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Abstract 

Bone properties and especially its microstructure around implants are crucial to evaluate the osseointegration of prostheses in 

orthopaedic, maxillofacial and dental surgeries. Given the intrinsic heterogeneous nature of the bone microstructure, an ideal 

probing tool to understand and quantify bone formation must be spatially resolved. X-ray imaging has often been employed, 

but is limited in the presence of metallic implants, where severe artefacts generally arise from the high attenuation of metals to 

X-rays. Neutron tomography has recently been proposed as a promising technique to study bone-implant interfaces, thanks to 

its lower interaction with metals. The aim of this study is to assess the potential of neutron tomography for the characterisation 

of bone tissue in the vicinity of a metallic implant. A standardised implant with a bone chamber was implanted in rabbit bone. 

Four specimens were imaged with neutron tomography and subsequently compared to non-decalcified histology to stain soft 

and mineralised bone tissues, used here as a ground-truth reference. An intensity-based image registration procedure was 

performed to place the 12 histological slices within the corresponding 3D neutron volume. Significant correlations (p < 0.01) 

were obtained between the two modalities for the bone-implant contact (BIC) ratio (R = 0.77) and the bone content inside the 

chamber (R = 0.89). The results indicate that mineralised bone tissue can be reliably detected by neutron tomography. However, 

the BIC ratio and bone content were found to be overestimated with neutron imaging, which may be explained by its sensitivity 

to non-mineralised soft tissues, as revealed by histological staining. This study highlights the suitability of neutron tomography 

for the analysis of the bone-implant interface. Future work will focus on further distinguishing soft tissues from bone tissue, 

which could be aided by the adoption of contrast agents. 

Keywords: neutron tomography, titanium implant, osseointegration, histological staining, image registration 
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1. Introduction 

Metal implants are widely employed in orthopaedic, 

maxillofacial and dental surgeries, to repair damaged joints, 

bones or teeth. Despite their widespread clinical use, implant 

failures still occur (Eskelinen et al., 2006; Moy et al., 2005; 

Sharkey et al., 2014), with dramatic consequences (Kurtz et 

al., 2014, 2007). The success of the surgical intervention is 

measured by the implant long-term stability (Haïat et al., 

2014). This is controlled by osseointegration, which 

corresponds to bone healing and growing onto and around the 

implant, creating a solid bone-implant interface (Shemtov-

Yona and Rittel, 2015). A better understanding of the bone-

implant interface development and the evolution of its 

biomechanical properties – such as bone tissue composition, 

quantity and structure – is pivotal for a more reliable 

prediction of the surgical outcome (Winter et al., 2004). 

The evolution of bone-implant interface properties is 

difficult to study systematically because of the variability in 

the implant characteristics used in clinical practice. To 

overcome this issue, standardised implant models have been 

developed, such as a coin-shaped implant, previously used to 

demonstrate the influence of implant roughness (Rønold et al., 

2003; Rønold and Ellingsen, 2002) and healing time (Mathieu 

et al., 2012) on osseointegration phenomena. To further 

investigate local variations in the bone-implant interface 

formation, this reference coin-shaped implant model has been 

modified by our group to include a bone chamber which allow 

a clear distinction between mature and newly formed bone 

tissues. Adopting this implant model, it was possible to 

explore the spatiotemporal variations of the mechanical 

(Fraulob et al., 2020a; Mathieu et al., 2011; Vayron et al., 

2011, 2012, 2014), structural (Le Cann et al., 2020) and 

compositional properties (Fraulob et al., 2020b) of bone. 

In addition to bone quality, bone quantity and 

microstructure in the vicinity of the implant are crucial 

parameters influencing the implant stability (Wirth et al., 

2011). Histological analysis is generally considered the gold 

standard approach when trying to retrieve such information at 

the bone-implant interface (Jackson et al., 2019). Notably, 

histological analysis has been used to identify the different 

types of bone tissues and cells around implants (Berglundh et 

al., 2003) and to measure the bone-implant contact ratio (BIC), 

a key parameter to evaluate the quality of the osseointegration 

(Berglundh et al., 2003; Jimbo et al., 2013). However, the 

histological analysis approach presents some important 

drawbacks as it is destructive, 2D and limits the analysis of the 

bone-implant interface to a reduced number of slices, 

significantly increasing the risk of neglecting important 

variations in structure and BIC ratio (up to 30% difference 

between sequential slices (Neldam et al., 2017)). 

