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Abstract: Nonlinear Model Predictive Control (NMPC) formulations through quasi-Linear
Parameter Varying (qLPV) embeddings have been brought to focus in recent literature. The
qLPV realisation of the nonlinear dynamics yields linear predictions at each sampling instant.
Thereby, these control strategies offer online implementation with numerical toughness of
Sequential Quadratic Programs (SQPs), which can be solved much faster than the Nonlinear
Programs (NPs) generated with “regular” NMPC design. The general lines of such methods are
as follows: (i) The qLPV embedding is formulated with state-dependent scheduling parameters;
(ii) recursive extrapolation procedures are used to estimate the values of these parameters along
the prediction horizon; (iii) these estimates are used to compute linear predictions, which are
used to compute the control law through a constrained optimisation procedure. This paper
details the overall concept of these novel NMPC techniques and reviews two different (efficient)
implementation options. Realistic academic examples are also provided, considering a suspension
system and a cascaded tank process.

Keywords: Nonlinear Model Predictive Control, Quasi-Linear Parameter Varying Systems,
Tutorial, Sub-Optimal, Efficient Algorithms.

1. INTRODUCTION

Model Predictive Control (MPC) is very well recognised
both in industry and academia as a standard tool for
the optimal regulation of processes subject to constraints.
Nonetheless, nonlinear MPC (NMPC) design is not trivial
and comes with an increased numerical burden, which
often becomes an impediment for real-time applications.
This was a very substantial issue until the late 10’s, since
even the most efficient NMPC algorithms available by
then displayed exponential complexity increase with the
number of system states and prediction horizon size, as
emphatically stated by all systematic reviews on the topic
(Allgöwer and Zheng, 2012).

Anyhow, over the last decade, there has been remark-
able progress on expanding the real-time capabilities of
NMPC (Gros et al., 2020), with tools that enable suffi-
ciently fast solutions of the Nonlinear Programs (NPs),
such as real-time iteration methods (Quirynen et al.,
2015), gradient-based approaches (Englert et al., 2019),
and input-parametrisation techniques (Rathai, 2020).

In parallel to the progress on real-time NMPC, the Linear
Parameter Varying (LPV) toolkit has been progressively
popularised (Sename et al., 2013). For many nonlinear
systems, quasi-LPV (qLPV) embedding offers an exact
representation of the process dynamics with elegance and
? This work has been supported by CNPq (304032/2019 − 0),
CAPES (001) and ITEA3 European project (15016) EMPHYSIS.

simplicity since there is no need to compute nonlinear
state transitions but only linear maps with time-varying
parameters ρ. These parameters are bounded and known
between sampling instants.

With regard to this context, recent advances have con-
ceived the design of NMPC schemes with qLPV embedded
models, as surveyed in (Morato et al., 2020a). These qLPV
MPC algorithms also provide fast online implementation
since the “full-blown” nonlinear predictions are replaced
by a sequence of linear predictions, which derive Sequential
Quadratic Programs (SQPs), e.g., (Hanema et al., 2017;
Morato et al., 2019; Cisneros and Werner, 2020).

The notion of deploying NMPC through qLPV embedded
models is very recent. Therefore, in this brief tutorial
paper, we review and discuss the overall concept of these
methods, as well as detail the implementation steps and
illustrate their application to nonlinear processes.

The rest of this paper is organised as follows. In Sec. 2,
we provide the NMPC problem setup, together with the
procedure to obtain qLPV realisations and the underlying
assumptions required for correct implementation. In Sec.
3, we present different mechanisms that can be used to esti-
mate the future values of the qLPV scheduling parameters.
Sec. 4 gives standard LMIs for the computation of terminal
ingredients, used to ensure the stability of the closed-loop
system and recursive feasibility of the MPC optimisation.
In Sec. 5, we illustrate two different applications, consider-



ing the regulation goal of a semi-active suspension system
and a level tracking problem in a quadruple-tank process.
Concluding remarks are drawn in Sec. 6.

2. PROBLEM SETUP

Consider the following discrete-time nonlinear system:{
x(k + 1) = f (x(k), u(k)) ,
y(k) = fy (x(k), u(k)) ,

(1)

being k ∈ N the sampling instant, x ∈ Rnx the vector of
states, u ∈ Rnu the vector of control inputs, and y ∈ Rny
the vector of measured outputs. Without loss of generality,
consider that the origin is an equilibrium point.

In order to apply an MPC algorithm to control this system,
a suitable operation is defined through set constraints:
x ∈ X and u ∈ U , with:

X := {xj ∈ R : ‖xj‖ ≤ xj ,∀j ∈ N[1,nx]} ,

U := {ui ∈ R : ‖ui‖ ≤ ui,∀i ∈ N[1,nu]} .

