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ARCTIC CURVES OF THE SIX-VERTEX MODEL

ON GENERIC DOMAINS: THE TANGENT METHOD

F. COLOMO AND A. SPORTIELLO

Abstract. We revisit the problem of determining the Arctic curve in the
six-vertex model with domain wall boundary conditions. We describe an al-
ternative method, by which we recover the previously conjectured analytic
expression in the square domain. We adapt the method to work for a large
class of domains, and for other models exhibiting limit shape phenomena. We
study in detail some examples, and derive, in particular, the Arctic curve of
the six-vertex model in a triangoloid domain at the ice-point.

1. Introduction

Statistical mechanics models in two dimensions with a discrete symmetry group,
within a pure phase, usually show a spatially-homogeneous order parameter and
independence from the boundary conditions [1]. This can be understood by simple
entropic arguments on local excitations. The prototype example is the Ising Model,
where the broken symmetry group is just Z2.

Nonetheless, certain models, characterised by the presence of conservation laws,
under particular conditions may break this paradigm and show phase-separation
phenomena and the emergence of a limit shape [2, 3]. In this case we may have
spatial dependence of the order parameter, a strong dependence from the boundary
conditions, and even frozen regions, in which the local entropy vanishes. This is
now possible because the conservation law forbids local excitations on frozen-region
vacua, the smallest perturbations taking the form of a directed path which, in each
direction, shall either reach the boundary, or a non-frozen (liquid) region. The
interface between frozen and liquid regions, for a given model in a given domain, is
called Arctic curve. The challenge of its determination is the subject of the present
paper.

Among the models presenting phase separation and limit shape phenomena,
those amenable to discrete free fermions are the most widely studied. Early exam-
ples include Young diagrams with the Plancherel measure [4], the evaporation of a
cubic crystal [5–7], domino tilings of the Aztec diamond, [8], boxed plane partitions
[9], Schur processes [10]. These examples may all be viewed as dimer models on
planar bipartite graphs, for which a general theory has been constructed [2,11,12];
other approaches exist for certain subclasses of models [13–16]. An interesting con-
nection between limit shape phenomena in such models and the out-of-equilibrium
evolution of one-dimensional quantum free-fermion models has been recently un-
veiled [17].

Other free-fermionic models presenting a similar phenomenology are defined in
terms of iterated transformations applied to a deterministic initial configuration.
Examples of such models include ‘groves’ on the triangle [18, 19] (see also [20] for
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promising results on the ‘massive deformation’), and double-dimer configurations
on ‘cubic-corner graphs’ [21]. Some models are in both families, for example domino
tilings also arise from the octahedron relation of cluster algebras [22–24]

Another important instance for phase separation and limit shape phenomena is
the six-vertex model [3, 25–28], with various choice of fixed boundary conditions,
among which the domain-wall boundary conditions [29] play a preeminent role.
The model can be viewed as a nontrivial (‘interacting’, yet exactly solvable [30,31])
generalization of the domino tilings of some domain in the square lattice [32]. In
this context, limit shape phenomena still need further understanding, although
some progress has been made [33, 34] for the ‘stochastic’ version of the model [35].

For interacting models out of free-fermionic or stochastic special points, very few
exact results are available on these phenomena. The evaluation of the free energy
of the six-vertex model with domain-wall boundary conditions [36–38] provided
the first quantitative indication of phase separation in the model. The sole other
result in this context concerns (a strongly supported conjecture for) the analytic
expression for the Arctic curve of the six-vertex model on a square region of the
square lattice, with domain wall boundary conditions [39–43]. The derivation is
based on the study of an observable, the emptiness formation probability (EFP), so,
for short, we can call this the EFP Method. This result, reviewed in Section 2, shows
a much richer phenomenology w.r.t. dimers, and more generally, free-fermionic
models: most notably the curve is algebraic if and only if the parameters of the
model are tuned to a so-called root of unity case, and it is non-analytic at the
points of contact with the boundary of the domain [44]. This is at variance with
free-fermionic models, where the curve is algebraic, and, even when non-connected,
different connected components arise naturally as different branches of the same
curve [2]. Because of this rich phenomenology, and with the aim of understanding
phase-separation phenomena in the presence of an interaction, extension of these
results to a larger class of domains is of great interest.

The present paper provides an alternative approach to the EFP Method, that we
call Tangent Method. It is based on a detailed analysis of the line-type fundamental
excitations of the frozen regions. In a sense, it gives a ‘geometric interpretation’ to
the analytic results arising from the EFP Method, which surprisingly had shown
that the Arctic curve is the caustic of a family of lines determined by a single one-
point boundary observable; this is here understood as the fact that basic excitations
form random walks from a given boundary point to the Arctic curve, which are
almost-straight in the thermodynamic limit, and reach the curve tangentially, from
which the name of the method.

In this paper we use the Tangent Method to rederive the conjectured formula
for the Arctic curve in the square domain, for generic parameters of the six-vertex
models (Section 3). By the same method, we determine the analytic expression
for the Arctic curve of the six-vertex model at its ice point, in a triangoloid do-
main, constructed out of the crossing of three bundles of spectral lines, that has
two independent aspect-ratio parameters (Section 5). We also provide a relation
between the Arctic curve and the generating function of the one-point boundary
correlation function, that holds for a large class of domains, and generic values of
the parameters of the model (Section 4).

As an instructive ‘minimal working example’ of our method, we also provide
a very short derivation of the Arctic Ellipse for lozenge tilings of the a × b × c
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hexagon (MacMahon boxed plane partitions), which is self-contained except for the
use of the Gelfand–Tsetlin formula [45], thus reproducing the classical result in [9]
(Appendix C).

2. The Arctic curve in the square: known facts

2.1. The six-vertex model. The six-vertex model is an exactly solvable model
of equilibrium statistical mechanics [30, 31]. In its simplest realisation, it is just
defined on a portion of the square grid. In its most general ‘integrable’ realisation,
it is defined on a planar graph, with all vertices of degree 4 and 1, obtained from
the intersection (in generic position) of a collection of open and/or closed curves in
the plane [46].

An intermediate family of domains consists of the framework of [46], in which
we have a finite number of bundles α of parallel lines, pairwise mutually crossing,
where the number nα of lines per bundle goes to infinity in the thermodynamic
limit. In this case the lattice consists of a finite number of rectangular portions of
the square lattice, glued together along some of their boundaries.

We will consider here the most basic example of such a geometry, the crossing of
two bundles, and, in Section 5, the second simplest realisation, consisting of three
bundles. In this introduction, for sake of simplicity, we will define the model only
in the simplest case, the rectangular N ×M geometry.

We have thus NM vertices of degree 4, 2(N +M) vertices of degree 1 (external
vertices), (N + 1)M horizontal and N(M + 1) vertical edges, of which overall
2(N+M) are external edges, i.e. are incident on an external vertex. All other edges
will be called internal. A vertex which is first-neighbour to an external vertex will
be called a boundary vertex (we have 2N +2M − 4 such vertices). An internal edge
incident to a boundary vertex will be called a boundary edge. We label the internal
vertices with the coordinates (r, s), r ∈ {1, . . . , N}, s ∈ {1, . . . ,M}, in the obvious
way. Edges will be labeled by the coordinates of their midpoint.

The states of the model are configurations of arrows on the edges of the lattice,
i.e. orientations of the graph, satisfying the ice rule at all internal vertices, namely,
there are two incoming and two outgoing arrows. This rule selects six possible local
configurations around a vertex, to which we give names as in Fig. 1.

An equivalent and also graphically appealing description of the configurations
of the model can be given by drawing a thick edge whenever an arrow is down or
left, and a thin edge otherwise. Due to the ice-rule, the thick edges form directed
paths, which may be oriented in such a way that all the steps are north and east.
In particular, all these paths are open and reach the boundary of the domain. The
states of the model can thus be depicted as configurations of paths satisfying the
rules shown in Fig. 1. From now on we shall mainly refer to the path picture. Our
notations are consistent with [31, Sec. 8.3].

The model is further specified by assigning a Boltzmann weightwi, i ∈ {1, . . . , 6},
to each vertex configuration, as in Fig. 1. The Boltzmann weight of a given arrow
configuration σ is the product over internal vertices of the corresponding weight,
which can be written as

w(σ) =

6
∏

i=1

w
ni(σ)
i , (2.1)

where it is understood that ni(σ) is the number of vertices of type i in σ. The
obvious constraint

∑

i ni(σ) = NM shows that one such parameter is redundant.
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w1 w2 w3 w4 w5 w6

Figure 1. The six possible types of vertex configurations in terms
of arrows (top), or of paths (bottom), and their Boltzmann weights.

2.2. Fixed boundary conditions. Each of the external vertices may have an
incoming or an outgoing arrow. If specified in advance, we say that we have fixed
boundary conditions, otherwise we have free boundary conditions. Of course, a
fixed boundary condition, for having any valid configuration, requires that the
overall number of incoming and of outgoing arrows are equal. This constraint has
a counterpart in path representation: we must have as many thick edges on the
south and west sides altogether as on the north and east sides altogether.

Another useful property of fixed boundary conditions in a rectangular geometry
is that we know in advance how many horizontal and vertical thick edges there
are in the system. Furthermore, a directed path going (say) from the south to the
north sides makes as many left-turns as right-turns, while one going (say) from west
to north makes one more left turn. Thus, we also know in advance the difference
between the total number of left- and right-turns. This gives control on the three
linear combinations n5 −n6, 2n2+2n4+n5 +n6 and 2n2 +2n3 +n5 +n6. , which,
together with the forementioned n1+ · · ·+n6 = NM , makes only two independent
parameters out of the six weights w1, . . . , w6.

For this reason, in the case of fixed boundary conditions, up to multiplying the
partition function by a trivial factor, symmetry of the Boltzmann weights under
reversal of arrows can be imposed with no loss of generality, and it is customary to
introduce the three parameters

a := w1 = w2, b := w3 = w4, c := w5 = w6, (2.2)

and also the convenient parameterization

∆ =
a
2 + b

2 − c
2

2ab
, t =

b

a
. (2.3)

The probabilistic space of parameters, i.e. the one for which the Boltzmann weight
w(σ) is real positive for all configurations, is for a, b, c ∈ R

+, and thus corresponds
to t ∈ R

+ and ∆ < 1
2 (t+

1
t ).

In the phase separation phenomena we will see the emergence of four types
of frozen patterns, using vertices w1, . . . , w4. These patterns can be selected
on the whole domain by taking homogeneous choices on the four sides. Their
smallest perturbation, e.g. having exactly two thick edges, gives the simple problem
of enumerating configurations consisting of a single directed lattice path (discussed
in Appendix A). Trivial as it may seem, when combined with the more remarkable
facts coming from the full-fledged six-vertex model, this setting will prove of some
use in our treatment.
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Up to symmetry, we have a unique further choice of homogeneous fixed boundary
conditions, namely, in the case N = M , of having thick edges on north and west
sides, and thin edges on south and east sides. In this case the geometry allows many
configurations, and the paths, which start on the west and arrive on the north being
maximally packed, travel in a rainbow fashion in the bulk, with a positive amount
of entropy. This setting is called domain-wall boundary conditions (DWBC) [29],
see Figure 2, left.

