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[1] The analysis of heavy rainfall distributional properties is a complex object of study
in hydrology and climatology, and it is essential for impact studies. In this paper, we
investigate the question of how to optimize the spatial design of a network of existing
weather stations. Our main criterion for such an inquiry is the capability of the network to
capture the statistical properties of heavy rainfall described by the Extreme Value Theory.
We combine this theory with a machine learning algorithm based on neural networks and
a Query By Committee approach. Our resulting algorithm is tested on simulated data and
applied to high-quality extreme daily precipitation measurements recorded in France at
331 weather stations during the time period 1980–2010.
Citation: Rietsch, T., P. Naveau, N. Gilardi, and A. Guillou (2013), Network design for heavy rainfall analysis, J. Geophys. Res.
Atmos., 118, 13,075–13,086, doi:10.1002/2013JD020867.

1. Introduction
[2] Weather, climate, and hydrological extremes have

always been of importance in human history. With our
changing climate, there has been a growing research effort to
understand, model, and even predict extreme events at dif-
ferent time and spatial scales in atmospheric, hydrological,
and statistical sciences [e.g., Zwiers et al., 2013]. One driver
for such a research endeavor resides in the increasing need
of characterizing the frequency and intensity of extremes
[see Alexander et al., 2006; Groisman et al., 2004]. Such
probabilistic knowledge is paramount for impact studies,
assessment methods, and adaptation strategies. In this con-
text, high priority should be given to measuring uncertain-
ties. This is directly linked to the issue, often overlooked in
the statistical analysis of extreme events, of weather stations
network design.

[3] On the one hand, statisticians and climatologists
would like to work with dense networks that have been mea-
suring long atmospherical time series in order to accurately
capture the spatial and temporal variabilities of extreme val-
ues. On the other hand, economical, regulatory, and technical
constraints demand a limited number of weather stations.
Balancing those two opposing sides boils down to the
question of how to design an optimal spatial network for
extreme values.

[4] Depending on financial resources and regulatory
requirements, the goal of designing a network can be either
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defined as augmenting a network size to improve the spatial
coverage or reducing it while maintaining the best spa-
tial coverage. In this paper, we discuss both cases but our
application will only deal with the reduction size.

[5] To highlight some of the statistical difficulties about
thinning spatial networks for extremes, we study daily
rainfall recorded by the national French weather service,
Météo-France. When analyzing rainfall measurements, there
is always a tradeoff between spatial coverage and time series
length. If we had opted to analyze daily precipitation with
at least 50 years of instrumental data, then only a few
dozen stations with high-quality recordings would have been
available. In this case, the question of reducing the network
size would have been only theoretical with no practical
value. Météo-France has the mandate to keep and maintain
those high-quality referenced stations. For this reason, we
have decided to work on a shorter time period, 1980–2010,
but with a large number of stations. With regard to extremes,
this implies that fewer extremes in time will be analyzed
and our design network has to take into account this higher-
estimation variability due to the reduced sample sizes.
Figure 1 displays the sites of our 331 weather stations. Three
different types of sites can be identified on this map. The
set of dots represents 147 weather stations with top quality
measurements. The second group of 110 triangles has also
high-quality recordings and rapid data quality checking. It
will be kept for test and validation. The last group of 74
crosses is of lesser priority in the sense that data checking
can take more than 48 h. If Météo-France wants to know the
loss of information induced by removing a few weather sta-
tions, it would certainly tap into the group X+. In contrast,
stations in Xı and in X4 correspond to reference points (air-
ports and such) and should not be candidates for removal.
In Figure 1, we can observe that the sampling is not uni-
form in space. For example, the southern part along the
Mediterranean Sea has already a higher density of stations
than the northern part along the Belgium border. This can be
explained by atmospherical and geographical reasons. The
southern part can witness complex weather systems linked to
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Figure 1. Locations of 331 weather stations in France
(source: Météo-France). The set Xı made of dots represents
147 weather stations with top quality measurements. The
second group X4 of triangles has also 110 stations of high-
quality recordings that we keep for test and validation. The
last group X+ of 74 crosses is of lesser availability (data
checking can take more than 48 h) and contains the site
candidates for removal.

the pronounced orography (local effects) and coupled with a
high population density (societal impacts). Extreme rainfall
events there can be caused by southern winds, forcing warm
and moist air to interact with mountainous areas, resulting
in severe thunderstorms. Still, in terms of spatial design for
extremes, is it better to remove stations in an already highly
dense gauged region with very heavy rainfall or to discard an
isolated weather station associated with less heavy precipi-
tation? This inquiry puts into light the two statistical tasks
needed in our study: modeling the distributional proper-
ties of extreme precipitation and developing an algorithm to
decide which stations could be removed without much infor-
mation loss in terms of those characteristics of extremes. The
first task is directly related to Extreme Value Theory (EVT)
and the second one to the field of spatial network design.

[6] For almost a century, extremal distribution features
have been extensively studied by statisticians, climatolo-
gists, and hydrologists through two main statistical quanti-
ties. The distribution of maxima over a block size (e.g., a
year or a season) has been classically approximated by the
so-called Generalized Extreme Value distribution [Fisher
and Tippett, 1928], and excesses over a fixed high threshold
have often been fitted by a Generalized Pareto (GP) distri-
bution [see Pickands, 1975]. In this work, we only focus on
excesses above a threshold and we assume that they follow
a GP distribution that is characterized by a scale and shape
parameters; see equation (1) for details.

