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Introduction

The human caused perturbation of the carbon cycle controls climate change, directly through emissions but also via climate feedbacks on natural carbon sources and sinks. The terrestrial carbon cycle has been modeled to be particularly sensitive to current and future climate and atmospheric CO2 changes, but regional patterns and mechanisms of terrestrial carbon sources and sinks remain uncertain [START_REF] Schimel | Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems[END_REF][START_REF] Houghton | Balancing the global carbon budget[END_REF]. During the past decades, considerable efforts have been made to develop process-based carbon cycle models, as tools to understand terrestrial carbon mechanisms and fluxes at local, regional, continental and global scales [START_REF] Moorcroft | How close are we to a predictive science of the biosphere?[END_REF][START_REF] Huntingford | Highly contrasting effects of different climate forcing agents on terrestrial ecosystem services[END_REF]. Models were applied to hindcast historical changes (Cramer et al., 2001;Piao et al. 2009), and to forecast future changes [START_REF] Friedlingstein | Climate-carbon cycle feedback analysis: Results from the (CMIP)-M-4 model intercomparison[END_REF]Sitch et al;2008). Although carbon cycle models have been tested against CO2 fluxes measured by eddy-covariance technique at sites around the world [START_REF] Sitch | Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model[END_REF][START_REF] Krinner | A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system[END_REF][START_REF] Jung | Assessing the ability of three land ecosystem models to simulate gross carbon uptake of forests from boreal to Mediterranean climate in Europe[END_REF]Stockli et al. 2008;[START_REF] Wang | Variations in atmospheric co2 growth rates controlled by tropical temperature[END_REF]Keenan et al. 2012), satellite based leaf area index (LAI) retrieval products [START_REF] Lucht | Climatic Control of the High-Latitude Vegetation Greening Trend and Pinatubo Effect[END_REF][START_REF] Piao | Effect of climate and CO2 changes on the greening of the Northern Hemisphere over the past two decades[END_REF][START_REF] Piao | Net carbon dioxide losses of northern ecosystems in response to autumn warming[END_REF], and observed vegetation productivity and carbon storage [START_REF] Randerson | Systematic assessment of terrestrial biogeochemistry in coupled climate-carbon models[END_REF], it is difficult to draw a clear picture of model performance and shortcomings from the current model-benchmarking literature dealing with the global terrestrial carbon cycle. The reasons for this are several: 1) in situ high-quality measurements are very sparse, and often cannot be extrapolated readily to larger spatial scales, 2) satellite measurements provide only indirect proxies of carbon variables, 3) atmospheric CO2 evaluates the combination of a terrestrial carbon model, atmospheric transport model and potentially ocean carbon models, and as such the results thus depend on the choice of the atmospheric transport model and its bias [START_REF] Stephens | Weak Northern and Strong Tropical Land Carbon Uptake from Vertical Profiles of Atmospheric CO2[END_REF], 4) uncertainties associated with measurements are often not reported, which generates type-1 error (a model is estimated to be realistic but the benchmark measurement is not accurate enough to say this) and type-2 error (a model is estimated to be erroneous, whereas the benchmark data is biased), and 5) several recent studies have documented prototype benchmark schemes for the carbon cycle [START_REF] Randerson | Systematic assessment of terrestrial biogeochemistry in coupled climate-carbon models[END_REF][START_REF] Cadule | Benchmarking coupled climate-carbon models against long-term atmospheric CO2 measurements[END_REF][START_REF] Blyth | A comprehensive set of benchmark tests for a land surface model of simultaneous fluxes of water and carbon at both the global and seasonal scale[END_REF], however, a community-wide set of agreed benchmark tests and performance indicators is currently still under development.

Current coupled-climate-carbon models used in the 4 th and 5 th Assessment Reports of IPCC generally project a positive feedback between global warming and the reduction of terrestrial carbon sinks in the 21 st century [START_REF] Denman | Couplings Between Changes in the Climate System and Biogeochemistry[END_REF]. In some instances, these feedbacks become stronger over time than the CO2-induced fertilization and hence the land surface has the potential to eventually become an overall source [START_REF] Cox | Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model[END_REF].