For simplicity, we consider that the states x are measured
for all sampling instants. Therefore, MPC can be formu-
lated through state-feedback u(k) := κ(k)x(k) such that
the closed-loop dynamics x(k + 1) = fπ (x(k)), y(k) =
fyπ (x(k)) abide to the desired specifications. W.r.t. this
matter, there are two possible control objectives: (a) reg-
ulation, meaning that the states x must be steered to the
origin, and (b) tracking, meaning that the outputs y must
be steered to some admissible point yr, which conversely
means to steer (x, u) to (xr, ur).

2.1 qLPV Embedding

A great deal of nonlinear systems in the form of Eq.
(1) can be described with an exact qLPV realisation,
if the Linear Differential Inclusion (LDI) property is
verified (Abbas et al., 2014). Suppose that ∃H(x, u) ∈
R(nx+ny)×(nx+nu),∀(x, u) ∈ (X × U) s.t.[

(f(x, u))> (fy(x, u))>
]>

:= H(x, u)
[
x> u>

]>
.

Then, Eq. (1) within (X × U) is equivalent to:{
x(k + 1) = A(ρ(k))x(k) +B(ρ(k))u(k) ,
y(k) = C(ρ(k))x(k) +D(ρ(k))u(k) ,
ρ(k) = fρ(x(k), u(k)) ∈ P .

(2)

The qLPV model in Eq. (2) is scheduled by an endogenous
nonlinear map fρ(·), which imposes bounded and known
scheduling variables ρ for all sampling instants. These
variables are unknown for any future instant k + j , ∀j ∈
N[1,∞]. The scheduling set is given by:

P :=
{
ρj ∈ R | ρ

j
≤ ρj ≤ ρj ,∀j ∈ Z[1,nρ]

}
.

Remark 1. If the LDI property is not verified, one can still
find qLPV models that represent the nonlinear dynamics
through convex or convex-concave inclusions (Sala et al.,
2020), at the expense of conservativeness.

Remark 2. Through the sequel, we will drop the depen-
dency of fρ on u, for notation simplicity. We note that
qLPV embedding with state-dependent scheduling param-
eter holds for the vast majority of qLPV applications

(Morato et al., 2020a). Nevertheless, input-dependent
scheduling variables can be treated with the same method-
ologies herein described.

Assumption 1. The scheduling variables ρ(k) evolve along
the horizon with bounded rates of variation. This is: ∂ρ(k+
1) = (ρ(k + 1)− ρ(k)) ∈ ∂P, with:

∂P :=
{
∂ρj ∈ R : ∂ρ

j
≤ ∂ρj ≤ ∂ρj ,∀j ∈ N[1,np]

}
. (3)

2.2 The MPC formulation

In order to suitably control the nonlinear process in Eq.
(2), we consider an MPC approach. For such, at each
sampling instant k, the states x(k) are measured, the
scheduling parameters ρ(k) are computed, and the follow-
ing optimisation problem, which embeds the performance
objectives (regulation/tracking), as well as the operational
constraints, is solved:

min
Uk

V (x(k +Np|k)) (4)

+

Np∑
j=1

` (x(k + j|k), u(k + j − 1|k))

s.t. x(k + j + 1|k) = A(ρ(k + j|k))x(k + j|k)

+B(ρ(k + j|k))u(k + j|k), j ∈ N[0,Np−1] ,

y(k + j) = C(ρ(k + j|k))x(k + j|k)

+D(ρ(k + j|k))u(k + j|k), j ∈ N[0,Np−1] ,

(x>(k + j|k) , u>(k + j|k))> ∈ (X × U) , j ∈ N[0,Np−1] ,

x(k +Np|k) ∈ Xf .

The quadratic stage cost `(x, u) = ‖x−xr‖2Q+‖u−ur‖2R
can be defined in terms of regulation or tracking purposes
(Limon et al., 2018). For regulation, it is implied that xr
and ur are null. Furthermore, V (·) is a terminal cost and
Xf is a terminal set (denoted terminal ingredients, see Sec.
4). The solution U?k = col{u?(k + j|k)},∀j ∈ N[0,Np−1]

provides the sequence of future control inputs inside the
prediction horizon of Np steps. The first entry u?(k|k) is
applied to the process.

Remark 3. The scheduling variables ρ are known at each
sampling period k, although unknown for any future
sample k + j, j ∈ N[1,Np]. This means that appropriate
mechanisms must be included to the MPC optimisation
for it to be solvable, as those detailed in Sec. 3.

2.3 Tracking

A comment must me made regarding reference tracking.
The considered stage cost `(x, u) must be set in order
to minimise the variations of (x, u) from the desired set-
point target (xr , ur), which implies in the output target
yr. Assume there exists a linear (parameter varying)
combination of the states x and inputs u that ensures
y(k) → yr. Following the lines of (Limon et al., 2018), one
can use an offline reference optimisation selector, which

determines the state tracking target zr = [xr ur]
>

:



min
zr
‖ (C(fρ(zr)) D(fρ(zr)) ) zr − yr‖2 , (5)

s.t.