[7] In hydrology, the regional frequency analysis (RFA)
described in Hosking and Wallis [1997] offers an interest-
ing starting point to bring together GP distributions, heavy

rainfall and spatial coherency. This RFA approach mainly
consists in fitting a GP density at each location belonging
to a climatically coherent region while the GP parameters
are constrained over this region. In other words, a spa-
tial structure is imposed on the GP parameters. This leads
to the question on how to interpolate spatially GP param-
eters according to the network shown in Figure 1. Many
avenues exist and we opt here for a well-known nonpara-
metric regression method that will link the GP parameters
with the geographical coordinates of the weather stations
(the explanatory variables). The class of neural networks,
adapted to spatial interpolation [Bishop, 2006; Ceresetti et
al., 2012], is a very flexible approach to model any contin-
uous regression function. One essential reason for such a
choice is that neural networks can be easily adapted to our
problem of spatial network design.

[8] The theory of spatial network design has been exten-
sively studied in the literature [see Smith, 2001, chapter 6].
At least two approaches can be distinguished. The first one
is based on the theory of optimal design of experiments
and has been initiated in the 1950s [Kiefer and Wolfowitz,
1959] and applied to spatial statistics in the 1980s [Fedorov
and Müller, 1989]. It consists in fitting a model to the
data and deciding to add stations at points where the vari-
ance of estimation is the highest (or to remove stations at
which the variance of the model is the lowest). The second
optimization method, based on the work of Caselton and
Zidek [1984], is a Bayesian and information theoretic-based
approach. In their work, they assume that observations come
from an underlying random field with a multivariate normal
distribution. The idea is to split the stations into two parts of
fixed size. One of them corresponds to gauged sites and the
other one to ungauged sites. The optimal design is the one
for which the gauged sites bring the most information about
the ungauged ones from an information-theoretical point of
view. A Bayesian version of network design has been care-
fully investigated in environmental sciences, especially for
dynamical monitoring networks [e.g., Berliner et al., 1999;
Nychka et al., 1997; Wikle and Royle, 1999].

[9] Those past approaches cannot be directly applied to
our problem for two reasons. First, we focus on extreme
rainfall and their distributions may be skewed and heavy
tailed. Second, the spatial patterns of precipitation are com-
plex and it is difficult to impose an explicit dynamical model
to describe them. This implies that linear models or linear
approximations of design networks [Cohn, 1996] may not be
appropriate in our context of heavy rainfall.

[10] To bypass the aforementioned limits, we will exploit
the idea of Query by Committee (QBC) which is an algo-
rithm that comes from machine learning. This algorithm was
first introduced by Seung et al. [1992] for clustering prob-
lems and extended to the regression case by Krogh and
Vedelsby [1995]. It was originally introduced to add weather
stations. The QBC is an iterative process that gradually adds
locations in order to improve the quality of the data set. It is
particularly well suited in cases where new data are expen-
sive to obtain and hence new observations have to be chosen
carefully. We will adapt this method to handle the removal
of weather stations.

[11] This paper is organized as follows. In section 2
we quickly describe the extremal behavior of heavy rain-
fall in France. Section 3 presents the QBC in our spatial
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network context and its adaptation to extreme rainfall.
The simulation study in section 4 highlights the advan-
tages, drawbacks, and limitations of the QBC. In the last
section, we apply our methodology to our French daily
precipitation measurements.

2. Modeling of Heavy Rainfall
2.1. Extreme Value Theory

[12] As already mentioned in the introduction, we are
interested by rainfall excesses above a high threshold. As
explained in the book of Coles [2001], EVT states that if the
threshold is high enough, the survival function, also called
the tail distribution, can be well approximated by a GP tail
defined as

P(Z > z) =

( �
1 + �z

�

�–1/�
, if � ¤ 0

exp
�
– z
�

�
, if � = 0,

(1)

where the random variable Z represents thresholded rain-
fall excesses, � > 0 is a scale parameter, and � is a shape
parameter. The distribution is defined for z 2 R+ if � � 0
and for z 2 [0, –� /�] if � < 0. The shape parameter
governs the heaviness of the tail and is usually found to
be positive when dealing with precipitation. Among the
different estimators for � that have been proposed in the
literature, two are widespread in hydrology and climatol-
ogy, namely the Maximum Likelihood (ML) method [Smith,
1985] and the probability-weighted moment (PWM) method
[see Hosking and Wallis, 1987]. In this paper, the estimates
are derived by the generalized probability-weighted moment
(GPWM) method introduced by Diebolt et al. [2007] which
is a refinement of the PWM one. Its use is motivated by a
wider range of application (� 2 (–1, 3/2)) compared to the
PWM approach (� 2 (–1, 1/2)). Unlike the ML estimator,
it does not require any optimization and consequently, it is
extremely fast and it does not provide divergent values (this
can happen when maximizing the likelihood). The scale and
shape parameters estimates are simply defined as

b� =
2.5b�1b�1.5

2b�1 – 2.5b�1.5
andb� =

4b�1 – (2.5)2b�1.5

2b�1 – 2.5b�1.5
, (2)

