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Recent results for the Landau–Lifshitz equation

André de Laire1

Abstract

We give a survey on some recent results concerning the Landau–Lifshitz equation, a
fundamental nonlinear PDE with a strong geometric content, describing the dynamics of the
magnetization in ferromagnetic materials. We revisit the Cauchy problem for the anisotropic
Landau–Lifshitz equation, without dissipation, for smooth solutions, and also in the energy
space in dimension one. We also examine two approximations of the Landau–Lifshitz equation
given by of the Sine–Gordon equation and cubic Schrödinger equations, arising in certain
singular limits of strong easy-plane and easy-axis anisotropy, respectively.

Concerning localized solutions, we review the orbital and asymptotic stability problems
for a sum of solitons in dimension one, exploiting the variational nature of the solitons in the
hydrodynamical framework.

Finally, we survey results concerning the existence, uniqueness and stability of self-similar
solutions (expanders and shrinkers) for the isotropic LL equation with Gilbert term. Since
expanders are associated with a singular initial condition with a jump discontinuity, we also
review their well-posedness in spaces linked to the BMO space.

1 Introduction

The Landau–Lifshitz (LL) equation has been introduced in 1935 by L. Landau and E. Lifshitz
in [76] and it constitutes nowadays a fundamental tool in the magnetic recording industry, due
to its applications to ferromagnets [103]. This PDE describes the dynamics of the orientation of
the magnetization (or spin) in ferromagnetic materials, and it is given by

∂tm+m×Heff(m) = 0, (1)

where m = (m1,m2,m3) : RN × I −→ S2 is the spin vector, I ⊂ R is a time interval, × denotes
the usual cross-product in R3, and S2 is the unit sphere in R3. Here Heff(m) is the effective
magnetic field, corresponding to (minus) the L2-derivative of the magnetic energy of the material.
We will focus on energies of the form ELL(m) = Eex(m) + Eani(m), where the exchange energy

Eex(m) =
1

2

ˆ
RN
|∇m|2 =

1

2

ˆ
RN
|∇m1|2 + |∇m2|2 + |∇m3|2,

accounts for the local tendency of m to align the magnetization field, and the anisotropy energy

Eani(m) =
1

2

ˆ
RN
〈m, Jm〉R3 , J ∈ Sym3(R),

accounts for the likelihood of m to attain one or more directions of magnetization, which
determines the easy directions. Due to the invariance of (1) under rotations, we can assume that
J is a diagonal matrix J = diag(J1, J2, J3), and thus the anisotropy energy reads

Eani(m) =
1

2

ˆ
RN

(λ1m
2
1 + λ3m

2
3), (2)
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with λ1 = J2 − J1 and λ3 = J2 − J3. Therefore (1) can be recast as

∂tm+m× (∆m− λ1m1e1 − λ3m3e3) = 0, (3)

where (e1, e2, e3) is the canonical basis of R3. Notice that for finite energy solutions, (2) formally
implies that m1(x)→ 0 and m3(x)→ 0, as |x| → ∞, and hence |m2(x)| → 1, as |x| → ∞.

For biaxial ferromagnets, all the numbers J1, J2 and J3 are different, so that λ1 6= λ3 and
λ1λ3 6= 0. Uniaxial ferromagnets are characterized by the property that only two of the numbers
J1, J2 and J3 are equal. For instance, the case J1 = J2 corresponds to λ1 = 0 and λ3 6= 0, so
that the material has a uniaxial anisotropy in the direction e3. Hence, the ferromagnet owns an
easy-axis anisotropy along the vector e3 if λ3 < 0, while the anisotropy is easy-plane along the
plane x3 = 0 if λ3 > 0. Finally, in the isotropic case λ1 = λ3 = 0, equation (3) reduces to the
well-known Schrödinger map equation

∂tm+m×∆m = 0. (4)

The LL equation (3) is a nonlinear dispersive PDE, with dispersion relation

ω(k) = ±
√
|k|4 + (λ1 + λ3)|k|2 + λ1λ3, (5)

for linear sinusoidal waves of frequency ω and wavenumber k, i.e. solutions of the form ei(k·x−ωt).
From (5), we can recognize similarities with some classical dispersive equations. For instance, for
the Schrödinger equation i∂tψ + ∆ψ = 0, the dispersion relation is ω(k) = |k|2, corresponding to
λ1 = λ3 = 0 in (5), i.e. the Schrödinger map equation (4).

When considering Schrödinger equations with nonvanishing conditions at infinity, the typical
example is the Gross–Pitaesvkii equation [32]

i∂tψ + ∆ψ + σψ(1− |ψ|2) = 0,

σ > 0, and the dispersion relation for the linearized equation at the constant solution equal to 1
is ω(k) = ±

√
|k|4 + 2σ|k|2. This corresponds to taking λ1 = 0 or λ3 = 0, with λ1 + λ3 = 2σ, in

(5).

Finally, let us consider the Sine–Gordon equation ∂ttψ −∆ψ + σ sin(ψ) = 0, σ > 0, whose
linearized equation at 0 is given by the Klein–Gordon equation, with dispersion relation ω(k) =
±
√
|k|2 + σ, that behaves like (5) for λ1λ3 = σ and λ1 + λ3 = 1, at least for k small.

In this context, the Landau–Lifshitz equation is considered as a universal model from which it
is possible to derive other completely integrable equations [43]. We review some recent rigorous
results in this context in Section 3.

1.1 The dissipative model

In 1955, T. Gilbert proposed in [53] a modification of equation (1) to incorporate a damping
term. The so-called Landau–Lifshit–Gilbert (LLG) equation then reads

∂tm = −βm×Heff(m)− αm× (m×Heff(m)),

where β ≥ 0 and α ≥ 0, so that there is dissipation when α > 0, and in that case we refer to α as
the Gilbert damping coefficient. Note that, by performing a time scaling, we assume w.l.o.g. that

α ∈ [0, 1] and β =
√

1− α2.
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Let us remark that the identity a× (b× c) = b(a · c)− c(a · b), for all a, b, c ∈ R3, implies that
for any smooth function v, valued in S2, satisfies

v × (v ×∆v) = ∆v + |∇v|2v.

Then, we see that in the limit case β = 0 (and so α = 1), the LLG equation reduces to the
heat-flow equation for harmonic maps

∂tm−∆m = |∇m|2m. (6)

This classical equation is an important model in several areas such as differential geometry and
calculus of variations. It is also related with other problems such as the theory of liquid crystals
and the Ginzburg–Landau equation. For more details, we refer to the surveys [41, 78, 96].

As before, one way to start the study of the LLG equation is noticing the link with other
PDEs. Let us illustrate this point in the isotropic case Heff(m) = ∆m. To simplify our notation,
we consider the equation for the opposite vector m→ −m, which yields the equation

∂tm = βm×∆m− αm× (m×∆m). (7)

For a smooth solution m with m3 > −1, we can use the stereographic projection

u = P(m) =
m1 + im2

1 +m3
, (8)

that satisfies the quasilinear Schrödinger equation

iut + (β − iα)∆u = 2(β − iα)
ū(∇u)2

1 + |u|2
, (DNLS)

where we used the notation (∇u)2 = ∇u · ∇u =
∑N

j=1(∂xju)2 (see e.g. [72] for details). When

α > 0, one can use the properties of the semigroup e(α+iβ)t∆ to establish a Cauchy theory for
rough initial data, as we will see in Section 5.

When N = 1, the LLG equation is also related to the Localized Induction Approximation
(LIA), also called binormal flow, a geometric curve flow modeling the self-induced motion of a
vortex filament within an inviscid fluid in R3 [71, 31]. As we will in Section 5, this is related
with the geometric representation of the LLG equation in a Serret–Frenet system.

There are several variants of previous equation considering more complex models including for
instance a demagnetization field and the effects of the boundary in bounded domains. We refer
to [71] for an overview of different models, to [29] for recent developments on the approximation
of solutions, to the survey [57] for more details of the derivation and results on the initial value
problem, and to [70] for a review of methods for pattern formation based on asymptotic analysis.

1.2 The hydrodynamical formulation

We end this introduction by explaining another useful transformation for the analysis of the
LL equation. For simplicity, we assume that there is no dissipation. In the seminal work [80],
Madelung showed that the nonlinear Schrödinger equation (NLS) can be recast into the form of
a hydrodynamical system. For instance, for the NLS equation

i∂tΨ + ∆Ψ + Ψf(|Ψ|2) = 0,
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assuming that ρ = |Ψ|2 does not vanish, the Madelung transform ψ =
√
ρeiφ leads to the system

∂tρ+ 2 div(ρ∇φ) = 0, ∂tφ+ |∇φ|2 + f(ρ) =
∆(
√
ρ)

√
ρ

.

Therefore, setting v = 2∇φ, we get the Euler–Korteweg system

∂tρ+ div(ρv) = 0, ∂tv + (v · ∇)v + 2∇(f(ρ)) = 2∇
(∆(
√
ρ)

√
ρ

)
,

which is a dispersive perturbation of the classical Euler equation for compressible fluids, with the
additional term 2∇(∆(

√
ρ)/
√
ρ, which is interpreted as quantum pressure in the quantum fluids

models [23, 20].

The Madelung transform is useful to study properties of NLS equations with nonvanishing
conditions at infinity (see [14, 27]). Coming back to the LL equation (3), let m be a solution of
this equation such that the map m̌ = m1 + im2 does not vanish. In the spirit of the Madelung
transform, we set

m̌ = (1−m2
3)

1
2
(

sin(φ) + i cos(φ)
)
.

Thus, setting the hydrodynamical variables u = m3 and φ, we get the system
∂tu = div

(
(1− u2)∇φ

)
− λ1

2
(1− u2) sin(2φ),

∂tφ = −div
( ∇u

1− u2

)
+ u

|∇u|2

(1− u2)2
− u|∇φ|2 + u

(
λ3 − λ1 sin2(φ)

)
,

(H)

at long as |u| < 1 on RN . As shown in the next sections, the hydrodynamical formulation will be
essential in the study of solutions of the LL equation.

Although it does not quite have the reputation of e.g. the Navier–Stokes equation or the
Ricci flow equation, it can be said that the LL equation is among the most intriguing and
challenging PDEs. The mathematical appeal relies on the combination of difficulties from
nonlinear Schrödinger equations and geometric evolution equations. The aim of this note is to
survey some recent results concerning the different aspects of the LL equation, as follows. In
Section 2 we revisit the Cauchy problem for the anisotropic LL equation, without dissipation.
Concerning smooth solutions, the approach follows a methodology for quasilinear hyperbolic
systems based on a priori estimates by using new well-tailored higher order energies. We also
tackle a subtle well-posedness problem in one space dimension in the energy space by invoking
the hydrodynamical formulation.

Section 3 examines approximations of the Landau–Lifshitz equation by the Sine–Gordon
equation and cubic Schrödinger equations arising in certain singular limits of large easy-plane
and easy-axis anisotropy, respectively, providing quantitative convergence results.

In Section 4 we review the orbital and asymptotic stability problems for sum of solitons and
multisolitons for the easy-plane (undamped) LL equation in dimension one. Stability problems
of this kind are well-established in the context of dissipative evolution equations. Here the
hamiltonian structure plays an essential role, that we exploit in the hydrodynamical framework.
The essential idea is to exploit the variational structure given by the energy and momentum
so that stability is essentially captured by spectral bounds for the hessian of the combined
functional.

Finally, in Section 5 we consider the (isotropic) dissipative LLG equation. We focus mainly on
the one-dimensional analysis of self-similar solutions: expanders and shrinkers evolving from or
towards a singular time. We survey results concerning their existence and uniqueness by using a
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moving frame argument that allows us to obtain the asymptotics of the profiles. We also consider
the question of stability of expanders that calls for a well-posedness result for solutions with
rough initial data.

2 The Cauchy problem for the LL equation

Despite some serious efforts to establish a complete Cauchy theory for the LL equation, several
issues remain unknown. In this section we will focus on the LL equation without damping, for
which the Cauchy theory is even more delicate to handle. Even in the case where the problem
is isotropic, i.e. the Schrödinger map equation, there are several unknown aspects. Moreover,
it is not always possible to adapt results for Schrödinger map equation to include anisotropic
perturbations.

The study of well-posedness in the presence of a damping term is different. Indeed, for the
LLG equation, some techniques related to parabolic equations and for the heat-flow for harmonic
maps (6) can be used. We will discuss this issue in Section 5.

2.1 The Cauchy problem for smooth solutions

Let us consider the anisotropic LL equation (3) with λ1, λ3 ≥ 0. Since the associated energy is
given by

Eλ1,λ3(m) =
1

2

ˆ
RN

(|∇m|2 + λ1m
2
1 + λ3m

2
3), (9)

the natural functional setting for solving this equation is the energy set

Eλ1,λ3(RN ) =
{
v ∈ L1

loc(RN ,R3) : |v| = 1 a.e., ∇v ∈ L2(RN ), λ1v1, λ3v3 ∈ L2(RN )
}
.

In the context of functions taking values on S2, it is standard to use the notation

H`(RN ) =
{
v ∈ L1

loc(RN ,R3) : |v| = 1 a.e., ∇v ∈ H`−1(RN )
}
,

for an integer ` ≥ 1, where H`−1 is the classical Sobolev space. Notice that a function v ∈ H`(RN )
does not belong to L2(RN ,R3), since this is incompatible with the constraint |v| = 1. In this
manner, Eλ1,λ3(RN ) reduces to H1(RN ) if λ1 = λ3 = 0.

For the sake of simplicity, in this section we drop the subscripts λ1 and λ3, and denote the
energy by E(m) and the space by E(RN ), since the constants λ1 and λ3 are fixed.

The first results concerning the existence of weak solutions of (3) in the energy space were
obtained by Zhou and Guo in the one-dimensional case N = 1 [104], and by Sulem, Sulem and
Bardos [97] for N ≥ 1. The approach followed in [104] was to consider a parabolic regularization
by adding the term ε∆m and letting ε→ 0 (see e.g. [57]), while the strategy in [97] relied on
finite difference approximations and a weak compactness argument. In both cases, no uniqueness
was obtained. The proof in [97] can be generalized to include the anisotropic perturbation in (3),
leading to the existence of a global (weak) solution as follows.

Theorem 2.1 ([97]). For any m0 ∈ E(RN ), there exists a global solution of (3) with m ∈
L∞(R+, E(RN )), associated with the initial condition m0.

The uniqueness of the solution in Theorem 2.1 not known. To our knowledge, the well-
posedness of the Landau–Lifshitz equation for general initial data in E(RN ) remains an open
question.
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Let us now discuss some results about smooth solutions in Hk(RN ), k ∈ N, in the isotropic
case λ1 = λ3 = 0. For an initial data in m0 ∈ Hk(RN ), Sulem, Sulem and Bardos [97]
proved the local existence and uniqueness1 of a solution m ∈ L∞([0, T ),Hk(RN )), provided that
k > N/2 + 2. By using a parabolic approximation, Ding and Wang [40] proved the local existence
in L∞([0, T ),Hk(RN )), provided that k > N/2 + 1. They also study the difference between two
solutions, obtaining uniqueness provided that the solutions are of class C3. Another approach
was used by McMahagan [87], showing the existence as the limit of solutions of a perturbed wave
problem, and using parallel transport to compare two solutions, to conclude local existence and
uniqueness in L∞([0, T ),Hk(RN )), for k > N/2 + 1.

When N = 1, these results provided the local existence and uniqueness at level Hk(RN ), for
k ≥ 2. Moreover, in this case the solutions are global in time (see [91, 25]).

Of course, there is a large amount of other works with interesting results about the (local
and global) existence and uniqueness for the LL equation and other related equations, see e.g.
[9, 57, 58, 56, 65, 94] and the references therein. However, it is not straightforward to adapt
these works to obtain local well-posednes results for smooth solutions to equation (3). For this
reason, in the rest of this section we provide an alternative proof for local well-posedness by
introducing high order energy quantities with better symmetrization properties.