Given its non-destructive and 3D nature, X-ray computed 

microtomography has started to become a reference technique 

to evaluate bone microstructural properties (Burghardt et al., 

2011), and has been used to access the 3D bone network 

around implants (Bissinger et al., 2017; De Smet et al., 2006; 

Gielkens et al., 2008; Palmquist, 2018). Nonetheless, given 

the interaction of X-rays with the electron cloud of atoms, the 

large difference of attenuation between the low density, low 

atomic number elements within biological tissues (or air) and 

the heavier elements comprised in metal implants generally 

induces severe “streaking” artefacts in x-ray tomography (Li 

et al., 2014). These artefacts are more pronounced in the 

proximity of the metal, i.e. at their interface with bone, and are 

difficult to rigorously remove from the images, hindering the 

analysis of bone-implant interface (Kovacs et al., 2018; 

Treece, 2017).  

Interacting with the nucleus of atoms, neutrons are more 

sensitive to light atoms like hydrogen, while being rather 

insensitive to metals (Schwarz et al., 2005), thus provide a 

different and highly complementary contrast as compared to 

X-rays. Neutron tomography has been applied to several fields 

(Kardjilov et al., 2018) such as geomechanics (Tengattini et 

al., 2021) and materials sciences. Because neutrons have 

minimal influence on the structural integrity of matter (Burca 

et al., 2018), neutron tomography represents a good probe for 

imaging biological specimens, and has been used to 

investigate structure and composition of pearls (Micieli et al., 

2018) and fossils (Schwarz et al., 2005; Urciuoli et al., 2018). 

In biomechanics, the technique has only recently been applied 

to study the bone-implant interface, proving its ability to 

reduce artefacts around metallic implants in contrast to X-ray 

tomography (Isaksson et al., 2017). This technique was also 

employed to investigate the mechanical properties of the bone-

implant interface via in-situ pull-out tests analysed through 

digital volume correlation (Le Cann et al., 2017). Qualitative 

comparison of neutron tomography to histology was 

conducted in the context of lung tissues (Cekanova et al., 

2014; Watkin et al., 2009). However, there is, to date, no 

quantitative and detailed comparison between histology and 

neutron tomography to study the bone-implant interface. 

To rigorously compare the outcome of two different 

imaging modalities, it is essential to register (i.e. spatially 

align) the two measurements (i.e. images) so as to directly 

compare the values of the individual pixels as well as the 

indexes of a region. In life sciences, image registration has 

been employed to help the understanding of tissues 

morphology and behavior, such as blood vessel structure 

(McLaughlin et al., 2005) and bone growth (Stalder et al., 

2014), based on the comparison, for example, of X-ray 

tomography scans and histology (Meagher et al., 2017; Stalder 

et al., 2014), or MRI scans and X-ray radiography 

(McLaughlin et al., 2005). Two main methods have generally 

been employed for image registration in the literature (Markelj 

et al., 2012): feature-based registration – which aims at 

reducing the distance between specific features (points, curves 

or surfaces) of segmented images – and intensity-based 

registration – which focuses on matching pixels by 

minimising a potential based on their grey value. Intensity-

based registration has been shown to be more accurate (Henke 

et al., 2019; McLaughlin et al., 2005), especially when using 
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segmented images (Markelj et al., 2012; Turgeon et al., 2005; 

Vermandel et al., 2007). This image registration technique has 

successfully been applied in various fields, such as in brain 

surgery combining X-ray with MRI images (McLaughlin et 

al., 2005; Vermandel et al., 2007), in cardiology with 

angiograms and a 3D patient-specific heart model (Turgeon et 

al., 2005), and in plant biology where fluorescence images 

were registered to visible light images (Henke et al., 2019). 

However, such approach has not been applied so far to neutron 

tomography in the context of implant osseointegration. 

This study compares the performances of neutron 

tomography and histology on the bone-implant interface 

properties, to assess the reliability of the neutron tomography 

approach as compared to the ground truth provided by 

histology. Adopting the aforementioned bone chamber model, 

the BIC ratio and the amount of bone tissue present in the bone 

chamber were specifically compared between modalities after 

using intensity-based image registration to locate the 

histological slices in the corresponding neutron volume 

images.  

