re-initialization of
the model does not improve the performance in our case.

7For this method, we consider the following hyperparameters: three fully-
connected layers with 256, 128 and 64 hidden units, a kernel 12 regularization
with a weight equal to 0.005, an initial learning rate equal to 0.001 with a
momentum of 0.9 and a decay of 10~* for 20 epochs

8The performance comes from the original paper (Inoue et al., 2018).

9The performance comes from the original paper (Inoue et al., 2018).

10The performance comes from the original paper (Inoue et al., 2018).

UTrained with the following hyperparameters: batch size = 2, learning rate
=0.001, epochs = 13 and number of clusters by default.



Table 1. Overall

informatio:

n of the evaluated datasets.

N #Images | #Images | # Instances - Min # Images | Classes from | Classes from
Reference Dataset . H . . # Classes .

in train in test in test per class natural images | Pascal VOC
(Westlake et al., 2016) PeopleArt 3007 1616 1137 1 968 Yes Yes
(Inoue et al., 2018) Watercolor2k 1000 1000 3315 6 27 Yes Yes
(Inoue et al., 2018) Clipartlk 500 500 3615 20 21 Yes Yes
(Inoue et al., 2018) Comic2k 1000 1000 6389 6 87 Yes Yes

(Thomas and Kovashka, 2018) | CASPA paintings 1045 1033 1486 36 8 Yes 6 out of 8

(Gonthier et al., 2018) IconArt 2978 1480 3009 7 75 No No

Table 2. People-Art (test set) Average precision (% ). Comparison of the proposed MI-max, Polyhedral MI-max and mi-perceptron methods to alternative

approaches. In red the best weakly supervised method.

‘ Network ‘ Method ‘ Model ‘ person ‘
Weakly supervised SPN (Zhu et al., 2017) 10.0
VGGI6-IM fine tuning PCL (Tang et al., 2018a) 34
MAX (Crowley and Zisserman, 2016) 25.9
MAXA 48.9
MI-SVM (Andrews et al., 2003) 13.3
mi-SVM (Andrews et al., 2003) 5.6
RES- Features MI_Net (Wang et al., 2018) 33.0 +6.0
152- extraction MI_Net_with_DS (Wang et al., 2018) 195+114
COCO MI_Net_with_RC (Wang et al., 2018) 125+83
mi_Net (Wang et al., 2018) 26.5+8.5
MI-max 555+1.0
Polyhedral MI-max 583+1.2
MI-max-HL 573 +2.0

IconArt (Gonthier et al., 2018) and CASPApaintings (Thomas
and Kovashka, 2018). CASPApaintings is the paintings subset
of the CASPA dataset'? proposed in (Thomas and Kovashka,
2018) with bounding boxes associated to 8 visual categories
(only animals) for most of the images.

‘When the method is not too costly we provide standard devi-
ation and mean score computed on 10 runs of it.

First, we can see that for all databases, the end-to-end weakly
supervised methods (WSDDN, SPN and PCL) yield relatively
poor results. Possible explanations are that the model overfits
on the training set or that the model is stuck in bad local min-
ima, so that the weakly supervised setting is not adequate with
arelatively small training dataset. Moreover in the case of PCL,
the boxes are proposed by the Selective Search algorithm (Ui-
jlings et al., 2013) which, as shown in Table 11, completely
fails on the considered non-photographic datasets. That alone
can explain the poor results of PCL on those datasets. Recall
also that these methods do use features inherited from systems
such as FasterCNN that are pretrained with bounding box an-
notations.

When comparing the performances of the different multiple
instance neural networks, we can see that MI_Net (Maximum
Bag Margin Formulation) outperforms the other MIL networks
on three datasets. Moreover the multiple instance neural net-
work outperforms the multiple instance SVM (mi-SVM and
MI-SVM), which can be due to the fact that a linear SVM that
are not complex enough.

2http://people.cs.pitt.edu/~chris/artistic_objects/

We can notice that the Maximum Pattern margin methods
(mi-SVM and mi_Net) never perform better that the Bag margin
ones. This is rather unexpected since those models are designed
to better take into account the whole positive bag by assigning
an individual label per instance. These models appear to be
badly suited for the task of weakly supervised detection in non-
photographic databases.