Characterizing this feedback has important implications for mitigation policies designed to stabilize greenhouse gas levels [START_REF] Matthews | Decrease of emissions required to stabilize atmospheric CO2 due to positive carbon cycle-climate feedbacks[END_REF]. The magnitude of this positive feedback varies markedly among models [START_REF] Friedlingstein | Climate-carbon cycle feedback analysis: Results from the (CMIP)-M-4 model intercomparison[END_REF]. For the SRES-A2 CO2 emission scenario, by 2100 the modelled climate-carbon cycle feedback is estimated to cause an additional increase in CO2 content of between 20 ppmv to 200 ppmv, which corresponds to an additional global temperature increase of 0.1 • C-1.5 • C [START_REF] Friedlingstein | Climate-carbon cycle feedback analysis: Results from the (CMIP)-M-4 model intercomparison[END_REF]. This large uncertainty in carbon-climate feedbacks is associated with the different sensitivities of simulated terrestrial carbon cycle processes to changes in climate and atmospheric CO2 [START_REF] Friedlingstein | Climate-carbon cycle feedback analysis: Results from the (CMIP)-M-4 model intercomparison[END_REF][START_REF] Huntingford | Contributions of carbon cycle uncertainty to future climate projection spread[END_REF]. Other important processes, such as nutrient constraints, may further affect terrestrial carbon climate interactions (Arneth et al. 2010[START_REF] Zaehle | Carbon-nitrogen interactions on land at global scales: current understanding in modelling climate biosphere feedbacks[END_REF].

In this study, a set of ten process-based models is tested for their ability to predict current global carbon fluxes (GPP, NPP & NBP) and their sensitivity to climate variability and rising atmospheric CO2 concentration. The model ensemble includes: HyLand [START_REF] Levy | Modelling the impact of future changes in climate, CO2 concentration and land use on natural ecosystems and the terrestrial carbon sink[END_REF], Lund-Potsdam-Jena DGVM [START_REF] Sitch | Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model[END_REF], ORCHIDEE [START_REF] Krinner | A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system[END_REF], Sheffield-DGVM [START_REF] Woodward | A global land primary productivity and phytogeography model[END_REF][START_REF] Woodward | Simulating vegetation processes along the Kalahari transect[END_REF], TRIFFID [START_REF] Cox | Description of the TRIFFID dynamic global vegetation model[END_REF], LPJ-GUESS [START_REF] Smith | Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space[END_REF], NCAR_CLM4C [START_REF] Oleson | Technical description of version 4.0 of the Community Land Model (CLM)[END_REF][START_REF] Lawrence | Parameterization improvements and functional and structural advances in version 4 of the community land model[END_REF], NCAR_CLM4CN [START_REF] Oleson | Technical description of version 4.0 of the Community Land Model (CLM)[END_REF][START_REF] Lawrence | Parameterization improvements and functional and structural advances in version 4 of the community land model[END_REF], OCN [START_REF] Zaehle | Carbon and nitrogen cycle dynamics in the O-CN land surface model: 1. Model description, site-scale evaluation, and sensitivity to parameter estimates[END_REF], and VEGAS (Zeng et al., 2005). We compare the model output of NBP with the RLS from Friedlingstein et al. (2010) (hereafter FR10). For global climatological GPP we compare model results with those from Jung et al. (2011) (hereafter JU11), which is based on the global interpolation of flux tower observations using a model tree ensemble (MTE) regression approach trained with satellite FAPAR and climate fields. Finally, ecosystem controlled warming experiments (six sites) and Free Air CO2 Enrichment (FACE) experiments (four sites) are used to test the models' sensitivity of NPP to individual changes in temperature and CO2.

Methods

Terrestrial carbon cycle models

The 10 carbon cycle models used in this study are briefly described in the Table S1. All models describe surface fluxes of CO2, water and the dynamics of water and carbon pools in response to change in climate and atmospheric composition. However, the formulation and number of processes primarily responsible for carbon and water exchange differs among models.

Two simulations, S1 and S2, were performed over the period 1860-2009. In S1, models were forced with rising atmospheric CO2 concentration, while climate was held constant (recycling climate mean and variability from the early decades of the 20 th century, e.g. [1901][1902][1903][1904][1905][1906][1907][1908][1909][1910][1911][1912][1913][1914][1915][1916][1917][1918][1919][1920] were from the combination of ice core records and atmospheric observations (Keeling & Whorf, 2005 and update). Details of the simulation settings are described in Sitch et al. (submitted). It should be noted that land use change was not taken into account in S1 and S2.

Data-oriented global estimation of GPP

Direct observation of Gross Primary Production (GPP) at the global scale does not exist. [START_REF] Beer | Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate[END_REF]. Uncertainty of the GPP estimated from MTE is relatively small, at about ± 6 Pg C yr -1 [START_REF] Jung | Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations[END_REF]. However, this does not consider other sources of uncertainty such as measurement uncertainties of eddy covariance fluxes, of global predictor variables as well as sampling bias driven by unevenly distributed eddy covariance flux sites, with many sites in temperate regions and very few sites in the tropics. As described further below, this dataset should also be used with extreme caution for assessment of interannual variability of GPP.