[
(I−A(fρ(zr))) −B(fρ(zr))
C(fρ(zr)) D(fρ(zr))

]
zr =

[
0nx
yr

]
,

fρ(zr) ∈ P , z>r ∈ (Xf × U) ,

which ensures an admissible steady-state target zr that
imposes the output tracking objective.

This state reference selection problem can be solved online,
at each sampling instant, if the output reference goal
yr is time-varying. Nonetheless, this adds computational
complexity, as discusses (Köhler et al., 2020).

3. QLPV MPC ALGORITHMS

The MPC formulation in Eq. (4) requires the knowledge
of the future values of the scheduling parameters ρ(k+ j),
along the prediction horizon. A direct solution is to plug
the nonlinear proxy ρ(k+j) = fρ(x(k+j)) as a constraints
of the optimisation procedure. Nonetheless, this converts
the optimisation into an NP, which has the computational
complexity of regular “full-blown” NMPCs.

Recent literature has shown the development of algorithms
that overlap this issue by replacing the true values of
ρ(k + j) by estimates ρ̂(k + j), as reviewed in (Morato
et al., 2020a). By doing so, the NPs are converted into
more efficient programs, with the complexity of SQPs (or
even QPs, in some cases).

With regard to regular NMPC formulations, these novel
qLPV embedding frameworks are attractive because the
nonlinear state predictions and constraints are handled in
an LPV fashion, which is cost-efficient (being linear on
states and inputs). The numerical effectiveness of these
methods is comparable to the fast real-time iterations
NMPC algorithms, as demonstrated in (Cisneros and
Werner, 2019).

Accordingly, we detail the basic concepts of two of these
methods ((Cisneros and Werner, 2020) and (Morato et al.,
2019)), discussing the implementation steps and the con-
vergence property of these methods. Their advantages and
drawbacks are further illustrated through realistic simula-
tion essays (Sec. 5). The methods are:

(1) The Sequential guessing technique (Sec. 3.1):
This first method was derived in the original paper
by (Cisneros et al., 2016). In that work, the evolution
of the scheduling parameters is iteratively guessed
based on the state prediction provided by the previous
optimisation solution. The underlying mechanism is
able to refine the predictions for the scheduling pa-
rameters based on the nonlinear proxy ρ := fρ(x).
Such method was extended and further formalised
in (Cisneros and Werner, 2017), where the reference
tracking problem was embedded in the formulation,
with convergence proofs provided in (Cisneros and
Werner, 2020). Tube-based MPC extensions, for the
case of bounded additive uncertainties, have also been
established (Hanema et al., 2017).

(2) The Recursive extrapolation approach (Sec. 3.2):
This second method was developed in (Morato et al.,
2019, 2020b), replacing the previous iterative guessing

mechanism by recursive extrapolation procedures,
which also provide ρ̂(k + j),∀j ∈ N[0,Np−1].

3.1 Sequential qLPV MPC

Method Description
The core idea of the SQP method (Cisneros and Werner,
2020) is the following: the MPC is solved through iterative
operations of the optimisation problem in Eq. (4), for
which the qLPV process model is replaced by a “frozen”
LTI model (different at each sampling instant). This
prediction model is found by plugging the estimate for the
sequence of scheduling parameters into Eq. (2). The future

“scheduling sequence” guess is denoted P̂k := col{ρ̂(k +
j)}>,∀j ∈ N[0,Np−1].

Note that if the actual scheduling sequence Pk was, in
fact, known, the MPC would be able to ensure regulation
through a single QP (solved at each sampling instant).
Nevertheless, the method starts by choosing an initial
guess for P̂k. Then, the internal state predictions of the
MPC optimisation, denoted Xk := col{x(k + j|k)}>,∀j ∈
N[1,Np] are used to formulate the next guess for Pk, using
the nonlinear scheduling proxy function over each entry of
Xk, as follows:

P̂k = fρ


X?k︷ ︸︸ ︷

[x>(k) , X>k ]


>

. (6)

Then, P̂k is plugged into the MPC QP and the procedure
is re-iterated, until P̂k → Pk

Advantages
The method guarantees this convergence within a rela-
tively small number of iterations. The major advantage
is that, at each iteration, the problem is formulated as
a constrained QP, which can be tackled for many time-
critical applications with modern solvers. The underlying
QP of each iteration is based on the following prediction
problem:

Xk =A(P̂k)x(k) + B(P̂k)Uk , (7)

being A(P̂k) and B(P̂k) nonlinear matrices on the future
scheduling parameters ρ(k + j|k)∀ j ∈ N[0,Np−1]. These
nonlinear matrices maintain the same form at each itera-
tion and, thus, can be efficiently computed.