When comparing our MI-max and Polyhedral MI-max mod-
els to the baseline MAX and MAXA, we observe that our mod-
els consistently perform better. Nevertheless the MAXA model
performs well especially on the IconArt or CASPApaintings
databases, probably because this model uses all the regions of
the negatives images, yielding good discrimination of back-
ground regions during inference. The MAX baseline some-
times provides equivalent performances to more complex meth-
ods (such as MI-SVM or MI_Net), illustrating the fact that the
objectness score (used for selecting candidates in MAX) con-
tains useful information. Also observe that it is faster to train
a multiple instance perceptron than several linear SVMs, as is
needed for MI-SVM or mi-SVM. This is quantified in Section
42.1.

Finally, we observe that both our models MI-max and Poly-
hedral MI-max provides better results than the others methods
on PeopleArt, CASPApaintings, Comic2k, Clipartlk and Wa-
tercolor2k datasets.

The dataset IconArt appear to be much more challenging.
In this case, our multiple instance methods provide equivalent
performances compared to the multiple instance networks. The
best performance is obtained by the MI_Net, the MI-max-HL
performance being very similar.



Table 3. Watercolor2k (test set) Average precision (%). Comparison of the proposed MI-max, Polyhedral MI-max and mi-perceptron methods to alterna-
tive approaches. In green the best mixed supervised method and in red the best weakly supervised one.

\ Net \ Method \ Model | bike bird car cat dog person | mean |
[ SSD | Mixed+DA |  DT+PL (Inoue et al., 2018) ® [ 765 549 460 374 385 723 | 543 |
VGGI16 Weakly WSDDN (Bilen and Vedaldi, 2016)% | 1.5 260 146 04 05 333 12.7
M supervised SPN (Zhu et al., 2017) 0.0 189 00 00 00 23.6 7.1
fine-tuning PCL (Tang et al., 2018a) 00 00 00 00 0.0 0.0 0.0
MAX (Crowley and Zisserman, 2016) | 76.0 33.8 33.0 20.8 22.7 19.8 34.3
MAXA 60.6 392 39.6 309 320 612 439
MI-SVM (Andrews et al., 2003) 66.8 209 76 141 85 132 21.8
mi-SVM (Andrews et al., 2003) 106 109 14 2.0 0.8 5.9 5.3
RES- Features MI_Net (Wang et al., 2018) 776 324 355 247 162 180 | 34.1=x1.0
152- extraction MI_Net_with_DS (Wang et al., 2018) | 73.4 224 258 176 112 103 268 +2.4
COCO MI_Net_with RC (Wanget al., 2018) | 323 192 20.1 6.7 6.8 154 16.7 £ 6.3
mi_Net (Wang et al., 2018) 664 303 149 144 86 20.5 258 +35
MI-max 84.1 474 482 309 279 582 | 495 +£09
Polyhedral MI-max 77.8 4477 455 256 267 592 | 466=+13
MI-max-HL 793 46.1 436 269 288 570 | 47.0=x1.6

4.2.1. Execution Time

One advantage of our method is the relativel short time
needed for training, as can be seen in Table 8. As can be ex-
pected, the SPN and PCL methods are the longest to train due
to the fine-tuning of the whole network. Observe also that the
traingin time for our method MI-max is almost independent of
the number of classes and restarts, which is a strong advan-
tage compared to the MI-SVM, mi-SVM, MI Net and mi_Net
models which all need one full training per class and per re-
initialization. The SVM based methods are more costly because
they don’t take advantage of GPU computational power.

Nevertheless, due to the aggregation of several hyperplan
with a maximum operator in the Polyhedral MI-max model, we
need to do 10 time more epochs that when using MI-max, which
explain the strong overload.

4.3. Fine MI-max models Analysis

In this section we discuss the details of our models and some
variations. In particular, we provide an ablation study where we
analyze how the choices of a different loss, different set of fea-
tures and use of the objectness score impact the performances
of our models. In Section 4.3.2 a thorough investigation of the
main parameters’ influence is conducted. From this study we
are able to recommend a set of parameters that are suited for
our models, thus providing the user with a safe baseline for re-
using them. Then, we experimentally show that our method
also permits to transfer easily the knowledge between datasets
and artistic modalities. In section 4.3.3, we also evaluate the
generalization ability of our models across difterent modalities
of images (using classes shared by the different datasets). Fi-
nally, in section 4.3.4 some visual results are commented to give
an insight on the strengths and shortcomings of our model.