where b�s represents the empirical estimator of the GPWM
�s = E

h
ZGs

� ,�(Z)
i

with G� ,� (z) = P(Z > z).
[13] To illustrate the spatial variability of those estimates

with regard to our French rainfall data, the upper and lower
left panels of Figure 2 display the estimated values of b�
andb� for the measurements taken from the networks Xı and
X+ shown in Figure 1. At each station, the threshold equals
the 95% quantile after removing dry days. As expected for
this country, the shape parameter roughly varies from 0 to
0.5, this latter value occurring in the southern part of France.
Note that the estimated scale parameters are strongly posi-
tive and consequently, the constraint � > 0 will be satisfied
for this example. Besides the analogies and the few differ-
ences between the two interpolated maps, it is clear that the
spatial pattern of heavy rainfall in France is not uniform
and local and complex features are present. This rapid and
exploratory analysis leads to at least three questions: What
is the uncertainty estimation for the two GP parameters? Are

they correlated? And how to model the spatial structures
captured by each GP parameter?

[14] According to Diebolt et al. [2007], b� and b� given
by (2) are normally distributed with covariance matrix

† =
1

8(2� – 3)(4� – 7)

�
†1,1 †1,2
†1,2 †2,2

�
, (3)

with

†1,1 = –(� – 2)(8�2 – 10� + 13) (2� – 5)2 ,
†1,2 = –(2� – 5)(16�3 – 92�2 + 156� – 97)� ,

†2,2 =
(–32�4 + 328�3 – 1220�2 + 1918� – 1093)� 2

(� – 2)
.

The matrix † is not diagonal and this means that the two
estimators b� and b� are correlated. To visualize this cor-
relation effect, we implement a small simulation study by
randomly generating 500 GP distributed samples of size 200,
which is roughly the temporal length of our excesses data
set. Figure 3 (top, left) shows the corresponding cloud of
points for � = 25 and � = 0.5, possible values for our rainfall
application. As shown by this panel, this negative correla-
tion effect is far from being negligible and we will have to
take it into account in our design strategy. We also draw the
boxplots corresponding to the relative estimation error for O�
and O� . As expected in EVT, the shape parameter estimate
has a larger variability than the inferred scale parameter. To
assess the influence of the shape parameter on the correlation
strength, Figure 3 (bottom) displays the theoretical correla-
tion between O� and O� with � = 1 and � varying from –0.5 to
1.5. Even the smallest absolute correlation value, at � around
1.0, is still large, around 0.5. In terms of spatial design, this
implies that O� and O� should be treated as a bivariate quantity.

2.2. Nonparametric Regressions
[15] As illustrated by the maps in Figure 2, it is not trivial

to find some explanatory variables or parametric forms that
could explain the spatial pattern of heavy rainfall in France.
Hence, it makes sense to capture such complex spatial struc-
tures via a nonparametric approach. More precisely, we
assume in the remaining of this paper that the GP scale
and shape parameters vary in space and should be viewed
as follows �

R2 ! R*
+ � [–1, 1.5]

x 7! f (x) = (� (x), �(x)), (4)

where x = (lat, long) represents the latitude and longitude
coordinates of the weather station x. Basically, Diebolt
et al. [2007] tell us that we can start our investiga-
tions about spatial design with the simple nonparametric
regression model

y(x) = f (x) + �(x),

where �(x) corresponds to independent bivariate zero-
mean Gaussian vectors with covariances defined from
equation (3). In this context, the vector y(x) = ( O�(x), O�(x))
represents the estimates obtained from (2) at some selected
weather station location x. At this stage, we would like to
emphasize a few points.
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Figure 2. Exploratory analysis of heavy rainfall in France. The (left) individual and (right) interpolated
GP parameters obtained with (2), respectively. Each station belongs to the networks Xı and X+ shown in
Figure 1.

[16] In contrast to classical regression problems, our
“observational” vector y(x) is not observed anymore. It
represents the estimated GP parameters, so the temporal
dimension has been squeezed into a distributional form.

[17] As our heavy rainfall is assumed to be GP distributed,
it is tempting to assume that those inferred GP parame-
ters follow a bivariate Gaussian. But, as � (x) and �(x) are
allowed to vary in space, the two-dimensional covariance
defined from equation (3) will also vary in space. This brings
additional modeling complexity. Instead of imposing the
asymptotic covariance blueprint described by equation (3),
we prefer to integrate the uncertainty brought by the
GP parameters estimation with resampling techniques; see
section 3.3.

[18] It is also possible to add another level of complexity
in the noise structure �(x). For example, one could replace
our noise independence assumption between �(xj) and �(xk)
for j ¤ k by imposing a spatial covariance structure between

the pair of stations ( j, k). This is classically done in experi-
mental design for linear models [e.g., Berliner et al., 1999;
Nychka et al., 1997; Wikle and Royle, 1999]. As f (x) is con-
sidered nonparametric here, identifiability issues will raise
quickly and we prefer to keep the assumption of indepen-
dence in �(x). In other words, we allow for a complex mean
behavior in f (x) and a simple covariance structure in �(x),
instead of a simple spatial trend and a complex covariance.