2.3. Gibbs measure and correlation functions. We now assume some fixed
boundary conditions σB have been imposed on the boundary ∂Λ of a domain Λ.
The partition function is the sum over the set of configurations of the model which
are compatible with the given boundary conditions, each state being assigned its
Boltzmann weight w(σ) as in (2.1)

ZΛ(σB) =
∑

σ : σ|∂Λ=σB

w(σ). (2.4)

Correspondingly, w(σ)/ZΛ(σB) is the Gibbs measure on the states of the model
with given boundary conditions.

For each edge e of the lattice we define the characteristic function:

χe(σ) :=

{

1, if e is thick,
0, if e is thin,

(2.5)

The expectation value of a product of these observables with respect to the Gibbs
measure,

〈χe1 , . . . , χen〉σB :=
1

ZΛ(σB)

∑

σ : σ|∂Λ=σB

w(σ)
n
∏

j=1

χej (σ), (2.6)

is called an edge correlation function. These correlation functions clearly form a
complete linear basis. A boundary correlation function is a correlation function
involving only boundary edges.

2.4. Phases of the model, and particular cases. The study of the thermody-
namic limit of the model with periodic boundary conditions shows the emergence
of three physical regimes, or phases, according to the value of the parameter ∆,
namely ferroelectric (∆ > 1), anti-ferroelectric (∆ < −1), and disordered, or criti-
cal (|∆| < 1), see [31] for details. In the context of phase separation phenomena,
the three phases are sometimes called solid, gaseous, and liquid, respectively. Some
of this phenomenology survives in situations showing phase separation, see [3] for
details.

As anticipated, the special case ∆ = 0 is related to free fermions on a lattice. In
particular, at t = 1, there is a correspondence with non-intersecting lattice paths,
dimer models and domino tilings, the most notorious example being the so-called
domino tilings of the Aztec Diamond [32]. In the light of such correspondence, the
model with generic value of ∆ can be viewed as one of interacting dimers. Values
t 6= 1 correspond to the presence of a non-vanishing external field (called ‘bias’ in
[8]), that favours one of the two possible orientations of the dimers.

Another case of interest, in particular for its relations with Algebraic Combina-
torics, is the so-called ice point, where a = b = c, and hence, ∆ = 1/2 and t = 1.
In this case the configurations of the model with domain wall boundary conditions
are in bijection with Alternating Sign Matrices [32, 47], see [48] for details.
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Figure 2. Left, a typical configuration of the six-vertex model
with domain-wall boundary conditions, in path representation.
Here N = 8. Right: a configuration in the refined ensemble with

r = 6, i.e. this configuration contributes to the probability H
(6)
8 .

2.5. The one-point boundary correlation function. As a specialty of the
domain-wall boundary conditions, the ice-rule strongly constrains the pattern of
vertex configurations in the first/last row/column. For example, in the bottom-
most row of vertical edges (besides the boundary ones) there must be exactly one
thick edge, at some horizontal coordinate 1 ≤ r ≤ N . We call this value (south)
refinement position.

We will call H
(r)
N the probability that the refinement position is r, i.e., formally,

H
(r)
N := 〈χe(r+1,3/2)

〉. (2.7)

These quantities are naturally collected in the corresponding generating function

hN (z) :=
N
∑

r=1

H
(r)
N zr−1 = 〈

N
∑

r=1

χe(r,3/2)z
r−1 〉. (2.8)

This correlation function was studied, in particular, in [49], where it was also eval-
uated in the form of a determinant.

The uniqueness of the refinement position is due to DWBC, but is not specially
related to the square geometry, and holds in the more general case of multiple
bundles of spectral lines discussed above, provided that the boundary conditions
are uniform on the given side. Below, given a domain Λ of this form, we shall use

the notations H
(r)
Λ , hΛ(z) for the related one-point boundary correlation function,

and for the corresponding generating function (this notation is somewhat elliptic,
as it leaves understood the precise choice of DWBC and the reference side).

2.6. The thermodynamic limit. The Arctic curve and limit shape phenomena
are of course effects of large volume. At most, the liquid region of a single con-
figuration, taken with the Gibbs measure, is just almost surely of the shape given
by the Arctic curve up to fluctuations, which are sub-linear (conjectured to be of

order N
1
3 , in analogy with exact results in the ∆ = 0 case [50, 51], although the

precise value of this exponent, assuming that it is smaller than 1, is immaterial for
the purposes of the present paper). Thus, we are led to spend a few words on how
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the thermodynamic limit is performed in presence of phase separation phenomena.

We will also introduce a quantity, r(z), which has the same information as H
(r)
N ,

but will be more adapted to our purposes.
For the square domain, we just perform a thermodynamic limit N → ∞, and si-

multaneously rescale the lattice coordinates (r, s), in the obvious way, i.e. r = ⌈Nx⌉,
s = ⌈Ny⌉, and (x, y) ∈ [0, 1]2. We shall refer to this thermodynamic/continuum
limit as scaling limit. In this limit, the Arctic curve is described by an equation
of the form C(x, y) = 0. As a matter of fact, except for the point ∆ = 0, it is
nowadays strongly believed that this curve is analytic only piecewise, in each arc
interval between two points of contact with the boundary of the domain, thus in
fact we have, in the square, four equations, one per corner, CSW(x, y) = 0, and
so on (for the quadruple SW, SE, NW, NE), and four expressions for the contact
points, (0, κW), (κS, 0) (1, κE) and (κN, 0). Of course, the symmetry of the prob-
lem (up to sending t ↔ t−1 where needed) relates the different arcs,1 and we can
concentrate, say, on the south-east arc without loss of generality (see [42] for more
details).

If we call

SN (x) := − 1

N
lnH

(⌊xN⌋)
N (2.9)

it is expected in general circumstances (and proven for the square domain [42, 43])
that this function has a sensible limit, i.e. that S(x) = limN→∞ SN (x) exists, and
is a convex smooth function, with a single minimum at some 0 ≤ κ ≤ 1 (the
contact point of the curve on this side), where it is valued zero. In other words, the
refinement position r fluctuates around its typical value on a sub-linear range.

Similarly, the value of the function hN(z) is not quite interesting per se, while
its derivative w.r.t. z, which allows to extract S(x) by Legendre transform, is more
relevant. This suggests to define

r(z) := lim
N→∞

1

N
z
d

dz
lnhN (z), (2.10)

(again this limit exists and is finite for the square domain, and it shall be in very
general circumstances). Indeed, letting r = ⌈ξN⌉, with 0 < ξ < 1, for large N we
may write:

hN (z) ∝
∫ 1

0

dξH
(⌈ξN⌉)
N e⌈ξN⌉ ln z (2.11)

where the proportionality constant is independent of z, and inessential for our
purposes. Then, from the log-convexity of H , standard saddle-point arguments
lead to

r(z) := lim
N→∞

1

N
z
d

dz
lnhN (z) = ξsp (2.12)

where ξsp is the solution of the saddle-point equation

1

N

d

dξ
lnH

(⌈ξN⌉)
N + ln z = 0. (2.13)

This relation will turn out to be useful below.
In the situation in which we have several crossing bundles, each consisting of

nα lines, as we said this identifies a finite collection of rectangles. We may define

1At t = 1 the curve has the obvious dihedral symmetry, and even if t 6= 1, the curve has a
residual symmetry w.r.t. reflection along the two diagonals of the square. In particular κ := κN =
κE = 1− κS = 1− κW.
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2N =
∑

α nα, use a local system of coordinates in each rectangle (or in each
collection of rectangles that can be glued together without conical singularities),
and rescale coordinates (r, s) again in the obvious way, i.e., under the limit N → ∞
with ℓα := nα/N , we rescale the lattice coordinates (r, s) as r = ⌈Nx⌉, s = ⌈Ny⌉,
and (x, y) ∈ [0, ℓα]× [0, ℓβ] for the rectangle consisting of the crossing of bundles α
and β.

2.7. The Arctic Curve Conjecture. In [42], using what we called above ‘the
EFP method’, it has been shown that the Arctic curve of the six-vertex model on the
square domain with DWBC is completely determined by the boundary correlation

function H
(r)
N , through the following relation:

Conjecture 2.1 (Arctic Curve Conjecture [42]). The south-east arc of the Arctic
curve of the six-vertex model with domain wall boundary conditions can be expressed
in parametric form x = x(z), y = y(z), with z ∈ [1,+∞), as the solution of the
linear system of equations

F (x, y; z) = 0,
d

dz
F (x, y; z) = 0, (2.14)

with

F (x, y; z) = x− z(t2 − 2∆t+ 1)

(z − 1)(t2z − 2∆t+ 1)
y − r(z). (2.15)

Note the change of coordinates x → 1−x, with respect to [42]. The quantity r(z) is
defined as in (2.10), in terms of hN(z) = hN (z; ∆, t), the generating function (2.8).
It has a complicated (but known [42, 43]) expression for generic ∆ and t, which
however simplifies considerably at the free-fermion point ∆ = 0 (domino tilings)
and at the ‘combinatorial point’ (∆, t) = (12 , 1) (alternating-sign matrices):

∆ = 0 : F (x, y; z) = x− z

z − 1

t2 + 1

t2z + 1
y − t2z

t2z + 1
(2.16)

(∆, t) = (12 , 1) : F (x, y; z) = x− 1

z − 1
y −

√
z2 − z + 1− 1

z − 1
(2.17)

We recall that by construction the solution of (2.14) provides only one of the four
portions of the Arctic curve, between two consecutive contact points, i.e., points
where the Arctic curve is tangent to the boundary of the square. Here we have
focused on the lower-right arc, limited by the two contact points (1 − κ, 0) and
(1, κ), corresponding to z = 1 and z → ∞, respectively. In particular we have

1− κ = r(1) = lim
N→∞

1

N
z
d

dz
lnhN (z)

∣

∣

∣

∣

z=1

. (2.18)

The main steps in the derivation of the result above can be summarized as follows.
First, a specific correlation function, the emptiness formation probability (EFP),

devised to detect spatial transition from order to disorder, is introduced. This
quantity, evaluated at the coordinate (r, s) on the N ×N lattice, is the probability
that all the lattice sites (r′, s′) with r′ ≥ r and s′ ≤ s are occupied by a w1 ver-
tex. Remarkably, this quantity admits an exact formula in terms of some multiple
integral representation [39].

Next, one has to study the asymptotic behaviour of this integral representation
in the scaling limit, in the framework of the saddle-point approximation. In doing
so, heuristic considerations suggest to formulate a strongly supported, but still
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unproven assumption that the spatial transition from order to disorder, and hence
the Arctic curve, are characterized by the condensation of almost all roots of the
saddle-point equation at the same known value. This assumption leads directly to
the Arctic Curve Conjecture [40, 42].

Besides the relation between the curve and the boundary correlation function
r(z), the actual determination of the expression of the Arctic curve requires the
explicit knowledge of the function r(z), and the evaluation of its behaviour in the
scaling limit [42, 43].

It is worth emphasizing that, according to the conjecture above, the form of the
Arctic curve inside the domain is completely determined in terms of a boundary
quantity, namely the one-point boundary correlation function. At this stage of the
reasoning, however, there appears no clear motivation for such a relation. Our
alternative approach also addresses this point.

3. An alternative derivation of the Arctic Curve Conjecture

3.1. Preliminaries. To start with, let us investigate more closely in which func-
tional form the one-point boundary correlation function determines the Arctic
curve. It is useful to recall first some elementary geometry (see e.g. [52]).