4.3.1. Ablation study

Choice of the loss function: In Table 9, we gather different
versions of the two models MI-max and Polyhedral MI-max
with two possible modifications. First we replace the Tanh

based loss in equation (1) by the Hinge loss. Second we sup-
press the objectness score in the loss function (see section 3.4).

The first conclusion that can be drawn is that the use of ob-
jectness score significantly increase the performances of our
models. This is especially true for the PeopleArt dataset where
the performances very srongly decrease without using the ob-
jectness score. For the other datasets the performances are al-
ways significantly lower without the objectness score. Note that
for some classes this drop in detection score is due to the fact
that the model detects parts of the object instead of the whole
object when the objectness score is ignored. Such an example
can be seen in figure 9 section 4.3.4, where the class for Saint
Sebastian is confused with arrows, which is understandable in
this case but not desirable. The use of the objectness score often
helps avoiding such partial detection cases.

The second conclusion is that replacing the Tanh based loss
function in equation (1) by a Hinge loss /(y, ) = 1 —max(0, 1 —
yy) generally hinders the performances, except for two cases
among the 12 cases of the (dataset,model) possible combina-
tions. In particular the Polyhedral MI-max methods never ben-
efits from a different loss function. This may be due to the fact
that, given the difficulty of the task, errors are likely to happen
and the T'anh function may be more robust and forgiving than
the Hing loss which will try hard to correct any errors, espe-
cially those with a high negative margin.

Features extraction and region proposals choices: We
have investigated alternative choices for the Faster RCNN’s fea-
tures and box proposals: for the boxes we used the unsupervised
box proposal algorithm EdgeBoxes (Zitnick and Dollar, 2014)
and for the features we used a ResNet-152 trained on ImageNet
applied to each proposed box. By doing so we must drop the ob-
jectness score that is not included in the output of EdgeBoxes.

We can see in Table 10 the performances of the model MI-
max (without the objectness score) using those features/boxes
compared to the Faster RCNN features/boxes (without object-
ness score for fair comparison). Regarding the detection task
the performances clearly drop when using EdgeBoxes. To fur-



ther investigate this drop of performance we present in Table 11
the recall score of three box proposals methods (the percentage
of ground-truth boxes that are present in the set of all proposed
boxes). We can see that EdgeBoxes performs very poorly on
a data-set like PeopleArt and never matchs the boxes proposed
by Faster RCNN.

For the classification task we can see that the MI-max method
without objectness score performs honorably in this setting
when compared to the use of Faster RCNN’s boxes/features
(even slightly better on the IconArt database). This is another
proof that bag-level classification (the aim of the training of a
MIL algorithm) is not a good proxy for instance-level classifica-
tion (which is the aim of a detection algorithm). The objectness
score can be seen as a very helpful cue to guide the training
of a WSOD method. As shown by Donahue et al. (2014) for
classification task, transfer learning of deep models trained for
detection tasks is the best way to obtain a detector on new do-
mains even when no bounding boxes are available.

4.3.2. Influence of the parameters of the model

In this section, we analyse the influence of the different hy-
perparameters of our MI-max model. We show in Figure 3 the
performances with respect to each of the three following pa-
rameters: the number of restarts, the batch size and the regular-
ization term C. We vary one parameter at a time while keeping
the others fixed to the already mentioned values (i.e. 11 for the
number of restarts, 1000 for the batch size and 1.0 for C).

Although the study in (Doran and Ray, 2014) shows that
restarts from random points is not always useful for nonconvex
models, we find that having about 10 restarts slightly improves
the performances and can be taken as a rule of thumb for our
models. Notice that the variance of the outcomes is also re-
duced for such a parameter choice. We also found experimen-
tally that restarts for mi-SVM or MI-SVM reduce the perfor-
mance in accordance with the experiments in (Doran and Ray,
2014). Then, we observe that increasing the batch size provides
better results and often yields a reduction of the variance. For
the regularization term, we observe relatively constant perfor-
mances between 1.0 and 2.0. The value 0.5 seems to be the best
for 2 of the datasets (PeopleArt and IconArt, but with a great
variance). These experiments also show the necessity of using
a regularization term in the loss function.