2. Material & methods 

2.1 Implants and surgical procedure 

One New Zealand White rabbit (6 months, weight around 

4 kg) was implanted with four Ti6Al4V coin-shaped implants 

(5 mm in diameter, 3 mm in height), on both distal femurs and 

proximal tibiae. Implants were polished using #1200 SiC 

abrasive papers (LabPol-5, Struers®, Ballerup, Denmark) 

before being placed in vivo. The surgical procedure is detailed 

in (Vayron et al., 2014). In short, each implant was surrounded 

by a PTFE cap in order to create a 200 µm-thick bone chamber 

between the implant and the bone, which was maintained for 

twelve weeks of healing time thanks to orthodontic elastic 

strings and osteosynthesis screws (figure 1a). Animal 

handling was approved by the ethical committee of ENVA 

(École Nationale Vétérinaire d’Alfort), and the rabbit was 

housed following the European guidelines for care and use of 

laboratory animals (19°C, humidity 55%, food and water ad 

libitum). After euthanasia, femurs and tibiae were extracted, 

and the bone-implant interface with surrounding tissues was 

isolated by drilling 9 mm diameter cores (about 6 mm in 

height) around the implants, performed at low speed and under 

constant irrigation with saline solution (figure 1b). Specimens 

were stored in absolute ethanol at 4°C. 

2.2 Neutron tomography 

The four specimen cores were imaged with neutron 

tomography at the NeXT beamline at the Institut Laue 

Langevin, Grenoble, France (Tengattini et al., 2020). To avoid 

undesirable variations during the tomographies (notably 

through water evaporation, which is highly visible to 

neutrons) and to maximise image quality and contrast, 

specimens were left to dry at 4°C for up to 10 hours. The 

specimens were then piled up in groups of two inside a 

custom-made, sealed Teflon sample holder. Each set was 

imaged with a neutron flux of 9.107 neutrons.cm-2.s-1 with an 

isotropic voxel size of 7.5 µm, field of view 13.5 x 13.5 mm², 

using 1792 projections over 360° rotation. Each projection had 

an exposure time of 7 s and was averaged 3 times, resulting in 

a 10.5h scan. From these projections, the 3D volumes were 

reconstructed with a Feldkamp reconstruction algorithm with 

identical parameters, adopting the commercial reconstruction 

software X-Act (RX Solutions®, Chanavod, France) (figure 

1c). 

 

Figure 1: Implant model. (a) Photography of the implant model during implantation surgery, on a rabbit tibia. (b) Schematic 

representation of a specimen after sacrifice. (c) Representative vertical 2D cross-section of a neutron tomography volume (as 

schematized in red in (b)). 
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2.3 Histology 

After imaging, the specimens were fixed in 10% formalin 

for one week and dehydrated in successive 24-hours baths 

with increasing concentration of ethanol (70°, 80°, 90° and 

100°) and 1 h vacuum periods to remove air bubbles. 

Specimens were then cleared in xylene and directly embedded 

in PMMA (Chevallier et al., 2010; Soffer et al., 2006). Three 

400 µm-thick slices were cut in the middle of each specimen, 

perpendicularly to the bone-implant interface (XY plane, as 

per orientation in figure 1b), with a low-speed cutting machine 

(Minitom, Struers®, Ballerup, Denmark) under constant water 

irrigation. Slices were polished using #1200 and #2000 SiC 

abrasive papers (LabPol-5, Struers®, Ballerup, Denmark) 

followed by polishing cloths with alumina suspensions of 

9 µm and 0.3 µm grain size. Non-decalcified histology was 

performed with van Gieson picro-fuchsin to stain mineralised 

tissues with a maximum penetration depth of 15 µm (data not 

shown), followed by Stevenel’s blue staining to reveal non-

mineralised soft tissues. All slices were analysed under 

standard light microscopy (Stemi 305, Zeiss, China) (pixel 

size 2.3 µm). 