[19] To estimate the unknown function f (x) from {y(xi)}
with i = 1, : : : , n, there exists a large variety of nonpara-
metric regression methods in the statistical literature [e.g.,
Hastie et al., 2001]. Keeping in mind our end goal (spatial
design), we use one-hidden-layer neural networks with a
hyperbolic tangent as activation function and two linear out-
put neurons (two neurons because we jointly model the two
GP parameters).

[20] In a nutshell, a neural network scheme expresses
the observations as an additive combination of nonlinear
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Figure 3. Basic properties of the GP estimates defined by (2). (top, left) The strong negative correlation
between 500 estimates of � = 25 and � = 0.5 and sample size 200. (top, right) The boxplots indicate the
relative estimation error for O� and O� . (bottom) The theoretical correlation between O� and O� with � = 1
and � varying from –0.5 to 1.5.

blocks (here hyperbolic tangent functions that depend on
the weather station latitude and longitude coordinates as
explanatory variables), i.e.,

ˇ
(H+1)
0 +

HX
j=1

ˇ
(H+1)
j tanh

�
ˇ

( j)
0 + ˇ( j)

1 lat + ˇ( j)
2 long

�
,

where H is called the number of hidden neurons and ˇ rep-
resents the vector of parameters in R4H+1 to be estimated.
The networks are optimized by minimizing a classical sum
of squares between observed and predicted values. Among
the different optimization routines available, we choose the
standard backpropagation algorithm [see LeCun et al., 1998;
Rumelhart et al., 1986]. Concerning the number of hidden
neurons H that characterizes the network complexity, we use
a standard k-fold cross validation criterion [Ceresetti et al.,
2012, section 4.1]. As an example, the right panels of
Figure 2 (right, top and bottom) show one possible set of two
maps obtained by a neural network with two linear outputs
and jointly fitted to the two GP parameter values displayed

on the left panels (those parameters have been centered and
renormalized when fitting the neural network).

[21] One of the features of neural networks that differenti-
ates them from other interpolation techniques such as splines
is that the optimization of the parameters converges to local
minima [see Rumelhart et al., 1986]. This means that a dif-
ferent initialization of the parameters will lead to a different
network, probably with a different complexity. This draw-
back can be viewed as an asset in a spatial design context. It
allows to generate a wide variety of regression functions for
f (x). The Query by Committee algorithm explained below
takes advantage of this property.

3. Query by Committee and Spatial Design
3.1. Presentation of the Algorithm

[22] The Query by Committee (QBC) approach is a
machine learning algorithm introduced by Seung et al.
[1992]. It is based on neural networks and allows to create
design of experiments. Its usefulness is emphasized in situ-
ations where it is expensive and time consuming to obtain
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new data [see Krogh and Vedelsby, 1995]. We start by a
presentation of its principle and theoretical basis.

[23] The key ingredient of the QBC resides in its so-called
committee of experts. This term simply means that m dif-
ferent experts are capable to produce m different models of
the unknown function f (x). This is very similar to Bayesian
Model Averaging techniques [see, e.g., Hoeting et al., 1999;
Sabourin et al., 2013]. Then, the idea is to search where
these models disagree the most with respect to a common
opinion. Mathematically, this latter term can be viewed as
a weighted ensemble average [see Hansen and Salomon,
1990; Perrone and Cooper, 1993] defined by

f (x) =
mX

k=1

pk Of
(k)

(x), (5)

where ( Of
(1)

, : : : , Of
(m)

) represents our m models (experts) and
the nonnegative weights pk correspond to a priori knowledge
about the quality of each expert. Here we set them all at 1/m.

[24] A natural and important question is how to produce
the committee of experts. As already mentioned, the opti-
mization of neural networks converges to local minima and
thus offers a simple way to build several different models
with the same initial data set. Another avenue that we will
also use resides in the possibility to draw samples from our
GPWM estimates; see section 3.3.

[25] To measure the disagreement among experts, we
simply compute

�(x) =
1
m

mX
k=1

d( Of
(k)

(x), f (x)), (6)

where d(., .) is a distance between the ensemble average
and each individual member at the site x; see section 3.2
for details. The QBC algorithm then advices to choose
new weather stations at the local maxima of the disagree-
ment function and starts the routine again with the updated
data sets.

[26] If s represents the number of stations that we want to
add at each iteration, then the algorithm can be summed up
as follows:

[27] 1. Take the initial training network Xı = (x1, : : : , xn)
and its corresponding observational vector Y = (y1, : : : , yn)
with yi = ( O�(xi), O�(xi)).

[28] 2. Build a committee of m experts ( Of
(1)

, : : : , Of
(m)

) by
regressing Y on Xı with m neural networks obtained by
changing the initial conditions.

[29] 3. Find the s largest local maxima of the disagreement
function�(x) among all experts over the whole territory and
denote them by X 0 :=

�
x01, : : : , x0s

�
.

[30] 4. Use the estimates obtained at the stations of X 0 to
get a new observational vector Y 0 =

�
y01, : : : , y0s

�
.

[31] 5. Add the elements of X 0 (resp. Y 0) to the initial
training network X (resp. Y).

[32] 6. Restart from Step 1 with the updated data sets until
a stopping criterion is reached.

[33] After each algorithmic loop, the average f (x) needed
in Step 3 is recomputed with the updated data sets.