4.3.3. Cross modalities Knowledge Transfer

Tables tables 12 and 13 present across-domain performance
for two our models Polyhedral MI-max and MI-max. We
compute the performances of detection for the classes that are
shared between the different datasets. Those performances (one
run) are compared to the mean performance on the same modal-
ity (several runs as before). This experiment illustrates the fact
that our method can be transferred to other modality of images.
This is sometimes called the ”Cross-Depiction Problem” (Hall
et al., 2015): recognizing visual objects regardless of whether
they are painted or depicted in different artistic style.

First, we can see that the Polyhedral MI-max model trained
on PeopleArt outperforms the one learned on the target modal-
ity for 2 of the 3 datasets (first line). This can be due to the fact
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the PeopleArt dataset contains many different artistic style. We
also observe that the MI-max model badly fails on those three
datasets and that the Polyhedral MI-max model generalizes bet-
ter. Observe also that the fact that the class person is well de-
tected can also be due to the Faster RCNN features that have
been trained on a dataset (MS COCO) containing this class.

Finally, we can notice that some datasets such as CASPA-
paintings and Clipartlk are more challenging that the other
maybe due to the difference in the modality for the second one.

This experiment illustrates the fact that our model Polyhedral
MI-max generalize well but also that providing a diverse and
numerous training set can help to get a better detector trained
in a weakly supervised manner.

4.3.4. Visual results from the Polyhedral MI-max model.

In order to give some intuitive insight on the ability of the
proposed method, we show some visual illustrations of the per-
formance of the proposed model Polyhedral MI-max, both in
successful and failure cases.

Successful detections: We show successful results on vari-
ous datasets. In figs. 4 and 5 we show various examples of the
visual categories we are able to detect, respectively on Water-
color2k and CASPApainting datasets. On Figure 6, we can see
the large stylistic diversity that the model is able to detect for a
same class, namely person, on the PeopleArt dataset. On Fig-
ure 7, one can see some detections on the challenging IconArt
dataset.

Failures examples: We can categorize the failures cases into
five main categories:

1. Discriminative elements are detected instead of the whole
object: the hand for instance in Figure 8 for the Polyhe-
dral MI-max without score model or the arrows instead of
Saint Sebastian in Figure 9) for the MI-max model without
score.

2. Detection of a whole group instead of individual instances
(Figure 10).

3. Misclassification of correct bounding box, as in Figure 11.

4. Confusing images (Figure 12, relatively advanced knowl-
edge in art history is needed to know that the child on the
left is Saint John the Baptist).
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Fig. 4. One successful example per class using our Polyhedral MI-max de-
tection scheme on Watercolor2k test set. We only show boxes whose scores
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Fig. 3. Impact of the different hyperparameters on the MI-max model. Figure must be seen in color.

Dog 0.893

are over 0.75. Figure must be seen in color.

[ e—
Person 0.963

Sheep 0.981

Fig. 5. Successful examples of animal detection using Polyhedral MI-max
on CASPA paintings test set (there is no ”’person” class in the training set).
‘We only show boxes whose scores are over 0.75, except for the elephant
image. Figure must be seen in color.
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seduced by the sex appeal of the inorganié
Person 0.753

Fig. 8. Failure examples using our our Polyhedral MI-max detection
scheme on different datasets. We only show boxes whose scores are over
0.75. The most discriminative boxes correspond to parts of the whole ob-
jects. On the first image, the gloves are detected instead of a person. On
the second one, the back legs and tail are detected as a dog. On the last
one, the legs are detected as nudity. Figure must be seen in color.

Person 0.996 Person 0.980 0.946

Fig. 6. Successful examples using our Polyhedral MI-max detection scheme
on PeopleArt test set. One can observe the strong stylistic differences be-
tween the images. We only show boxes whose scores are over 0.75. Figure
must be seen in color.

ﬁlf»‘.rwa?.;‘ -

¥

Fig. 7. Successful examples of detection of iconographic characters using
our Polyhedral MI-max detection scheme on IconArt test set. We only
show boxes whose scores are over 0.75. Figure must be seen in color.