Let {Cz}z∈I be a family of curves, in the (x, y)-plane, determined by a continuous
parameter z valued in a real interval I. The envelope E of the family is the (minimal)
curve that is tangent to every curve of the family.

If the equation of the family {Cz} is given in Cartesian coordinates by U(x, y; z) =
0, the non-singular points (x, y) of the envelope E are the solutions of the system
of equations

U(x, y; z) = 0;
d

dz
U(x, y; z) = 0. (3.1)

By analogy with caustics in geometric optics, we call geometric caustic the envelope
of a family of straight lines. In this case U is of degree 1 in x and y. This allows
us to recognise the statement of the Arctic Curve Conjecture in a compact form:
the portion of the Arctic curve is the geometric caustic of the family of lines in the
(x, y)-plane,

U(x, y; z) = x− z(t2 − 2∆t+ 1)

(z − 1)(t2z − 2∆t+ 1)
y − r(z) (3.2)

for z valued in the interval [1,+∞). Note that the slope of the lines, which is

z − 1

z

(

1 +
t2

t2 − 2∆t+ 1
(z − 1)

)

is indeed a monotone function from [1,+∞) to [0,+∞), provided that ∆ < 1
2 (t+

1
t ),

as is in fact implied by the requirement of being in the probabilistic regime (i.e.,
a, b, c ∈ R

+).
This alternative formulation of the Arctic Curve Conjecture provides a elemen-

tary geometric construction, and thus suggests the existence of a simple ‘geometric
principle’ underlying the relation between the Arctic curve and the boundary cor-
relation function.

As we will explicitate in the remaining of the section, this principle is the fact
that an isolated path in a system of interacting non-intersecting lattice paths is not
sensible to the parameter ∆, thus its trajectory is locally a lattice directed random
walk, with some drift parameter fixed by the knowledge of its endpoints. And, in
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the scaling limit and at leading order, directed paths become straight lines. This is
not unusual, as it corresponds to the mechanism by which deterministic trajectories
emerge in the semi-classical limit of quantum theories in path-integral formulation.

3.2. The Tangency Assumption. The quantities H
(r)
N have been introduced as

probabilities in the model on the N × N domain, with partition function ZN .
On the other side, in light of their ‘boundary’ character, the related quantities

H
(r)
N ZN/(aN−r

cb
r−1) can equally well be seen as the partition function of a model

on the (N − 1)×N rectangle, with DWBC up to one exception: on the south
side there is one thick edge, at position r (see Figure 2, and Figure 3 for a large
example).

Yet again, the thick paths form a sort of rainbow, from their fixed incoming
positions on the south- and west-sides, to their outgoing positions on the north-
side. However this time, at difference with the N×N case, in general they do not all
start and arrive densely packed. Two cases, depending from r/N ≶ κS, occur, and
we shall concentrate on the case r/N > κS. Now the Nth path, i.e. the only path
starting from the south side, almost surely enters the south-east frozen region, in
which thick edges are absent, and thus locally makes a directed random walk, with
some drift parameter that remains constant for a while. This behaviour stops at
the point in which the constraint of reaching the north-east corner enters in conflict
with the edge-disjointness of the thick paths, and the presence of the liquid region
inside the Arctic curve. At this point something else must happen. Heuristically,
we expect the path to bent, and roughly follow the profile of the Arctic curve, up
to the west contact point, and then go straight, in a frozen way, up to its final
destination endpoint.

From this heuristic scenario we are led to formulate an ‘assumption’, whose aim
is to divide the Tangent Method in two parts. On one side, the precise framework
of the assumption provides a set of conditions to be verified, potentially on a case-
analysis to be adapted from one system to another. On the other side, it provides
a solid basis to establish once and for all the rigorous (but calculatory) part of
the method, which, given the assumption, draws conclusions on the relationship
between the Arctic curve and the function r(z).

Assumption 3.1 (Tangency Assumption). Consider the six-vertex model on the
(N − 1)×N domain, with DWBC except for the rth south boundary vertical edge
being thick. In a suitable scaling limit, the resulting Arctic curve consists in the
usual Arctic curve of the six-vertex model with domain wall boundary conditions,
plus a straight segment, tangent to the bottom right portion of the Artic curve, and
crossing the south boundary at (r/N, 0).

Numerical simulations strongly support the validity of this assumption in a variety
of situations, see e.g., for the ice point a = b = c, Fig. 3 and the right part of Fig. 5.

In the remaining of this section we shall summarise, somewhat in a sketchy way,
why this assumption is sounding, and which steps one should perform in order to
prove it rigorously.

2The numerics presented in this and other pictures has been generated using a C-code based on

Propp–Wilson ‘coupling from the past’ algorithm [53]. The code, originally written by Matthew
Blum and Jason Wolever, for the exact sampling of Alternating Sign Matrices, has been kindly
shared by Ben Wieland; we have modified it to generate uniformly six-vertex model configurations,
at ice point, on domains of various shapes.
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Figure 3. A typical configuration of the six-vertex model, on a
rectangular domain of size 500× 499, and refinement position r =
400 on the south side. This configuration is exactly sampled,2 at
the ice point, a = b = c = 1. Blue and red dots correspond to w5

and w6 vertex configurations, respectively. In overlay in gray, the
analytical prediction from the Tangent Assumption.

• Let us call p = (x, y) the coordinate at which the Nth path, starting at po-

sition (r, 0), first reaches a location at a distance O(N
1
2 ) from the (N − 1)th

thick path. Then, the Nth path, in its portion from (r, 0) to (x, y), is almost
surely a random (corner-weighted) directed lattice path, in the pertinent
ensemble (as illustrated in Appendix A). As such, in a large N limit, it
becomes a straight segment. This claim is completely under control.

• Let us consider the configurations of the otherN−1 paths, which determine
a (rescaled) liquid region R ⊂ [0, 1]2. First of all, this region is expected to
be almost-surely convex after a coarse-graining of short-scale fluctuations
(this shall be not hard to prove). Then, conditioning on the shape R, the
position (x, y) is such that the segment from (r, 0) to (x, y) is tangent to R,
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with p being the tangency point. This is the crucial observation. If true, it
must originate from the fact that deviations of order N from the tangent
trajectory, on both sides, would decrease the free energy. This behaviour
is well under control provided that the interacting non-intersecting lattice
paths ensemble has a repulsive interaction in the frozen region of interest,
which happens for a/c ≤ 1, i.e. ∆ ≤ t/2. It is conceivable, though, that the
Tangent Method, suitably adapted, may be applied in the full probabilistic
region of parameters, a, b, c ∈ R

+.
• The region R concentrates, i.e., it has almost surely a given deterministic
shape at leading order. This shall follow from the unicity of the associated
variational problem, and thus from mild conditions on the form of the
surface tension of the six-vertex model [27].

• The deterministic limit of the region R is the same of the limit of the liquid
region in the N×N domain. This is again expected, but (in our perspective)
hard to formalise. Indeed, we have essentially peeled away part of one thick
path from the liquid region. This makes, by itself, less volume within the
region (but only for a sub-linear thickness), but more volume available to
the other N − 1 paths for drifting towards south-east, due to the removal
of non-crossing constraints (though, less volume available than what would
be at disposal if we peeled off the full path, i.e. in the (N − 1) × (N − 1)
square geometry, and we know that the limit shape has a thermodynamic
limit). So the variation in the shape of R is the difference of two effects,
both sublinear, and as thus shall be sublinear.

3.3. The domain .ΛN ,L Let us now consider yet another geometry, namely, the
N × (N + L) rectangular domain, for some non-negative L. Let us fix the axis
origin so that the four corner vertices are located at (1, N −1), (1,−L), (N,N −1),
(N,−L). We consider the following fixed boundary conditions: the north side has
all thick edges, east and south sides have thin edges, the west side has thick its
top-most N − 1 edges, as well as its bottom-most, all other edges being thin. We
denote this domain, with this choice of fixed boundary conditions, as ΛN,L.

In this case, the Tangent assumption is rephrased as follows.

Assumption 3.2. Consider the six-vertex model on the domain ΛN,L. In the
scaling limit, the Arctic curve consists in the usual Arctic curve of the six-vertex
model with domain wall boundary condition, plus a straight segment, tangent to the
bottom-right portion of the Artic curve, and reaching the south-west corner.

Indeed, the only further step from the Assumption 3.1 to 3.2 is that the straight
line does not make an angle when crossing the Nth row, which is rather obvious
from entropic reasonings, given that the local weights are the same in the regions
above and below, and the thick path is locally far away from other thick edges in
that region.

Under Assumption 3.2, as we vary L ∈ N0, in the scaling limit we obtain a
family of lines in the parameter u = L/N , with u ∈ [0,∞), that are all tangent
to the bottom-right portion of the Arctic curve. For any fixed value of u, the
corresponding line crosses the vertical axis at (0,−u), and the horizontal axis at
some random point (ξ, 0), where the behaviour of the random variable ξ = r/N is
discussed in a moment. We anticipate that this variable concentrates, so that the
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equation of this family of lines in the (x, y)-plane is

x− ξ(u)

u
y − ξ(u) = 0, (3.3)

As we show below, for a certain u = u(z), this is the family of lines appearing in
the geometric formulation of the Arctic Curve Conjecture, equation (3.2).

3.4. Partition function of the six-vertex model on .ΛN ,L As a matter of
fact, once one has control on ZN and H

(r)
N , evaluating the partition function of the

model on the domain ΛN,L is a rather easy task. For this purpose we divide the

domain ΛN,L into two portions, an upper domain Λ
(+)
N,L, containing the top-most

N − 1 rows of vertices, and a lower domain Λ
(−)
N,L, containing the remaining L + 1

rows.
For every configuration there exists one path crossing the boundary between the

two sub-domains, this occurring at some (random) horizontal coordinate k. Then,

the sub-domain Λ
(+)
N,L, conditioned to this value k, is exactly of the form described

at the beginning of Section 3.2, and thus has partition function

Z
(+)
N,k :=

1

aN−kbk−1c
ZNH

(k)
N =

1

aN

1

tk−1(t2 − 2∆t+ 1)1/2
ZNH

(k)
N . (3.4)

For the sub-domain Λ
(−)
N,L that’s even simpler. The boundary conditions have all

thin edges, except for one thick edge, kth from the left, on the north side, and
one thick edge, the bottom-most, on the west side. Thus we are in the situation
of a single oriented lattice path, for which the (easy) formulas are reminded in
Appendix A in terms of the weight factors for going straight or making a left/right
turn. The Boltzmann weights of the six-vertex model, see Fig. 1, induce a factor b/a
for each straight, and c/a for each turn. The evaluation of the weighted enumeration
of directed lattice paths in the y × x box, a classical result in combinatorics, is
reported in equation (A.8). When expressed in terms of the quantities ∆, t, see
(2.3), this formula reads

P∆,t(x, y) = tx+y+1
∑

l≥0

(

x

l

)(

y

l

)(

t2 − 2∆t+ 1

t2

)l+1/2

. (3.5)

Thus, for the partition function of the six-vertex model on the lower domain, we
may write:

Z
(−)
N,L,k = a

N(L+1)P∆,t(k − 1, L) (3.6)

The full partition function of the domain is then easily determined from the com-
bination of (3.4) and (3.6)

In conclusion the partition function of the six-vertex model on the domain ΛN,L

can be expressed as

ZΛN,L =
N
∑

k=1

Z
(+)
N,kZ

(−)
N,L,k =

a
NLZN√

t2 − 2∆t+ 1

N
∑

k=1

t1−kH
(k)
N P∆,t(k − 1, L) (3.7)

= a
NLZN

N
∑

k=1

∑

l≥0

(

k − 1

l

)(

L

l

)

tL−2l(t2 − 2∆t+ 1)lH
(k)
N . (3.8)

This is an exact result, holding forn any values of N , L.
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Note that the prefactor a
NLZN is simply the partition function on the same

graph as ΛN,L, in the case where the N thick paths start from the N top-most
edges of the west side (instead that the (N − 1) top-most and the bottom-most),
and as thus is a useful reference normalisation. This fact, obvious from inspection
of the possible configurations of the model in this case, is confirmed by the above
expression. Indeed, the sum over l reduces to the term l = 0, and we are left with

a sum over k of H
(k)
N , that of course evaluates to 1.