[34] As already stated in the introduction, our main goal
is to propose a design algorithm to reduce the number of
stations. In its current form, the QBC method only adds
weather stations. This issue can be solved by noticing that

rainfall data are already available at the stations that could be
removed. More precisely, the candidates for removal belong
to the set X+ shown in Figure 1. Hence, if we want to remove
r stations from X+, we can progressively add stations from
X+ to Xı until only r stations remain in X+. These last r
stations will be considered the least informative and will be
removed from the network. The choice of r, classically given
by the decision maker, corresponds to our stopping criterion
mentioned in Step 6.

[35] To assess the quality of the final fit, we have kept the
set Xtest shown in Figure 1 for validation. The generalization
error can be derived as

�2
test =

X
xi2X4

d(yi, f (xi)), (7)

where yi represents the estimate inferred at the location xi.

3.2. Choice of the Disagreement Function
[36] An essential feature of the QBC resides in the choice

of the distance d(., .) to compute the disagreement func-
tion defined by (6). If one is only interested in the shape
parameter � , a pertinent choice could be

d� ( Of
(k)

(x), f (x)) =
�
O� (k)(x) – �(x)

�2
.

Similarly, optimizing the network with respect to � could be
done by opting for

d� ( Of
(k)

(x), f (x)) =
�
O� (k)(x) – �(x)

�2 .

In hydrology, estimating high return levels represents a
classical output and, in this context, a valuable distance
could be

dp( Of
(k)

(x), f (x)) =
�bq(k)

p (x) – qp(x)
�2

,

where p 2 (0, 1) and the GP quantile is obtained from

bq(k)
p (x) =

�
(1 – p)–b�(k)(x) – 1

�b� (k)(x)b� (k)(x)
.

[37] In the remainder of the paper, we focus on the
three distances: d� (., .), d� (., .) and dp(., .). To conclude this
section, we note that the function d(., .) is called at two differ-
ent places, for computing�(x) and calculating�test. In terms
of interpolation quality, i.e., goodness of fit, the objects of
interest are the scale and shape surfaces. Hence, d� (., .) and
d� (., .) should be used in �test, but the distance dp(., .) does
not give direct information about the two surfaces. Compar-
ing experts is a different task and dp(., .) can be plugged in
�(x).

3.3. GP Parameters Variability
[38] As noted in section 2.2, our “observational” vector

y(x) = ( O�(x), O� (x)) does not correspond to rainfall inten-
sity but to estimated GP parameters. As GPWM are inferred
quantities, it is possible to draw many realizations of shape
and scale parameters in order to capture some variability
inherent to transforming rainfall excesses into GP param-
eters. For each station xi, this means that we compute the
GPWM estimates with the corresponding sample of excesses
of length, say ni. This gives us a pair (b� (xi),b�(xi)) of esti-
mates. Then we simulate ` samples of length ni from a
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GP(b� (xi),b�(xi)) distribution. The GPWM method is applied
on each sample to provide ` shape and scale estimates. Those
` shape and scale parameters available at each station will
be used as the initial input of our QBC algorithm.

[39] Another approach to resample GP parameters could
be to use the asymptotic Gaussian approximation proposed
by Diebolt et al. [2007]; see equation (3). This will be
faster but not much, the GPWM equations defined by (2)
being explicit. By avoiding the asymptotic Gaussian approx-
imation, we do not have to assume that the GP parameter
estimates are perfectly normally distributed and conse-
quently, we explore more accurately the uncertainties linked
to the estimation with the GPWM method (the scatterplot in
Figure 3 (top, left) may not be exactly Gaussian).

3.4. QBC for Heavy Rainfall
[40] Before implementing the main steps of our modi-

fied QBC algorithm, the practitioner needs to make a few
decisions.

[41] One disagreement function d(., .) has to be selected.
The total number of stations, say r, that should be removed
from the set X+ has to be fixed. If we do not know how
many sites have to be disregarded, then r has to be estimated
by computing a stopping criterion defined by �test [e.g., see
Gilardi, 2004].

[42] The thinning of the network is based on adding pro-
gressively sites and, at the end of the process, removing the
stations “that have not been added.” Depending on the com-
putational capacities available, the number of stations added
at each QBC iteration, say s (or equivalently the number of
iterations), has to be chosen. Adding only one station at each
iteration, i.e., s = 1, is ideal, but it is the most expensive in
terms of computational costs since the committee of experts
has to be reconstructed by fitting m neural networks at
each iteration.

[43] The selection of m, the number of experts, and of
`, the number of replicas for exploring the GPWM esti-
mates variability, also corresponds to a tradeoff between
computational constraints and sampling quality.

[44] All parameters being specified, we can summarize
our modified QBC algorithm:

[45] 1. Compute the GP parameter estimates with (2) at
each station i 2 {1, : : : , n}. Denote yi,1 := (b�1(xi),b� 1(xi)).

[46] 2. For each station i 2 {1, : : : , n}, for each
j 2 {2, : : : , `}, repeat the following resampling tech-
nique (explained in section 3.3) to obtain ` observational
vectors Y1, : : : ,Y` where Yj =

�
y1,j, : : : , yn,j

�
and yi,j =

(b� j(xi),b� j(xi)):
a. Use the vector of estimates y1,i to simulate a sample
Zi,j = (z1

i,j, : : : , zni
i,j) from a GP with the parameters

of yi,1. We take ni as the number of observation in
the original sample of precipitation provided by
station i.

b. Use the data of Zi,j to obtain the vector of the
resampled estimates of the parameters of the GP yi,j.