MI-max without score

Nudity 0.167 . Nudity 0.402 0.187
MI-max with score

Nudity 0.6 Nudity 0.565 0.312 0.361

Fig. 9. An example of wrongly detected object at test time, when using MI-
max without or with the objectness score. In the first case, arrows or spike
are detected instead of Saint Sebastian. Figure must be seen in color.

Fig. 10. Failure examples using our our Polyhedral MI-max detection
scheme on different datasets. We only show boxes whose scores are over
0.75. Whole groups are detected instead of the instances. Figure must be
seen in color.

13

Dog 0.883

Fig. 11. Failure examples using our our Polyhedral MI-max detection
scheme on different datasets. We only show boxes whose scores are over
0.75. Mis-classified boxes: on the first image the bird is classified as a dog
and on the second one the dog is detected as a cat. Figure must be seen in
color.

Nudity 0.912 0.888

Fig. 12. Failure examples using our our Polyhedral MI-max detection
scheme on different datasets. We only show boxes whose scores are over
0.75. Those are confusing images. In the first one a bear in an human pos-
ture is detected as a person. In the middle, the horse, the man and other
animals are deformed. The last one is a confusing case between Saint John
the Baptist and Jesus children who are visually similar. Figure must be
seen in color.
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Table 4. Clipartlk (test set) Average precision (%). Comparison of the proposed MI-max, Polyhedral MI-max and mi-perceptron methods to alternative approaches. In those case, we use a line search for
MAX and MAXA. In green the best mixed supervised method and in red the best weakly supervised one.

Net Method Model acroplanc_bicycle _bird _boat_botlle _bus__car _cal _chair _cow _diningible _dog _horse _motorbike _person _pottedplant _sheep _sofa _train _tvmonitor | _mean
SSD Mixed supervised DT+PL (Inouc ct al, 2018) 357 610 262 450 200 740 487 28 530 727 502 193 409 833 624 W24 228 385 493 395 3607
Yolov2 with domain DT+PL (Inoue et al., 2018)° 3097
Faster RONN | adaptation DT+PL (Inoue et al, 2018)° 319"
Weakly WSDDN (Bilen and Vedaldi, 2016) 6 56 06 23 01 117 45 00 32 01 8 23 00 ] 44 160 a5 07 12 183 T4
VGGI6-IM supervised SPN (Zhu et al., 2017) 00 125 08 01 00 125 10 00 01 48 64 00 53 50 23 00 00 00 25 25 38
fine tuning PCL (Tang et al., 2018) 04 00 03 L1 0100 59 00 09 00 03 38 03 00 36 15 00 07 00 44 12
MAX(Crowley and Zisserman, 2016) | 152 06 157 233 22 345 190 00 156 77 24 36 247 419 136 326 04 00 464 229 169
247 292 197 316 60 370 346 00 306 17 42 09 127 530 354 340 07 49 503 205 20
MI-SVM (Andrews ct al., 2003) 103 358 84 224 155 250 283 87 269 48 143 00 184 450 226 64 5 70 510 224 103
mi-SVM no GS (Andrews etal 2003) | 1.0 41 81 64 15 45 160 44 104 41 27 01 106 205 6.2 31 02 26 86 85 62
RES- Features MINet (Wang et al., 2018) 203 456 268 222 374 476 428 184 400 281 217 3248 243 279 22 72297 470 539 | 297:15
152- ! MINetwith DS (Wangetal. 2018) | 129 441 150 121 250 305 118 140 264 144 168 43 89 126 164 152 S0 235 305 390 | 18924
coco extraction MI_Net_with RC (Wang ct al., 2018) 16 20 02 00 06 01 32 04 06 06 0.1 00 05 03 22 19 03 06 23 00 09408
mi_Net (Wang et al., 2018) 200 436 287 239 363 504 432 202 436 343 257 39 221 252 303 97 53 280 413 552 | 295%12
MI-max T4 464 250 456 6 526 437 20 455 424 W1 59 H5 523 555 500 21157 603 479 | 384 08
Polyhedral MI-max 326 363 17 278 326 528 423 71 415 208 144 20 305 516 547 3209 17102 581 384 | 305:23
Mi-max-HL 318 466 255 313 450 416 431 86 469 339 87 37208 435 s4d 519 27 146 486 477 | 330%12
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Table 5. Comic2k (test set) Average precision (%). Comparison of the proposed MI-max method to alternative approaches. no GS means no Grid Search
on the hyperparameters of the SVM otherwise it is the case.