To study the Cauchy problem of smooth solutions, given an integer k ≥ 1, we introduce the
set

Ek(RN ) = E(RN ) ∩Hk(RN ),

which we endow with the metric structure provided by the norm

‖v‖Zk =
(
‖∇v‖2Hk−1 + ‖v2‖2L∞ + λ1‖v1‖2L2 + λ3‖v3‖2L2

) 1
2 .

Observe that the energy space E(RN ) identifies with E1(RN ). The uniform control on the second
component v2 in the Zk-norm ensures that ‖ · ‖Zk is a norm. Of course, this uniform control
is not the only possible choice of the metric structure. The main result of this section is the
following local well-posedness result.

Theorem 2.2 ([35]). Let λ1, λ3 ≥ 0 and k ∈ N, with k > N/2 + 1. For any initial condition
m0 ∈ Ek(RN ), there exist Tmax > 0 and a unique solution m : RN × [0, Tmax) → S2 to the LL
equation (3), which satisfies the following statements.

(i) The solution m belongs to L∞([0, T ], Ek(RN )) and ∂tm ∈ L∞([0, T ],Hk−2(RN )), for all
T ∈ (0, Tmax).

(ii) If the maximal time of existence Tmax is finite, then

ˆ Tmax

0
‖∇m(t)‖2L∞ dt =∞. (10)

(iii) The flow map m0 7→m is well-defined and locally Lipschitz continuous from Ek(RN ) to
C0([0, T ], Ek−1(RN )), for all T ∈ (0, Tmax).

(iv) The energy (9) is conserved along the flow.

Theorem 2.2 provides the local well-posedness of the LL equation in the set Ek(RN ). This kind
of statement is standard in the context of hyperbolic systems (see e.g. [98, Theorem 1.2]). The
critical regularity for the equation is given by the condition k = N/2, so that local well-posedness
is expected when k > N/2 + 1. This assumption is used to control uniformly the gradient of the
solutions by the Sobolev embedding theorem.

1Actually, in [97] they do not study of the difference between two solutions. It is only asserted that uniqueness
followed from regularity, which it is not clear in this case; see also [65].
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The proof of Theorem 2.2 is based on energy estimates using well-tailored high order energies.
A key observation is that any smooth function m valued into S2, satisfies the pointwise identities

〈m, ∂im〉R3 = 〈m, ∂iim〉R3 + |∂im|2 = 〈m, ∂iijm〉R3 + 2〈∂im, ∂ijm〉R3 + 〈∂jm, ∂iim〉R3 = 0,

for any 1 ≤ i, j ≤ N . This allows us to show that a (smooth) solution to (3) satisfies the equation

∂ttm+ ∆2m− (λ1 + λ3)
(
∆m1e1 + ∆m3e3

)
+ λ1λ3

(
m1e1 +m3e3

)
= F (m), (11)

where we have set

F (m) =
∑

1≤i,j≤N

(
∂i
(
2〈∂im, ∂jm〉R3∂jm− |∂jm|2∂im

)
− 2∂ij

(
〈∂im, ∂jm〉R3m

))
+ λ1F

+
1,3(m) + λ3F

−
3,1(m) + λ1λ3

(
(m2

1 +m2
3)m+m2

1m3e3 +m2
3m1e1

)
,

with

F±i,j(m) = div
(
(m2

j − 2m2
i )∇m+ (m1m3e3 ±m1m−m2

3e1)∇m1 + (m1m3e1 ∓m3m−m2
1e3)∇m3

)
±∇m1 ·

(
m1∇m−m∇m1

)
±∇m3 ·

(
m∇m3 −m3∇m

)
+mj |∇m|2ej

+
(
m1∇m3 −m3∇m1

)
·
(
∇m1e3 −∇m3e1

)
+ λim

2
i

(
miei −m

)
.

In view of (11), we define the (pseudo)energy of order k ≥ 2, as

Ek(t) =‖∂tm‖2Ḣk−2 + ‖m‖2
Ḣk + (λ1 + λ3)(‖m1‖2Ḣk−1 + ‖m3‖2Ḣk−1) + λ1λ3(‖m1‖2Ḣk−2 + ‖m3‖2Ḣk−2),

for any t ∈ [0, T ]. This high order energy is an anisotropic version of the one used in [97].

To get good energy estimates, we need to use Moser estimates (also called tame estimates)
in Sobolev spaces (see e.g. [89]). Using these estimates and differentiating Ek, we obtain the
following energy estimates.

Proposition 2.3. Let λ1, λ3 ≥ 0 and k ∈ N, with k > 1 +N/2. Assume that m is a solution
to (3) in C0([0, T ], Ek+2(RN )), with ∂tm ∈ C0([0, T ], Hk(RN )).

(i) The LL energy is well-defined and conserved along flow on [0, T ].
(ii) Given any integer 2 ≤ ` ≤ k, the energies E` are of class C1 on [0, T ], and there exists

Ck > 0, depending only on k, such that their derivatives satisfy

E′`(t) ≤ Ck
(
1 + ‖m1(t)‖2L∞ + ‖m3(t)‖2L∞ + ‖∇m(t)‖2L∞

)
Σ`(t), (12)

for any t ∈ [0, T ]. Here, we have set Σ` =
∑`

j=1Ej.

We next discretize the equation by using a finite-difference scheme. The a priori bounds
remain available in this discretized setting. We then apply standard weak compactness and local
strong compactness results in order to construct local weak solutions, which satisfy statement
(i) in Theorem 2.2. By applying the Gronwall lemma and the condition in (10), inequality (12)
prevents a possible blow-up.

Finally, we establish uniqueness, as well as continuity with respect to the initial datum, by
computing energy estimates for the difference of two solutions. More precisely, we show

Proposition 2.4. Let λ1, λ3 ≥ 0, and k ∈ N, with k > N/2 + 1. Consider two solutions m
and m̃ to (3), which lie in C0([0, T ], Ek+1(RN )), with ∂tm, ∂tm̃ ∈ C0([0, T ], Hk−1(RN )), and set
u = m̃−m and v = (m̃+m)/2.
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(i) The function E0(t) = ‖u(x, t)−u2(x, 0)e2‖2L2 is of class C1 on [0, T ], and there exists C > 0
such that for any t ∈ [0, T ],

E′0(t) ≤ C
(
1+‖∇m̃‖L2 + ‖∇m(t)‖L2 + ‖m̃1‖L2 + ‖m1‖L2

+ ‖m̃3‖L2 + ‖m3‖L2

) (
‖u− u0

2e2‖2L2 + ‖u‖2L∞ + ‖∇u‖2L2 + ‖∇u0
2‖2L2

)
.

(ii) The function E1(t) = ‖∇u‖2L2 + ‖u×∇v + v ×∇u‖2L2 is of class C1 on [0, T ], and there
exists C > 0 such that

E′1(t) ≤ C
(
1 + ‖∇m‖2L∞ + ‖∇m̃‖2L∞

) (
‖u‖2L∞ + ‖∇u‖2L2

)
×

×
(
1 + ‖∇m‖L∞ + ‖∇m̃‖L∞ + ‖∇m‖H1 + ‖∇m̃‖H1

)
.

(iii) Let 2 ≤ ` ≤ k − 1,

E`(t) =‖∂tu‖2Ḣk−2 + ‖u‖2
Ḣk + (λ1 + λ3)(‖u1‖2Ḣk−1 + ‖u3‖2Ḣk−1) + λ1λ3(‖u1‖2Ḣk−2 + ‖u3‖2Ḣk−2),

and S`
LL =

∑`
j=0 E

j
LL. Then E` ∈ C1([0, T ]), and there exists Ck > 0, such that

E′`(t) ≤Ck
(

1 + ‖∇m‖2H` + ‖∇m̃‖2H` + ‖∇m‖2L∞ + ‖∇m̃‖2L∞

+ δ`=2

(
‖m̃1‖L2 + ‖m1‖L2 + ‖m̃3‖L2 + ‖m3‖L2

)) (
S`

LL + ‖u‖2L∞
)
.

When ` ≥ 2, the quantities E`LL in Proposition 2.4 are anisotropic versions of the ones used
in [97] for similar purposes. Their explicit form is related to the linear part of the second-order
equation in (11). The quantity E0

LL is tailored to close off the estimates.

The introduction of the quantity E1
LL is of a different nature. The functions ∇u and u ×

∇v+ v×∇u in its definition appear as the good variables to perform hyperbolic estimates at an
H1-level. They provide a better symmetrization corresponding to a further cancellation of the
higher order terms. Without any use of the Hasimoto transform, nor of parallel transport, this
makes possible a direct proof of local well-posedness at an Hk-level, with k > N/2 + 1 instead of
k > N/2 + 2.

2.2 Local well-posedness for smooth solutions

To state a well-posedness result for (H), we need to introduce a functional setting in which we
can legitimate the use of the hydrodynamical framework. Under the condition |m| < 1, it is
natural to work in the Hamiltonian framework in which the solutions m have finite energy. In
the hydrodynamical formulation, the energy is given by

EH(u, ϕ) =
1

2

ˆ
RN

( |∇u|2
1− u2

+ (1− u2)|∇ϕ|2 + λ1(1− u2) sin2(ϕ) + λ3u
2
)
.

As a consequence, we work in the nonvanishing

NVksin(RN ) =
{

(u, ϕ) ∈ Hk(RN )×Hk
sin(RN ) : |u| < 1 on RN

}
,

where

Hk
sin(RN ) =

{
v ∈ L1

loc(RN ) : ∇v ∈ Hk−1(RN ) and sin(v) ∈ L2(RN )
}
.

The set Hk
sin(RN ) is an additive group, which is naturally endowed with the pseudometric distance

dksin(v1, v2) = ‖ sin(v1 − v2)‖L2 + ‖∇v1 −∇v2‖Hk−1 ,

8



that vanishes if and only if v1 − v2 ∈ πZ. This quantity is not a distance on the group Hk
sin(RN ),

but it is on the quotient group Hk
sin(RN )/πZ. In the sequel, we identify the set H1

sin(RN ) with
this quotient group when necessary, in particular when a metric structure is required. This
identification is not a difficulty as far as we deal with the hydrodynamical form of the LL equation
and with the Sine–Gordon equation. Both the equations are indeed left invariant by adding
a constant number in πZ to the phase functions. This property is one of the motivations for
introducing the pseudometric distance dksin. We refer to [35] for more details concerning this
distance, as well as the set Hk

sin(RN ).

From Theorem 2.2, we obtain the following local well-posedness result for (H).

Corollary 2.5 ([35]). Let λ1, λ3 ≥ 0, and k ∈ N, with k > N/2 + 1. Given any (u0, φ0) ∈
NVksin(RN ), there exist Tmax > 0 and a unique solution (u, φ) : RN × [0, Tmax) → (−1, 1) × R
to (H) with initial data (u0, φ0), which satisfies the following statements.

(i) The solution (u, φ) is in L∞([0, T ],NVksin(RN )), while (∂tu, ∂tφ) is in L∞([0, T ], Hk−2(RN )2),
for any T ∈ (0, Tmax).

(ii) If the maximal time of existence Tmax is finite, then

ˆ Tmax

0

(∥∥∥ ∇u(t)

(1− u(t)2)
1
2

∥∥∥2

L∞
+
∥∥∥(1−u(t)2)

1
2∇φ(t)

∥∥∥2

L∞

)
dt =∞, or lim

t→Tmax

‖u(t)‖L∞ = 1.

(iii) The map (u0, φ0) 7→ (u, φ) is locally Lipschitz continuous from NVksin(RN ) to C0([0, T ],NVk−1
sin (RN ))

for any T ∈ (0, Tmax), and the energy EH is conserved along the flow.

The proof of Corollary 2.5 is complicated by the metric structure corresponding to the set
Hk

sin(RN ). Establishing the continuity of the flow map with respect to the pseudometric distance
dksin is not so immediate, but this difficulty can be by-passed by using some trigonometric
identities.

2.3 Local well-posedness in the energy space in dimension one

We focus now on the LL equation with easy-plane anisotropy in dimension one, i.e. λ1 = 0 and
(3) reads

∂tm+m× (∂xxm− λ3m3e3) = 0. (13)

As mentioned before, in the isotropic case λ3 = 0, we have the local well-posedness for initial
data in H2(R) [25, 90, 91]. Theorem 2.2 gives us for instance, the H2-local well-posedness,
while Theorem 2.1 provides the existence of a solution in H1(R), i.e. in the energy space for the
isotropic equation. The isotropic equation is energy critical in H1/2, so that one could think that
local well-posedness at the H1-level would be simple to establish. In this direction, when the
domain is the torus, some progress has been made at the H3/2+-level [28], and an ill-posedness
type result is given in [65] for the H1/2-weak topology.

The purpose of this section is to provide a local well-posedness theory for (13) in the energy
space, in the case λ3 ≥ 0. To this end, we use the hydrodynamical version of the equation,
considering hydrodynamical variables u = m3 and w = −∂xϕ, that is

∂tu = ∂x
(
(u2 − 1)w

)
,

∂tw = ∂x

( ∂xxu

1− u2
+ u

(∂xu)2

(1− u2)2
+ u
(
w2 − λ3)

)
.

(H1d)
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We introduce the notation u = (u,w), that we will refer to as hydrodynamical pair. Notice that
the LL energy is now expressed as

E(u) =

ˆ
R
e(u) =

1

2

ˆ
R

( (u′)2

1− u2
+
(
1− u2

)
w2 + λ3u

2
)
,

and the nonvanishing space is

NV(R) =
{
v = (v, w) ∈ H1(R)× L2(R), s.t. max

R
|v| < 1

}
,

endowed with the metric structure corresponding to the norm ‖v‖H1×L2 = ‖v‖H1 + ‖w‖L2 .

Another formally conserved quantity is the momentum P , which is defined by P (u) =
´
R uw.

As we will see in Section 4, the momentum P , as well as the energy E, play an important role in
the construction and the qualitative analysis of the solitons.

Concerning the Cauchy problem for (H1d), we have the following local well-posedness result.

Theorem 2.6 ([34]). Let λ3 ≥ 0 and u0 = (u0, w0) ∈ NV(R). There exist Tmax > 0 and
u = (u,w) ∈ C0([0, Tmax),NV(R)), such that the following statements hold.

(i) The map u is the unique solution to (H1d), with initial condition u0, such that there exist
smooth solutions un ∈ C∞(R× [0, T ]) to (H1d), which satisfy un → u in C0([0, T ],NV(R)),
as n → ∞, for any T ∈ (0, Tmax). In addition, the energy E and the momentum P are
constant on (0, Tmax).

(ii) The maximal time Tmax is characterized by the condition

lim
t→Tmax

max
x∈R
|u(x, t)| = 1, if Tmax <∞.

(iii) When u0
n → u0 in H1(R) × L2(R), as n → ∞, the maximal time of existence Tn of the

solution un to (H1d), with initial condition u0
n, satisfies Tmax ≤ lim infn→∞ Tn, and un → u

in C0([0, T ], H1(R)× L2(R)), as n→∞, for any T ∈ (0, Tmax).

In other words, Theorem 2.6 provides the existence and uniqueness of a continuous flow for
(H1d) in the energy space NV(R). On the other hand, this does not prevent from the existence
of other solutions which could not be approached by smooth solutions. In particular, we do
not claim that there exists a unique local solution to (H1d) in the energy space for a given
initial condition. To our knowledge, the question of the global existence in the hydrodynamical
framework of the local solution v remains open. Concerning the equation (13), since we are in
the one-dimensional case, it is possible to endow the energy space with the metric structure
corresponding to the distance

dE(u,v) =
(∣∣ǔ(0)− v̌(0)

∣∣2 +
∥∥u′ − v′∥∥2

L2 + λ3

∥∥u3 − v3

∥∥2

L2

) 1
2
,

and to translate Theorem 2.6 into the original framework of the LL equation. This provides the
existence of a unique continuous flow for (13) in the neighborhood of solutions m, such that the
third component m3 does not reach the value ±1. The flow is only locally defined due to this
restriction.