3.5. Asymptotic behaviour of the partition function .ZΛN,L
We now con-

sider the expression (3.8) in the large N limit. Let L = ⌊uN⌋, k = ⌈ξN⌉, and
l = ⌊ηN⌋. Here ξ ∈ (0, 1) and u ∈ (0,+∞) are rescaled lengths, while η/ξ ∈ (0, 1)

is a density (the fraction of columns in Λ
(−)
N,L with a turn). We set

F (u) := lim
N→∞

1

N
ln

(

ZΛN,L

aNLZN

)

, (3.9)

that is (minus) the variation in the free energy density per horizontal step of the
Nth path, when it starts on the west side on vertex at coordinate (1,−L) rather
than at (1, 0), as it would in the case of ordinary domain wall boundary condition.

Note that, although lnZΛN,L = O(N2) for large N , this leading behaviour is

completely cancelled by the term ln aNLZN . It is easy to verify, from inspection of
(3.8), that the limit defined in (3.9) indeed exists.

The sums appearing in the expression for ZΛN,L can be interpreted as Riemann
sums, that in the scaling limit turn into a two-dimensional real integral. Further-

more, from the explicit expression and the log-concavity of H
(k)
N it is easily evinced

that the main contribution comes from a unique two-dimensional saddle-point with
positive-definite Hessian. We are thus led to define the ‘action’:

S(ξ, η;u) := lim
N→∞

1

N
ln

[(

k − 1

l

)(

L

l

)

tL−2l(t2 − 2∆t+ 1)lH
(k)
N

]

(3.10)

=ℓ(ξ)− ℓ(η)− ℓ(ξ − η) + ℓ(u)− ℓ(η)− ℓ(u− η)− 2η ln t (3.11)

+ η ln(t2 − 2∆t+ 1) + lim
N→∞

1

N
ln
[

H
(ξN)
N

]

. (3.12)

where we have introduced the notation ℓ(x) := x lnx (adapted to Stirling approxi-
mation). The saddle-point method gives

F (u) = S(ξsp, ηsp;u), (3.13)

where ξsp, ηsp are the solutions of

0 =
d

dξ
S(ξ, η;u) = ln ξ − ln(ξ − η) + lim

N→∞

1

N

d

dξ
ln
[

H
(ξN)
N

]

(3.14)

0 =
d

dη
S(ξ, η;u) = ln(ξ − η) + ln(u− η)− 2 ln η + ln

(

t2 − 2∆t+ 1

t2

)

. (3.15)

Solving the second equation in η, one gets:

ηsp =
1

2θ

[

−(ξ + u) +
√

(ξ + u)2 + 4θξu
]

, θ :=
2∆t− 1

t2 − 2∆t+ 1
, (3.16)

where the sign in front of the square root is fixed by requiring that ηsp → 0 as
u → 0, as it should, since, as we said, ηsp(u) is the average density of ‘turns’
per horizontal interval in the directed path from (0,−L) to (k, 0). Note also that,
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consistently, as u varies over the interval [0,∞), ηsp monotonously increases over
the interval [0, 1).

As for the first saddle-point equation, (3.15), by comparison with (2.13), its
solution is just

ξsp = r(z), z :=
ξsp

ξsp − ηsp
. (3.17)

Replacing the solution (3.16) for ηsp in the last relation, and solving in ξsp/u we
obtain:

ξsp
u

=
z

[(1 + θ)z − θ](z − 1)
(3.18)

=
(t2 − 2∆t+ 1)z

(t2z − 2∆t+ 1)(z − 1)
. (3.19)

Plugging this last relation and expression (3.17) into (3.3) we immediately get the
statement in Conjecture 2.1, in the coordinates x = r/N and y = s/N , As a last con-
sistency check, note that as u varies over the interval [0,∞), ξsp monotonously in-
creases over the interval [1−κ, 1), and, consequently, the parameter z monotonously
increases over the interval [1,∞).

4. Extension of the method to generic domains

4.1. A local criterium. In the derivation of the previous section, we have chosen
to work in the domain ΛN,L. This is done for two reasons: for clarity of exposition,
and for matching more easily with the result of Conjecture 2.1. However, we would
have obtained the same result by adopting a variety of other families of geometries,

characterised by some volume Λ
(−)
N,L added below the south side of the (N − 1)×N

rectangle, Λ
(+)
N , and with boundary conditions so to have a single thick path starting

in Λ
(−)
N,L, within the ideas of the Tangency Assumption.

More generally, set the origin of the axes at the south-east corner of the original
square, and say that the thick path under consideration starts from the coordinate
(−x,−y), with both x and y positive and of order N . Again, in the larger N limit,
a portion of this path makes a straight segment for a while. This portion is in part
contained in the square. And the crucial observation after Assumption 3.2, that
this straight segment does not make an angle when crossing the boundary of the
domain, still holds.

In such a geometry, up to a multiplicative factor, we would have for the partition
function a formula of the form

ZN ;x,y ∝
∑

r

P∆,t(x− (N − r), y)H
(r)
N t−r ∝

∑

r,l

(

x−N + r

l

)(

y

l

)

ωlH
(r)
N (4.1)

where we use the shortcut ω = (c/b)2, and we drop the factors that depend on N ,
x and y alone. The factor t−r cancels out with tx−(N−r) coming from P∆,t, see
(3.5). The saddle-point equations then determine r and l to be concentrated on
some values, the one for r being most relevant at our purposes. The equations can
be obtained by comparing the summand (r, l) to (r, l+1) and (r+1, l), and asking
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for stationarity, which gives (neglecting terms of order 1/N)

H
(r+1)
N

H
(r)
N

x−N + r

x−N + r − l
= 1 + o(1),

l2

ω(y − l)(x−N + r − l)
= 1 + o(1). (4.2)

Let us set ξ = x/N , η = y/N and λ = l/N , and recall that, from (2.11), the
function r(z) is such that

ln
H

(⌊Nr(z)⌋+1)
N

zH
(⌊Nr(z)⌋)
N

= o(1). (4.3)

This gives in the limit

1 = z
ξ − 1 + r(z)

ξ − 1 + r(z) − λ
=

λ2

ω(η − λ)(ξ − 1 + r(z)− λ)
(4.4)

These equations are at sight homogeneous in the three independent parameters η,
ξ − 1 + r(z) and λ, which implies that the locus of points (−ξ,−η) (with η > 0)
such that the stationary value of r/N is at r(z) is a straight half-line, as expected.

Let us introduce the slope of this line, m(z) := η/(ξ−1+r(z)), and let us change
variables from λ to d = λ/η. The equations above become

1 = z
1

1−md
=

md2

ω(1− d)(1 −md)
(4.5)

from which we get, in particular, using ω = (t2 − 2∆t+ 1)/t2,

m(z) =
(z − 1)((1 − ω)z − 1)

ωz
=

(z − 1)(t2z − 2∆t+ 1)

z(t2 − 2∆t+ 1)
(4.6)

in agreement with (2.15), once we interpret F (x, y; z) as x − y/m(z) − r(z), the
family (in z) of lines passing through (r(z), 0) with slope m(z).

In this formula, we got rid of the original probabilistic interpretation, in terms
of glueing of a Λ(+) original domain and a Λ(−) accessory extra volume. The role
of the expression (3.5) has been made completely algebraic, and local (w.r.t. the
neighbourhood of the one-point boundary correlation function). If the previous
section had the goal of ‘geometrising’ the Arctic Curve Conjecture, the approach
presented here seems paradoxally to ‘de-geometrise’ this very same result. As a
corollary, we can apply our method even in geometries where, e.g. because of con-
cave angles in the domain of definition ΛN , there seems to be no room available
for the visually-clear construction of the tangent line in the associated extended
domain ΛN,L.

Alternatively, we could have imagined the extended domain ΛN,L to live on a
square lattice in a quasi-flat Riemann surface, with a conical singularity producing
the missing volume, but, as we have seen, this is a uselessly complicated geometrical
construction for a mechanism which is algebraically clear enough.

4.2. A more general setting. The six-vertex model, as well as most of statisti-
cal mechanics models for phase transitions, have been prevalently studied on some
simple domain of their underlying periodic lattice. It is in the context of phase
separation and limit shape phenomena, where we have a strong dependence from
the boundary shape and conditions, that a study of different domains becomes im-
portant. Nonetheless, we have a very modest general understanding of this feature
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for the six-vertex model, especially if this is compared with the state of the art for
dimer models on bipartite lattices (see the discussion in the introduction).

As we said, we believe that the most natural and appropriate context is a version
of Baxter’s graphs in [46], appropriate to the thermodynamic limit, consisting of
bundles of parallel spectral lines that mutually cross. In Section 5 we analyse one
such instance. A less general extension is obtained when the bundles are divided
into horizontal and vertical ones, and (as the name tells) only horizontal and ver-
tical bundles cross each other, determining a portion of the square lattice which
is digitally convex 3, see Figure 4 for an example. We now have possibly multiple
boundaries in each of the four directions, and we say, e.g., a south side for a hori-
zontal boundary of the domain, that has the domain on top of it. The interesting
case is when we have overall the same number of horizontal and vertical lines (say,
N), and domain-wall boundary conditions, i.e. thick lines at all west and north
boundaries, and thin lines at all south and east boundaries. We shall refer to a
setting for the six-vertex model with such a kind of domain shape and of boundary
conditions as a region of domain-wall type.

Numerical investigations show that, analogously to what happens in the same
geometries for domino tilings, here we also have limit shapes and Arctic curves, with
the feature, new w.r.t. the square domain, of having pairs of cusps in correspondence
of concave angles (see Figure 4). Thus we have arcs of three types, connecting two
cusps, a cusp and a contact point, or two contact points. We call an arc internal if
it is of the first type, and external if it is of the second or third type.

Quite evidently, these domains can be seen as marginals of the N × N square
domain, in which the frozen regions on the four corners have been constrained to
contain the set-difference of the square and the new domain. The simplest realisa-
tion of this, consisting of a rectangular region cut off from the top-left corner, just
coincides with the emptiness formation probability studied in [39] and subsequent
papers, so that the study of this class of domains is promising.