[47] 3. For j = 1, : : : , `, take the initial training network as
X = (x1, : : : , xn) and its corresponding observational vector
Yj =

�
y1,j, : : : , yn,j

�
and implement the modified QBC, i.e.,

(i) Build a committee of m experts ( Of
(1)

j , : : : , Of
(m)

j )
by regressing Yj on X with m neural networks
obtained by changing the initial conditions.

(ii) Find the s largest local maxima of �(x) that belong
to X+ and denote them by X 0 :=

�
x01, : : : , x0s

�
� X+.

(iii) Use the estimates obtained at the stations of X 0
to get a new observational vector Y 0j = (y01,j, : : : , y0s,j)
by applying the resampling technique with ` = 1.

(iv) Add the elements of X 0 (resp. Y 0j ) to the current
training network X (resp. Yj).

(v) Restart from Step (i) with the updated data sets X
and Yj until no more than r stations can be added.

(vi) Store the sites in X+ that have not been added in
Step (v).

[48] 4. Plot the frequency of the weather stations in X+
that have been stored in Step (vi).

[49] From a statistical perspective, the final product of this
experiment can be understood as a binomial trial. We have
a set of dim(X+) individuals in X+ that can belong to two
different groups of size r (stations removed) and dim(X+) – r
(stations kept), respectively. If all stations contain the same
information (the null hypothesis), then the number of times,
say N(x), that a site x should be removed in ` trials follows
a binomial distribution

P(N(x) = i) =

 
`

i

!
(p(x))i (1 – p(x))`–i , (8)

with
p(x) =

r
dim(X+)

and i = 1, : : : , `.

For each station, we can identify if we fail to reject the null
hypothesis (p(x) does not vary with x) for a given significant
level, say 0.95.

4. Simulation Study
[50] In this simulation section, we mainly investigate the

impacts of the disagreement functions, among four possibil-
ities: d� (., .), d� (., .), dp(., .) with p = 0.95 and a completely
random disagreement.

[51] To simplify tables and figures, we work with one-
dimensional simulations, i.e., x 2 [–1, 1], and focus on two
cases. The first case deals with a constant scale parameter
and a varying shape parameter

� (x) = 30 and �(x) =
1
2
�
1.3 – exp

�
–16x2�� – 0.1, (9)

see the solid line in Figure 4. The second case corresponds
to a dual situation, a constant shape parameter, and a varying
scale parameter

� (x) = 20
�
1.3 – exp

�
–16x2�� and �(x) = 0.5, (10)

see the solid line in Figure 5. In both cases, the varying func-
tions are mostly constant but with a sharp drop around 0.5.
If weather stations are uniformly distributed along the seg-
ment [–1, 1], a well-adjusted optimal network should keep
its stations around x = 0.5 and proposes to remove stations
in regions where the parameters are fairly constant. Other
setups with different varying shape parameters variations
have also been studied and are available upon request (basi-
cally, our main conclusions remain identical).

[52] Concerning the other parameters, we consider a set
of n = 55 stations randomly drawn on [–1, 1] and divided
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Figure 4. QBC outputs for GP parameters following (9).
The solid line represents the hidden true shape parameter
�(x). The dots along the x axis correspond to the 20 sites in
Xı and the locations candidate for removal are represented
by the 20 vertical grey lines. The QBC is tuned to remove
r = 5 stations out of 20. From top to bottom, the four hori-
zontally distinct groups of black segments correspond to the
x coordinates of stations removed by the QBC with respect
to our four disagreement functions, d� (., .) and d� (., .), dp(., .)
with p = 0.95 and a complete random one, respectively.
Crosses indicate sites where the binomial hypothesis with
p(x) = 5/20 and ` = 100 trials, see equation (8), is rejected
at the 0.95 significant level. Each black segment height is
proportional to the number of times that a site is chosen to
be removed.

into our three groups with dim(Xı) = dim(X+) = 20 and
dim(X4) = 15. Our goal is to remove r = 5 stations, i.e., to
add 20 – 5 = 15 stations that belong to X+. We set s = 3 to
add three stations at each iteration. The number of experts m
and the resampling of GP estimates ` are set to m = ` = 100.

[53] In Figure 4, the dots along the x axis correspond to the
20 sites in Xı. For this particular random draw, we can see
that there are a little bit more sites on the interval [0, 1] than
on [–1, 0]. Consequently, it would make sense to remove sta-
tions on already dense segments. The set of stations which
are candidates for removal is represented by 20 vertical grey
lines, i.e., points in X+. From top to bottom, the four horizon-
tally distinct groups of black segments correspond to the x
coordinates of stations removed by the QBC with respect to
our four disagreement functions, d� (., .) and d� (., .), dp(., .)
with p = 0.95 and a completely random one, respectively.