The most difficult part in Theorem 2.6 is the continuity with respect to the initial data in
the energy space NV(R) when λ3 > 0. In this case, by performing a change of variables, we can
assume that λ3 = 1.The proof relies on the strategy developed by Chang, Shatah and Uhlenbeck
in [25] (see also [58, 90]), by introducing the map

Ψ =
1

2

( ∂xu

(1− u2)
1
2

+ i(1− u2)
1
2w
)

exp iθ, with θ(x, t) = −
ˆ x

−∞
u(y, t)w(y, t) dy.
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Then Ψ solves the nonlinear Schrödinger equation

i∂tΨ + ∂xxΨ + 2|Ψ|2Ψ +
1

2
u2Ψ− Re

(
Ψ
(
1− 2F (u,Ψ)

))(
1− 2F (u,Ψ)

)
= 0,

with F (u,Ψ)(x, t) =
´ x
−∞ u(y, t)Ψ(y, t) dy, while the function u satisfies

∂tu = 2∂x Im
(

Ψ
(
2F (u,Ψ)− 1

))
, ∂xu = 2 Re

(
Ψ
(
1− 2F (u,Ψ)

))
.

In this setting, deriving the continuous dependence in NV(R) of u with respect to its initial data
reduces to establish it for u and Ψ in L2(R). This can be done by combining an energy method
for u and classical Strichartz estimates for Ψ.

3 Asymptotics regimes

In this section we will study the connection between the LL equation

∂tm+m× (∆m− λ1m1e1 − λ3m3e3) = 0, (14)

with λ1, λ3 ≥ 0, and the Sine–Gordon and the NLS equations, for certain types of anisotropies.
More precisely, we investigate the cases when λ1 � λ3 and when 1� λ1 = λ3. A conjecture in
the physical literature [93, 43] is that in the former case, the dynamics of (14) can be described
by the Sine–Gordon equation, while in the latter case, can be approximated by the cubic NLS
equation.

It is well-known that deriving asymptotic regimes is a powerful tool in order to tackle the
analysis of intricate equations. In this direction, we expect that these rigorous derivations will
be a useful tool to describe the dynamical properties of the LL equation, in particular the role
played by the solitons in this dynamics. For instance, this kind of strategy has been useful in
order to prove the asymptotic stability of the dark solitons of the Gross-Pitaevskii equation by
using its link with the KdV equation (see [27, 13]).

3.1 The Sine–Gordon regime

In order to provide a rigorous mathematical statement for the anisotropic LL equation with
λ1 � λ3, i.e. for a strong easy-plane anisotropy regime, we consider a small parameter ε > 0, a
fixed constant σ > 0, and set the anisotropy values λ1 = σε and λ3 = 1/ε.

Assuming that the map m̌ = m1 + im2, associated with a solution m to (14) does not vanish,

we write m̌ = (1−m2
3)

1
2

(
sin(φ) + i cos(φ)

)
, so that the variables u = m3 and φ satisfy the system

(H), as long as the nonvanishing condition holds. To study the behavior of the system as ε→ 0,
we introduce the rescaled variables Uε and Φε given by

Uε(x, t) =
u(x/

√
ε, t)

ε
, and Φε(x, t) = φ(x/

√
ε, t),

which satisfy the hydrodynamical system
∂tUε = div

(
(1− ε2U2

ε )∇Φε

)
− σ

2
(1− ε2U2

ε ) sin(2Φε),

∂tΦε = Uε
(
1− ε2σ sin2(Φε)

)
− ε2 div

( ∇Uε
1− ε2U2

ε

)
+ ε4Uε

|∇Uε|2

(1− ε2U2
ε )2
− ε2Uε|∇Φε|2.

(Hε)
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Therefore, as ε→ 0, we formally see that the limit system is

∂tU = ∆Φ− σ

2
sin(2Φ), ∂tΦ = U, (SGS)

so that the limit function Φ is a solution to the Sine–Gordon equation

∂ttΦ−∆Φ +
σ

2
sin(2Φ) = 0. (SG)

As seen in Corollary 2.5, the hydrodynamical system (Hε) is locally well-posed in the space
NVksin(RN ) for k > N/2 + 1. However, this result gives us time of existence Tε that could vanish
as ε → 0. Therefore, we need to find a uniform estimate for Tε to prevent this phenomenon.
As we will recall later, the Sine–Gordon equation is also locally well-posed at the same level
of regularity, so that we can compare the evolution of the difference in an interval of time
independent of ε. A further analysis of (Hε) involving good energy estimates, will lead us to the
following result.

Theorem 3.1 ([35]). Let N ≥ 1 and k ∈ N, with k > N/2 + 1, and ε ∈ (0, 1). Consider an
initial condition (U0

ε ,Φ
0
ε) ∈ NVk+2

sin (RN ), and set

Kε =
∥∥U0

ε

∥∥
Hk + ε

∥∥∇U0
ε

∥∥
Hk +

∥∥∇Φ0
ε

∥∥
Hk +

∥∥ sin(Φ0
ε)
∥∥
Hk . (15)

Consider similarly an initial condition (U0,Φ0) ∈ L2(RN )×H1
sin(RN ), and denote by (U,Φ) ∈

C0(R, L2(RN )×H1
sin(RN )) the unique corresponding solution to (SGS). Then, there exists C > 0,

depending only on σ, k and N , such that, if

C εKε ≤ 1, (16)

then the following statements hold.

(i) There exists a positive number Tε ≥ (CK2
ε)
−1, such that there is a unique solution (Uε,Φε) ∈

C0([0, Tε],NVk+1
sin (RN )) to (Hε) with initial data (U0

ε ,Φ
0
ε).

(ii) If Φ0
ε − Φ0 ∈ L2(RN ), then, for any 0 ≤ t ≤ Tε,∥∥Φε(t)− Φ(t)

∥∥
L2 ≤ C

(∥∥Φ0
ε − Φ0

∥∥
L2 +

∥∥U0
ε − U0

∥∥
L2 + ε2Kε

(
1 +K3

ε

))
eCt.

(iii) If N ≥ 2, or N = 1 and k > N/2 + 2, then we have, for any 0 ≤ t ≤ Tε,∥∥Uε(t)−U(t)
∥∥
L2 +d1

sin(Φε(t),Φ(t)) ≤ C
(∥∥U0

ε −U0
∥∥
L2 +d1

sin(Φ0
ε,Φ

0)+ε2Kε
(
1+K3

ε

))
eCt.

(iv) Let (U0,Φ0) ∈ Hk(RN )×Hk+1
sin (RN ) and set κε = Kε+

∥∥U0
∥∥
Hk +

∥∥∇Φ0
∥∥
Hk +

∥∥ sin(Φ0)
∥∥
Hk .

There exists A > 0, depending only on σ, k and N , such that the solution (U,Φ) lies in
C0([0, T ∗ε ], Hk(RN )×Hk+1

sin (RN )), for some T ∗ε ∈ [ 1
Aκ2ε

, Tε]. Moreover, when k > N/2 + 3,

we have, for any 0 ≤ t ≤ T ∗ε ,∥∥Uε(t)− U(t)
∥∥
Hk−3 +

∥∥∇Φε(t)−∇Φ(t)
∥∥
Hk−3 +

∥∥ sin(Φε(t)− Φ(t))
∥∥
Hk−3

≤ AeA(1+κ2ε)t
(∥∥U0

ε − U0
∥∥
Hk−3 +

∥∥∇Φ0
ε −∇Φ0

∥∥
Hk−3 +

∥∥ sin(Φ0
ε − Φ0)

∥∥
Hk−3 + ε2κε

(
1 + κ3

ε

))
.

In arbitrary dimension, Theorem 3.1 provides a quantified convergence of the LL equation
towards the Sine–Gordon equation in the regime of strong easy-plane anisotropy. Three types of
convergence are proved depending on the dimension, and the levels of regularity of the solutions.
This trichotomy is related to the analysis of the Cauchy problems for the LL and Sine–Gordon
equations.

12



In its natural Hamiltonian framework, the Sine–Gordon equation is globally well-posed and
its Hamiltonian is the Sine–Gordon energy:

ESG(φ) =
1

2

ˆ
RN

(
(∂tφ)2 + |∇φ|2 + σ sin(φ)2

)
.

More precisely, given an initial condition (Φ0,Φ1) ∈ H1
sin(RN )× L2(RN ), there exists a unique

corresponding solution Φ ∈ C0(R, H1
sin(RN )) to (SG), with ∂tΦ ∈ C0(R, L2(RN )). Moreover, the

Sine–Gordon equation is locally well-posed in the spaces Hk
sin(RN )×Hk−1(RN ), when k > N/2+1.

In other words, the solution Φ remains in C0([0, T ], Hk
sin(RN )), with ∂tΦ ∈ C0([0, T ], Hk−1(RN )),

at least locally in time, when (Φ0,Φ1) ∈ Hk
sin(RN )×Hk−1(RN ). We refer to [35, 22] for more

details about the Cauchy problem for (SG).

As seen in Section 2, the LL equation is locally well-posed at the same level of high regularity as
the Sine–Gordon equation. In the hydrodynamical context, this reads as the existence of a maximal
time Tmax and a unique solution (U,Φ) ∈ C0([0, Tmax),NVk−1

sin (RN )) to (Hε) corresponding to an
initial condition (U0,Φ0) ∈ NVksin(RN ), when k > N/2 + 1 (see Corollary 2.5); note the loss of
one derivative here. This loss explains why we take initial conditions (U0

ε ,Φ
0
ε) in NVk+2

sin (RN ),
though the quantity Kε is already well-defined when (U0

ε ,Φ
0
ε) ∈ NVk+1

sin (RN ).

In view of this local well-posedness result, we restrict our analysis of the Sine–Gordon regime
to the solutions (Uε,Φε) to the rescaled system (Hε) with sufficient regularity. A further difficulty
then lies in the fact that their maximal times of existence possibly depend on ε.

Statement (i) in Theorem 3.1 provides an explicit control on these maximal times. Since
Tε ≥ (CK2

ε)
−1, these maximal times are bounded from below by a positive number depending

only on the choice of the initial data (U0
ε ,Φ

0
ε). Notice in particular that if a family of initial data

(U0
ε ,Φ

0
ε) converges towards a pair (U0,Φ0) in Hk(RN )×Hk

sin(RN ), as ε→ 0, then it is possible
to find T > 0 such that all the corresponding solutions (Uε,Φε) are well-defined on [0, T ]. This
property is necessary in order to make possible a consistent analysis of the limit ε→ 0.

Statement (i) only holds when the initial data (U0
ε ,Φ

0
ε) satisfy the condition in (16). However,

this condition is not a restriction in the limit ε→ 0. It is satisfied by any fixed pair (U0,Φ0) ∈
NVk+1

sin (RN ) provided that ε is small enough, so that it is also satisfied by a family of initial data
(U0

ε ,Φ
0
ε), which converges towards a pair (U0,Φ0) in Hk(RN )×Hk

sin(RN ) as ε→ 0.

Statements (ii) and (iii) in Theorem 3.1 provide two estimates between the previous solutions
(Uε,Φε) to (Hε), and an arbitrary global solution (U,Φ) to (SGS) at the Hamiltonian level. The
first one yields an L2-control on the difference Φε −Φ, while the second one, an energetic control
on the difference (Uε,Φε)− (U,Φ). Due to the fact that the difference Φε − Φ is not necessarily
in L2(RN ), statement (ii) is restricted to initial conditions satisfying this property.

Finally, statement (iv) bounds the difference between the solutions (Uε,Φε) and (U,Φ) at the
same initial Sobolev level. In this case, we also have to control the maximal time of regularity of
the solutions (U,Φ). This follows from the control from below for T ∗ε , which is of the same order
as the one in Tε.

We then obtain the Sobolev estimate in (iv) of the difference (Uε,Φε)− (U,Φ) with a loss of
three derivatives. Here, the choice of the Sobolev exponents k > N/2 + 3 is tailored to gain a
uniform control on the functions Uε −U , ∇Φε −∇Φ and sin(Φε −Φ), by the Sobolev embedding
theorem.

A loss of derivatives is natural in the context of long-wave regimes; it is related to the terms
with first and second-order derivatives in the right-hand side of (Hε). This loss is the reason why
the energetic estimate in statement (iii) requires an extra derivative in dimension one, that is
the condition k > N/2 + 2. Using the Sobolev bounds in (19), we can (partly) recover this loss
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by a standard interpolation argument, and deduce an estimate in H`(RN )×H`+1
sin (RN ) for any

number ` < k. In this case, the error terms are no more of order ε2.

As a by-product of the analysis, we can also analyze the wave regime for the LL equation.
This regime is obtained by allowing the parameter σ to converge to 0. Indeed, at least formally,
a solution (Uε,σ,Φε,σ) to (Hε) satisfies the free wave system

∂tU = ∆Φ, ∂tΦ = U, (FW)

as ε→ 0 and σ → 0. In particular, the function Φ is solution to the wave equation ∂ttΦ−∆Φ = 0.
The following result provides a rigorous justification for this asymptotic approximation.

Theorem 3.2 ([35]). Let N ≥ 1 and k ∈ N, with k > N/2 + 1, and 0 < ε, σ < 1. Consider an
initial condition (U0

ε,σ,Φ
0
ε,σ) ∈ NVk+2

sin (RN ) and set

Kε,σ =
∥∥U0

ε,σ

∥∥
Hk + ε

∥∥∇U0
ε,σ

∥∥
Hk +

∥∥∇Φ0
ε,σ

∥∥
Hk + σ

1
2

∥∥ sin(Φ0
ε,σ)
∥∥
L2 .

Let m ∈ N, with 0 ≤ m ≤ k − 2. Consider similarly an initial condition (U0,Φ0) ∈ Hm(RN )×
Hm−1(RN ), and denote by (U,Φ) ∈ C0(R, Hm−1(RN ) × Hm(RN )) the unique corresponding
solution to (FW). Then, there exists C > 0, depending only on k and N , such that, if the initial
data satisfies the condition C εK0

ε,σ ≤ 1, the following statements hold. Then there exists a
positive number

Tε,σ ≥
1

C max(ε, σ)(1 +Kε,σ)max(2,k/2)
,

such that there is a unique solution (Uε,σ,Φε,σ) ∈ C0([0, Tε,σ],NVk+1
sin (RN )) to (Hε) with initial

data (U0
ε,σ,Φ

0
ε,σ). Moreover, if Φ0

ε,σ − Φ0 ∈ Hm(RN ), then we have the estimate, for any
0 ≤ t ≤ Tε,σ,∥∥Uε,σ(t)− U(t)

∥∥
Hm−1 +

∥∥Φε,σ(t)− Φ(t)
∥∥
Hm ≤ C

(
1 + t2

) (∥∥U0
ε,σ − U0

∥∥
Hm−1

+
∥∥Φ0

ε,σ − Φ0
∥∥
Hm + max

(
ε2, σ1/2

)
K0
ε,σ

(
1 +K0

ε,σ

)max(2,m)
)
.

The wave regime of the LL equation was first derived rigorously by Shatah and Zeng [92], as
a special case of the wave regimes for the Schrödinger map equations with values into arbitrary
Kähler manifolds. The derivation in [92] relies on energy estimates, which are similar in spirit to
the ones we establish in the sequel, and a compactness argument. Getting rid of this compactness
argument provides the quantified version of the convergence in Theorem 3.2. This improvement
is based on the arguments developed by Béthuel, Danchin and Smets [10] in order to quantify
the convergence of the Gross–Pitaevskii equation towards the free wave equation in a similar
long-wave regime. Similar arguments were also applied in [26] in order to derive rigorously the
(modified) KdV and (modified) KP regimes of the LL equation (see also [49]).