Net ‘ Method ‘ Model | bike bird car cat dog person | mean |
ssp | Mixed supervised with pr4py, (Inoue etal., 2018) 765 549 460 374 385 723 54.3*
domain adaptation
Weakly WSDDN (Bilen and Vedaldi, 2016) ° | 1.5 260 146 04 05 333 127
VGG16-IM supervised SPN (Zhu et al., 2017) 00 00 00 31 00 41 1.2
fien tuning PCL (Tang et al., 2018a) 00 00 00 00 00 00 0.0
MAX(Crowley and Zisserman, 2016) | 152 2.7 294 23 168 4.9 11.9
MAXA 368 56 271 82 61 348 19.8
MI-SVM (Andrews et al., 2003) 342 30 200 52 25 129 3.0
mi-SVM no GS (Andrews et al., 2003) | 108 2.3 55 32 21 36 4.6
RES- Features MI_Net (Wang et al., 2018) 429 155 331 118 134 204 | 228=+1.1
152- o MI Net_with DS (Wang et al., 2018) | 40.8 133 325 57 91 161 | 19.6=1.6
COCO extraction MI_Net_with RC (Wang et al., 2018) | 19.8 54 164 28 98 139 | 11.4=44
mi_Net (Wang et al., 2018) 421 109 245 88 88 221 | 195+2.1
MI-max 453 97 337 144 216 370 | 270 08
Polyhedral MI-max 449 52 262 141 110 384 | 233+16
MI-max-HL 430 51 315 118 138 364 | 23.6+05

Table 6. CASPA paintings (test set) Average precision (%). Comparison of the proposed MI-max method to alternative approaches. no GS means no Grid
Search on the hyperparameters of the SVM otherwise it is the case.

‘ Net ‘ Method ‘ Model ‘ bear bird cat cow dog elephant horse sheep ‘ mean ‘
‘ VGG16am | Weakly supervised SPN (Zhu et al., 2017) 05 01 1.6 09 05 1.4 0.6 0.0 ‘ 0.7 ‘
fine tuning PCL (Tang et al., 2018a) 00 00 00 00 00 0.0 0.0 0.0 0.0
MAX(Crowley and Zisserman, 2016) | 22.0 2.1 145 3.5 142 8.8 12.8 0.5 9.8
MAXA 263 131 269 54 83 18.1 14.9 3.9 14.6
MI-SVM (Andrews et al., 2003) 93 02 67 15 0.1 0.6 0.9 0.4 2.5
mi-SVM no GS (Andrews etal.,2003) | 1.3 16 3.0 08 1.0 0.3 1.5 0.3 1.2
RES- Features MI_Net (Wang et al., 2018) 328 54 141 52 62 15.0 11.1 42 11.7+1.6
152- extraction MI_Net_with_ DS (Wang et al.,2018) | 29.0 16 83 3.0 32 59 7.1 2.6 7.6+12
COCO MI Net_with RC (Wang et al., 2018) | 169 09 6.6 26 29 8.2 4.7 2.1 5.6 +2.1
mi_Net (Wang et al., 2018) 267 89 125 15 34 7.1 5.1 2.4 84+1.7
MI-max 283 157 256 53 137 17.2 18.8 5.1 16.2 + 0.4
Polyhedral MI-max 262 169 239 54 10.1 9.7 18.8 4.5 144 0.7
MI-max-HL 265 157 263 48 142 10.1 11.5 6.2 144+ 0.9

Table 7. IconArt detection test set detection average precision (%) at IoU >0.5. Comparison of the proposed MI-max, Polyhedral MI-max and mi-
perceptron methods to alternative approaches. In those case, we use a grid search for MAX and MAXA. In red, the best weakly supervised method.