The Tangent Method, in its abstraction outlined in Section 4.1, applies imme-
diately to this setting, for what concerns external arcs. Let Λ be such a domain,
let us concentrate (say) on a given south side, and to the corner at its right end-
point. This may be a concave corner, and is thus followed by a west side, or a
convex corner, followed by an east side. For definiteness, we put the origin of the
coordinate axes at this corner. We aim to determine the (external) portion of the
Arctic curve which is above this south side, and on the right of its contact point
(if any), and so that the curve is ‘visible’ from the side, i.e. the tangent segment is
contained within the domain. Call H(r), h(z) and r(z) the quantities associate to
the one-point correlation function pertinent to this side, in analogy with the case of
a square domain. Let the lattice coordinates be rescaled by the same choice of size
parameter used for rescaling r(z) from h(z) (this may be, for example, the total
number N of horizontal lines). Then, on the same ground of rigour of the derivation
for the square domain, and based on the suitable restating of the Assumption 3.1,
we have

Conjecture 4.1. For the system outlined above, the forementioned portion of the
Arctic curve is the geometric caustic (envelope) of the one-parameter family of lines

3A digitally-convex portion of a square lattice is one which is enclosed by four directed paths,
i.e. by a sequence of north and east steps, followed by a sequence of north and west steps, followed
by south and west, followed by south and east, forming a closed non-intersecting path.
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Figure 4. A typical configuration of the six-vertex model at ice
point, a = b = c = 1, on a generic ‘digitally-convex’ portion of
the square (here of size 300), with domain-wall boundary condi-
tions. The side sizes, in counter-clockwise order, starting from the
bottom-left corner, are 290, 60, 50, 70, 60, 100, 100, 70, 150, 60,
50, 240.

in the (x, y)-plane, in the parameter z ∈ [1,+∞),

F (x, y; z) = x− z(t2 − 2∆t+ 1)

(z − 1)(t2 − 2∆t+ z)
y − r(z). (4.7)

For arcs in other orientations, we have either the very same statement, or, if a
reflection is involved, the analogous statement with t ↔ t−1.

5. The Arctic curve on the triangoloid domain

5.1. Why this model. At this point it shall be clear that the Tangent Method
applies in a variety of circumstances. Essentially, all we need is that the model has
a conservation law in the form of line conservation, that the behaviour of a single
line is in the universality class of random directed walks, and, apparently, that the
interaction among the lines is not of attractive type.

We have motivated already how the six-vertex model is a good prototype for this
study: it is rich enough to go beyond the free-fermionic case, still it is probably
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Figure 5. Left: a typical configuration on the square of size 100,
with at square of size 40 removed from the top-left corner. Right:
same, with the extra constraint that the south refinement posi-
tion is r = 82. This illustrates Conjecture 4.1, and its use in the
Tangent Method.

the simplest exactly solvable model with these characteristics, with a continuous
parameter (here ∆) interpolating between universality classes.

We have also motivated the fact that, for obtaining a sensible thermodynamic
limit, the easiest recipe is to consider a finite number of bundles of spectra lines,
that intersect each other producing rectangular patches of the square grid, which
are then arranged together.

Then, at the light of the discussion of the previous section, one should think
that the simplest case next to treat would be the case of Figure 5. Too bad that,
at the moment, we are not able to give the analytic expression of the Arctic curve
for that domain. Indeed, even assuming Conjecture 4.1 to hold, the quantity r(z)
is not known for none of the three types of sides (up to symmetry) in this domain.
What one would need in order to do so is a fine control on some generalised version
of the emptiness formation probability (see [54]).

There is a lucky situation, that we call triangoloid domain, in which, although
the domain seems somewhat more complicated than these other cases, at the ice
point (a = b = c = 1) we have access to the refined enumeration. This occurs as a
corollary of the dihedral Razumov–Stroganov correspondence [55], present in that
special domain, which allows to deduce the refined enumeration for all configura-
tions altogether, from the known refined enumeration on the square domain, and
the one for a specially simple subclass of configurations [56].

The determination of the Arctic curve in this domain is thus possible,4 and is
the subject of this section.

5.2. The model. Let a, b and c be three integers (not to be confused with the
Boltzmann weights a, b, and c of the six-vertex model). Take three bundles of
a+ b, b + c, and c + a lines, crossing each other, and use the resulting graph as a
domain for the six-vertex model, that we call triangoloid, or three-bundle domain
(see Fig. 6).

4As we say below, in a regime of aspect-ratio parameters there is not only an external Arctic
curve, but also an internal one. We only determine the external part.
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a
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a+ c

a+ b

a+ b b+ c

b c

r

Figure 6. The (a, b, c)-triangoloid domain with domain wall
boundary conditions, and a typical configuration. In this case
(a, b, c) = (2, 3, 4), and the south refinement position is r = 7.

The internal faces of this graph are thus all squares, except for one triangle.
We have a line of defects (denoted by a dashed line) going from this triagular
face towards the north-west corner of the figure. Edges crossed by this line have
arrows with opposite direction on the two sides. In other words, passing to the
path representation, the two half-edges above and below the dashed line are either
thick and thin, or thin and thick, respectively.

This is a special case of six-vertex model with edge defects, whose configurations
are in fact covariant under a Z2 gauge in a way analogous to frustration in two-
dimensional spin glasses (this is quickly reminded in Appendix E), and it is useful
to keep in mind that only the endpoints of this line of defects have an intrinsic
relevance.

We take domain-wall boundary conditions, that means here that arrows on con-
secutive external edges have equal orientation, unless we go through one corner, or
we go through the defect line (this, consistently, makes a total of four changes of
orientation, an even number as it should).

For this configuration of defects, the correspondence of Figure 1 between arrows
and thick-line configurations is essentially preserved, and the thick paths are still
directed, i.e., if oriented as outgoing from the west side and ingoing in the north
side, may only perform north and east steps.

As defects act by inverting the thickness state of the adjacent edges, we must
have an endpoint of a thick path at each and every defect. The boundary conditions
force that, of the a+ b defects, exactly a have the endpoint of a path that started
from the west side (and, in fact, from the a top-most edges of this side), and b
have the endpoint of a path that terminates at the north side (and, in fact, at the
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Figure 7. A typical configuration of the six-vertex model at ice-
point, a = b = c = 1, on a (a, b, c)-triangoloid. The top-right
(a+b)×(b+c) sub-domain is reproduced a second time, rotated by
90 degrees, under a gray shadow, to help visualising the continuity
of the limit shape through the line of defects. Here a = 70, b = 45,
c = 20. In overlay, the analytic prediction of the Arctic curve.

b left-most edges of this side). The c bottom-most edges of the west boundary and
the c right-most edges of the north boundary are connected by thick paths, that do
not intersect, and pass all at the right of the triangular face.

Numerical simulations clearly show the emergence of an Arctic curve for trian-
goloids of large size. See Fig. 7 for an example. Not surprisingly, in a representation
showing the collection of c-vertices, there is no special feature occurring at the de-
fect line, as, in light of Appendix E, this line is not intrinsic to the model (it can
be moved around with a gauge transformation).

There could be, in principle, something special happening in proximity of the
triangular face, both because of the source of defects, and because of the curvature
of the square lattice at this point. Apparently there are two regimes. When the
three parameters a, b and c are comparable, nothing special seems to happen near
to the triangle (in the case a = b = c we just find back the three arcs of ellipse for
the ∆ = 1/2 and t = 1 square of side 2a, concatenated in the obvious way). When
instead one parameter (say, c) is small with respect to the other two, a macroscopic
frozen triangoloid region opens up around the triangular face (in the limit c ≪ a, b
we recover again the Arctic curve for the square domain, this time at size a+b, plus
a straight segment, of which we know the coordinates from the use of the Tangent
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Method in Section 3). This second limit, which is more subtle because it makes the
Arctic curve only weakly-convex, is briefly discussed at the end of the section.

We can adapt the construction of Section 3 to the present case, by continuing the
a+ 2b+ c vertical lines downward, adding below the triangoloid a bundle of L− 1
horizontal lines, and modifying the boundary conditions as illustrated in Section
3 (or, alternatively, we could have used the local criterium established in Section
4.1).

As a result, the lower-right arc of the Arctic curve, delimited by the two contact
points with the right and lower boundary, may be worked out along the lines of
Conjecture 4.1, provided that we can evaluate the analogue of quantity r(z) for the
(a, b, c)-triangoloid.

5.3. The one-point boundary correlation function at ice point. From now
on, we consider this model at ice-point, a = b = c = 1, that is ∆ = 1/2, t = 1.

As a consequence of the ice-rule, on the south and east sides, which are not
disturbed by the defect line, there is yet again a unique refinement position. We
will concentrate on the south one, that we denote with r, and that ranges over
1 ≤ r ≤ a+ 2b+ c.

Let us denote the one-point boundary correlation function in this case as H
(r)
a,b,c.

A result of [56] is that, at the ice point,

H
(r)
a,b,c =

(

3N − 2

N − 1

)−1(
a+ b+ c− 1

b

)−1

×
r
∑

s=1

(

2N − s− 1

N − 1

)(

N + s− 2

N − 1

)(

c+ r − s− 1

c− 1

)(

a+ b− r + s− 1

a− 1

)

, (5.1)

where N := a+ b + c, and r ∈ {1, . . . , a+ 2b+ c}. See Appendix D for details on
the genesis and derivation of this expression.

We are interested in evaluating the asymptotic behaviour of (the logarithmic
derivative of) the corresponding generating function,

ha,b,c(z) :=

a+2b+c
∑

r=1

H
(r)
a,b,cz

r−1 (5.2)

in the limit of large triangoloid sizes, a, b, c → ∞, with their ratios fixed. Let

a = ⌈Nα⌉, b = ⌈Nβ⌉, c = ⌈Nγ⌉, r − s = ⌊Nξ⌋, s = ⌈Nη⌉, (5.3)

with α, β, γ, ξ, η ∈ R, α, β, γ > 0, α+ β + γ = 1, 0 < ξ < 1 + β, 0 < η < 1 + β − η.
The sums appearing in (5.1) and (5.2) can be interpreted as Riemann sums, that

in the scaling limit turn into a two-dimensional integral. Simple Stirling approxi-
mation shows the log-concavity of the integrand, so that in the limit the integral
is dominated by the contribution of a unique non-singular saddle point. We define
the ‘action’:

S(ξ, η;α, β, γ, z) :=

lim
N→∞

1

N
ln

[

(2N − s− 1)!(N + s− 2)!(c+ r − s− 1)!(a+ b− r + s− 1)!

(N − s)!(s− 1)!(r − s)!(b − r + s)!
zr−1

]

,

(5.4)

where we have ignored factors that do not depend on ξ or η.
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From standard saddle-point arguments, it follows that

rα,β,γ(z) := lim
N→∞

1

N
z
d

dz
lnha,b,c(z)

= ξsp + ηsp,
(5.5)

where ξsp, ηsp, are the solutions of the two saddle-point equations:

z =
ξ(1 − γ − ξ)

(β − ξ)(γ + ξ)
, z =

η(2− η)

1− η2
, (5.6)

namely,

ξsp =
(γ − β)z + α+ β −

√

[(γ − β)z + α+ β]2 − 4γβz(1− z)

2(1− z)
(5.7a)

ηsp =
1−

√
z2 − z + 1

1− z
(5.7b)

The signs of the square roots are fixed by the condition that for large real z the
quantity rα,β,γ(z) should tend to the value:

lim
z→+∞

(ξsp + ηsp) =
α+ 2β + γ

α+ β + γ
= 1+ β. (5.8)

This condition follows directly from definitions (5.2) and (5.5), assuming that the
limits N → ∞ and z → ∞ may be interchanged.