Concerning the proof of Theorem 3.1, the first step is to provide a control on Tmax. In view
of the conditions in statement (ii) of Corollary 2.5, this control can be derived from uniform
bounds on the functions Uε, ∇Uε and ∇Φε. Taking into account the Sobolev embedding theorem
and the fact that k > N/2 + 1, we are left with the computations of energy estimates for the
functions Uε and Φε in the spaces Hk(RN ) and Hk

sin(RN ), respectively.

In this direction, we recall that the LL energy corresponding to the scaled hydrodynamical
system (Hε) writes as

Eε(t) =
1

2

ˆ
RN

(
ε2 |∇Uε|2

1− ε2U2
ε

+ U2
ε + (1− ε2U2

ε )|∇Φε|2 + σ(1− ε2U2
ε ) sin2(Φε)

)
.
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Inspired in this formula, we proposed to define an energy of order k ≥ 1 as

Ekε (t) =
1

2

∑
|α|=k−1

ˆ
RN

(
ε2 |∇∂αxUε|2

1− ε2U2
ε

+ |∂αxUε|2 +(1−ε2U2
ε )|∇∂αxΦε|2 +σ(1−ε2U2

ε )|∂αx sin(Φε)|2
)
.

The factors 1− ε2U2
ε in this expression, as well as the non-quadratic term corresponding to the

function sin(Φε), are of substantial importance since they provide a better symmetrization of the
energy estimates, by inducing cancellations in the higher order terms. More precisely, we have
the following key proposition.

Proposition 3.3. Let ε > 0 and k ∈ N, with k > N/2 + 1. Consider a solution (Uε,Φε) to (Hε),
with (Uε,Φε) ∈ C0([0, T ],NVk+3

sin (RN )) for some T > 0. Assume that

inf
RN×[0,T ]

(1− ε2U2
ε ) ≥ 1/2.

Then there exists C > 0, depending only on k and N , such that[
E`ε
]′

(t) ≤ C max
(
1, σ3/2

) (
1 + ε4

) (
‖ sin(Φε(t))‖2L∞ + ‖Uε(t)‖2L∞ + ‖∇Φε(t)‖2L∞ + ‖∇Uε(t)‖2L∞

+ ‖d2Φε(t)‖2L∞ + ε2‖d2Uε(t)‖2L∞ + ε ‖∇Φε(t)‖L∞
(
‖∇Φε(t)‖2L∞ + ‖∇Uε(t)‖2L∞

))
Σk+1
ε (t),

(17)
for any t ∈ [0, T ] and any 2 ≤ ` ≤ k + 1. Here, we have set Σk+1

ε =
∑k+1

j=1 E
j
ε .

Thanks to the condition k > N/2 + 1 and the Sobolev embedding, we get from (17) a
differential inequality for y(t) = Σk

ε , of the type

y′(t) ≤ Ay2(t), (18)

at least on the interval where y is well-defined and y(t) ≤ 2y(0). Here A is a constant depending
on y(0). Integrating (18), we conclude that

y(t) ≤ y(0)

1−Ay(0)t
≤ 2y(0),

provided that t ≤ 1/(2Ay(0)). Using this argument, we deduce from Proposition 3.3, that
maximal time Tmax is at least of order 1/(‖U0

ε ‖Hk + ε‖∇U0
ε ‖Hk + ‖∇Φ0

ε‖Hk + ‖ sin(Φ0
ε)‖Hk)2,

when the initial conditions (U0
ε ,Φ

0
ε) satisfy the inequality in (16). In particular, the dependence

of Tmax on the small parameter ε only results from the possible dependence of the pair (U0
ε ,Φ

0
ε)

on ε. Choosing suitably these initial conditions, we can assume without loss of generality, that
Tmax is uniformly bounded from below when ε tends to 0, so that analyzing this limit makes sense
and we can work in an interval of the form [0, Tε]. Moreover, we also get the energy estimate on
[0, Tε] in terms og Kε defined in (15),∥∥Uε(t)∥∥Hk + ε

∥∥∇Uε(t)∥∥Hk +
∥∥∇Φε(t)

∥∥
Hk +

∥∥ sin(Φε(t))
∥∥
Hk ≤ CKε. (19)

The final ingredient in the proof of Theorem 3.1 is the consistency of (Hε) with the Sine–Gordon
system in the limit ε→ 0. Indeed, we can rewrite (Hε) as

∂tUε = ∆Φε −
σ

2
sin(2Φε) + ε2RUε , ∂tΦε = Uε + ε2RΦ

ε , (20)

where

RUε = −div
(
U2
ε ∇Φε

)
+ σU2

ε sin(Φε) cos(Φε),

RΦ
ε = −σUε sin2(Φε)− div

( ∇Uε
1− ε2U2

ε

)
+ ε2Uε

|∇Uε|2

(1− ε2U2
ε )2
− Uε |∇Φε|2.
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In view of the Sobolev control in (19), the remainder terms RUε and RΦ
ε are bounded uniformly

with respect to ε in Sobolev spaces, with a loss of three derivatives. Due to this observation,
the differences uε = Uε − U and ϕε = Φε − Φ between a solution (Uε,Φε) to (Hε) and a solution
(U,Φ) to (SGS) are expected to be of order ε2, if the corresponding initial conditions are close
enough. The proof of this claim would be immediate if the system (20) would not contain the
nonlinear term sin(2Φε). Due to this extra term, we have to apply a Gronwall argument in order
to control the differences uε and ϕε. This can be done since vε and ϕε satisfy

∂tvε = ∆ϕε − σ sin(ϕε) cos(Φε + Φ) + ε2RUε , ∂tϕε = vε + ε2RΦ
ε ,

so that we can perform energy estimates as before.

3.2 The cubic NLS regime

We now focus on the cubic Schrödinger equation, which is obtained in a regime of strong easy-axis
anisotropy of equation (14). For this purpose, we consider a uniaxial material in the direction
corresponding to the vector e2 and we fix the anisotropy parameters as λ1 = λ3 = 1/ε. For this
choice, let us introduce the complex-valued function Ψε given by

Ψε(x, t) = ε−1/2m̌(x, t)eit/ε, with m̌ = m1 + im3,

associated with a solution m of (14). This function is of order 1 in the regime where the map m̌

is of order ε
1
2 . When ε is small enough, the function m2 does not vanish in this regime, since the

solution m is valued into the sphere S2. Assuming that m2 is everywhere positive, it is given by
the formula

m2 =
(
1− ε|Ψε|2|

) 1
2 ,

and the function Ψε is a solution to the nonlinear Schrödinger equation

i∂tΨε +
(
1− ε|Ψε|2

)1/2
∆Ψε +

|Ψε|2

1 + (1− ε|Ψε|2)1/2
Ψε + εdiv

( 〈Ψε,∇Ψε〉C
(1− ε|Ψε|2)1/2

)
Ψε = 0, (NLSε)

where 〈z1, z2〉C = Re(z1z̄2). As ε→ 0, the formal limit is therefore the focusing cubic Schrödinger
equation

i∂tΨ + ∆Ψ +
1

2
|Ψ|2Ψ = 0. (CS)

The goal is to justify rigorously this cubic Schrödinger regime of the LL equation. We recall
that (CS) is locally well-posed in Hk(RN ), for k ∈ N; we refer to [24] for an extended review on
this subject. Going on with our rigorous derivation of the cubic Schrödinger regime, we now
express the local well-posedness result in Theorem 2.2 in terms of the nonlinear Schrödinger
equation (NLSε) satisfied by the rescaled function Ψε.

Corollary 3.4 ([36]). Let ε > 0, and k ∈ N, with k > N/2+1. Consider a function Ψ0
ε ∈ Hk(RN )

such that
ε1/2

∥∥Ψ0
ε

∥∥
L∞

< 1.

Then there exist Tε > 0 and a unique solution Ψε ∈ L∞([0, T ], Hk(RN )) to (NLSε), for any
t ∈ (0, Tε). Moreover, the flow map Ψ0

ε 7→ Ψε is Lipschitz continuous from Hk(RN ) to
C0([0, T ], Hk−1(RN )) for any T ∈ (0, Tε) and the nonlinear Schrödinger energy Eε given by

Eε(Ψε) =
1

2

ˆ
RN

(
|Ψε|2 + ε|∇Ψε|2 +

ε2〈Ψε,∇Ψε〉2C
1− ε|Ψε|2

)
,

is conserved along the flow.
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We are now in position to state the main result concerning the rigorous derivation of the
cubic Schrödinger regime of the LL equation.

Theorem 3.5 ([36]). Let 0 < ε < 1, and k ∈ N, with k > N/2 + 2. Consider two initial
conditions Ψ0 ∈ Hk(RN ) and Ψ0

ε ∈ Hk+3(RN ), and set

Sε =
∥∥Ψ0

∥∥
Hk +

∥∥Ψ0
ε

∥∥
Hk + ε

1
2

∥∥∇Ψ0
ε

∥∥
Ḣk + ε

∥∥∆Ψ0
ε

∥∥
Ḣk .

There is A > 0, depending only on k, such that, if the initial data Ψ0 and Ψ0
ε satisfy the condition

Aε
1
2 Sε ≤ 1, (21)

then there exists a time Tε ≥ 1
AK2

ε
, such that both the unique solution Ψε to (NLSε) with initial

data Ψ0
ε, and the unique solution Ψ to (CS) with initial data Ψ0 are well-defined on the time

interval [0, Tε]. Moreover, we have the error estimate, for any t ∈ [0, Tε],∥∥Ψε(t)−Ψ(t)
∥∥
Hk−2 ≤

(∥∥Ψ0
ε −Ψ0

∥∥
Hk−2 +AεSε

(
1 + S3

ε

))
eAS

2
ε t. (22)

In this manner, Theorem 3.5 establishes rigorously the convergence of the LL equation
towards the cubic Schrödinger equation in any dimension. It is certainly possible to show only
convergence under weaker assumptions by using compactness arguments as for the derivation of
similar asymptotic regimes (see e.g. [92, 27, 49] concerning Schrödinger-like equations).

Observe that smooth solutions for both the LL and the cubic Schrödinger equations are known
to exist when the integer k satisfies the condition k > N/2 + 1. The additional assumption
k > N/2+2 in Theorem 3.5 is related to the fact that the proof of (22) requires a uniform control
of the difference Ψε −Ψ, which follows from the Sobolev embedding theorem of Hk−2(RN ) into
L∞(RN ).

Finally, the loss of two derivatives in the error estimate (22) can be partially recovered by
combining standard interpolation theory. Under the assumptions of Theorem 3.5, the solutions
Ψε converge towards the solution Ψ in C0([0, Tε], H

s(RN )) for any 0 ≤ s < k, when Ψ0
ε tends to

Ψ0 in Hk+2(RN ) as ε→ 0, but the error term is not necessarily of order ε due to the interpolation
process.

Note here that condition (21) is not really restrictive in order to analyze such a convergence.
At least when Ψ0

ε tends to Ψ0 in Hk+2(RN ) as ε → 0, the quantity Sε tends to twice the
norm ‖Ψ0‖Hk in the limit ε→ 0, so that condition (21) is always fulfilled. Moreover, the error
estimate (22) is available on a time interval of order 1/‖Ψ0‖2

Hk , which is similar to the minimal
time of existence of the smooth solutions to the cubic Schrödinger equation.

The proof of Theorem 3.5 is similar to the proof of Theorem 3.1. It relies on the consistency
between the Schrödinger equations (NLSε) and (CS) in the limit ε → 0. Indeed, we can
recast (NLSε) as

i∂tΨε + ∆Ψε +
1

2
|Ψε|2Ψε = εRε,

where the remainder term Rε is given by

Rε =
|Ψε|2

1 + (1− ε|Ψε|2)
1
2

∆Ψε −
|Ψε|4

2(1 + (1− ε|Ψε|2)
1
2 )2

Ψε − div
( 〈Ψε,∇Ψε〉C

(1− ε|Ψε|2)
1
2

)
Ψε.

In order to establish the convergence towards the cubic Schrödinger equation, the main goal is to
control the remainder term Rε on a time interval [0, Tε] as long as possible. In particular, we
have to show that the maximal time Tε for this control does not vanish in the limit ε→ 0. The

17



main argument is to perform suitable energy estimates on the solutions Ψε to (NLSε). These
estimates provide Sobolev bounds for the remainder term Rε, which are used to control the
differences uε = Ψε − Ψ with respect to the solutions Ψ to (CS). This further control is also
derived from energy estimates.

Concerning the estimates of the solutions Ψε, we rely on the equivalence with the solutions
m to (14). However, the estimates given in Section 2 are not enough in this case. It is crucial to
refine the estimate (12), which can be done when λ1 = λ3.

Proposition 3.6. Let 0 < ε < 1, and k ∈ N, with k > N/2+1. Assume that λ1 = λ3 = 1/ε, and
that m is a solution to (14) in C0([0, T ], Ek+4(RN )), with ∂tm ∈ C0([0, T ], Hk+2(RN )). Given
any integer 2 ≤ ` ≤ k + 2, the energies E` are of class C1 on [0, T ], and there exists Ck > 0,
depending possibly on k, but not on ε, such that their derivatives satisfy

E′`(t) ≤
Ck
ε

(
‖m1(t)‖2L∞ + ‖m3(t)‖2L∞ + ‖∇m(t)‖2L∞

)(
E`(t) + E`−1(t)

)
, (23)

for any t ∈ [0, T ]. Here we have set E1(t) = E(m(t)), the LL energy.

As for the proof of Proposition 2.3, the estimates in Proposition 3.6 rely on the identity
(11), that in the case λ1 = λ3 = 1/ε can be simplified. In contrast with the estimate (12), the
multiplicative factor in the right-hand side of (23) now only depends on the uniform norms of
the functions m1, m3 and ∇m. This property is key in order to use these estimates in the cubic
Schrödinger regime.

Finally, it is necessary to find a high order energy, with suitable cancellation properties to
obtain good energy estimates. The energy proposed in [35], which allows us to conclude as in
the sine–Gordon equation, is

Ekε(t) =
∥∥Ψε

∥∥2

Ḣk−2 +
∥∥ε∂tΨε − iΨε

∥∥2

Ḣk−2 + ε2
∥∥∆Ψε

∥∥2

Ḣk−2

+ ε
(∥∥∂t(1− ε|Ψε|2)

1
2

∥∥2

Ḣk−2 +
∥∥∆(1− ε|Ψε|2)

1
2

∥∥2

Ḣk−2 + 2
∥∥∇Ψε

∥∥2

Ḣk−2

)
,

for any k ≥ 2. We refer to [35] for detailed computations.

4 Stability of sum of solitons

In dimension one, the LL equation is completely integrable by means of the inverse scattering
method [43] and, using this technique, explicit solitons and multisolitons solutions can be
constructed [17]. We consider in this section equation (13), i.e. the one-dimensional easy-plane
LL equation. By a change of variable, we assume that λ3 = 1.

We say that a soliton for (13) is a traveling wave of the form m(x, t) = u(x − ct). The
nonconstant solitons are explicitly given by

uc(x) = (c sech
(√

1− c2x
)
, tanh

(√
1− c2x

)
,
√

1− c2 sech
(√

1− c2x
)
), |c| < 1,

up to the invariances of the equation, i.e. translations, rotations around the axis x3 and orthogonal
symmetries with respect to any line in the plane x3 = 0. Thus a soliton with speed c may be
also written as

uc,a,θ,s(x) =
(

cos(θ)[uc]1 − s sin(θ)[uc]2, sin(θ)[uc]1 + s cos(θ)[uc]2, s[uc]3
)
(x− a),

with a ∈ R, θ ∈ R and s ∈ {±1}. We refer to [34, 35, 36] for more properties of solitons for the
LL equation (3).
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In addition, using the integrability of the equation and by means of the inverse scattering
method, for any M ∈ N∗, it can be also computed explicit solutions to (13) that behave like a
sum of M decoupled solitons as t→∞. These solutions are often called M -solitons or simply
multisolitons (see e.g. [17, Section 10] for their explicit formula).