‘ Net ‘ Method ‘ Model ‘ angel JCchild crucifixion Mary nudity ruins StSeb ‘ mean ‘
‘ VGGI6IM | Weakly supervised SPN (Zhu et al., 2017) 0.0 0.8 22.3 120 68 104 12 ‘ 7.7 ‘
fien tuning PCL'' (Tang et al., 2018a) 29 0.3 1.0 26.3 23 72 1.4 59
MAX(Crowley and Zisserman, 2016) 14 1.3 11.5 2.8 3.8 0.3 4.5 3.7
MAXA 1.3 4.4 18.2 280 153 02 164 12.0
MI-SVM (Andrews et al., 2003) 0.7 44 21.6 0.6 1.0 00 00 40
mi-SVM (Andrews et al., 2003) 1.3 5.1 3.9 3.6 2.9 03 22 2.8
RES- Features MI _Net (Wang et al., 2018) 9.7 426 21.1 69 176 5.1 25 | 151 =15
152- . MI_Net_with DS (Wang et al., 2018) | 8.6 35.6 19.6 53 159 32 31 | 13.0£17
CcoCco extraction MI_Net_with.RC (Wang et al., 2018) | 82  36.9 20.5 48 162 1.6 09 | 127+16
mi_Net (Wang et al., 2018) 8.2 28.4 15.1 112 158 68 45 | 129%12
MI-max 0.3 0.1 427 44 219 06 137 | 120+09
Polyhedral MI-max 3.1 9.8 33.0 74 292 0.1 85 | 13.0£22
MI-max-HL 4.3 6.7 35.7 156 240 01 152 | 145+18
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Table 8. Execution time of the different
Method
No Boxes proposals

dels for datasets Watercolor2k and Comic2k, with 1000 i
Training Duration

in the training set and 6 visual categories.
Linear to number of class | Linear to number of restarts

SPN (Zhu et al., 2017) 3000s (20 epochs) No °
Selective Search Bounding Boxes proposal 6600s
PCL (Tang et al., 2018a) 12000s (13 epochs) No °
Faster RCNN Features and boxes proposals 200s
MAX 52s Yes °
MAXA 2000s Yes °
MI-SVM (Andrews et al., 2003) 3000s Yes Yes
mi-SVM (Andrews et al., 2003) 30000s Yes Yes
MI_Net (Wang et al., 2018) 1200s (20 epochs) Yes Yes
MI Net_with DS (Wang et al., 2018) 1800s (20 epochs) Yes Yes
MI_Net_with_RC (Wang et al., 2018) 1600s (20 epochs) Yes Yes
mi_Net (Wang et al., 2018) 1800s (20 epochs) Yes Yes
MI-max 130s (300 epochs) No No
Polyhedral MI-max 1100s (3000 epochs) No No
MI-max-HL 3000s (300 epochs) No Yes

Table 9. Mean average precision over the classes of the different datasets (% ). Comparison of the proposed MI-max and Polyhedral MI-max methods with
different settings. Standard deviation is ¢ d on 10 runs of the method.

P

MI-max Polyhedral MI-max

Dataset Main Model | Without score | Hinge loss W1th9ut SCOTC || M ain Model | Without score Hinge loss W1th9ut score

and hinge loss and hinge loss
PeopleArt 555+1.0 09+04 57.6 £ 1.0 1.7+09 583+1.2 10.1 £3.3 56.6 +4.4 18.1 £ 8.6
Watercolor2k 49.5+0.9 328 +2.2 46.7 £ 1.5 338+ 1.6 46.6 + 1.3 183 +4.7 37.5+2.1 248 £33
Clipart1k 384 +0.8 242 + 1.6 348+ 1.2 222+ 1.8 305+23 11.9+2.6 16.5+1.2 5.1 +1.1
Comic2k 27.0+0.8 174 15 255+ 1.1 173+ 1.1 233+ 1.6 11.6 £2.8 150+ 1.8 95+1.8
CASPA paintings 162 £ 0.4 18.7+£0.8 16.1 £0.5 126 £0.9 144 +0.7 8.6+14 9.0+0.9 32+06
IconArt 12.0 £ 0.9 6.7+2.5 143 +2.1 82+23 13.0+22 6.4+23 133+2.38 83+20

Table 10. Average precision for detection and classification (%). Two different feature extraction methods are considered in this table (both without
objectness score).