The 'residual' land sink (RLS)

The RLS of anthropogenic CO2 during the period (Van Oss, 2006). Emissions from land use change [START_REF] Houghton | The annual net flux of carbon to the atmosphere from changes in land use 1850[END_REF] are based on statistics published by the United Nations Food and Agriculture

Organization and a book-keeping model [START_REF] Houghton | How well do we know the flux of CO2 from land-use change?[END_REF]. Atmospheric annual CO2 growth rate is derived from the NOAA/ESRL global cooperative air-sampling network [START_REF] Conway | Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network[END_REF]. The ocean sink of anthropogenic CO2 is calculated from the average of four ocean carbon cycle models (Le Quéré et al., 2009). It is important to note that the net land use source estimate in FR10 is 0.3 Pg C yr -1 lower over 2000-2009 than the previous LUC emission estimate (Le Quéré et al., 2009). This lower estimate uses the same 

Field ecosystem warming experiment

Data from a harmonized field warming experiment dataset compiled from 124 published papers (Lu et al., submitted) was used to evaluate model performance. In order to compare with model outputs, available observations of Net Primary Production (NPP) in experimental sites with warming only treatments and the control experiment were used in our study. The six available sites were located over the temperate and boreal northern hemisphere between 30 o N -70 o N with mean annual temperature spanning from -7 o C to 16 o C and mean annual precipitation spanning from 320 mm to 818 mm (Table S2). The magnitude of experimental warming ranges from 1 o C to 3.5 o C among different treatments and different sites. These levels of warming are of a magnitude equal or higher than inter-annual variability of temperature, and so complement comparison of simulations S2 and their testing against data, where for the latter an emphasis might be placed on anomalously warm years. It should be noted that total NPP (both aboveground and belowground NPP) were measured in four of the sites, while the other two sites (HARS and Toolik Lake) only measured aboveground NPP.

Free Air Carbon Dioxide Enrichment (FACE) experiments

Free Air Carbon Dioxide Enrichment (FACE) experiment provided field experimental data on the response of NPP to elevated CO2. Four FACE experiments in temperate forest stands provided data for our evaluation (Table S3). NPP was calculated as annual carbon increments in all plant parts plus the major inputs to detritus, litterfall, and fine root turnover.

We used data from [START_REF] Norby | Forest response to elevated CO2 is conserved across a broad range of productivity[END_REF], however data from the ORNL FACE site was corrected and extended to 2008 [START_REF] Iversen | CO2 enrichment increases carbon and nitrogen input from fine roots in a deciduous forest[END_REF]. Data from young stands in the early stage of sapling development with expanding canopies, and some plots with increasing O3 at the ASPEN FACE were not included in the dataset, as described by [START_REF] Norby | Forest response to elevated CO2 is conserved across a broad range of productivity[END_REF]. There were in total 21 site-year NPP observations available for our study. Site characteristics and experiment settings in each stand can be found in Table S3, with a more detailed description given in [START_REF] Norby | Forest response to elevated CO2 is conserved across a broad range of productivity[END_REF]. There are no FACE experiments for tropical ecosystems.

Analysis

Response of carbon fluxes to climate variations

We estimate empirically the response of GPP, NPP and NBP to climate variability (MAT and annual precipitation) over the last three decades by using a multiple regression approach (Eq. 1):

y γ int x T δ int x P ε Eq. 1
where y is the detrended anomaly of the carbon fluxes GPP, NPP and NBP from the S2 reflect the contributive effect of temperature (or precipitation) variations on carbon fluxes, but not the 'true' sensitivities of these fluxes, given that: (1) temperature and precipitation co-vary over the time, and (2) other climate drivers discarded in Eq.1, such as solar radiation, humidity, and wind speed may also contribute to the variability of detrended carbon fluxes.

The regression coefficients are calculated using maximum likelihood estimates (MLE). The uncertainty in γ int and δ int was estimated using the standard error of the corresponding regression coefficients. Data from 1980 to 2009 were used to quantify the response of carbon fluxes to climate variations, except for GPP where instead the period 1982-2008 was considered in order to be consistent with the period covered by the JU11 data-oriented estimate. In order to be consistent with RLS, we first aggregate each grid cell carbon flux into a global mean flux (see SI) and then remove the trend using a least squares linear fitting method.

Response of carbon fluxes to CO 2 trended over the past 30 years

Two approaches were applied to estimate the response of carbon fluxes to CO2 (β). In the first approach, β was estimated based on S1 simulations (i.e. the simulations that only consider change in atmospheric CO2 concentration) using Eq. (2):

2 CO F     (Eq. 2)
where, △F is the difference of average carbon fluxes between the last and the first five years of the S1 simulation, while △CO2 is the corresponding change in atmospheric CO2 concentration. In order to estimate the uncertainty of β, we also calculated the change in carbon fluxes and CO2 over the study period by randomly selecting a different year over the first and last five year period.