[54] As expected, the completely random disagreement
function produces the bottom group of black segments with-
out any crosses. All grey lines are chosen with the same
probability, and the shape parameter fluctuations are not
taken into account. In comparison, the three other disagree-
ment functions do a much better job. For instance, no
significant grey lines marked with a cross are around x = 0
where there is a lot of change in �(x) and few stations
in Xı, information is precious here and no stations should
be removed in this vicinity. In addition, the asymmetrical

distribution of circles belonging to Xı has been taken into
account. Many more stations in X+ are removed on the right
side of x = 0 than on the left one. Still, slight differences exist
between the QBC outputs based on d� (., .), d� (., .), or dp(., .).
In particular, d� (., .) appears to capture well the two facts that
a very high density of sites in Xı are located at x 2 [0.5, 1]
and the shape parameter is constant over this region. If five
stations have to be removed, the network should be thinned
around this area. This feature is not as clear with dp(., .) and
to a lesser degree with d� (., .).

[55] The same type of interpretation can be undertaken if
we replace model (9) by model (10); see Figure 5. One par-
ticular aspect of this graph is that the random draw of sites in
Xı had put three sites in a tiny neighborhood around x = 0.4.
But no station around this point was removed with the dis-
tance d� (., .) and d� (., .). This phenomenon can be explained
by the sharp gradient in � (x) and the low number of points
in X+ in the interval [0, 0.5]. One can also compare with the
neighborhood of also three sites around x = –0.6. This is
reassuring because it emphasizes that the density network
cannot be the sole criterion for removal. Our QBC algorithm
attempts to balance three constraints: the smoothness of the
GP parameters and two spatial densities, of the unmov-
able network Xı and of the group of potentially removable
stations X+.

[56] Concerning the goodness of fit among distances, the
values of �test defined by (7) and computed at the first and
last QBC iterations are displayed for our two models in
Table 1. The bold values represent the best value within
a block. The distance to find the optimal design via the
QBC algorithm, see equation (6), can be different from the
distance used for assessment in �test defined by (7).

[57] For model (9), the expected result occurs, the small-
est �test happens when the distances to optimize, see (6),
and to judge, see (7), are equal. As the number of added
stations increases at each QBC step, it makes sense that�test
is smaller at the last iteration.

Figure 5. Same as Figure 4 but for GP parameters follow-
ing (10) and the solid line corresponds to the hidden true
scale parameter � (x).
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Table 1. Values of �test Defined by (7) at the First and Last QBC Iterations,
for Each Distance Function and for Our Two Modelsa

Distance Chosen Model (9) Model (10)

in (7) in (6) First Step Last Step First Step Last Step

d� (., .) 3.45 3.30 3.77 2.97
d� (., .) d� (., .) 3.45 3.32 3.77 2.95

dp(., .) 3.45 3.34 3.77 2.97
Random 3.45 3.32 3.78 3.02
d� (., .) 0.159 0.147 0.142 0.116

d� (., .) d� (., .) 0.160 0.145 0.142 0.116
dp(., .) 0.160 0.146 0.142 0.116

Random 0.160 0.150 0.143 0.116
aThe bold values represent the best value within a block.

Figure 6. Candidate sites for removal from the original set of 74 stations in X+; see Figure 1. Each panel
from top left to bottom right corresponds to a different disagreement function: d� (., .), d� (., .), dp(., .) with
p = 0.95, and a completely random disagreement. Crosses indicate sites where the binomial hypothesis
with p(x) = 14/74 and ` = 100 trials, see equation (8), is rejected at the 0.95 significant level. Grey
diamonds correspond to sites where we fail to reject the null hypothesis (i.e., less than 26 out of 100)
and the color intensity is proportional to the number of times that a station was selected for removal, the
lighter the smaller.
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Table 2. Same as Table 1 but for Our French Heavy Rainfall and
for d� (., .)a

Distance Chosen QBC

in (7) in (6) First Step Last Step

d� (., .) 4.44 3.81
d� (., .) d� (., .) 4.44 3.83

dp(., .) 4.44 3.81
Random 4.45 3.89

aThe bold values represent the best value within a block.

[58] For model (10), there is no clear winner with respect
to d� (., .) in (7). This may be due to a few causes. The
true shape parameter being small, the quantity of the type
( O� – �)2 can be minuscule and more decimals are needed (or
a renormalized version). A second reason is that the shape
parameter is constant in model (10), so judging with d� (., .)
is not discriminatory enough. This is particularly relevant

because one needs very large sample sizes to detect
small changes around � = 0.5 [e.g., P. Naveau et al., A
non-parametric entropy-based approach to detect changes
in climate extremes, submitted to Journal of the Royal
Statistical Society. Series B, Statistical Methodology, 2013;
Table 2].

5. French Heavy Rainfall
[59] Coming back to our French rainfall network in

Figure 1, the number of stations in X+ is written as 74 =
15�4+14 to run our QBC algorithm in reasonable time (i.e.,
a few hours on a desktop computer). With our notations, this
means that we add at each iteration s = 15 sites and the
r = 14 remaining stations will be tagged as strong candidates
for removal. This strategy will be repeated ` = 100 times
with the ` resampled GP estimates that will be used as inputs
for the m = 100 experts.

Figure 7. Same as Figure 6 but with the hypothesis that heavy rainfall follow a Gaussian distribution
with mean �(x) and variance � 2(x).
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[60] From a computational point of view, it takes basi-
cally a little more than a couple of seconds to build a neural
network with a desktop computer. Applying the algorithm
100 times, i.e. making 4 + 1 steps each time and building
committees of 100 experts at each step, implies that 50,000
neural networks are constructed during the whole process.
This roughly corresponds to 100,000 seconds which means
a little more than one day of computation.