5.4. The Arctic curve for the six-vertex model on the triangoloid. We are
now ready to use Conjecture 4.1. Setting ∆ = 1/2, t = 1 in (3.2), and inserting the
quantity rα,β,γ(z), see (5.5), expressed as the sum of the solutions (5.7), we obtain
the family of lines

y = (z − 1)x+ 1−
√

z2 − z + 1 +
1

2
[(γ − β)z + α+ β]

− 1

2

√

[(γ − β)z + α+ β]2 + 4γβz(z − 1), z ∈ [1,∞). (5.9)

The corresponding geometric caustic has the parametric form






x = 1 + β − ζ(z;α, β, γ)

y = ζ( z
z−1 ;β, α, γ)

z ∈ [1,∞) (5.10)

where

ζ(z;α, β, γ) =
3− α

2
− 2z − 1

2
√
z2 − z + 1

− (1− α)2z + αγ − β

2
√

[(γ − β)z + α+ β]2 − 4γβz(1− z)
(5.11)

This describes the south-east arc of the Arctic curve of the six-vertex model at
ice-point, on the triangoloid, between the two contact points on the east and south
boundaries. As evinced from the z = 1 limit of the expression above, and more
easily from (5.1), the south contact point is at the rescaled coordinate (κ, 0), with

κ = α+β+γ
2 + βγ

α+γ .

The other two arcs of the curve can be obtained straighforwardly by cyclic per-
mutation of the parameters α, β, γ in (5.10), (5.11), and appropriate relabeling of
coordinate axis. The result is plotted against a numerical simulation in Fig. 7.
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Figure 8. Analogue of Figure 7 for a different aspect ratio. In
this case a = 79, b = 39, c = 3. In overlay, the analytic prediction
of the external portion of the Arctic curve, and the curve obtained
by the ‘wild guess’ described in the text, which reproduces the
internal portion of the Arctic curve in the limit γ → 0.

We have already mentioned that, in the limit c ≪ a, b, we shall obtain back
the Arctic curve of the square, reproduced within the south-west and north-east
rectangular sub-domains w.r.t. Figure 6 (cut towards the line of defects), plus a
straight segment, on the south-east side, tangent to both copies of the Arctic curve
(the numerical simulation of Figure 8 is not far from this limit). This may seem
mysterious at first, as, for positive values of the size parameters, the resulting curve
is convex.

In order to see how this limit develops a singularity, consider the expression
(5.11) for γ → 0+ (and thus α+ β → 1−). In this limit we have

ζ(z; 1− β, β, 0) = 1 +
β

2
− 2z − 1

2
√
z2 − z + 1

+
β

2

1− βz
√

(1− βz)2
(5.12)

and the quantity 1−βz√
(1−βz)2

has to be interpreted as the sign of 1 − βz. Thus the

x(z) coordinate function has a jump for z = 1/β, and, consistently, y(z) has a jump
for z/(z − 1) = 1/α = 1/(1− β), i.e. again for z = 1/β.

In fact, in the limit γ → 0, if in both entries of the parametric solution (5.10)
we use a function ζ with the other sign of square root in the last summand, w.r.t.
the definition in (5.11), we obtain a curve that approaches the known internal part
of the Arctic curve (see Figure 8). However, this wild guess, besides being not
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theoretically motivated, must also be wrong in some respect when γ is small but
positive. In this case the curve has the appropriate qualitative behaviour (including
the cusps, and some of the consistency checks), but the two endpoints of the curve,
when folded around the conical singularity, miss each other by a distance O(γ),

namely γ 1−αβ
(α+γ)(β+γ) .

6. Conclusions

Which models next? This paper sets the basis for a method aimed at the deter-
mination of the Arctic curve in statistical mechanics models on planar graphs, with
(piecewise) local translational invariance of the lattice and weights, showing phase
separation phenomena, in light of a conserved quantity in the associated transfer
matrix, that can be seen as the number of lines in a suitable line representation.
This is the case for a variety of dimer or free-fermionic models (for which, how-
ever, in most cases more powerful general methods already exist), for the six-vertex
model, treated here in detail, and for variants of it in which some spectral lines
may contain higher spin or q-bosons.

The constraint of having a line representation may appear as a strong limi-
tation of the method. Let us however stress how, up to bijections, families of
non-intersecting (possibly interacting) lattice paths constitute a very general and
flexible language for representing a variety of mathematical structures, ranging from
Young diagrams [57] and tableaux [58] to Q-systems and cluster algebras [59].

The application of the Tangent Method to quite different classes of models, and
the study of its interplay with other existing techniques, is in our opinion a direction
of research deserving to be explored.

What more for the six-vertex model? It shall be clear that also for the six-
vertex model, the main subject of this paper, the analysis is far from complete.
A variety of domains still asks for the determination of their Arctic curve, and
in particular it would be quite interesting to obtain the analytic expression for
an Arctic curve in a domain presenting cusps, for a system out of free-fermionic
points. As we said, the main obstacle in these derivations is the lack of knowledge
of refined enumerations, called here one-point boundary correlation functions. The
most promising candidate seems to be the six-vertex model in the domain presented
in Figure 5. We hope that some progress in this direction will be available in the
light of our results on a generalisation of the Emptiness Formation Probability
observable [54].

We also remind that the Tangent Method, in its present formulation is not
adapted to the determination of the internal portions of the Arctic curve, i.e. the
arcs between two cusps. Or the internal components of Arctic curves in the cases
where, as for the triangoloid domain, there are internal frozen regions. We hope
that the puzzling features of the internal component of the curve outlined at the
end of Section 5 may be clarified in the future.

Which Tangent Method? Another natural question is how to make precise the
assumptions listed in Section 3.2. In principle, the short discussion following the
assumption gives a clear roadmap to this task. However, a further aspect of the
method that we have not discussed here is the fact that it exists in several variants,
which exploit in slightly different ways the peculiar behaviour of one thick path
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that, in one way or another, has been singled out from the liquid region by mean
of a marginalisation on a boundary observable.

The version described in this paper, that could be called Geometric Tangent
Method, is the one which is visually more clear (especially in its realisation with
an auxiliary external domain, as in Section 3). However, we have devised also an
Entropic Tangent Method, that establishes a criterium based on the locality of the
free energy, and performs some ‘surgery’ of domains for comparing the free energy
of different refined ensembles. We have an Algorithmic Tangent Method, adapted
to those cases in which the configurations are obtained from iterated applications of
substitutional rules. Finally, we have a promising Doubly-refined Tangent Method,
which exploits (when available) the two-point boundary correlation function, the
two points being on two consecutive sides of the boundary, this providing a geo-
metric setting in which the complicancy of the contact between the tangent path
and the liquid region is eliminated.

All these different methods come with slightly different technical requirements,
for satifying the associated variants of the Tangent Assumption, and the compari-
son between the different methods is still to be completely investigated, in a trade
off between the mathematical control on the assumptions, and the domain of ap-
plications.
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Appendix A. Weighted enumeration of directed lattice paths

We recall here some classical results in analytic combinatorics, concerning the enu-
meration of two-dimensional directed lattice paths in the square lattice, weighted
according to the number of ‘corners’, and recast them in a form suitable for our
purposes.

A directed lattice path γ : (0, 0) → (x, y) is a path on the square lattice, starting
in (0, 0) and arriving in (x, y), and whose only allowed steps are (1, 0), or ‘east’,
and (0, 1), or ‘north’. If the path visits the vertices {vi}0≤i≤x+y, we thus have
vi+1 − vi ∈ {(1, 0), (0, 1)}, v0 = (0, 0) and vx+y = (x, y).

For x and y nonnegative integers, the number of such paths reaching the point
of coordinates (x, y) is clearly

P (x, y) =

(

x+ y

y

)

. (A.1)
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We now assign to each path γ a weight ωc(γ), where c(γ) is the number of ‘north-
east corners’, i.e., of vertices vi, 0 < i < x + y preceeded and followed by a north-
and an east-step, respectively, vi = vi−1+(0, 1) = vi+1−(1, 0). We want to evaluate
the weighted enumeration

Pω(x, y) :=
∑

γ

ωc(γ). (A.2)

Let N (x, y, l) denote the number of directed lattice paths reaching (x, y), with
exactly l north-east corners. It is clear that these paths are in bijection with pairs
of subsets of I ⊆ {0, . . . , x − 1} and J ⊆ {1, . . . , y}, both of cardinality l (the kth
corner is at v = (ik, jk), where ik and jk are the kth element of sets I and J , in
order). This leads immediately to

N (x, y, l) =

(

x

l

)(

y

l

)

, (A.3)

and, hence,

Pω(x, y) =
∑

l≥0

(

x

l

)(

y

l

)

ωl. (A.4)

Obviously, in the above sum all terms with l > min{x, y} vanish. Note also that
the formula above consistenlty reduces to (A.1) at ω = 1, as a result of Chu-
Vandermonde formula.

For our purposes, it is now convenient to slightly modify our definition by adding
to each lattice path γ an east step just before the origin, and a north step next to
the final point (x, y). We denote this modified path by γ̃. Manifestly, the new path
does not have any extra north-east corner.

We now want to count paths γ̃, according to two statistics: number s(γ̃) of
‘straights’, i.e., of vertices vi, 0 ≤ i ≤ x+ y, such that the preceeding and following
steps are both north or both east, and the number t(γ̃) of ‘turns’, i.e., of vertices
vi, 0 ≤ i ≤ x+ y, such that the preceeding and following steps are either north and
east, or east and north. It is clear that

s(γ̃) + t(γ̃) = x+ y + 1, (A.5)

t(γ̃) = 2c(γ̃) + 1. (A.6)

which makes manifest the homogeneity of this double-statistics, and its connection
with the previous formula (A.4)

Let us now assign weights b/a and c/a to each straight and turn, respectively.
For what we said, the corresponding weighted enumeration of paths

Pa,b,c(x, y) :=
∑

γ̃

(

b

a

)s(γ̃)( c

a

)t(γ̃)

. (A.7)

is just given by

Pa,b,c(x, y) =
∑

l≥0

N (x, y, l)
(

b

a

)x+y−2l( c

a

)2l+1

(A.8)

=
(

b

a

)x+y+1∑

l≥0

(

x

l

)(

y

l

)

(

c

b

)2l+1

. (A.9)

Again, in the above sum all terms with l > min{x, y} vanish. This formula can be
applied directly in the context of the six-vertex model, with Boltzmann weights a,
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b, c as in Section 2.2. Use of (2.3) to express the Boltzmann weights in terms of
the parameters ∆ and t leads to equation (3.5).

Appendix B. Alternating Sign Matrices

An Alternating Sign Matrix (ASM) of size n is an n× n matrix valued in {0,±1},
such that: (i) non-zero entries alternate in sign along rows and columns; (ii) the
sum of entries along each row or column is +1 [48].

Let An be the number of ASMs of size n. It is well known that [60, 61]:

An =
n−1
∏

j=0

(3j + 1)!