We can define properly the solitons in the hydrodynamical framework when c 6= 0, since
the function ǔc = [uc]1 + i[uc]2 does not vanish. More precisely, we recall that for a function
u : R→ S2 such that |u| 6= 0, we set ǔ = (1−u2

3)1/2i exp(−iϕ), and we define the hydrodynamical
variables v = u3 and w = −∂xϕ. Thus, equation (13) recasts as in (H1d), and the soliton uc in
the hydrodynamical variables vc = (vc, wc) is given by

vc(x) =
√

1− c2 sech
(√

1− c2x
)
, and wc(x) =

c vc(x)

1− vc(x)2
=
c
√

1− c2 cosh
(√

1− c2x
)

sinh
(√

1− c2x
)2

+ c2
. (24)

Therefore, the only remaining invariances of solitons in this framework are translations and
the opposite map (v, w) 7→ (−v,−w). Any soliton with speed c may be then written as
vc,a,s(x) = s vc(x− a) = (s vc(x− a), s wc(x− a)), with a ∈ R and s ∈ {±1}.

Our goal in this section is to establish the stability of a single soliton uc along the LL flow.
More generally, we will also consider the case of a sum of solitons. In the original framework,
defining this sum is not so easy, since the sum of unit vectors in R3 does not necessarily remain
in S2. In the hydrodynamical framework, this difficulty does not longer arise. We can define a
sum of M solitons Sc,a,s as

Sc,a,s = (Vc,a,s,Wc,a,s) =

M∑
j=1

vcj ,aj ,sj ,

with M ∈ N∗, c = (c1, . . . , cM ), a = (a1, . . . , aM ) ∈ RM , and s = (s1, . . . , sM ) ∈ {±1}M .
However, we have to restrict the analysis to speeds cj 6= 0, since the function ǔ0, associated with
the black soliton, vanishes at the origin.

Coming back to the original framework, we can define properly a corresponding sum of solitons
Rc,a,s, when the third component of Sc,a,s does not reach the values ±1. Due to the exponential
decay of the functions vc and wc, this assumption is satisfied at least when the positions aj are
sufficiently separated, i.e. when the solitons are decoupled. In this case, the sum Rc,a,s is given,
up to a phase factor, by the expression

Rc,a,s =
(

(1−V 2
c,a,s)

1
2 cos(Φc,a,s), (1−V 2

c,a,s)
1
2 sin(Φc,a,s), Vc,a,s

)
, with Φc,a,s(x) =

ˆ x

0
Wc,a,s(y) dy,

for any x ∈ R. This definition presents the advantage to provide a quantity with values on the
sphere S2. On the other hand, it is only defined under restrictive assumptions on the speeds cj
and positions aj . Moreover, it does not take into account the geometric invariance with respect
to rotations around the axis x3.

4.1 Orbital stability in the energy space

In the sequel, our main results are proved in the hydrodynamical framework. We establish that,
if the initial positions a0

j are well-separated and the initial speeds c0
j are ordered according to the

initial positions a0
j , then the solution corresponding to a chain of solitons at initial time, that is

a perturbation of a sum of solitons Sc0,a0,s0 , is uniquely defined, and that it remains a chain of
solitons for any positive time.
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Let us recall that Theorem 2.6 provides the existence and uniqueness of a continuous flow for
(H1d) in the nonvanishing energy space NV(R). To our knowledge, the question of the global
existence (in the hydrodynamical framework) of the local solution v is open. In the sequel, we
by-pass this difficulty using the stability of a well-prepared sum of solitons Sc,a,s. Since the
solitons in such a sum have exponential decay by (24), and are sufficiently well-separated, the
sum Sc,a,s belongs to NV(R). Invoking the Sobolev embedding theorem, this remains true for a
small perturbation in H1(R)×L2(R). As a consequence, the global existence for a well-prepared
sum of solitons follows from its stability by applying a continuation argument.

Concerning the stability of sums of solitons, our main result is

Theorem 4.1 ([34]). Let s∗ ∈ {±1}M and c∗ = (c∗1, . . . , c
∗
M ) ∈ ((−1, 1) \ {0})M such that

c∗1 < c∗2 < · · · < c∗M . There exist positive numbers α∗, L∗, ν and A, depending only on c∗ such
that, if v0 ∈ NV(R) satisfies the condition

α :=
∥∥v0 − Sc∗,a0,s∗

∥∥
H1×L2 ≤ α∗,

for points a0 = (a0
1, . . . , a

0
M ) ∈ RM such that L0 := min

{
a0
j+1 − a0

j , 1 ≤ j ≤M − 1
}
≥ L∗, then

the solution v to (H1d) with initial condition v0 is globally well-defined on R+, and there exists a
function a = (a1, . . . , aM ) ∈ C1(R+,RM ) such that, for any t ≥ 0,

M∑
j=1

∣∣a′j(t)− c∗j ∣∣ ≤ A(α+ e−νL
0)
, and

∥∥v(·, t)− Sc∗,a(t),s∗
∥∥
H1×L2 ≤ A

(
α+ e−νL

0)
. (25)

Theorem 4.1 provides the orbital stability of well-prepared sums of solitons with different,
nonzero speeds for positive time. The sums are well-prepared in the sense that their positions
at initial time are well-separated and ordered according to their speeds. As a consequence, the
solitons are more and more separated along the LL flow (see estimate (25)) and their interactions
become weaker and weaker. The stability of the chain then results from the orbital stability of
each single soliton in the chain.

As a matter of fact, the orbital stability of a single soliton appears as a special case of
Theorem 4.1 when M = 1. In this case, stability occurs for both positive and negative times due
to the time reversibility of the LL equation. Time reversibility also provides the orbital stability
of reversely well-prepared chains of solitons for negative time. The analysis of stability for both
negative and positive time is more involved. It requires a deep understanding of the possible
interactions between the solitons in the chain (see [83, 84] for such an analysis in the context of
the KdV equation). This issue is of particular interest because of the existence of multisolitons.

Special chains of solitons are indeed provided by the exact multisolitons. However, there is
a difficulty to define them properly in the hydrodynamical framework. Indeed, multisolitons
can reach the values ±1 at some times. On the other hand, an arbitrary multisoliton becomes
well-prepared for large time in the sense that the individual solitons are ordered according to
their speeds and well-separated (see e.g. [17, Section 10]).

If we consider a perturbation of an arbitrary multisoliton at initial time, our theorem does
not guarantee that a perturbation of this multisoliton remains a perturbation of a multisoliton
for large time. In fact, this property would follow from the continuity with respect to the initial
datum of LL equation in the energy space, which remains, to our knowledge, an open question.
We remark that Theorem 4.1 only shows the orbital stability of the multisolitons, which do not
reach the values ±1 for any positive time.

To our knowledge, the orbital stability of the soliton u0 remains an open question. In the
context of the Gross–Pitaevskii equation, the orbital stability of the vanishing soliton (often
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called black soliton) was proved in [12, 47]. Part of the analysis in this further context certainly
extends to the soliton u0 of the LL equation.

Let us remark that in case λ3 = 0, there is no traveling-wave solution to (13) with nonzero
speed and finite energy. However, breather-like solutions were found to exist in [73], and their
numerical stability was investigated in [99]. In the easy-axis case, there are traveling-wave
solutions (see e.g. [18]), but their third coordinate m3(x) converges to ±1 as |x| → +∞. This
prevents from invoking the hydrodynamical formulation, and thus from using the strategy
developed below in order to prove their orbital stability. In the rest of this section, we

We present now the main elements in the proof of Theorem 4.1, restricting our attention to
the analysis of a single soliton. We underline that these arguments do not make use of the inverse
scattering transform. Instead, they rely on the Hamiltonian structure of the LL equation, in
particular, on the conservation laws for the energy and momentum. As a consequence, these
arguments can presumably be extended to nonintegrable equations similar to the hydrodynamical
LL equation.

The strategy of the proof of Theorem 4.1 is reminiscent of the one developed to tackle the
stability of well-prepared chains of solitons for the generalized KdV equations [85], the nonlinear
Schrödinger equations [86], or the Gross-Pitaevskii equation [14]. A key ingredient in the proof
is the minimizing nature of the soliton vc, which can be constructed as the solution of the
minimization problem

E(vc) = min
{
E(v) | v ∈ NV(R) s.t. P (v) = P (vc)

}
, (26)

where we recall that the energy and the momentum of v = (v, w), are given by

E(v) =
1

2

ˆ
R

( (v′)2

1− v2
+
(
1− v2

)
w2 + v2

)
, and P (v) =

ˆ
R
vw.

This characterization results from the compactness of the minimizing sequences for (26), and
the classification of solitons in (24). The compactness of minimizing sequences can be proved
following the arguments developed for a similar problem in the context of the Gross–Pitaevskii
equation [11, 37].

The Euler–Lagrange equation for (26) reduces to the identity E′(vc) = cP ′(vc), where the
speed c appears as the Lagrange multiplier of the minimization problem. The minimizing
energy is equal to E(vc) = 2(1 − c2)

1
2 , while the momentum of the soliton vc is given by

P (vc) = 2 arctan((1− c2)
1
2 /c), for c 6= 0. An important consequence is the inequality

d

dc

(
P (vc)

)
= − 2

(1− c2)
1
2

< 0, (27)

which is related to the Grillakis–Shatah–Strauss condition (see e.g. [54]) for the orbital stability
of a soliton. As a matter of fact, we can use inequality (27) to establish the coercivity of the
quadratic form

Qc = E′′(vc)− cP ′′(vc),
under suitable orthogonality conditions. More precisely, we show

Proposition 4.2. Let c ∈ (−1, 1) \ {0}. There exists Λc > 0, such that

Qc(ε) ≥ Λc‖ε‖2H1×L2 , (28)

for any pair ε ∈ H1(R)× L2(R) satisfying the two orthogonality conditions

〈∂xvc, ε〉L2×L2 = 〈P ′(vc), ε〉L2×L2 = 0. (29)

Moreover, the map c 7→ Λc is uniformly bounded from below on any compact subset of (−1, 1)\{0}.
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The first orthogonality condition in (29) originates in the invariance with respect to translations
of (H1d). Due to this invariance, the pair ∂xvc lies in the kernel of Qc. The quadratic form Qc
also owns a unique negative direction, which is related to the constraint in (26). This direction
is controlled by the second orthogonality condition in (29).

As a consequence of Proposition 4.2, the functional Fc(v) = E(v) − cP (v), controls any
perturbation ε = v− vc satisfying the two orthogonality conditions in (29). More precisely, we
derive from the Euler–Lagrange equation and (28) that

Fc(vc + ε)− Fc(vc) ≥ Λc‖ε‖2H1×L2 +O
(
‖ε‖3H1×L2

)
, (30)

as ‖ε‖H1×L2 → 0. Since the energy E(v) and the momentum P (v) are conserved along the flow,
the left-hand side of (30) remains small for all time if it was small at the initial time. As a
consequence of (30), the perturbation ε remains small for all time, which implies the stability of
vc. We refer to [34] for more detail about the proof of Theorem 4.1.

4.2 Asymptotic stability

We consider now the long-time asymptotics of a solution to (13), with initial condition a
perturbation of a soliton. We would like to determine conditions such that the solution converges
to a (possible different) soliton. Let us remark that the convergence as t→∞ cannot hold in
the energy space. For instance, we could consider a solution v to (H1d) with an initial condition
v0 ∈ NV(R), such that v converges to a hydrodynamical soliton vc in the norm ‖ · ‖H1×L2 , as
t→∞. By the continuity of the energy and the momentum (with respect to this norm), we have

E
(
v(·, t)

)
→ E(vc) and P

(
v(·, t)

)
→ P (vc),

as t → ∞. Since these quantities are conserved by the flow, we conclude that E(v0) = E(vc)
and P (v0) = P (vc). Thus, the variational characterization of solitons implies that v0 must be a
soliton. Therefore, the only solutions that converge (in energy norm) to a soliton as t→∞, are
the solitons.

In conclusion, to establish the asymptotic stability, we need to weaken the notion of convergence.
Indeed, using the weak convergence in the space NV(R), Bahri [2] proved the asymptotic stability
of solitons in the hydrodynamical framework.

Theorem 4.3 ([2]). Let c ∈ (−1, 1) \ {0}. There is α∗ > 0 such that, if the initial condition
v0 ∈ NV(R) satisfies that ‖v0 − vc‖H1×L2 < α∗, then there exist a unique global associated
solution v ∈ C0(R,NV(R)) to (13), c∗ ∈ (−1, 1) \ {0} and a ∈ C1(R,R) such that, as t→∞,

v(·+ a(t), t)
)
⇀ vc∗ in H1(R)× L2(R), and a′(t)→ c∗.

This theorem provides the weak convergence towards a soliton, but this long-time dynamics
needs to take into account the geometric invariances of the problem, i.e. the translations. This
is precisely the role of the parameter a(t), whose derivative converges to the speed of the limit
soliton vc∗ . In this fashion, the solution propagates with the same speed as the limit soliton, as t
goes to infinity, as expected.

The weak convergence in Theorem 4.3 can probably be improved. Indeed, Martel and
Merle [81, 82] proved the asymptotic stability of solitons of the KdV equation, establishing a
locally (strong) convergence in the energy space. It is possible that a similar result can be shown
for the asymptotic stability of hydrodynamical solitons of the LL equation satisfy a similar, i.e. a
strong convergence in a norm of the type H1([−R(t), R(t)])× L2([−R(t), R(t)]), where R(t) is a
linear function of time.
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The proof of Theorem 4.3 is based on an approach developed by Martel and Merle for the KdV
equation [81, 82]. Their strategy can be decomposed in three steps, that we would explain in our
context, i.e. in the hydrodynamical setting. First, the orbital stability provided by Theorem 4.1
guarantees that a solution v, with initial condition v0 close enough to a soliton vc, remains
in a neighborhood of the orbit of the soliton. In particular, the solution v is bounded in the
nonvanishing space NV(R) for any t ≥ 0. It is then possible to construct a sequence of times
(tn), with tn →∞, and a limit function v0

∗ ∈ NV(R), such that, up to a subsequence,

v(·, tn) ⇀ v0
∗ in H1(R)× L2(R),

as n→∞. In addition, v0
∗ remains close to the orbit of the soliton vc. Moreover, the solution v∗

to (H1d) with initial condition v0
∗ is global, and is also close to this orbit. We point out that is

also necessary to introduce a modulation parameter due to the invariance by translation, but we
will omit it for the sake of clarity.

We need to prove that the limit profile v0
∗, and the associated solution v∗, are indeed solitons.

Thus, the second step is to study the regularity and decay properties of v∗. To this end, it is
useful to establish the weak continuity of the flow of the hydrodynamical equation with respect to
the initial condition, which implies that the solution v converges to v∗, i.e. for any t ∈ R (fixed),

v(·, tn + t) ⇀ v∗(·, t) in H1(R)× L2(R), as n→∞.

Using also a monotonicity formula for the momentum, from this convergence it is possible to
deduce that v∗ is localized in space, uniformly in time, and that v∗ has an exponential decay in
space, uniformly in time. Thus, using the Kato smoothing effect that gives regularizing properties
of the Schrödinger-type equations, it follows that v∗ is of class C∞ on R × R, and that all its
derivatives also decay in space, uniformly in time.

The third step is to show that in the neighborhood of a soliton, the only solutions to (H1d)
having this behavior are the solitons. This rigidity property follows from a Liouville type theorem.
The proof of this theorem requires another monotonicity formula, and it is the most difficult
part of the argument. We refer to [2] for more details.