2.4 Image analysis 

2.4.1 Pre-processing of neutron images. Neutron 

tomography image volumes were reduced to 8-bit to limit 

calculation time during registration and filtered using a 3D 

Mean filter (r=2 pixels) (Ollion et al., 2013), implemented 

within the Fiji software (Schindelin et al., 2012) in order to 

increase the signal-to-noise ratio. All image volumes were 

manually rotated to align the bone-implant interface with the 

XZ plane (TransformJ plugin (Meijering et al., 2001)). For 

each image volume, bone tissue was segmented based on a 

specimen-specific threshold interval. The lower boundary was 

chosen based on the median of all the thresholds obtained from 

each XZ image of the image volume through the IsoData 

method (Ridler and Calvard, 1978) (134 ± 3, 8-bit images). 

The upper boundary to remove brighter areas in the images 

was chosen based on a visual inspection (190). After 

segmentation, any remaining noise was minimised by 

applying combinations of binary erosions and dilations (Open 

and Close) in each direction of space (r=1 pixel). The implant 

was not visible in the segmented images because its grey 

values were below the segmentation threshold.  

2.4.2 Pre-processing of histological slices. Van Gieson 

stained histological slices were colour-filtered using red and 

green filters to isolate bone tissue from the implant through 

manual segmentation (Fiji software). Again, two binary 

operations (Open and Close) were carried out to remove the 

remaining noise in the images.  

2.4.3 Image registration procedure. An image 

registration procedure was conducted for all 12 histological 

images to determine the corresponding 2D section of 3D 

neutron volume (figure 2). This registration was performed in 

Matlab (R2017b, MathWorks Inc., MA, USA) adopting an 

intensity-based registration method (Henke et al., 2019). A 

subset of the neutron volume indicatively matching the 

segmented histology image was pre-selected based on visual 

inspection. Each segmented histological image was pre-

downscaled to match approximately the pixel size of the 

neutron image (7.5 µm). The registration approach minimises 

a “similitude potential” between the images acquired with the 

two modalities, based on a scalar value named “Fit” and 

calculated as: 

𝐹𝑖𝑡 = 𝐹𝑖𝑡𝐻 + 𝐹𝑖𝑡𝑁 

𝐹𝑖𝑡 =
𝐶𝑎𝑟𝑑(𝐵𝑜𝑛𝑒𝑁 ⋂ 𝐵𝑜𝑛𝑒𝐻)

𝐶𝑎𝑟𝑑(𝐵𝑜𝑛𝑒𝐻)
+

𝐶𝑎𝑟𝑑(𝐵𝑜𝑛𝑒𝑁 ⋂ 𝐵𝑜𝑛𝑒𝐻)

𝐶𝑎𝑟𝑑(𝐵𝑜𝑛𝑒𝑁)
 

where BoneN and BoneH represent the segmented pixels 

corresponding to bone in the neutron tomography image and 

in the histological image, respectively. The parameter Fit is 

the sum of two modality-specific parameters, FitH and FitN, 

each of which evaluates the extent of overlap of segmented 

pixels in one modality as compared to the other. For instance, 

a FitH value of 100% indicates that the whole histological 

image is found in the neutron image. The registration 

algorithm iteratively maximises this similitude potential, by 

varying the relative position of the two images, conducted via 

translation (along the X and Y axes), rotation (around the Z 

axis) as well as scaling (within a 2% limit) of the segmented 

histological slice, to match the selected segmented neutron 

images (see Registration step in figure 2). Subsequently, a 

second step iteratively improves the orientation and position 

of the selected neutron slice (rotation along the X and Y axes, 

and translation along the Z axis), in order to identify the 

neutron image that best matched the histological image. For 

all specimens, the registration procedure was iterated until the 

rotation to be applied to the neutron image volume was under 

± 0.2° (X and Y axes), with an image positioning error (Z axis) 

of ± 1 image (pixel size 7.5 µm). 

2.4.4 Comparison of histology and neutron 

tomography. After the image registration detailed above, 

the selected neutron image was quantitatively compared to its 

histological reference image by calculating two key indicators 

of both modalities: the bone-implant contact ratio (BIC) and 

the bone content within the bone chamber. The BIC ratio 

within the chamber was measured on a line at the bone-

implant interface, and defined as the number of segmented 

bone pixels (BoneH and BoneN) divided by the total number of 

pixels corresponding to the chamber width. Bone content was 

calculated as the ratio between the number of bone pixels and 

the total number of pixels inside the bone chamber. A visual 

comparison between the registered neutron image and its 

histological reference image stained with Stevenel’s blue was 

also performed. 
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Figure 2: Illustration of the image registration procedure adopted to identify and register the neutron image 

corresponding to the histological slice. A 2D image of the neutron tomography was selected (a) and segmented (BoneN) (b). 