(n+ j)!
. (B.1)

ASM of sixe n are in bijection with the configurations of the six-vertex model on
the n× n lattice, with domain wall boundary conditions (entries +1 and −1 in the
ASM corresponding to w6 and w5 vertices in the six-vertex model, respectively).
Thus the partition function of the model [62], when evaluated at the ice point,
a = b = c = 1, coincides with An.

The one-point correlation function H
(r)
N , then, is related to the so-called refined

enumerations : Let An(r) be the number of ASM of size n such that the sole non-
zero entry in the bottom row is in the rth column, then it is well-known that [63]:

An(r) = An

(

2n− r − 1

n− 1

)(

n+ r − 2

n− 1

)(

3n− 2

n− 1

)−1

. (B.2)

and it is clear that H
(r)
n |∆= 1

2 ,t=1 = An(r)/An.

Then, in the formalism of Section 3.4, the partition functions Z
(+)
N,k and Z

(−)
N,L,k

just reduce to AN (k), as in (B.2) above, and to the binomial coefficient P (r, L), as
in (A.1). In particular, one can calculate

rASM(z) := lim
N→∞

1

N
z
d

dz
ln

(

1

AN

N
∑

r=1

AN (r)zr−1

)

=

√
z2 − z + 1− 1

z − 1
, (B.3)

which gives the family of lines

FASM(x, y; z) = x− 1

z − 1
y − rASM(z), z ∈ [1,+∞). (B.4)

The corresponding geometric caustic reproduces (the lower-right quarter of) the
limit shape of ASMs, first derived in [41].

Appendix C. The Arctic curve for lozenge tilings of a hexagon

As a simple application of the Tangent Method, in a framework different from the
six-vertex model, we derive here the Arctic curve for lozenge tilings of a hexagon,
or equivalently, the frozen boundary of the limit shape of boxed plane partitions,
which is an ellipse, thus recovering a result of Cohn, Larsen and Propp [9].

Let us call a (a, b, c)-hexagon the hexagonal portion of the triangular lattice
whose side lengths are a, b, c, a, b, c in clockwise order, and let us adopt the conven-
tion that the horizontal sides are those of length b.

We are interested in the tilings of this hexagon with rhombi of side length 1, i.e.
obtained from the union of two neighbouring triangles of the lattice, called lozenges.
Referring to the orientation of the longest diagonal, we have one type of vertical
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1 2 3 4 5 6 7 8 9 10

Figure 9. A lozenge tiling of a (n, k)-trapezoid as described in
the text, with (n, k) = (4, 6) and x = (1, 3, 7, 8).

lozenges, and two orientations for oblique lozenges. In this Appendix we shall adapt
to the notations of [9].

Let Ma,b,c be the number of lozenge tilings of a (a, b, c)-hexagon. We recall that

Ma,b,c =

a−1
∏

j=0

b−1
∏

k=0

c−1
∏

l=0

j + k + l + 2

j + k + l + 1
=

b−1
∏

j=0

j!(j + a+ c)!

(j + a)!(j + c)!
, (C.1)

a classical result of MacMahon.
In order to apply the Tangent Method, we need some particular refinement of

MacMahon formula. These very same quantities have already been evaluated in
[9, 32], exploiting a nice description of the lozenge tilings in terms of semi-strict
Gelfand–Tsetlin patterns [45], which we now recall.

Define the (n, k)-trapezoid as the isosceles trapezoid region of the triangular
lattice, with sides k, n, n+k, n, in order. We will represent this with the short basis
on the bottom, and the long basis on top. Tilings of this region with lozenges and
unit triangles that maximise the number of lozenges have exactly n triangles. We
will consider such tilings, under the restriction that all these triangles are adjacent
to the long basis. For a given tiling, we denote by x = (x1, . . . , xn), with 1 ≤ x1 <
x2 < · · · < xn−1 < xn ≤ n + k, the horizontal coordinates of these triangles. See
Fig. 9 for an example. Each tiling of the above defined trapezoid can be equivalently
viewed as a semi-strict Gelfand–Tsetlin pattern with top row x, see, e.g., [9].

Let Vn(x) be the number of tilings of the (n, k)-trapezoid with triangular tiles
located at x. A well-known formula, due to Gelfand and Tsetlin, states [9, 32, 45]:

Vn(x) =
∏

1≤i<j≤n

xj − xi

j − i
. (C.2)

The number of tilings does not depend on k, as long as k > xn − n, since for
non-minimal values of k there is a frozen region on the right side. Similarly, it is
invariant under an overall translation xj → xj + l because of a frozen region on the
left side.

It is easy to see that, under the choice k = b, n = a + c, x = (1, . . . , a, a + b +
1, . . . , a + b + c), two frozen equilateral triangles, of side a and c, appear in the
two upper corners of the trapezoid, and what is left to tile (with lozenges only) is
exactly a (a, b, c)-hexagon. Indeed, in this case, the Gelfand–Tsetlin formula (C.2)
reduces, after some manipulations, to MacMahon formula, equation (C.1). We shall
now consider two other specializations of the Gelfand–Tsetlin formula, that lead to
refined enumerations of lozenge tilings of a hexagon (i.e., in the language of this
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paper, to one-point boundary correlation function), and are thus adapted to the
application of the Tangent Method.

The first case corresponds to the particular choice5 x = (1, . . . , r̂, . . . , a+ 1, a+
b + 1, . . . , a + b + c). With respect to the MacMahon realisation, one triangle has
been moved from r to a + 1. We shall denote the number of tilings of this region
as Ma,b,c(r), which is just the shortcut

Ma,b,c(r) = Va+c(1, . . . , r̂, . . . , a+ 1, a+ b+ 1, . . . , a+ b+ c). (C.3)

Clearly we have the extremal values

Ma,b,c(a+ 1) = Ma,b,c, Ma,b,c(1) = Ma,b−1,c. (C.4)

In working out explicit expressions, it is significantly simpler to evaluate ratios. In
the present case, an elementary calculation gives:

Ma,b,c(r)

Ma,b,c
≡ Ma,b,c(r)

Ma,b,c(a+ 1)
=

(

a

r − 1

)(

b + c− 1

c

)(

a+ b+ c− r

c

)−1

, (C.5)

with r ∈ {1, . . . , a+ 1}.
The second case of interest is the enumeration of the lozenge tilings of the (a, b, c)-

hexagon, refined according to the location of the unique vertical lozenge occuring
in the vicinity of the top boundary. Cutting away the top-most row of the lattice,
this can be rephrased as the enumeration of lozenge tilings of a trapezoid with
bases b and a + b + c − 1, heigth a + c − 1, and triangular tiles located at x =
(1, . . . , a − 1, a + r, a + b + 1, . . . , a + b + c − 1). Let us denote this number as
Na,b,c(r), where r ∈ {0, 1, . . . , b}, which is just the shortcut

Na,b,c(r) = Va+c−1(1, . . . , a− 1, a+ r, a+ b+ 1, . . . , a+ b+ c− 1), (C.6)

and has the extremal cases

Na,b,c(0) = Ma,b,c−1, Na,b,c(b) = Ma−1,b,c. (C.7)

Yet again, considering ratios we get

Na,b,c(r)

Na,b,c(0)
=

(

a+ r − 1

a− 1

)(

b+ c− r − 1

c− 1

)(

b+ c− 1

c− 1

)−1

, (C.8)

which in turn leads to

Na,b,c(r)

Ma,b,c
=

(

a+ r − 1

a− 1

)(

b+ c− r − 1

c− 1

)(

a+ b+ c− 1

b

)−1

, (C.9)

with r ∈ {0, . . . , b}
The Tangent Method is better visualised through the construction of directed

non-intersecting lattice paths, which in this case arise through a well-known bijec-
tion. For each oblique lozenge, let us draw a segment connecting the midpoints of
its horizontal sides. Clearly, these segments concatenate to form continuous paths
on the triangular lattice (with steps using only two directions of the lattice, i.e. in
fact being directed paths). In the case of the (n, k)-trapezoid with vector x, each
lozenge tiling can be now viewed as a configuration of k non-intersecting paths,
connecting the k points located at 1, . . . , k on the short basis with those k points
on the long basis which are at the complement set w.r.t. x.

5As customary, . . . , r̂, . . . stands for . . . , r − 1, r + 1, . . ..
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s✏✏

r b− 1

c− 1

b

a

Figure 10. A lozenge tiling of the (n, k)-trapezoid, with (n, k) =
(9, 6). The locations of the triangular tiles x has been chosen to
provide the refined enumeration Ma,b,c(r), with (a, b, c) = (4, 5, 4),
and r = 3. In the non-intersecting lattice path description of
lozenge tilings, the left-most path, in a thicker green line in the pic-
ture, connects the left-most horizontal edge on the bottom (short)
basis with position r on the top (long) basis. Inside the (a, b, c)-
hexagon, there is a unique oblique lozenge that crosses the dotted
line of length a + 1. We denote its distance from the bottom-left
side of the trapezoid by s (thus s ∈ {0, . . . , a− 1}). Here s = 1.

In particular, the choice x = (1, . . . , a, a + b + 1, . . . , a + b + c) gives a lattice
path description of the lozenge tilings of the (a, b, c)-hexagon, with b paths con-
necting the two horizontal sides, on sequences of consecutive points. The choice
x = (1, . . . , r̂, . . . , a + 1, a+ b + 1, . . . , a + b + c), corresponding to our first refine-
ment, Ma,b,c(r), see (C.5), has b paths, starting all contiguous on the short basis,
and arriving all contiguous on the long basis, with the exception of the left-most
path, that arrives at r, as illustrated in Figure 10.

This special path is directed. Thus, in particular, it crosses exactly once the
lattice line that goes in north-east direction, starting from position c − 1 on the
west side of the trapezoid, this occurring with an oblique lozenge sheared towards
the left, see Fig. 10. Let us call cut-line this special line on the lattice, and call s
the distance of this special lozenge from the left side of the triangoloid.

Within the ideas of the Tangent Assumption 3.1, in the large volume limit this
path leaves the Arctic curve tangentially, and reaches the (given) position r while
crossing at a (random) value s, that concentrates on some value ssp(r), up to sub-

linear fluctuations (in fact, of order N
1
2 ). As r varies, the function ssp(r) allows

to identify a family of straight lines, all tangent to the Arctic curve, which thus
determine it through the construction of their caustic.