Limitations
The main limitation of this approach is that the internal
loop may take several iterations (QPs) to converge. This
is not desirable because the number of iterations needed
for convergence may require more time than the available
sampling period. In practice, this approach is not set to
freely iterate until the convergence of P̂k to Pk. Therefore,
a stop criterion is added to the mechanism so that itera-
tions stop at a given threshold. A warm-start can also be
included by shifting Xk−1 and P̂k−1 as the initial guesses
for the optimisation at sampling k, which ensures that
the proposed algorithm reaches convergence within few
iterations.



3.2 Recursive qLPV MPC

Method Description
An alternative formulation to the previous concept has
been proposed in papers (Morato et al., 2019, 2020b).
While the method from (Cisneros et al., 2016) requires

an SQP solution, since the MPC QP is iterated until P̂k
converges, the proposition in these two papers is based on
a single QP operation coupled to a recursive extrapolation
method for P̂k. In this approach, the convergence of P̂k to
Pk takes some samples to be achieved and is ensured as
long as the MPC is recursively feasible.

The extrapolation mechanism is implemented through:

P̂k = Φ(P̂k−1, X
?
k−1) (8)

= λP̂k−1 + σkX
?
k−1 ,

for which λ is a forgetting factor and σk is a time-varying
gain. This factor can be derived by the solution of a least-
square argument, imposing a time-varying auto-regressive
model for each entry of P̂k, or via Taylor expansion, taken

as
dfρ(X)
dX |X?

k
, details are given in (Morato et al., 2020b).

Advantages
This approach does not require us to evaluate online
fρ(X

?
k), which can be numerically expensive. Therefore,

the online computational burden is that of a QP, which
can be solved very fast by standard solvers.

Limitations
Nevertheless, the convergence of P̂k → Pk is not achieved
within a single sampling period. Therefore, there appears
an inherent discrepancy between P̂k and Pk during the first
samples, which vanishes over time. Accordingly, during
these initial steps, the solution of the MPC problem is
sub-optimal, which may deteriorate performances.

3.3 Implementation

Both these previous methods can be implemented through
Algorithm 1. The application departs from an initial state
sequence X0 and an initial scheduling sequence P0. These
vectors can be simply taken as Np repeated instances of
x(0) and ρ(0). The implementation also depends on a
known terminal set condition Xf , which will be detailed
in Sec. 4, and a target reference goal zr. For regulation
purposes, zr is null, while for tracking purposes, it comes
from the offline solution of (5).

3.4 Convergence Property

In order to demonstrate the convergence of these methods,
under the form of Algorithm 1, we invoke the well-known
result for the convergence of Newton SQPs from (Izmailov
and Solodov, 2011), which implies that a quadratic sub-
problem program of SQP algorithms can be derived by a
second-order approximation of the SQP optimisation cost
and linearisation of its constraints.

Therefore, under the assumptions previous exhibited, the
solution of Algorithm 1 is equivalent to that of a quadratic
sub-problem in standard Newton SQP form, from which
local convergence property can be readily found. Consider
the following generic NP:

Algorithm 1 qLPV MPC from Secs. 3.1 and 3.2

Initialise: x(0) = x0, ρ(0) = ρ0, k = 0.
Require: Q, R, Np, zr.
Require: P0, X0, U0.
Loop:
• Step (1):

(A) (Cisneros and Werner, 2020): Loop until con-
vergence:

(i) Shift and update Xk =⇒ X?
k ;

(ii) Based on P̂k−1, compute the LTI predictions
with Eq. (7);

(iii) Solve the optimisation in Eq. (4);

(iv) Compute P̂k = fρ(X
?
k);

(B) (Morato et al., 2019): Solve P̂k =

Φ
(
P̂k−1, X

?
k−1

)
and compute the LTI

predictions with Eq. (7);
• Step (2): Solve the optimisation in Eq. (4) with

predictions from Eq. (7);
• Step (3): Take u(k) = u?(k|k) and apply this local

control to the process;
• Step (4): k ← k + 1.

end {
minxc Jc(xc) ,

s.t. hj(xc) = 0 ,
gi(xc) ≤ 0 .

This optimisation problem has an equivalent quadratic
sub-problem in the form of:

min
x̆c

(
x̆>c HJc(xc)x̆c + (∇Jc(xc)|xc = xc)

>
x̆c

)
, (9)

s.t. (∇hj(xc)|xc = xc) x̆c + (∇hj(xc)|xc = xc) = 0 ,

(∇gi(xc)|xc = xc) x̆c + (∇gi(xc)|xc = xc) ≤ 0 ,

whereHJc(xc) denotes the Hessian of the optimisation cost
Jc(xc) and ∇hj(xc) and ∇gi(xc) denote divergent opera-
tors. This sub-problem is evaluated at a given solution
estimate xc, for which x̆c = xc − xc.
If LDI is used to provide the qLPV model in Eq. (2),
then the iterations of Algorithm 1 are in equivalence to
a Newton SQP sub-problem. The sub-problem in Eq. (9)
is identical to either the optimisation given through the
consecutive iterations Eq. (4) (Cisneros and Werner, 2020)
and the recursive operator of Eq. (8) with the solution of
Eq. (4) (Morato et al., 2019).