In parallel, the histological slice (c) was also segmented (BoneH) (d) and registered to the segmented neutron images (e) by 

minimising a similitude potential, varying the X-Y position, the Z-rotation and scale of the histological image. In the registered 

image (e), the colour code highlights the differences in the segmented bone pixels: in white the pixels present simultaneously 

in the neutron (b) and the histological (d) images, in green remaining bone pixels left in the histological image (Residual BoneH) 

and in fuchsia the ones left in the neutron image (Residual BoneN). The two fit ratios (FitH and FitN) were computed for each 

registration step. A second loop optimised the selection of the neutron slice by rotating the neutron volume around the X and 

Y axes, and translating it along the Z axis. The procedure ended when a stable maximum of the sum of FitN and FitH was 

reached.  

2.5 Statistical analysis 

The BIC ratio and the bone content values were compared 

between the two techniques using linear regression analyses 

by determining the Pearson’s correlation coefficient (R). 

Normal distribution was evaluated with a Shapiro-Wilk test at 

a significance level of p = 0.05. Calculations were performed 

using R software (R Development Core Team, 2005). 

3. Results 

Intensity-based registration was successfully performed on 

all the 12 histological slices, identifying their corresponding 

neutron slices.  

Results are illustrated for two representative histological 

slices in figures 3 & 4. Most bone tissue identified in the 

histological image (Van Gieson staining, in red in figures 3a 

and 4a) was also present in the corresponding neutron image 

(figures 3b and 4b) as illustrated by the high values of the 

histological fit ratio FitH with an average of 95.0% ± 1.4%. In 

the registered images (figures 3c and 4c), very few “green” 

pixels (corresponding to the segmented bone pixels remaining 

unmatched from the histological image) can be observed. 

However, the average neutron fit ratio FitN of 75.1% ± 7.0% 

revealed that the neutron images contained more segmented 

tissues than their histological reference. This result can also be 

visually observed through the higher content of residual BoneN 

(in fuchsia in figures 3c and 4c).  

Stevenel’s blue staining (figures 3d and 4d) revealed the 

presence of soft tissues, structured in filaments (arrows in 

figure 3d), and as well as thicker tissues (figure 4d), in variable 

amounts depending on the specimens. A visual comparison 

between these Stevenel’s blue stained histological slices and 

the corresponding non-segmented neutron images (figures 3b 

and 4b) revealed that, in addition to mineralised bone tissue, 

neutron tomography is sensitive to soft tissues, appearing as 

brighter pixels. Residual tissues in the segmented neutron 

images (fuchsia in figures 3c and 4c), left unmatched after the 

image registration procedure, were also visually associated 

with soft tissues through a comparison with Stevenel’s blue 

stained histological slices.  
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Figure 3: Comparison of representative histological slices to the corresponding neutron image. (a) Histological slice of a 

specimen after Van Gieson staining, colouring mineralised bone tissue in red. (b) Corresponding non-segmented neutron image, 

identified after image registration. (c) Result after registering (a) to (b) with corresponding FitH and FitN ratios. Overlapping 

segmented bone pixels are displayed in white, residual bone pixels left in the segmented histological image in green and those 

left in the segmented neutron image in fuchsia. (d) Histological slice stained with Stevenel’s blue, where non-mineralised soft 

tissues appear as light blue. In the zooms (yellow circles), the arrows point at tissues not coloured after Van Gieson staining 

(a), composed of brighter pixels in the neutron image (b), and identified as non-mineralised soft tissues (d). 
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Figure 4: Comparison of representative histological slice to the corresponding neutron image with large amount of soft 

tissue. (a) Histological slice of a specimen after Van Gieson staining, colouring mineralised bone tissue in red. (b) 

Corresponding non-segmented neutron image, identified after image registration. On the right, the zoom (yellow circle) 

highlights a region with a large proportion of soft tissues, associated with brighter pixels. (c) Result after registering (a) to (b) 

with corresponding FitH and FitN ratios. (d) Histological slice stained with Stevenel’s blue where non-mineralised soft tissues 

appear as light blue. It should be noted that the pixels in the segmented neutron image (fuchsia, (c)), which are not visible in 