[61] Figure 6 provides four reduced networks, each one
corresponding to a different disagreement function: d� (., .),
d� (., .), dp(., .) with p = 0.95, and a completely random
disagreement. Clearly, the random option cannot take into
account the spatial variability of the GP parameters observed
in Figure 2 and each station in X+ is selected for removal
with the same probability.

[62] The other three distances produce similar maps and
the statistically significant stations (with regard to the
binomial hypothesis with p(x) = 14/74 and ` = 100 trials)
are basically spread along the northern coastline of France
with a few points in the center of France; see the crosses.
No stations are removed in the Pyrenees and Corsica. This
makes sense because the orography is complex and the
network in Xı is not very dense there. A few stations in the
southern region near Avignon have also been selected for
removal. This can be explained by the very high density of
stations in Xı.

[63] The main message of Figure 6 appears to be that it
is more reasonable to remove stations in the north, above
the 46ı latitude, (even if the network density is already low
there) than discard sites in the south (even if the network is
already dense there). This can be explained by statistical and
atmospheric arguments. Intense heavy rainfall happen in the
south, and the GP parameter is more difficult to estimate for
heavier tails.

[64] Concerning the goodness of fit, we only focus on
d� (., .) in Table 2, the values for d� (., .) being basically all
equal to 0.124. As expected, the fit improves when adding
stations through Step 3-v of our QBC, between the first
and last step. The disagreement functions d� (., .) and dp(., .)
appear to provide the best value of �test.

[65] To close our rainfall example, we repeat our QBC
algorithm but with the “business as usual” hypothesis, i.e.,
we assume in (4) that heavy rainfall excesses follow a
Gaussian distribution with mean �(x) and variance � 2(x),
instead of our GP distribution assumption with parame-
ters � (x) and �(x). In the disagreement function dp that
is used here, the quantile corresponds to the quantile of a
Gaussian distribution with parameters � and � 2. The nor-
mality assumption cannot be justified by EVT, but it is
interesting for the decision maker to know if the classical
Gaussian model leads to a different set of stations. Compar-
ing Figures 6 and 7 answers positively to this inquiry. The tip
of Brittany, the furthest Western part of France, is treated dif-
ferently, no stations removed in Finistère with the Gaussian
hypothesis. In addition, the disagreement function dp(., .) in
Figure 7 produces a very different network thinning from
the ones obtained with d�(., .) and d� (., .). This was not the
case with the GP assumption, the QBC generated similar
reduced networks. This French example illustrates that net-
work thinning for extremes should be treated carefully and
classical statistical tools may not be appropriate to make the
right decisions.

6. Discussion
[66] Our main goal here was to identify weather stations

that can be potentially removed from an existing network. A
variety of aspects were not taken into account in this study
and could open other research avenues. We can list at least
five items.

[67] We have to keep in mind that this approach should not
be seen as a decision criterion but as a help in the decision
process. Other factors such as economical costs also have to
be taken into consideration when it comes to decide which
stations have to be removed. Also, it would be of great inter-
est to use the economical cost of the suppression of a station
as a weight to include in the decision process.

[68] In our application, we only focus on heavy rainfall
but a weather station measures other atmospheric variables.
For example, extreme winds and heat waves clearly are of
interest for impact studies. Hence, a multivariate statistical
approach that would integrate many atmospheric character-
istics (and not only precipitation) should be implemented
before taking any decisions concerning the removal of
stations. This poses new mathematical challenges because
multivariate EVT should be used to model the interactions
between different types of extremes, especially for heat
waves which have very different spatial patterns (large scale
phenomena) than heavy rainfall (local scale).

[69] This example of heat waves also brings into light
our assumption of spatial independence among our non-
parametric regression residuals. For our case study, this is
a reasonable hypothesis because we only want to remove a
dozen of sites over France, i.e., the stations are apart by a few
hundred kilometers. It is very unlikely, for heavy rainfall,
that a strong spatial dependence is present in our residuals
for this spatial range. But, it would have been different for
heat waves and a covariance structure in �(x) would be
then necessary.

[70] From a more mathematical perspective, it would also
be interesting to take advantage of spatial GP processes
of excesses. This probabilistic object can handle infinite
dimensions, and therefore, they are especially tailored to
interpolate extreme values at locations without a station.
This property is particularly useful for augmenting the
network size. Although the probabilistic framework of such
spatial processes is now well understood [e.g., Ferreira
and de Haan, 2012], there is still a lot of open mathe-
matical questions regarding the modeling and inference of
such processes.

[71] Finally, combining EVT and machine learning
appears to be a promising strategy to handle practical prob-
lems dealing with heavy rainfall modeling. One important
idea of the QBC is the committee of experts. Here we
have used neural networks, but other nonparametric (such as
Kernel regression methods) or even parametric approaches
could be used. Augmenting the number of ways of build-
ing experts will allow to capture additional uncertainties. In
other words, other experts (i.e., statistical models) could be
easily added to the QBC blueprint. Still, theoretical work
on the mathematical side and practical considerations are
needed to insure that such a strategy is optimal at removing
weather stations in an operational context.
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