By refining the approach described above, Bahri [3] also established the asymptotic stability
for initial data close to a sum of solitons, that are as usual well-prepared according to their
speeds and have sufficiently separated initial positions. The proof of this theorem relies on the
strategy developed by Martel, Merle and Tsai in [85] for the KdV equation. Let us also remark
that the locally strong asymptotic stability result for multisolitons in [85] is stronger than the
statement in [3] with M = 2. Indeed, the proof in [85] is based on a monotonicity argument for
the localized energy. It is an open problem if this kind of argument can be adapted to the study
of the LL equation, or more generally, if it possible to get a locally strong asymptotic stability
result.

In the higher dimensional case N ≥ 2, most of the questions about solitons are still open. We
refer to [33] and the references therein for more details.

5 Self-similar solutions for the LLG equation

In this section we will study the dissipative LLG equation (7). We will focus on the existence
of self-similar solutions and provide their asymptotics in dimension N = 1. We also analyze
the qualitative and quantitative effect of the damping α on the dynamical behavior of these
self-similar solutions.
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As we will see, these kinds of solutions do not belong to classical Sobolev spaces, and we
cannot invoke the Cauchy theory developed in Section 2 to give a meaning to their stability.
Therefore, we will provide a well-posedness result in a more general framework related to the
BMO space to give some stability results. We point out that the proof of the well-posedness
result uses the parabolic behavior of the equation in presence of damping, and cannot be applied
for the pure dispersive equation (i.e. α = 0) analyzed in previous sections.

5.1 Self-similar solutions

A natural question, that has been proven relevant for understanding the global behavior of
solutions and formation of singularities, is whether there exist solutions which are invariant
under scalings of the equation. In the case of equation (7), it is straightforward to see that it is
invariant under the following scaling: If m is a solution of (7), then mλ(x, t) = m(λx, λ2t) is
also a solution, for any λ > 0. Associated with this invariance, a solution m of (7) defined for
I = R+ or I = R− is called self-similar if it is invariant under rescaling, that is

m(x, t) = m(λx, λ2t), ∀λ > 0, ∀x ∈ RN , ∀t ∈ I. (31)

Setting T ∈ R and performing a translation in time, this definition leads to two types of
self-similar solutions: A forward self-similar solution, or expander, is a solution of the form
m(x, t) = f(x/

√
t− T ) for (x, t) ∈ RN×(T,∞), and a backward self-similar solution, or shrinker,

is a solution of the form m(x, t) = f(x/
√
T − t) for (x, t) ∈ RN × (−∞, T ), for certain profile

f : RN −→ S2. Expanders evolve from a singular value at time T , while shrinkers evolve towards
a singular value at time T .

Self-similar solutions have brought a lot of attention in the study on nonlinear PDEs because
they can provide some important information about the dynamics of the equation. While
expanders are related to nonuniqueness phenomena, resolution of singularities and long time
description of solutions, shrinkers are often related to phenomena of singularity formation
(see e.g. [52, 42]). On the other hand, the construction and understanding of the dynamics
and properties of self-similar solutions also provide an idea of which are the natural spaces to
develop a well-posedness theory, that captures these very often physically relevant structures.
Examples of equations for which self-similar solutions have been considered, and a substantial
work around these types of solutions has been done, include among others the Navier–Stokes
equation, semilinear parabolic equations, and geometric flows such as Yang-Mills, mean curvature
flow and harmonic map flow. We refer to [66, 96] and the references therein for more details.

Most of the works in the literature related to the study of self-similar solutions to the LLG
equation are confined to the heat flow for harmonic maps equation, i.e. α = 1. In this setting,
the main works on the subject restrict the analysis to corotational maps taking values in Sd,
which reduces the analysis of (6) to the study of a second order real-valued ODE. Then tools
such as the maximum principle or the shooting method can be used to show the existence of
solutions. We refer to [44, 46, 50, 16, 19, 15, 48] for more details on such results for maps taking
values in Sd, with d ≥ 3. Recently, Deruelle and Lamm [38] have studied the Cauchy problem for
the harmonic map heat flow with initial data m0 : RN → Sd, with N ≥ 3 and d ≥ 2, where m0

is Lipschitz 0-homogeneous function, homotopic to a constant, which implies the existence of
expanders coming out of m0.

When 0 < α ≤ 1, we established the existence of self-similar expanders for the LLG equation in
[60]. This result is a consequence of a well-possedness theorem for the LLG equation considering
an initial data m0 : RN → S2 in the space BMO of functions of bounded mean oscillation. Notice
that this result includes in particular the case of the harmonic map heat flow. We will explain
more precisely this result in Section 5.3.

24



As seen before, in absence of damping (α = 0), (7) reduces to the Schrödinger map equation
(4), which is reversible in time, so that the notions of expanders and shrinkers coincide. For this
equation, Germain, Shatah and Zeng [51] established the existence of (k-equivariant) self-similar
profiles f : R2 → S2.

In the one-dimensional case, when α = 0, (4) is closely related Localized Induction Approxi-
mation (LIA), and self-similar profiles f : R→ S2 were obtained and analyzed in [62, 63, 74]. In
the context of LIA, self-similar solutions constitute a family of smooth solutions that develop a
singularity in the shape of a corner in finite time. For further work related to these solutions,
including the study of the continuation of these solutions after the blow-up time and their
stability, we refer to the reader to [8, 5]. At the level of the Schrödinger map equation, these
self-similar solutions provide examples of smooth solutions that develop a jump singularity in
finite time.

In this section we explain how to construct the family of expanders profiles for α ∈ [0, 1], and
provide their analytical study and we discuss the Cauchy problem associated with these solutions
and their stability. Finally, we construct and analyze the family of shrinkers profiles.

5.2 Expanders in dimension one

We consider in this section equation (7) in dimension N = 1, and α ∈ [0, 1], in order to include
both the damped and undamped cases. We seek self-similar solutions of the form

m(x, t) = m(x/
√
t), x ∈ R, t > 0,

and we will say that m is the profile of the solution m. Observe that if m is a smooth solution
to (7), it can be checked that m solves the following system of ODEs

αm′′ + α|m′|2m + β(m×m′)′ +
xm′

2
= 0, on R, (32)

due to the fact that m takes values in S2. Thus, we can give a weak formulation to this equation
in the form −(A(m)m′)′ = G(x,m,m′), with

A(u) =

 α −βu3 βu2

βu3 α −βu1

−βu2 βu1 α,

 , G(x,u,p) =

αu1|p|2 − xp1
2

αu2|p|2 − xp2
2

αu3|p|2 − xp3
2

 ,

where u = (u1, u2, u3) and p = (p1, p2, p3).

Therefore, if α > 0, the system is uniformly elliptic, since A(u)ξ · ξ = α|ξ|2, for all ξ,u ∈ R3,
and we can then invoke the regularity theory for quasilinear elliptic systems, to verify that the
solutions are smooth.

In the limit case α = 0, we can show directly that the solutions are also smooth. Most
importantly, we have the following theorem that provides a rigidity result concerning the possible
solutions to (32): The modulus of the gradient of any solution must be ce−αx

2/4, for some c ≥ 0.

Theorem 5.1 ([61]). Let α ∈ [0, 1]. Assume that m ∈ H1
loc(R;S2) is a weak solution to (32).

Then m belongs to C∞(R;S2) and there exists c ≥ 0 such that |m′(x)| = ce−αx
2/4, for all x ∈ R.

In the limit cases α = 1 and α = 0, it is possible to find explicit solutions to (32), as we will
see later on. However, this seems unlikely in the case α ∈ (0, 1), and even the existence of such
solutions is not clear. We proceed now to give a way of establishing the existence of solutions
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satisfying the condition |m′(x)| = ce−αx
2/4, for any c > 0 and any α ∈ [0, 1] (notice that the case

c = 0 corresponds to the trivial constant solution).

The idea is to look for m as the tangent vector to a curve in R3, so we first recall some facts
about curves in the space. Given m : R→ S2 a smooth function, we can define the curve

Xm(x) =

ˆ x

0
m(s)ds, (33)

so that Xm is smooth, parametrized by arclenght, and its tangent vector is m. In addition,
if |m′| does not vanish on R, we can define the normal vector n(x) = m′(x)/|m′(x)| and the
binormal vector b(x) = m(x) × n(x). Moreover, we can define the curvature and torsion of
Xm as k(x) = |m′(x)| and τ(x) = −b′(x) · n(x). Since |m(x)|2 = 1, for all x ∈ R, we have that
m(x) · n(x) = 0, for all x ∈ R, that the vectors {m, n, b} are orthonormal and it is standard to
check that they satisfy the Serret–Frenet system

m′ = kn, n′ = −km + τb, b′ = −τn. (34)

Let us apply this method to find a solution to (32). We define Xm as in (33), and we remark
that equation (32) rewrites in terms of {m, n, b} as

−x
2
kn = β(k′b− τkn)− α(−k′n− kτb).

Therefore, from the orthogonality of the vectors n and b, we conclude that the curvature and
torsion of Xm are solutions of the equations −xk = 2αk′ − βτk and βk′ + αkτ = 0, that is

k(x) = ce−αx
2/4 and τ(x) = βx/2, (35)

for some c ≥ 0. Of course, the fact that k(x) = ce−αx
2/4 is in agreement with |m′(x)| = ce−αx

2/4.

Now, given α ∈ [0, 1] and c > 0, consider the Serret–Frenet system (34) with curvature and
torsion function given by (35) and initial conditions m(0) = e1, n(0) = e2, b(0) = e3. Then, by
standard ODE theory, there exists a unique global solution {mc,α, nc,α, bc,α} in (C∞(R;S2))3, and
these vectors are orthonormal. Also, it is straightforward to verify that mc,α is a solution to (32)

satisfying |m′c,α(x)| = ce−αx
2/4.

Finally, using the uniqueness of the Cauchy–Lipschitz theorem and the Serret–Frenet system,
it is simple to show the uniqueness of such solutions, up to rotations.

Theorem 5.2 ([61]). The set of nonconstant solutions to (32) is {Rmc,α : c > 0,R ∈ SO(3)},
where SO(3) is the group of rotations about the origin preserving orientations.

The above proposition reduces the study of expanders to the understanding of the family of
expanders associated with the profiles {mc,α}c,α. The next result summarizes the properties of
these solutions.

Theorem 5.3 ([59]). Let α ∈ [0, 1], c ≥ 0 and mc,α be the solution of the Serret–Frenet system
constructed above. Let mc,α(x, t) = mc,α

(
x/
√
t
)
, for (x, t) ∈ R × (0,∞). Then the following

statements hold.

(i) The function mc,α is a C∞-solution of (7) on R× (0,∞), with |∂xmc,α(x, t)| = c√
t
e−αx

2/4t.

(ii) There exists a unitary vector A+
c,α = (A+

j,c,α)3
j=1 ∈ S2 such that mc,α(·, t) converges pointwise

to the initial condition
m0

c,α = A+
c,αχR+ +A−c,αχR− , (36)

i.e.
lim
t→0+

mc,α(x, t) = A+
c,α, if x > 0, and lim

t→0+
mc,α(x, t) = A−c,α, if x < 0,

where A−c,α = (A+
1,c,α,−A

+
2,c,α,−A

+
3,c,α) and χE is the characteristic function of the set E.
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(iii) Moreover, there exists a constant C(c, α, p) such that for all t > 0 and all for all p ∈ (1,∞),

‖mc,α(·, t)−m0
c,α‖Lp(R) ≤ C(c, α, p)t

1
2p .

The graphics in Figure 1 depict the profile mc,α for fixed c = 0.8 and the values of α = 0.01,
α = 0.2, and α = 0.4. In particular, it can be observed how the convergence of mc,α to A±c,α is
accelerated by the diffusion α.

m1

m2

m3

(a) α = 0.01

m1

m2

m3

(b) α = 0.2

m1

m2

m3

(c) α = 0.4

Figure 1: The profile mc,α for c = 0.8 and different values of α.

Notice that the initial condition m0
c,α has a jump singularity at the point x = 0 whenever

the vectors A+
c,α and A−c,α satisfy A+

c,α 6= A−c,α. In this situation (and we will be able to prove
analytically that this is the case, at least for certain ranges of the parameters α and c, see
Proposition 5.5 below), Theorem 5.3 provides a family of global smooth solutions of (7) associated
with a discontinuous singular initial data (jump-singularity).

As already mentioned, in the absence of damping (α = 0), singular self-similar solutions of the
Schrödinger map equation were previously obtained in [62, 74]. In this framework, Theorem 5.3
establishes the persistence of a jump singularity for self-similar solutions in the presence of
dissipation.

When α = 0, the stability of the self-similar solutions was considered in a series of papers
by Banica and Vega [5, 6, 7]. The stability in the case α > 0 is a natural question that we will
discuss later.

Some further remarks on the results stated in Theorem 5.3 are in order. First, the energy is
given by

ELLG(t) =
1

2

ˆ ∞
−∞
|∂xmc,α(x, t)|2 dx =

1

2

ˆ ∞
−∞

(
c√
t
e−

αx2

4t

)2

dx = c2

√
π

αt
, t > 0.

It follows that the energy at the initial time t = 0 is infinite, while it becomes finite for all
positive times, showing the dissipation of energy in the system in the presence of damping.

Secondly, it is also important to remark that in the setting of Schrödinger equations, for fixed
α ∈ [0, 1] and c > 0, the solution mc,α is associated through the Hasimoto transformation with

the filament function [64], that is uc,α(x, t) = c√
t
e(−α+iβ)x

2

4t , which solves

i∂tu+ (β − iα)∂xxu+
u

2

(
β|u|2 + 2α

ˆ x

0
Im(ū∂xu)−A(t)

)
= 0, with A(t) =

βc2

t
, (37)

with initial condition a Dirac delta function since limt→0+ uc,α(x, t) = 2c
√
π(α+ iβ)δ0.
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Therefore uc,α is very rough at initial time and the standard arguments (e.g. a Picard iteration
scheme based on Strichartz estimates and Sobolev–Bourgain spaces) cannot be applied, at least
not straightforwardly, to study the local well-posedness of the initial value problem for the
Schrödinger equation (37). The existence of solutions to equation (37) associated with an initial
data proportional to a Dirac delta opens the question of developing a well-posedness theory
for Schrödinger equations of the type considered here to include initial data of infinite energy.
In the case α = 0, A(t) = 0 and when the initial condition is proportional to the Dirac delta,
Kenig, Ponce and Vega [67] proved that the Cauchy problem for (37) is ill-posed due to some
oscillations. Moreover, even after removing these oscillations, Banica and Vega [5] showed that
equation (37) (with α = 0 and A(t) = c2/t) is still ill-posed. This question was also addressed by
Vargas and Vega in [100] and Grünrock in [55] for other types of initial data of infinite energy
(see also [4]), but we are not aware of any result in this setting when α > 0 (see [57] for related
well-posedness results in the case α > 0 for initial data in Sobolev spaces of positive index).

5.2.1 Asymptotics for the profile

We want now to study the qualitative and quantitative effect of the damping α and the parameter
c on the dynamical behavior of the family (mc,α)c,α of self-similar solutions of (7) found in
Theorem 5.3. Precisely, in an attempt to fully understand the regularization of the solution at
positive times close to the initial time t = 0, and to understand how the presence of damping
affects the dynamical behavior of these self-similar solutions, we aim to give answers to the
following questions: Can we obtain a more precise behavior of the solutions mc,α at positive
times t close to zero? Can we understand the limiting vectors A±c,α in terms of the parameters c
and α?

In order to address our first question, we observe that, due to the self-similar nature of these
solutions, the behavior of the family of solutions mc,α at positive times close to the initial time
t = 0 is directly related to the study of the asymptotics of the associated profile mc,α(x) for
large values of |x|. In addition, the symmetries of mc,α (see Theorem 5.4 below) allow to reduce
ourselves to obtain the behavior of the profile as x→∞. The precise asymptotics of the profile
is given in the following theorem.