It follows that if local convergence of the equivalent New-
ton SQP can be established, the convergence of Algorithm
1 is also ensured. The sufficient conditions for this property
are equivalent to those detailed in (Houska et al., 2011),
which refer to the form of the quadratic cost `(·) and the
terminal ingredients (V (·) and Xf ).

4. STABILITY AND OFFLINE PREPARATIONS

Next, we briefly detail how to construct the terminal
ingredients for Algorithm 1, in order to ensure the stability
of the closed-loop dynamics and recursive feasibility of the
optimisation.

The usual approach with terminal ingredients resides in
satisfying some conditions with the terminal set Xf and



the terminal cost V (x(k+Np|k)), w.r.t. a nominal feedback
u = K(x − xr). For notation lightness, we proceed with
xr null 1 . Consider that there exists a terminal state-
feedback gain K(ρ),∀ρ ∈ P, and a terminal set Xf :={
x |x>P (ρ)x ≤ αP

}
. This is a centered ellipsoidal set

with a radius of αP . The terminal cost is a correspond-
ing sub-level set: V (x, ρ) := x>P (ρ)x. Under regular K-
class properties on `(·) (lower bounded) and V (·) (upper
bounded), the following Theorem gives the sufficient con-
ditions for closed-loop stability and recursive feasibility:

Theorem 1. Consider that the MPC is given by Eq. (4)
under a feedback u = K(ρ)x, with a terminal state set
given by Xf (ρ) and a terminal cost V (x, ρ). Assume
that the initial solution U?k is feasible. Then, input-to-
state stability is ensured and the optimisation remains
recursively feasible if the following conditions hold ∀ρ ∈
P:
(C1) The origin lies in the interior of Xf ;
(C2)x+ := (A(ρ) +B(ρ)K(ρ))x lies within Xf , ∀x ∈ Xf ;
(C3) The following Lyapunov equation is verified ∀x ∈
Xf , ∀ ρ ∈ P and ∀ ∂ρ ∈ ∂P: V (x+, ρ+ ∂ρ)− V (x, ρ) ≤
−x>Qx− x>K>(ρ)RK(ρ)x.
(C4) The image of the nominal feedback lies within the
admissible control domain: K(ρ)x ∈ U , ∀ρ ∈ P.
(C5) The terminal set Xf (ρ) is a subset of X .

The proof of Theorem 1 is standard (Mayne et al., 2000).
Accordingly, the following Theorem provides parameter-
dependent terminal ingredients which verify Theorem 1.

Theorem 2. The conditions (C1)-(C5) of Theorem 1 are
satisfied if there exists a symmetric parameter-dependent
positive definite matrix P (ρ) : Rnp → Rnx×nx , a
parameter-dependent rectangular matrix W (ρ) : Rnp →
Rnu×nx , and a scalar 0 < α ∈ R such that Y (ρ) =
(P (ρ))−1 > 0, W (ρ) = K(ρ)Y (ρ) and that LMIs
(10)-(12) hold for all ρ ∈ P and ∂ρ ∈ ∂P, under the
minimisation of α. Y (ρ) ? ? ?

(A(ρ)Y (ρ) +B(ρ)W (ρ)) Y (ρ+ ∂ρ) ? ?
Y (ρ) 0 Q−1 ?
W (ρ) 0 0 R−1

≥ 0 ,(10)

[
αu2

i I{i}W (ρ)
? Y (ρ)

]
≥ 0, i ∈ N[1,nu] , (11)[

αx2
j I{j}Y (ρ)

I>{j}Y
>(ρ) Y (ρ)

]
≥ 0, j ∈ N[1,nx] . (12)

The proof of Theorem 2 follows from (Cisneros and
Werner, 2020), using α = 1

αP
. This Theorem ensures

a positive definite parameter-dependent matrix Y (ρ) =
P−1(ρ), which gives the terminal ingredients V (·) and
Xf . Theorem 2 provides infinite-dimensional inequalities,
which must hold ∀ ρ ∈ P and ∀ ∂ρ ∈ ∂P. In practice, the
solution can be found by enforcing the inequalities over a
sufficiently dense grid of points (ρ, ∂ρ) along the P × ∂P
plane. Then, the solution can be verified over a denser
grid. The parameter-dependency of P may be dropped if
the system is quadratically stabilizable, but this may result
in further conservativeness.