Any configuration can be decomposed into a part above the cut-line, and a part
below. Say we have Z1(s) configurations in the part below, and Z2(r, s) config-
urations in the part above. We can recognise Z1(s) as the refined enumeration
Na,b,c(s), under the substitution (a, b, c) → (c, a, b), and, quite trivially, Z2(r, s)
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just as binomial coefficient:

Z1(s) = Nc,a,b(s), Z2(r, s) =

(

a− s

a− r + 1

)

. (C.10)

On the other side, the refined enumeration Ma,b,c(r), already evaluated in (C.5), is
just

Ma,b,c(r) =
∑

s

Z1(s)Z2(r, s) (C.11)

which leads to the (not completely trivial) identity

r−1
∑

s=0

(

a− s

a− r + 1

)(

c+ s− 1

c− 1

)(

a+ b− s− 1

b− 1

)

=

(

a

r − 1

)(

b+ c− 1

c

)(

a+ b+ c− 1

a

)(

a+ b+ c− r

c

)−1

, (C.12)

holding for any a, b, c integers, and r ∈ {1, . . . , a+ 1}.
Let us investigate the implications of identity (C.12) in the ‘thermodynamic

limit’, i.e. when the hexagon has large size, and the ratios of the sides is kept fixed.
Let

a = ⌈Nα⌉, b = ⌈Nβ⌉, c = ⌈Nγ⌉, r = ⌈Nξ⌉, s = ⌊Nη⌋, (C.13)

with α, β, γ, ξ, η ∈ R, α, β, γ > 0, and 0 < η < ξ ≤ α. When the overall scale
factor N is large, binomials can be replaced with the dominant term in Stirling
formula, while the left-hand side, interpreted as Riemann sum, can be rewritten
as an integral and evaluated in the saddle-point approximation. The saddle-point
equation is simply

(γ + η)(ξ − η)

η(α+ β − η)
= 1 (C.14)

with solution

ηsp =
γ ξ

α+ β + γ − ξ
, ξ ∈ [0, α]. (C.15)

As ξ varies over [0, α], ηsp ranges over [0, αγ/(β+γ)], monotonically. Recalling that
ξ and η actually parameterize the location of two points in the ‘rescaled’ plane, the
saddle-point solution defines a family of pairs of points, or equivalently, a family
of lines, parameterized by ξ ∈ [0, α]. According to the Tangent Assumption, the
corresponding geometric caustic is exactly the Arctic curve we are looking for (more
precisely, its west arc, between the two contact points with the sides of the hexagon
of length a and c).

Adapting to the notations of [9], we introduce a Cartesian coordinate system,
with origin at the center of the rescaled, (α, β, γ)-hexagon. One can check that

the sides of the hexagon lie on the lines y =
√
3
2 (2x + β + γ), y =

√
3
4 (α + γ),

y =
√
3
2 (−2x+α+ β), y =

√
3
2 (2x− β− γ), y =

√
3
4 (−α− γ), y =

√
3
2 (−2x−α− β).

In such coordinate system the two points parameterized by ξ and η have coordinates
(

4ξ − 3α− 2β − γ

4
,

√
3

2

α+ γ

2

)

,

(

2η − α− 2β − γ

4
,

√
3

2

2η + γ − α

2
,

)

,

(C.16)
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respectively. Correspondingly, the family of lines selected by the saddle-point solu-
tion (C.15) has equation

2 [(α(α + β + γ)− (α+ γ)ξ]x+
2√
3

[

α(α + β + γ)− (3α+ 2β + γ)ξ + 2ξ2
]

y

+
[

α(α+ β)(α + β + γ)− 2α(α+ β + γ)ξ + (α+ γ)ξ2
]

= 0 (C.17)

with parameter ξ ∈ [0, α]. It is easy to verify that at ξ = 0 and ξ = α, we recover
the lines on which lie the left sides of the hexagon of rescaled length γ and α,
respectively.

A tedious but elementary calculation immediately leads to the parametric form
of the corresponding geometric caustic,

x =
1

4

2βγ + (α+ 2β − γ)(α+ β − 2ξ) +
(

1− γ
α

)

(

1 + β
α+β+γ

)

ξ2

(α+ β − 2ξ) + α−1
(

1− β
α+β+γ

)

ξ2
, (C.18)

y =

√
3

4

2αβ + (α+ γ)(α− β − 2ξ) +
(

1 + γ
α

)

(

1− β
α+β+γ

)

ξ2

(α+ β − 2ξ) + α−1
(

1− β
α+β+γ

)

ξ2
, (C.19)

where again ξ ∈ [0, α]. This indeed describes a portion of the ellipse inscribed in
the rescaled hexagon, namely that arc delimited by the contact points of the ellipse
with the two forementioned sides of the hexagon. Eliminating the parameter ξ, we
obtain the equation Eα,β,γ(x, y) = 0, where Eα,β,γ(x, y) is the polynomial

3αβγ(α+β+γ)− 3(α+γ)2x2+2
√
3(α+β+γ)(α−γ)xy− [(α+2β+γ)2− 4αγ]y2

(C.20)
introduced in [9], and whose zero-set is indeed the ellipse inscribed in the (α, β, γ)-
hexagon.

Observe that, although in principle the Tangent Method shall have derived only
one portion of the Arctic curve, the polynomial equation above describes the full
Arctic ellipse of the model. As mentioned above, the possibility of extending one arc
to the full curve just by analytic continuation is a special feature of free-fermionic
systems [2], which, as seen also from our explicit results on the six-vertex model,
unfortunately seems to fail for other universality classes.

Let us stress the fact that in [9] the authors perform the analysis of the asymp-
totic behaviour of a much more complex refined enumeration of the lozenge tilings.
On one side, that derivation is much more complicated than ours. But, most rele-
vant, on the other side it allows to derive the whole limit shape of the model, where
our restriction of the analysis to a suitably-chosen boundary refinement, with just
one parameter, allows to obtain just the Arctic curve, i.e. the frozen boundary of
the limit shape. It was not clear a priori, from [9], that a shorter track existed to
extract the Arctic curve without solving the full limit-shape problem.

Appendix D. Some results for the six-vertex model on a triangoloid

The six-vertex model at ice-point, a = b = c = 1, on the n× n square lattice with
domain wall boundary conditions can be reformulated, through a simple bijection,
in terms of fully-packed loops (FPL) on the same underlying graph, with alternating
boundary conditions. This relation plays a crucial role in the formulation [64] and
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proof [55] of (the dihedral case of) the Razumov–Stroganov correspondence, which
concerns the enumeration of these configurations according to their link pattern.

A major ingredient in the proof is the notion of gyration, an operation that can
be performed on FPL configurations, and was used in [65] to prove the dihedral
symmetry of FPL on the square domain. The proof of the Razumov–Stroganov
correspondence given in [55] for the square domain actually generalizes to a wider
class of domains, called dihedral domains, provided that the gyration operation
induces dihedral symmetry [56]. A corollary of the correspondence is that the
enumeration of configurations in a dihedral domain with perimeter 4n factorises
into An, times a factor, specific to the domain, that counts configurations with a
given ‘rainbow’ link pattern.

The triangoloid is a particular instance of a dihedral domain. Alternating bound-
ary conditions for FPL on the n×n lattice extend naturally to any dihedral domain.
In the case of the triangoloid, they translate for the six-vertex model into the adap-
tation of domain wall boundary conditions that is described in Section 5.2.

In this case, the configurations with rainbow link pattern are in bijection with
lozenge tilings of a (a, b, c)-hexagon, from which, calling Aa,b,c the number of con-
figurations of the model on the (a, b, c)-triangoloid (that is, the partition function
at ice-point), as described in [56, Sect. 4.2] (and with a crucial use of [66, Sect. 3]),
one finds

Aa,b,c = AnMa,b,c, n = a+ b+ c, (D.1)

where An and Ma,b,c are the number of ASM of size n, see (B.1), and of lozenge
tilings of the (a, b, c)-hexagon, see (C.1), respectively.

Yet again, as in Appendices B and C, we can consider refined enumerations. Let
r denote the location of the unique thick edge on the bottom row of the triangoloid,
counted from the left, r ∈ {1, . . . , a + 2b + c}. Let Aa,b,c(r) be the number of six-
vertex model configurations on the (a, b, c)-triangoloid, refined according to r.

A result of [56], remarkably related to the fact that a refined version of the
Razumov–Stroganov correspondence holds, is that

Aa,b,c(r) =

r
∑

s=1

An(s)Nc,b,a(r − s), r ∈ {1, . . . , a+ 2b+ c}, (D.2)

where n = a+ b + c, while An(s) and Nc,b,a(r) denote the refined enumerations of
ASM of size n, see (B.2), and of lozenge tilings of the (c, b, a)-hexagon, see (C.9),
respectively. Note that, even if these two quantities are in principle defined only for
s ∈ {1, . . . , n}, and for r ∈ {0, . . . , b}, respectively, in (D.2) we use the convention
that the corresponding expressions (B.2) and (C.9) just vanish out of the proper
range.

The quantity of interest for the determination of the Arctic curve is the boundary

correlation function H
(r)
a,b,c defined in Section 5, and given by

H
(r)
a,b,c :=

Aa,b,c(r)

Aa,b,c
. (D.3)

A simple calculation leads to the expression (5.1).

Appendix E. Defect lines in the six-vertex model

Consider the six-vertex model with spin-reversal symmetry of the weights (i.e.,
with weights a, b and c instead of the more general w1, . . . , w6). In this case we
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have an obvious Z2 symmetry: if we reverse the boundary conditions, we get the
same partition function. As is the case in all models on planar graphs with such a
property, this global symmetry can be raised to a gauge invariance for the frustration
of the associated versions of the model in presence of (anti-ferromagnetic) defects.
The prototype example of this feature is, yet again, the Ising Model at zero magnetic
field, where this has been first discussed by Toulouse [67, 68].

The defects, which in Ising correspond to anti-ferromagnetic bonds, are here
edges enriched with a mid-point, which must have either two incoming, or two
outgoing arrows. As thus, these defects ‘live’ on the edges of the graph (which,
being planar, can be seen as a 2-dimensional cell complex). Two defects on the
same edge clearly act on vertex configurations as if there is no defect at all. Now,
consider a graph with all vertices of degree 4, and concentrate on a given vertex.
Some of its incident edges have a defect, some other don’t. From the spin-reversal
symmetry we get that, if we add a defect to all of the edges incident to this vertex,
we get the same partition function, because of the obvious involution w1 ↔ w2,
w3 ↔ w4 and w5 ↔ w6 on the local configuration of the vertex. If we quotient
out this invariance, we see that the information about the defects is contained in
the faces of the graph. Each face f has associated a variable νf ∈ Z2, which is the
number of defects surrounding the face, modulo 2. It is easily seen that

∑

f νf = 0,
still modulo 2. We can draw open paths on the dual graph connecting the faces
with ν = 1, in a whatever pairing and through arbitrary trajectories, and even add
closed paths on the dual graph, and then put a defect on each edge that has been
crossed by these lines. The resulting partition function depends only on ν, and not
on the specific choice of paths.

In presence of one boundary (i.e. of vertices of degree 1, all adjacent to the
same face), with fixed boundary conditions, the external face takes the value of ν
required to have

∑

f νf = 0 and then, if this is 1, we have a defect line reaching the
boundary, at some position between two external edges. If we move the endpoint
of the defect line along the boundary, the boundary conditions are reversed in the
interval along which this endpoint has been slided. If we perform a full turn of the
external face, thus, the boundary conditions are reversed, and it takes two turns
to go back at the initial data. But this does not cause any contraddiction, as in
fact, as we said above, the partition function is symmetric under reversal of fixed
boundary conditions.

The triangoloid domain discussed in Section 5 has a (very moderate but non-
zero) presence of such defects. In that case, there is exactly one internal face with
νf = 1, namely the unique triangle, that thus produces one defect line reaching
the boundary. In Section 5 we made the simplest possible choice, also in relation
to the chosen system of coordinates (this choice, by the way, breaks a D3 dihedral
covariance of the model under permutations of (a, b, c) parameters, which is manifest
in the gauge-invariant formulation of the defects). Nonetheless, it is useful to keep
in mind that, in this domain, we have the forementioned gauge covariance under
the deformation of this defect line.
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