Theorem 5.4 ([59]). Let α ∈ [0, 1], c > 0. The components of mc,α satisfy respectively that
m1,c,α is an even function, and mj,c,α is an odd function for j ∈ {2, 3}. In addition, for all
s ≥ s0 = 4

√
8 + c2,

mc,α(s) =A+
c,α −

2c

s
B+
c,αe

−αs2/4(α sin(φc,α(s)) + β cos(φc,α(s)))− 2c2

s2
A+
c,αe

−αs2/2 +O
(e−αs2/4

s3

)
.

Here, sin(φc,α) and cos(φc,α) are understood acting on each of the components given by

φj,c,α(s) = aj,α,c + β

ˆ s2/4

s20/4

√
1 + c2

e−2ασ

σ
dσ, j ∈ {1, 2, 3}, (38)

for some constants a1,α,c, a2,α,c, a1,α,c ∈ [0, 2π), and the vector B+
c,α is given in terms of A+

c,α by

B+
c,α = ((1− (A+

1,c,α)2)1/2, (1− (A+
2,c,α)2)1/2, (1− (A+

3,c,α)2)1/2).

The convergence and rate of convergence of the solutions mc,α to m0
c,α established in Theo-

rem 5.3 are simple consequences of the asymptotics in Theorem 5.4. Also, similar asymptotics
hold for the normal vector nc,α and the binormal vector bc,α.

With regard to the asymptotics in Theorem 5.4, it is important to mention that the error
depends only on c. More precisely, we use the notation O(f(s)) to denote a function for which
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there exists a constant C(c) > 0 depending on c, but but on α, such that

|O (f(s))| ≤ C(c)|f(s)|, for all s ≥ s0.

At first glance, one might think that the term −2c2A+
c,αe

−αs2/2/s2 in the asymptotics could be

included in the error term O(e−αs
2/4/s3). However, we cannot do this because in our notation

the big-O must be independent of α.

When α = 1 (so β = 0), we can solve explicitly the Serret–Frenet system, to obtain

mc,1(s) = (cos(cErf(s)), sin(cErf(s)), 0), (39)

for all s ∈ R, where Erf is the non-normalized error function Erf(s) =
´ s

0 e
−σ2/4 dσ. In particular,

the limiting vectors in Theorem 5.4 are given by

A±c,1 = (cos(c
√
π),± sin(c

√
π), 0), B+

c,1 = (| sin(c
√
π)|, | cos(c

√
π)|, 1). (40)

When α = 0, the solution of (34) can be solved explicitly in terms of parabolic cylinder
functions or confluent hypergeometric functions (see [45]). Another analytical approach using
Fourier analysis techniques has been taken in [62], leading to the asymptotics

mc,0(s) = A+
c,0 −

2c

s
B+
c,0 sin(ψc) +O

(
1/s2

)
, with ψc(s) =

s2

4
+ c2 ln(s). (41)

Moreover, A+
c,0 can be computed explicitly. On the other hand, when α = 0, the phase φc,α in

(38) can be expanded as

φj,c,0(s) = aj,c,α +
s2

4
+ c2 ln(s) + C(c) +O

(
1/s2

)
.

Thus the asymptotics in Theorem 5.14 allows us to recover the logarithmic contribution in the
oscillation in (41).

When α > 0, φc,α behaves like

φj,c,α(s) = aj,c,α +
βs2

4
+ C(α, c) +O

(e−αs2/2
αs2

)
,

and there is no logarithmic correction in the oscillations in the presence of damping. Consequently,
the phase function φc,α captures the different nature of the oscillatory character of the solutions
in both the absence and the presence of damping.

It can be seen that the terms A+
c,α, B+

c,α, B+
c,α · sin(ac,α), B+

c,α · cos(ac,α) and the error term
depend continuously on α ∈ [0, 1]. Therefore, the asymptotics in Theorem 5.14 shows how the
profile mc,α converges to mc,0 as α→ 0+ and to mc,1 as α→ 1−. In particular, we recover the
asymptotics in (41).

Finally, the amplitude of the leading order term controlling the wave-like behavior of the
solution mc,α(s) around A±c,α for values of s sufficiently large is of the order c e−αs

2/4/s, from
which one observes how the convergence of the solution to its limiting values A±c,α is accelerated
in the presence of damping in the system, as depicted in Figure 1.

Let us discuss now some results answering the second of our questions. Bearing in mind that
A−c,α is expressed in terms of the coordinates of A+

c,α, we only need to focus on A+
c,α. When

α = 1 or α = 0, the vector A+
c,α is explicitly given in terms of the parameter c. When α ∈ (0, 1),

we do not have explicit expressions for these vectors, however the following result establishes
that the solutions mc,α of the LLG equation found in Theorem 5.3 are indeed associated with a
discontinuous initial data at least for certain ranges of α and c.
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Theorem 5.5 ([59]).

(i) Let α ∈ (0, 1]. There exists c∗ > 0 depending on α such that A+
c,α 6= A−c,α, for all c ∈ (0, c∗).

(ii) Let c > 0. There exists α∗0 > 0 such that A+
c,α 6= A−c,α, for all α ∈ (0, α∗0).

(iii) Let c > 0, with c /∈ N
√
π. There exists α∗1 ∈ (0, 1) such that A+

c,α 6= A−c,α, for all α ∈ (α∗1, 1).

Remark 5.6. It can be checked that A+
c,0 6= A−c,0 for all c > 0. Based on the numerical results

in [59], we conjecture that A+
c,α 6= A−c,α for all α ∈ (0, 1) and c > 0.

Concerning, the proof of the asymptotics of mc,α, a key tool is a classical change of variables
from the differential geometry of curves that allows us to reduce the nine equations in the
Serret–Frenet system into three complex-valued second order equations (see e.g. [75]). This
change of variables is related to the stereographic projection; this approach was used in [62].
In our case, the change of variables reduces the analysis of the solution {mc,α, nc,α, bc,α} of the
Serret–Frenet system to the study of three solutions to the second order differential equation

f ′′c,α(s) +
s

2
(α+ iβ)f ′c,α(s) +

c2

4
e−αs

2/2fc,α(s) = 0, (42)

associated with three different initial conditions. The analysis of the solutions of (42) requires
the control of certain integrals by exploiting their oscillatory character. This can be achieved by
using repeated integration by parts, in the spirit of the method of stationary phase. We refer to
[60] for more details of the proof.

5.3 The Cauchy problem for LLG in BMO

A natural question in the study of the stability properties of the family of solutions (mc,α)c>0

is whether it is possible to develop a well-posedness theory for the Cauchy problem for (7) in
a functional framework that allows us to handle initial conditions of the type (36). In view of
(36), such a framework should allow some “rough” functions (i.e. function spaces beyond the
“classical” energy ones) and step functions.

In the case α > 0, global well-posedness results for (7) have been established in N ≥ 2 by
Melcher [88] and by Lin, Lai and Wang [79] for initial conditions with a smallness condition on
the gradient in the LN (RN ) and on the Morrey M2,2(RN )-norm, respectively. Therefore, these
results do not apply to the initial condition m0

c,α. When α = 1, global well-posedness results
for the heat flow for harmonic maps (6) have been obtained by Koch and Lamm [68] for an
initial condition L∞-close to a point and improved to an initial data with small BMO semi-norm
by Wang [102]. The ideas used in [68] and [102] rely on techniques introduced by Koch and
Tataru [69] for the Navier–Stokes equation. Since m0

c,α has a small BMO semi-norm if c is small,
the results in [102] apply to the case α = 1.

In this subsection we explain the main results in [60] that allow us to adapt and extend the
techniques developed in [68, 69, 102] to prove a global well-posedness result for (7) with α ∈ (0, 1],
for data m0 in L∞(RN ;S2) with small BMO semi-norm. As an application of these results, we
can establish the stability of the family of self-similar solutions (mc,α)c>0 and derive further
properties for these solutions. In particular, we can prove the existence of multiple smooth
solutions of (7) associated with the same initial condition, provided that α is close to one.

Our approach to study the Cauchy problem for (7) consists in analyzing the Cauchy problem for
the associated dissipative quasilinear Schrödinger equation through the stereographic projection,
and then “transferring” the results back to the original equation. To this end, we use the
stereographic projection from the South Pole defined in (8). As mentioned in the introduction,
if m is a smooth solution of (7) with m3 > −1, then its stereographic projection u = P(m)
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satisfies the quasilinear dissipative Schrödinger equation (DNLS). At least formally, the Duhamel
formula gives the integral equation:

u(x, t) = Sα(t)u0 +

ˆ t

0
Sα(t− s)g(u)(s) ds, with g(u) = −2i(β − iα)

ū(∇u)2

1 + |u|2
, (IDNLS)

where u0 = u(·, 0) corresponds to the initial condition, and Sα(t) is the dissipative Schrödinger
semigroup (also called the complex Ginzburg–Landau semigroup) given by Sα(t)φ = e(α+iβ)t∆φ,
i.e.

(Sα(t)φ)(x) =

ˆ
RN

Gα(x− y, t)φ(y) dy, with Gα(x, t) =
e
− |x|2

4(α+iβ)t

(4π(α+ iβ)t)N/2
.

One difficulty in studying (IDNLS) is to handle the term g(u). We see that |g(u)| ≤ |∇u|2,
so we need to control |∇u|2. Koch and Taratu dealt with a similar problem when studying the
well-posedness for the Navier–Stokes equation in [69]. Their approach was to introduce some new
spaces related to BMO and BMO−1. Later, Koch and Lamm [68], and Wang [102] have adapted
these spaces to study some geometric flows. Following these ideas, we define the Banach spaces

X(RN × R+;F ) = {v : RN × R+ → F : v,∇v ∈ L1
loc(RN × R+), ‖v‖X <∞} and

Y (RN × R+;F ) = {v : RN × R+ → F : v ∈ L1
loc(RN × R+), ‖v‖Y <∞},

where ‖v‖X = supt>0 ‖v‖L∞ + [v]X , with

[v]X = sup
t>0

√
t‖∇v‖L∞ + sup

x∈RN
r>0

(
1

rN

ˆ
Qr(x)

|∇v(y, t)|2 dt dy

) 1
2

, and

‖v‖Y = sup
t>0

t‖v‖L∞ + sup
x∈RN
r>0

1

rN

ˆ
Qr(x)

|v(y, t)| dt dy.

Here Qr(x) denotes the parabolic ball Qr(x) = Br(x) × [0, r2] and F is either C or R3. The
absolute value stands for the complex absolute value if F = C and for the euclidean norm if
F = R3. We denote with the same symbol the absolute value in F and F 3.

The spaces X and Y are related to the spaces BMO(RN ) and BMO−1(RN ) and are well-
adapted to study problems involving the heat semigroup S1(t) = et∆. In order to establish
the properties of the semigroup Sα(t) with α ∈ (0, 1], we introduce the spaces BMOα(RN ) and
BMO−1

α (RN ) as the space of distributions f ∈ S′(RN ;F ) such that the semi-norm and norm
given respectively by

[f ]BMOα = sup
x∈RN
r>0

( 1

rN

ˆ
Qr(x)

|∇Sα(t)f |2
) 1

2
, ‖f‖BMO−1

α
= sup

x∈RN
r>0

( 1

rN

ˆ
Qr(x)

|Sα(t)f |2
) 1

2
,

are finite.

On the one hand, the Carleson measure characterization of BMO functions (see [95, Chapter 4]
and [77, Chapter 10]) yields that for fixed α ∈ (0, 1], BMOα(RN ) coincides with the classical
BMO(RN ) space, that is for all α ∈ (0, 1] there exists a constant Λ > 0 depending only on α and
N such that Λ[f ]BMO ≤ [f ]BMOα ≤ Λ−1[f ]BMO. On the other hand, Koch and Tataru proved in
[69] that BMO−1 (or equivalently BMO−1

1 , using our notation) can be characterized as the space
of derivatives of functions in BMO. A straightforward generalization of their argument shows that
the same result holds for BMO−1

α . Hence, using the Carleson measure characterization theorem,
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we conclude that BMO−1
α coincides with the space BMO−1 and that there exists a constant

Λ̃ > 0, depending only on α and N , such that Λ̃‖f‖BMO−1 ≤ ‖f‖BMO−1
α
≤ Λ̃−1‖f‖BMO−1 .

The above remarks allow us to use several of the estimates proved in [68, 69, 102] in the
case α = 1, to study the integral equation (IDNLS) by using a fixed-point approach. Finally,
this leads to the next result that provides the global well-posedness of the Cauchy problem for
(IDNLS) with small initial data in BMO(RN ).

Theorem 5.7 ([60]). Let α ∈ (0, 1]. There exist constants C,K ≥ 1 such that for every L ≥ 0,
ε > 0, and ρ > 0 satisfying

8C(ρ+ ε)2 ≤ ρ, (43)

if u0 ∈ L∞(RN ;C), with
‖u0‖L∞ ≤ L and [u0]BMO ≤ ε, (44)

then there exists a unique solution u ∈ X(RN × R+;C) to (IDNLS) such that

[u]X ≤ K(ρ+ ε). (45)

Moreover, u ∈ C∞(RN×R+), (DNLS) holds pointwise, supt>0 ‖u‖L∞ ≤ K(ρ+L) and u(·, t)→ u0,
as t→ 0+, as tempered distributions.

In addition, assume that u and v are respectively solutions to (IDNLS) fulfilling (45) with
initial conditions u0 and v0 satisfying (44). Then ‖u− v‖X ≤ 6K‖u0 − v0‖L∞ .

Although condition (43) appears naturally from the fixed-point used in the proof, it may not
be so clear at first glance. To better understand it, let us define for C > 0

S(C) = {(ρ, ε) ∈ R+ × R+ : C(ρ+ ε)2 ≤ ρ}.

We see that if (ρ, ε) ∈ S(C), then ρ, ε > 0 and ε ≤
√
ρ√
C
− ρ. Therefore, the set S(C) is non-empty

and bounded. The shape of this set is depicted in Figure 2. In particular, we infer that if
(ρ, ε) ∈ S(C), then ρ ≤ 1

C and ε ≤ 1
4C . In addition, if C̃ ≥ C, then S(C̃) ⊆ S(C).

1
4C

1
4C

1
C

ρ

ε

Figure 2: The shape of the set S(C).

Moreover, taking ρ = 1/(32C), Theorem 5.7 asserts that for fixed α ∈ (0, 1], we can take for
instance ε = 1/(32C) (that depends on α and N , but not on the L∞-norm of the initial data)
such that for any given initial condition u0 ∈ L∞(RN ) with [u0]BMO ≤ ε, there exists a global
(smooth) solution u ∈ X(RN × R+;C) of (DNLS). Notice that u0 is allowed to have a large
L∞-norm as long as [u0]BMO is sufficiently small; this is a weaker requirement that asking for
the L∞-norm of u0 to be sufficiently small, since [f ]BMO ≤ 2‖f‖L∞ , for all f ∈ L∞(RN ).

We remark that the smallness condition in (45) is necessary for the uniqueness of the solution.
As we will see in Theorem 5.12, at least in dimension one, it is possible to construct multiple
solutions of (IDNLS) in X(RN × R+;C), if α is close enough to 1.
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By using the inverse of the stereographic projection P−1 : C→ S2\{0, 0,−1}, that is explicitly
given by m = (m1,m2,m3) = P−1(u), with

m1 =
2 Reu

1 + |u|2
, m2 =

2 Imu

1 + |u|2
, m3 =

1− |u|2

1 + |u|2
,

we can deduce from Theorem 5.7 a global well-posedness result for (7). Moreover, the choice of
the South Pole is of course arbitrary. By using the invariance of (7) under rotations, we have the
existence of solutions provided that the essential range of the initial condition m0 is far from an
arbitrary point Q ∈ S2.