1 The tracking equivalency is easily done with dxr
dt

= 0 and by
computing the qLPV model with shifted states dynamics (x− xr).

Remark 4. The solution of Theorem 2 is a parameter-
dependent map Y (ρ) =

∑np
j=1 ρjYj . The online procedure,

nonetheless, depends on a inversion of Y (ρ) in order to
compute the terminal ingredients V and Xf , at each
sampling instant. We note that K(ρ) is a fictive feedback
gain used only to prove the stability conditions; the actual
feedback is that determined by the online optimisation
procedure.

5. APPLICATION RESULTS

In this Sec., we provide two different application results of
the considered methods from (Cisneros and Werner, 2020)
and (Morato et al., 2019), which are henceforth denoted
Sequential qLPV MPC and Recursive qLPV MPC, respec-
tively. The following results are obtained using Matlab,
Yalmip, and SDPT3 and Gurobi solvers, using high-fidelity
nonlinear models of the processes.

5.1 Regulation: Semi-active Suspension System

In this first case study, we consider the regulation problem
of a semi-active suspension system. Controllable suspen-
sions are used to mitigate the vertical oscillations in vehi-
cles when road bumps are encountered, thus improving
driving comfort. Among these, semi-active suspensions
are most interesting since they provide better perfor-
mances than passive suspensions while being less energy-
consuming than active ones (Poussot-Vassal et al., 2012).

Consider the corner dynamics of a vehicle equipped with
an electro-rheological (ER) semi-active suspension system,
as detailed in (Morato et al., 2020b). A suspension system
connects the vehicle body (ms) and the wheel link (mus)
with a spring and a controllable damper. Let zs and zus
denote the vertical displacement of these two vehicle parts,
respectively. The vertical road disturbance is denoted zr,
while the ER damper force is denoted FER. We use zd =
zs − zus and zw = zus − zr. Then, using Newton’s second
law of motion, and a hyperbolic tangent damping force
model, we find the following nonlinear model:

z̈s(t) =−kszd(t)− (c0 + cuu(t))żd(t)− FER(t) ,

z̈us(t) = +kzd(t) + (c0 + cuu(t))żd(t) + FER(t)− ktzw(t) ,

τḞER(t) =−FER(t) + fc tanh(k1zd(t) + c1żd(t))u(t) .

Take the following discrete-time states:

x(k) := [ zd(k), żs(k), zw(k), żus(k), FER(k) ]
>

. The system operates with a sampling period of Ts = 5
ms. The qLPV model matrices are obtained through an
Euler approximation:

A(ρ) = Inx + Ts


0 1 0 −1 0

− ks
ms
− (c0+cuρ1)

ms
0 (c0+cuρ1)

ms
−1
ms

0 0 0 1 0
ks
mus

(c0+cuρ1)
mus

− kt
mus

− (c0+cuρ1)
mus

1
mus

0 0 0 0 −1
τ

 ,

B(ρ) = Ts
[

0 0 0 0 fc
τ ρ2

]>
, B2 = Ts [ 0 0 −1 0 0 ]

>
,

which corresponds to the qLPV embedded model, in the
form of Eq. (2) with an additional term +B2żr(k) on
the state dynamics. The scheduling parameters are ρ :=



Table 1. Suspension System Characteristics.

Parameter Description Value Unit

ms Chassis body mass 2.27 kg
mus Wheel link mass 0.25 kg

ks Spring stiffness 1396 N/m
kt Tire stiffness 12270 N/m
k0 Passive damper stiffness coefficient 170.4 N/m
k1 Hysteresis coefficient due to displacement 218.16 N.s/m

c0 Viscous damping coefficient 63.98 N.s/m
cu Viscous damping coefficient 11.84 N.s/m
c1 Hysteresis coefficient due to velocity 21 N.s/m

fc Dynamic yield force of ER fluid 28.07 N
τ Time constant 42 ms

Variable Description Lower bound Upper bound Unit

x1 Suspension deflection -0.15 0.15 m
x2 Chassis body velocity -3 3 m/s
x3 Wheel deflection -0.05 0.05 m
x4 Wheel link velocity -3 3 m/s
x5 Controlled ER damper force -30 30 N

u Control input (PWM) 0 1 -
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Fig. 1. Road scenario and control input.

[ρ1 ρ2]
>

, ρ1 := u ∈ [0 , 1], and ρ2 := tanh(Γx) ∈ [−1 , 1],
with Γ = [k1 c1 0 −c1 0]. The parameter values and
constraints are those from a 1/5-scale vehicle testbed 2 ,
as gives Table 1.