(a), appear to correspond to soft tissues which could not be accurately segmented out but are visible from (d), and which results 

in the low FitN ratio. 
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The linear regression analysis indicated a significant 

correlation between the two modalities for both BIC ratios 

(R = 0.77, p = 0.0034) and bone content (R = 0.89, 

p = 0.0001) (figure 5). Values of the BIC ratio and of the bone 

content were systematically higher when measured in the 

neutron images compared to the histological images, which 

can be explained by the simultaneous detection of bone and 

soft tissues in the neutron images (white and fuchsia pixels in 

figures 3c and 4c). The values of the BIC ratio extracted from 

the histological and neutrons images were 47.2 % ± 16.8 % 

and 70.6 % ± 15.5 %, respectively. The bone content reached 

42.2 % ± 11.3 % in the histological slices and 

53.1 % ± 13.0 % in the neutron images. 

4. Discussion 

Recent works highlighted that neutron tomography is a 

promising alternative to X-rays tomography for the 

investigation of the bone-implant interface, thanks to the 

absence of metal artefacts (Isaksson et al., 2017; Le Cann et 

al., 2017). The originality of the present study is to evaluate 

the ability of neutron tomography to study the bone-implant 

interface, and quantitatively compare it to histology, a gold 

standard technique in bone-implant research. A standardised 

implant model with a bone chamber was analysed using both 

techniques and a 1:1 comparison was performed after 

registering the images acquired with these two modalities.  

This image registration was obtained by maximising the 

sum of two fit ratios, FitH and FitN, which evaluate the pixel 

correspondence between modalities, while varying their 

relative position and orientation. The high values of the 

histological fit ratio (FitH) suggested that no better match 

containing all the bone tissue included in the histological slice 

could be found in the neutron image volume. Moreover, a 

significant correlation was found between histological and 

neutron evaluations of the BIC ratio and bone content in the 

bone chamber. These results confirmed that neutron 

tomography can be used to retrieve information on bone tissue 

in the vicinity of metal implants, as previously observed 

(Isaksson et al., 2017; Le Cann et al., 2017).  

The lower values of the neutron fit ratio (FitN) indicated that 

neutron images contained more information about biological 

tissues than histology, and thus that neutron tomography is 

sensitive to other tissues, in addition to bone tissue. The 

neutron image volumes presented brighter areas, identified as 

soft tissue by comparison with the Stevenel’s blue colouration 

of the histological slices (figures 3 and 4). Therefore, the use 

of a single correlation coefficient to evaluate the quality of the 

registration, as commonly implemented in the literature (Geng 

et al., 2016; Turgeon et al., 2005; Vermandel et al., 2007), 

appears to be limited to assess the performance of the 

registration method when comparing images containing 

different information.  

The threshold-based segmentation procedure attempting to 

remove soft tissues from the neutrons images was found to be 

not completely effective, as illustrated by the unmatched 

tissues after registration (fuchsia pixels in figure 3c and figure 

4c). This can be explained by the slight arbitrariness in the 

choice to use a fixed upper threshold for all images in the 

proposed technique. The additional tissues led to an 

overestimation of the BIC ratio (23%) and the bone content 

(11%) when calculated from the neutron images as compared 

to histology. The larger overestimation of the BIC ratio might 

be due to the smaller region used in the calculation (only the 

implant surface line), while bone content was estimated from 

the full surface region of the implant bone chamber. Neutron 

tomography applied to biological pearls already highlighted 

its ability to identify collagenous material (Micieli et al., 

2018). The non-mineralised tissues stained with Stevenel’s 

blue in bone specimens may correspond to bone marrow  

 

 

 
Figure 5: Variation of the BIC ratio (a) and bone content (b) as obtained with the histological and neutron images. A 

linear regression analysis was performed between the two modalities for both parameters.  
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and/or fibrous tissues (Rustom et al., 2016) and their presence 

could explain the additional regions observed in the neutron 

volume images. Bone marrow has a high hydrogen content 

and fibrous tissues are made of collagenous material, which 

were both reported to have a higher neutron attenuation than 

hydroxyapatite, the main component of mineralised bone 

tissue (Sołtysiak et al., 2018). So far, neutron tomography has 

only been sporadically applied to bone research (Isaksson et 

al., 2017; Le Cann et al., 2017) and the ability to distinguish 

mineralised from soft tissues at high resolution has not been 

thoroughly investigated yet. Studying non-mineralised soft 

tissue during osseointegration is of interest since bone 

formation and remodelling passes through a collagenous 

material deposition phase before mineralisation of the bone 

tissue (Davies, 1996), and remnants of fibrous tissues along 

healing could be an indicator of a failed osseointegration 

(Haïat et al., 2014). Further work is required to deepen this 

analysis, since soft tissue content is also related to animal 

model and anatomical location (Kuzyk and Schemitsch, 2011; 

Li et al., 2019). 