‘ Dataset ‘ Metric ‘ Faster RCNN ‘ EdgeBoxes ‘
APIUO =05 ] 09=04 0.0+0.0
PeopleArt |~ ifAP | 925+03 | 92.1+02
Clivartk | AP0 >05 | 242516 | 31203
pa Classif AP 594+17 | 428+13
. APTUO =05 | 174=15 18+03
Comic2k | " Classif AP | 549420 | 479+ 1.5
Watercolorok | APTWO >05 [ 328522 | 2705
Classif AP | 78.0+12 | 71.8+ 1.3
APIO >05 | 126205 | 0301
CASPA Classif AP | 48.6+0.6 | 45.0+12
onArt | APUO>05 | 6725 53+03
Classif AP | 60.4=1.1 | 69.2+0.3
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Table 11. Recall (%) at IuO >0.5 of the boxes proposals for the different methods and databases. Mean over the classes.

Dataset RPN of Pre-trained EdgeBoxes Selective Search
Faster RCNN (Ren et al., 2015) | (Zitnick and Dollar, 2014) | (Uijlings et al., 2013)
Number of boxes 300 300 3000-5000

PeopleArt 94.0 15.4 55.7
Clipart1k 91.4 14.4 49.4
Comic2k 82.7 54.1 46.2
Watercolor2k 93.6 61.4 56.8
CASPA 76.6 34.3 51.6
IconArt 75.9 60.0 56.9

Table 12. Mean AP (%) at IuO >0.5 for the common classes between the source and target sets with the MI-max model. In parenthesis the mean
performance obtained by learning the detection on the same set (modality).

target set PeopleArt | Watercolor2k | Comic2k Clipartlk | CASPApaintings
source set
PeopleArt - 0.0 (58.2) 0.0 (37.0) | 0.0(55.5) /
Watercolor2k 47.4 (55.5) - 25.8(27.0) | 12.2(33.4) 15.6 (18.3)
Comic2k 50.4 (55.5) | 47.3(49.5) - 10.0 (33.4) 15.0 (18.3)
Clipartlk 36.2 (55.5) | 44.3(49.5) | 25.2(27.0) - 10.8 (14.0)
CASPApaintings / 33.4(35.4) 122 (15.2) | 4.7(22.5) -

Table 13. Mean AP (%) at IuO >0.5 for the common classes between the source and target sets with the Polyhedral MI-max model. The mean performance
obtained by learning the detection on the same set (modality) is displayed between brackets.

target set PeopleArt | Watercolor2k | Comic2k Clipartlk | CASPApaintings
source set
PeopleArt - 60.0 (59.2) | 42.1(39.5) | 54.3(554) /
Watercolor2k 56.0 (57.3) - 23.1(24.1) | 11.2(24.6) 13.8 (18.3)
Comic2k 48.9(57.3) | 42.4(46.6) - 7.2 (24.6) 12.5 (18.3)
Clipartlk 52.0(57.3) | 36.7(46.6) 19.6 (24.1) - 7.7 (13.6)
CASPApaintings / 27.5 (39.0) 9.9 (18.1) | 4.2(12.5) -




5. Conclusion

In this paper, we confirm that transfer learning of pretrained
CNN can provide good model to automatically analyze non
photo-realistic images databases. This was previously shown
for classification and fully supervised detection tasks, and was
here investigated in the case of weakly supervised object de-
tection. We proposed a simple and quick model to solve the
multiple instance problem we are facing. In future works, we
plan to add some constraint in the polyhedral case to force the
hyperplanes to be as distinct as possible to get better bound-
aries, to develop on piece-wise linear model. It might be ben-
eficial to take in more than one instance per bag to learn better
detector and catch multi-modal visual category. A more exten-
sive investigation of the different possible features extractor and
boxes proposals algorithms could show the flexibility of our
model. Another exciting direction is to investigate the poten-
tial of weakly supervised learning on large databases with only
image-level annotations. For instance, this framework could be
used to develop versatile search engine for diverse modalities
of images, avoiding the time consuming annotation task. More-
over, we plan to supervise the training of weak detector with
a fully-trained classifier in order to remove some obvious mis-
classified box candidate as it can be done in classical WSOD
method (Wan et al., 2018). This could help to provide better
detection performances.
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e Multiple instance perceptron on deep features performs well for weakly supervised object detection.
e This model have been evaluated for non-photographic datasets including new classes.

e By aggregating several linear classifiers, we obtained a polyhedral efficient model.

e A detection network trained on natural images provides good features for art ones.

e The proposed model is even robust to extreme domain shifts.
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