As previously discussed, the main challenge of deploy-
ing NMPC through qLPV models lies in the fact that
the values of the scheduling parameters ρ are unknown
throughout the prediction horizon. Therefore, we apply
and compare the previously surveyed techniques. The Se-
quential qLPV MPC method operates with a threshold of
Niter = 5 iterations of the internal loop (see Algorithm
1, Step (1)), while the Recursive qLPV MPC operates
with λ = 1 and σk = 0 in Eq. (8), for simplicity. This
implies a higher degree of conservatism with this latter
method since we basically consider that the scheduling
parameters remain constant throughout the horizon for
prediction purposes.

Consider a simulation road scenario of a sequence of three
10 mm vertical bumps. The NMPCs are tuned with a
prediction horizon of 20 steps, using unitary weights (Q =
Inx , R = Inu). Considering an initial condition of x0 =

[0.001, −0.001, 0.001, 0.001, 0]
>

, results are obtained in
a 2.4 GHz, 8 GB RAM Macintosh computer, using a high-
fidelity noisy nonlinear suspension system model (Morato
et al., 2019).

Firstly, Fig. 1 provides the road scenario (unmeasured load
disturbances) and the corresponding control law, a PWM
signal that regulates the damper force. Accordingly, Fig. 2
presents some state trajectories, for brevity, considering
both surveyed methods. Clearly, regulation is obtained
with both techniques, and the road bumps are rejected
in steady-state.

2 Refer to http://www.gipsa-lab.fr/projet/inove/.
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Fig. 2. Suspension Sys.: State trajectories.

To further evaluate these NMPC methods, we assess the
obtained closed-loop trajectories in terms of performance
indexes. In Tab. 2, we provide the RMS values for the
MPC stage cost `(x, u), along the whole simulation. As a
result, we can conclude that both strategies are efficient for
the regulation purpose, while the performances obtained
with the Sequential method are better than those with the
Recursive tool (16.5% average performance enhancement).
This is mainly because the recursive extrapolation leads to
model-process mismatches during the first samples after
each bump, which means that the NMPC is sub-optimal
while P̂k 6= Pk. We stress that the Sequential method
ensures the convergence of the scheduling sequence even
with the Niter threshold. Nonetheless, we note that the
average online computational stress (tc index) with the
recursive solution is smaller than the one with the SQPs
(less than 10 times smaller) since the nominal predictions
are linear at each sampling instant and only one QP is
solved per sample, while at least Niter QPs are solved with
the Sequential scheme.

5.2 Tracking: Quadruple-Tank Process

The second case study for which we apply these novel
NMPC techniques is an academic example of a quadruple-
Tank process, from (Johansson, 2000). This system con-
sists of four interconnected tanks, as illustrated in Figure
3, for which two pumps, along with two valves, regulate
the flow of water that circulates the system. The nonlinear
level dynamics are:

ḣ1(t) =− a1

A1

√
2gh1(t) +

a3

A1

√
2gh3(t) +

γ1(t)k1

A1
u1(t) ,

ḣ2(t) =− a2

A2

√
2gh2(t) +

a4

A2

√
2gh4(t) +

γ2(t)k2

A2
u2(t) ,

ḣ3(t) =− a3

A3

√
2gh3(t) +

(1− γ2(t))k2

A3
u2(t) ,

ḣ4(t) =− a4

A4

√
2gh4(t) +

(1− γ1(t))k1

A4
u1(t) .

Each hi(t) represents the water level at the i-th tank;
uj represents the power of the j-th pump, for which the
corresponding flow is kjuj(t), and each γj gives opening
percentage of the j-th valve, directing more/less flow to
the upper/lower tanks. We assume that all levels are
measured. The tank cross sections Ai are of 1 cm2, while
the outlet hole cross sections ai are of 0.05 cm2. The pump
parameters kj are of 1.4 cm3/Vs. The process constraints
are: hj ∈ [0.1, 10],∀j ∈ N[1,2] (level, process variable);



Fig. 3. 4-Tank Process. Fig. from (Johansson, 2000).

uj ∈ [0.05, 5] V,∀j ∈ N[1,2] (pump flow, control input);
γj ∈ [1, 100] %,∀j ∈ N[1,2] (valve opening).

Considering a sampling period of Ts = 250 ms, the
exact realisation of the nonlinear dynamics with the qLPV
embedding model in Eq. (2) is obtained with:

A(ρ) = Inx + Ts


−a1
√

2gρ1
A1

0 a3
√

2gρ3
A1

0

0 −a2
√

2gρ2
A2

0 a4
√

2gρ4
A2

0 0 −a3
√

2gρ3
A3

0

0 0 0 −a4
√

2gρ4
A4

 ,

B = Ts

[
γ1k1
A1

0 0 (1−γ1)k1
A4

0 γ2k2
A2

(1−γ2)k2
A3

0

]>
.

The scheduling parameters ρ = col{ρj}, with ρj(k) :=

(hj(k))
− 1

2 ∈ [0.31 , 3.16] , ∀j ∈ N[1,4]. We note that the
input matrix B is scheduled by the valve opening signals
γj , which are known from the control viewpoint.