To ensure a good neutron image quality, the bone 

specimens were dried before being imaged, which allowed the 

reduction of the overall attenuation associated with high-

hydrogen content (Schwarz et al., 2005), as well as maximised 

image stability along the scan. Former studies performed with 

comparable specimens (Isaksson et al., 2017; Le Cann et al., 

2017) proposed an immersion in heavy water (D2O or 

deuterium oxide), where hydrogen atoms are replaced by their 

isotope deuterium, which has a lower attenuation to neutrons. 

However, proper H2O/D2O exchange as well as adequate 

humidity control are still cumbersome to obtain, and achieving 

a systematic suitable image quality is complex (Le Cann et al., 

2017). Imaging dried specimens was therefore adopted here, 

to provide optimal contrast between structures within the bone 

cores. As drying condensed the soft tissues, their hydrogen 

content was concentrated in smaller volumes, which locally 

induced a higher attenuation of neutrons. Hence, soft tissues 

appeared with higher grey values in the reported neutron 

images compared to bone. However, the PMMA embedding 

process for histology included a preparation phase of soaking 

into liquids, which likely has heterogeneously affected the soft 

tissues. When comparing neutron images to histological 

images, some soft tissues appeared thicker after Stevenel’s 

blue staining (figure 4d) while others kept a similar structure 

as in the neutron scans (figure 3d). Further analyses are 

required to define an adequate preservation protocol. 

Additionally, to increase contrast in the neutron images, 

contrast agents could be used, such as isotopes sensitivity 

often adopted in plant research (Tötzke et al., 2017), or 

charged ions as employed in batteries (Owejan et al., 2012).  

Differentiation of mineralised and soft tissues was also 

affected by the signal-to-noise ratio of the neutron images, 

which could be further improved both in terms of acquisition 

parameters and in terms of the ensuing image analysis. For 

instance, different image analysis strategies could be adopted, 

such as dual-histogram analysis as an alternative registration 

procedure (Stamati et al., 2020). In recent years, remarkable 

advances in neutron imaging in terms of resolution and 

duration of the scans were made available (Hussey et al., 2017; 

Tengattini et al., 2020), and further improvements are 

expected in the future. For example, through the 

implementation of enhanced detectors, the pixel size adopted 

here was reduced to 7.5 µm compared to 23 µm (Le Cann et 

al., 2017) or 13.5 µm (Isaksson et al., 2017) in previous 

studies.  

In addition to the possible technical improvements 

discussed above, this study is based on four bone-implant 

specimens coming from one single animal. Nonetheless, the 

coin-shaped implant model has been validated in former 

studies, revealing comparable bone content and BIC values as 

quantified by histological slices after 13 weeks of healing 

(Fraulob et al., 2020a; Le Cann et al., 2020; Mathieu et al., 

2011; Vayron et al., 2014).  

5. Conclusion 

In this work, a quantitative comparison of neutron 

tomography to histological analysis was performed in the 

investigation of the bone-implant interface, with the aim to 

assess neutron sensitivity to biological tissues. This study 

confirmed the ability of neutron tomography to obtain high 

resolution images of bone tissue close to a metallic implant , 

without the typical artefacts observed with the more frequently 

adopted X-ray tomography, while retaining the non-

destructive and 3D nature of the latter. In addition, the 

potential of neutron tomography for the identification of soft 

tissues within the bone network was highlighted, which might 

prove to be beneficial for the capacity to study key bone 

architectural results. Further work is required to optimise 

image contrast and enhance the process adopted for the 

differentiation of tissues when using neutron tomography, to 

complement the investigation of bone and the osseointegration 

phenomenon. Such enhancements could be further aided by 

adapted specimen preparation techniques, the ongoing 

improvements in the acquisition process, as well as 

development of novel image analysis techniques. 
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