Theorem 5.8 ([60]). Let α ∈ (0, 1]. There exist constants C ≥ 1 and K ≥ 4, such that if
δ ∈ (0, 2], ε0, ρ > 0, δ ∈ (0, 2], ε0 > 0 and ρ > 0 satisfy

8K4Cδ−4(ρ+ 8δ−2ε0)2 ≤ ρ,

the following holds. Given any m0 = (m0
1,m

0
2,m

0
3) ∈ L∞(RN ; S2) and any Q ∈ S2 satisfying

inf
RN
|m0 −Q|2 ≥ 2δ and [m0]BMO ≤ ε0,

there exists a unique smooth solution m ∈ X(RN ×R+;S2) of (7) with initial condition m0 such
that

inf
x∈RN
t>0

|m(x, t)−Q|2 ≥ 4

1 +K2(ρ+ δ−1)2
and [m]X ≤ 4K(ρ+ 8δ−2ε0).

We point out that the results are valid only for α > 0. If we let α→ 0+, then the estimates
blow up. Indeed, the proofs rely on the exponential decay of the semigroup e(α+iβ)t∆, so that
these techniques cannot be generalized (at least not straightforwardly) to cover the critical case
α = 0. In particular, we cannot recover the stability results for the self-similar solutions in the
case of Schrödinger maps proved by Banica and Vega in [5, 6, 7].

As mentioned before, in [79] and [88] some global well-posedness results for (7) with α ∈ (0, 1]
were proved for initial conditions with small gradient in LN (RN ) and M2,2(RN ), respectively. In
view of the embeddings

LN (RN ) ⊂M2,2(RN ) ⊂ BMO−1(RN ),

for N ≥ 2, Theorem 5.8 can be seen as generalization of these results since it covers the case
of less regular initial conditions. The arguments in [79, 88] are based on the method of moving
frames that produces a covariant complex Ginzburg–Landau equation.

The existence and uniqueness results given by Theorem 5.8 require the initial condition to be
small in the BMO semi-norm. Without this condition, the solution could develop a singularity in
finite time. In fact, in dimensions N = 3, 4, Ding and Wang [39] proved that for some smooth
initial conditions with small energy, the associated solutions of (7) blow up in finite time.

Another consequence of Theorem 5.8 is the existence of self-similar solutions of expander type
in RN , in any dimension N ≥ 1, i.e. a solution m of the form m(x, t) = f(x/

√
t), for some profile

f : RN → S2. In particular, we have the relation f(y) = m(y, 1), for all y ∈ RN . From the
scaling (31), we see that, at least formally, a necessary condition for the existence of a self-similar
solution is that initial condition m0 be homogeneous of degree 0, i.e. m0(λx) = m0(x), for all
λ > 0. Since the norm in X(RN ×R+;R3) is invariant under this scaling, Theorem 5.8 yields the
following result concerning the existence of self-similar solutions.

Corollary 5.9. With the same notations and hypotheses as in Theorem 5.8, assume also that m0

is homogeneous of degree zero. Then the solution m of (7) provided by Theorem 5.8 is forward
self-similar. In particular there exists a smooth profile f : RN → S2 such that m(x, t) = f(x/

√
t),

for all x ∈ RN and t > 0.
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Other authors have considered expanders for the harmonic map flow (6) in different settings.
Actually, equation (6) can be generalized for mapsm :M×R+ → N , withM and N Riemannian
manifolds. Biernat and Bizoń [15] established results when M = N = Sd and 3 ≤ d ≤ 6. Also,
Germain and Rupflin [50] have investigated the case M = Rd and N = Sd, in d ≥ 3. In both
works the analysis is done only for equivariant solutions and does not cover the case M = RN
and N = S2.

5.4 LLG with a jump initial data

We want now to apply the well-posedness result to the self-similar solutions mc,α with initial
conditions m0

c,α = A+
c,αχR+ +A−c,αχR− . Let us remark that the first term in the definition of

[v]X allows us to capture a blow-up rate of 1/
√
t for ‖∇v(t)‖L∞ , as t→ 0+. This is exactly the

blow-up rate for the self-similar solutions mc,α. The integral term in the semi-norm [·]X is also
well-adapted to these solutions. Indeed, for any α ∈ (0, 1] and c ≥ 0, we have

[m0
c,α]BMO ≤ 2c

√
2π/
√
α and [mc,α]X ≤ 4c/α

1
4 . (46)

Let us start by considering a more general problem: the LLG equation, in dimension one, with
a jump initial data given by m0

A± = A+χR+ +A−χR− , where A± are two given unitary vectors
in S2. The smallness condition in the BMO semi-norm of m0

A± is equivalent to the smallness of
the angle between A+ and A−. From Theorem 5.8 we can deduce that the solution associated
with m0

A± is a rotation of a self-similar solution mc,α for an appropriate value of c. Precisely,

Theorem 5.10 ([60]). Let α ∈ (0, 1]. There exist L1, L2 > 0, δ∗ ∈ (−1, 0) and ϑ∗ > 0 such that
the following holds. Let A+, A− ∈ S2 and let ϑ be the angle between them. If 0 < ϑ ≤ ϑ∗, then

there exists a solution m of (7) with initial condition m0
A±. Moreover, there exists 0 < c <

√
α

2
√
π

,

such that m coincides up to a rotation with the self-similar solution mc,α, i.e. there exists
R ∈ SO(3), depending only on A+, A−, α and c, such that m = Rmc,α, and m is the unique
solution satisfying

inf
x∈R
t>0

m3(x, t) ≥ δ∗ and [m]X ≤ L1 + L2c.

A second consequence of Theorem 5.8 concerns the stability of the self-similar solutions.
Indeed, from the dependence of the solution with respect to the initial data in this theorem and
the estimates in (46), we obtain the following result: For any given m0 ∈ S2 close enough to
m0

A± , the solution m of (7) associated with m0 given by Theorem 5.8 must remain close to
a rotation of a self-similar solution mc,α, for some c > 0. In particular, m remains close to a
self-similar solution. The precise statement is provided in the following theorem.

Theorem 5.11 ([60]). Let α ∈ (0, 1]. There exist constants L1, L2, L3 > 0, δ∗ ∈ (−1, 0), ϑ∗ > 0
such that the following holds. Let A+, A− ∈ S2 with angle ϑ between them. If 0 < ϑ ≤ ϑ∗, then

there is c > 0 such that for every m0 satisfying ‖m0 −m0
A±‖L∞ ≤

c
√
π

2
√
α
, there exists R ∈ SO(3),

depending only on A+, A−, α and c, such that there is a unique global smooth solution m of (7)
with initial condition m0 that satisfies

inf
x∈R
t>0

(Rm)3(x, t) ≥ δ∗ and [m]X ≤ L1 + L2c.

Moreover, ‖m−Rmc,α‖X ≤ L3‖m0 −m0
A±‖L∞ . In particular,

‖∂xm− ∂xRmc,α‖L∞ ≤
L3√
t
‖m0 −m0

A±‖L∞ , for all t > 0.
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Let us now discuss the multiplicity of solutions with initial condition m0
A± . As seen before,

when α = 1, the self-similar solutions are explicitly given by (39) and limit vectors ~A±c,1 given in
(40).

ϑc,1
π

c

Figure 3: The angle ϑc,α as a function of c for α = 1.

Figure 3 shows that there are infinite values of c that allow to reach any angle in [0, π].
Therefore, using the invariance of (7) under rotations, in the case when α = 1, one can easily
prove the existence of multiple solutions associated with a given initial data of the form m0

A±

for any given vectors A± ∈ S2. In the case that α is close enough to 1, we can use a continuity
argument to prove that we still have multiple solutions. More precisely, we can establish that for
any given initial data of the form m0

A± , with angle between A+ and A− in the interval (0, π), if
α is sufficiently close to one, then there exist at least k-distinct solutions of (7) associated with
the same initial condition, for any k ∈ N. In other words, given any angle ϑ ∈ (0, π) between
two A+ and A−, we can generate any number of distinct solutions by considering values of α
sufficiently close to 1. Precisely,

Theorem 5.12 ([60]). Let k ∈ N, A+, A− ∈ S2 and let ϑ be the angle between A+ and A−.
If ϑ ∈ (0, π), then there exists αk ∈ (0, 1) such that for every α ∈ [αk, 1] there are at least k
distinct smooth self-similar solutions {mj}kj=1 in X(R × R+;S2) of (7) with initial condition

m0
A± . These solutions are characterized by a strictly increasing sequence of values {cj}kj=1, with

ck →∞ as k →∞, such that mj = Rjmcj ,α, where Rj ∈ SO(3). In particular

√
t‖∂xmj(·, t)‖L∞(R) = cj , for all t > 0. (47)

Furthermore, if α = 1 and ϑ ∈ [0, π], then there is an infinite number of distinct smooth
self-similar solutions {mj}j≥1 in X(R× R+;S2) of (7) with initial condition m0

A±.

It is important to remark that in particular Theorem 5.12 asserts that when α = 1, given
A+,A− ∈ S2 such that A+ = A−, there exists an infinite number of distinct solutions {mj}j≥1

in X(R× R+;S2) of (7) with initial condition m0
A± such that [m0

A± ]BMO = 0. This particular
case shows that a condition on the size of X-norm of the solution in Theorem 5.8 is necessary
for the uniqueness of solution. We recall that for finite energy solutions of (6), there are several
nonuniqueness results based on Coron’s technique [30] in dimension N = 3. Alouges and
Soyeur [1] successfully adapted this idea to prove the existence of multiple solutions of (7), with
α > 0, for maps m : Ω −→ S2, with Ω a bounded regular domain of R3. In our case, since
{cj}kj=1 is strictly increasing, we have at least k different smooth solutions. Notice also that the
identity (47) implies that the X-norm of the solution is large as j →∞.

5.5 Shrinkers

We end this note by discussing the backward self-similar solutions to (7), i.e. the shrinker solutions

of the form m(x, t) = f
(

x√
T−t

)
, for x ∈ R and t ∈ (−∞, T ). As in Section 5.2, we can reduce
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our problem to the study of the ODE

αf ′′ + α|f ′|2f + β(f × f ′)′ − xf ′

2
= 0, on R, (48)

which is the same equation that we obtained for the expanders, except for the minus sign in the
last term. Following similar arguments, we get

Theorem 5.13 ([61]). Let α ∈ (0, 1]. Assume that f ∈ H1
loc(R;S2) is a weak solution to (48).

Then f belongs to C∞(R;S2) and there exists c ≥ 0 such that |f ′(x)| = ceαx
2/4, for all x ∈ R.

Moreover, the set of nonconstant solutions to (48) is {Rfc,α : c > 0,R ∈ SO(3)}, where is fc,α
is given by the solution {f , g,h} of the Serret–Frenet system with curvature k(x) = ceαx

2/4 and
torsion τ(x) = −βx/2, and initial conditions f(0) = e1, g(0) = e2, and h(0) = e3.

As done for the expanders, we provide now some properties of these solutions, that are
obtained by studying the Serret–Frenet system.

Theorem 5.14 ([61]). Let α ∈ (0, 1], c > 0, T ∈ R and fc,α as above. Set m̃c,α(x, t) =

fc,α

(
x√
T−t

)
, for x ∈ R, t < T . Then m̃c,α belongs to C∞(R × (−∞, T ); S2), solves (7) for

t ∈ (−∞, T ), and |∂xm̃c,α(x, t)| = c√
T−te

αx2

4(T−t) , for all (x, t) ∈ R × (−∞, T ). Moreover, the

following properties hold.

(i) The first component of fc,α is even, while the others are odd.
(ii) There exist constants ρj,c,α ∈ [0, 1], Bj,c,α ∈ [−1, 1], and φj,c,α ∈ [0, 2π), for j ∈ {1, 2, 3},

such that we have the following asymptotics for the profile fc,α:

fj,c,α(x) =ρj,c,α cos(cΦα(x)− φj,c,α)− βBj,c,α
2c

xe−αx
2/4

+
β2ρj,c,α

8c
sin(cΦα(x)− φj,c,α)

ˆ ∞
x

s2e−αs
2/4ds+

β

α5c2
O(x2e−αx

2/2),

for all x ≥ 1, where Φα(x) =
´ x

0 e
αs2

4 ds.
(iii) The solution m̃c,α = (m̃1,c,α, m̃2,c,α, m̃3,c,α) satisfies the following pointwise convergences

lim
t→T−

(m̃j,c,α(x, t)− ρj,c,α cos
(
cΦα

( x√
T − t

)
− φj,c,α

)
= 0, if x > 0,

lim
t→T−

(m̃j,c,α(x, t)− ρ−j,c,α cos
(
cΦα

( −x√
T − t

)
− φj,c,α

)
= 0, if x < 0,

for j ∈ {1, 2, 3}, where ρ−1,c,α = ρ1,c,α, ρ−2,c,α = −ρ2,c,α and ρ−3,c,α = −ρ3,c,α.
(iv) m̃c,α(·, t)→ 0 as t→ T−, as a tempered distribution.

As for the expanders, the big-O in the asymptotics does not depend on α ∈ [0, 1]. In this
manner, the constants multiplying the big-O are meaningful and in particular, big-O vanishes
when β = 0. Let us remark that the behavior of the profile for x ≤ −1 follows from the
symmetries of the profile established in part (i).

In Figure 4, we have depicted the profile m̃c,α for α = 0.5 and c = 0.5, where we can see the
oscillating behavior. Moreover, the plots in Figure 4 suggest that the limit sets of the trajectories
are great circles on the sphere S2 when x → ±∞. This is indeed the case. The next result
establishes analytically that m̃c,α oscillates in a plane passing through the origin whose normal
vector is given by B±c,α = (B1,c,α, B2,c,α, B3,c,α), as x→ ±∞, respectively.
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Figure 4: Profile fc,α for c = 0.5 and α = 0.5. The figure on the left depicts profile for x ∈ R+

and the normal vector Bc,α ≈ (−0.72,−0.3, 0.63). The figure on the center shows the profile for
x ∈ R; the angle between the circles C±c,α is ϑc,α ≈ 1.5951. At the right, the projection of limit
cycles C±c,α on the plane R2.

Theorem 5.15 ([60]). Let P±c,α be the planes passing through the origin with normal vectors
B±c,α, respectively. Let C±c,α be the circles in R3 given by C±c,α = P±c,α ∩ S2. Then for all |x| ≥ 1,

dist(m̃c,α(x), C±c,α)) ≤ 15
√

2β

cα2
|x|e−αx2/4. (49)

In particular

lim
t→T−

dist(m̃c,α(x, t), C+
c,α)) = 0, if x > 0, and lim

t→T−
dist(m̃c,α(x, t), C−c,α)) = 0, if x < 0.

Theorem 5.15 establishes the convergence of the profile fc,α to the great circles C±c,α as shown
in Figure 4. Moreover, (49) gives us an exponential rate for this convergence. In terms of the
solution m̃c,α to the LLG equation, this provides a more precise geometric information about the
way that the solution blows up at time T . The existence of limit cycles for related ferromagnetic
models have been investigated for instance in [101, 21], but to the best of our knowledge this is
the first time that this type of phenomenon has been observed for the LLG equation. In Figure 4
one can see that ϑc,α ≈ 1.5951 for α = 0.5 and c = 0.5, where we have chosen the value of c such
that the angle is close to π/2.

In the case α = 1, the torsion vanishes, and it easy to deduce that the profile is explicitly
given by the plane curve fc,1(x) = (cos(cΦ1(x)), sin(cΦ1(x)), 0). In particular, we see that the
asymptotics in Theorem 5.14 are satisfied with ρ1,c,1 = 1, ρ2,c,1 = 1, ρ3,c,1 = 0, φ1,c,1 = 0,
φ2,c,1 = 3π/2, φ3,c,1 ∈ [0, 2π).

In the case α = 0, fc,0 is equal to mc,0 in (41), so that fc,0 converges to the point A+
c,0, as

x→∞. Hence, there is a drastic change in the behavior of the profile in the cases α = 0 and
α > 0: In the first case fc,0 converges to a point at infinity, while in the second case (49) tells us
that fc,α converges to a great circle. In this sense, there is a discontinuity in the behavior of
m̃c,α at α = 0.
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