The application of the qLPV MPC methods is done using
the same values for Niter, λ and σ from the previous essay.
In this study, we add a stop criterion to the SQP method,
as suggests (Cisneros and Werner, 2020): the internal loop
stops if the infinity-norm of difference w.r.t. Pk between
internal iterations is smaller than 10−3.

In this second essay, a tracking objective is used: `(x, u) :=
‖(x − xr)‖2Q + ‖(u − ur)‖2R, being (xr, ur) admissible

time-varying reference signals (that satisfy Eq. (5)). This
tracking objective concerns the first and second level
signals. We use a prediction horizon of Np = 10 samples
and weighting matrices Q = diag([10 10 0 0]), and Inu .

The following simulation scenario is considered: the initial

condition is x(0) = [5 5 5 5]
>

, u(0) =
[
5
√

0.5 5
√

0.5
]
,

and γ(0) = [1 1]
>

. Ten-second-long piecewise-constant
reference signals are used. Simulations are carried out with
normalised variables.

Fig. 4 presents the tracking performances for the two level
signals. Evidently, both qLPV MPC methods are able to
steer the states to the admissible targets while respecting
constraints on x and u. Fig. 5 shows the corresponding
control inputs. All state trajectories converge in finite
time with small overshoots and no oscillations. Both
performances are numerically equivalent. This similarity
resides in the Sequential method requiring no more than
one or two iterations of the internal loop in over 70 %
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Fig. 5. 4-Tank Sys.: Control Signal.

of the sampling instants. Nevertheless, we must stress
that the Recursive approach is over 2.5 times faster 3 (on
average) then the Sequential technique to compute the
control action, as gives Table 2.

Table 2. Performance Results

Regulation r{`(·)} tc
Sequential (Sec. 3.1) 4.548 3.795 ms

Recursive (Sec. 3.2) 5.445 0.377ms

Tracking r{`(·)} tc
Sequential (Sec. 3.1) 0.102 49.40 ms

Recursive (Sec. 3.2) 0.102 18.90ms

5.3 Discussion

Based on these two realistic essays, we can conclude that
both qLPV MPC methods are interesting options for the
predictive control of nonlinear processes without the need
for NP-hard solutions.

Both methods are conceived with estimates for the future
behaviour of the scheduling variable. The SQP technique
yields overall better estimates for all sampling instants,
while the recursive scheme takes some samples for these es-
timates to converge, which may lead to some performance
deterioration.

Nevertheless, we must debate that this performance de-
terioration may be tolerable since the method evaluates
the control law significantly faster. The average online
computational stress (tc) with the recursive solution is,
in both cases, much smaller than the one with the SQPs.
The approach from (Cisneros and Werner, 2020) requires
the solution of (at most) Niter QPs coupled with the non-
linear vector-wise operation of Eq. (6), which may impede
real-time applications with very ultra-fast sampling rates.
Accordingly, the Recursive method is more flexible for
such fast systems. Robustness w.r.t. the (bounded) model-

process mismatches that occur while P̂k 6= Pk in the recur-
sive scheme can be ensured through the terminal set Xf ,
as in standard bounded disturbance rejection problems.

6. CONCLUSION

In this paper, we revisited some novel NMPC formula-
tions based on qLPV embedding. These methods provide
3 In a 2 GHz, 4 GB RAM PC.



real-time NMPC solutions since the qLPV realisation of-
fers linear predictions at each sampling period. To this
matter, two different methods are detailed; both solve
the NMPC problem by estimating the future behaviour
of the scheduling variables. The first iterates the MPC
optimisation multiple times, using the state predictions
to compute the scheduling sequence; the second uses a
recursive extrapolation mechanism to guess the evolution
of these variables along the horizon. We thoroughly detail
the implementation of these techniques, considering both
regulation and tracking control objectives. We also discuss
tracking target selection, qLPV terminal ingredients, and
convergence properties. For illustration purposes, we pro-
vide simulation results of a semi-active suspension system
(regulation) and a quadruple-tank process (tracking). As
evidenced, good performances are obtained with relatively
small numerical stress. Evidently, the qLPV MPC frame-
work offers comparable qualities to modern solver-based
NMPC solutions, such as ACADO and GRAMPC. The
main advantage is that no real-time iteration/Lagrangian
mappings must be applied since only the solution of QPs
is required, which is tackled by most standard solvers. The
future promise of NMPC through qLPV embedding is vast
since only a handful of papers have investigated this topic.
Formal comparisons to ACADO and GRAMPC, for in-
stance, are still lacking, as well as experimental validation
of some of the topics herein discussed. We stress that the
tracking of time-varying reference is still not thoroughly
established for this framework since the requirement of
an online steady-state selector may drastically diminish
numerical performances.
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