In the second approach, we used a multiple regression approach (Eq. 3) to estimate β for RLS, or for JU11's GPP, and for each model's carbon flux from simulation S2 (both climate and CO2 change). 

Temperature sensitivities of vegetation productivity derived warming experiment

For warming experiments, the sensitivity of NPP to an (generally stepwise) applied change in temperature, is estimated as the ratio of the relative difference between NPP in warmed minus control plots to the applied warming magnitude. The estimated temperature sensitivity at each experimental site is then compared with the ratio of int NPP  estimated from model simulations and with the multiple regression method (Eq. 1). This corresponds to the 30-year average NPP (hereafter int NPP

R

), and with models being sampled at the grid point containing the experimental site. In addition, we also extract modeled sensitivities in 'climate neighbours' grid points where the mean annual temperature differs by less than 1 o C and mean annual precipitation by less than 50 mm from the conditions at each experimental site. Only neighbouring grid points with the same dominant vegetation cover as observed at each experimental site are retained, e.g. for grassland warming sites; all grid points with grassland cover of less than 50% are excluded. Since models do not explicitly represent wetland processes, we grouped wetland with grasslands. Using a similar approach, we estimated the sensitivities of NPP to rising atmospheric CO2 concentration from the FACE sites and the relative response of NPP to CO2 ( NPP R , the ratio of NPP  estimated by Eq. 2 to the 30-year average NPP in each model).

We note that due to this set-up, we cannot make quantitative statements about the nature of the model-data agreement. Both, the step-wise nature of the experiment and the magnitude of the perturbation may induce non-linear effects in the ecosystems that cannot (and should not) be reproduced by ecosystem models simulating the consequences of a gradual and less pronounced perturbation over the last three decades. In particular, because of the saturating effect of CO2 on leaf level photosynthesis, we expect to see a larger relative effect of CO2 on photosynthesis when evaluating the increase from 338 to 386 ppm than the response from field experiments elevating CO2 concentration from about 360 to 550 ppm.

Vegetation productivity

GPP estimation

Global terrestrial GPP averaged across 10 models is 133±15 Pg C yr -1 , ranging from 111±4 Pg C yr -1 (±s.d. of GPP over the three decades) in SDGVM to 151±4 Pg C yr -1 in ORCHIDEE and CLM4C. The higher estimates are consistent with the inferred estimate from 18 OCO in the atmosphere [START_REF] Welp | Interannual variability in the oxygen isotopes of atmospheric CO2 driven by El Nino[END_REF], although this high value is also uncertain and in contrast to earlier studies [START_REF] Ciais | A Large Northern Hemisphere Terrestrial CO2 Sink Indicated by the 13C/12C Ratio of Atmospheric CO2[END_REF][START_REF] Beer | Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate[END_REF]. The JU11 GPP product derived from eddy-covariance flux towers, generally gives a lower estimate of GPP than the majority of the processed-based models (Fig. 1), particularly in temperate regions (Fig. S2b). At the global scale, the magnitude of GPP (113±3 Pg C yr -1 ) in LPJ-GUESS is close to JU11 (118±1 Pg C yr -1 ). However, this result should be viewed with caution, since a similar global magnitude can mask compensation of biases between tropical and non-tropical regions. As shown in Fig. S2 and S3, the LPJ-GUESS simulation has a low bias of GPP in tropical regions compared to JU11 (68% of JU11), compensated by a high bias in non-tropical regions.

At the global scale, the correlation of interannual GPP variations among the different models is much higher than that with JU11 as shown by Fig. 2a. JU11 GPP is estimated from satellite and eddy covariance flux tower measurements, and flux tower sites are mainly distributed in northern temperate regions (mainly forest). Hence a larger sampling uncertainty is associated with JU11 for GPP outside this northern region. This is of importance as tropical ecosystems are largely driving the interannual variability of the carbon cycle [START_REF] Denman | Couplings Between Changes in the Climate System and Biogeochemistry[END_REF]. Interestingly, the lowest correlation between GPP from models and JU11 is found in tropical regions (Fig. S4c) perhaps due to fewer eddy-covariance flux sites available to create the interpolated global product. Furthermore, the standard deviation of GPP is found to be substantially higher in the 10 process models than in JU11 (compare error bars in Fig. 1a), and particularly over tropical regions (Fig. S2c). This leads us to make the hypothesis that the GPP interannual variability is under-sampled in JU11 and hence systematically lower than the interannual variability simulated by the DGVMs. This hypothesis is further discussed in the next section.

Response of GPP to temperature variations ( int

GPP

 )

At the global scale, the models suggest that interannual variation in global GPP is not significantly correlated with temperature (all variables detrended), as can be seen from the large differences in the magnitude and even in the sign of the int GPP  (Fig. 3a) due to the different sensitivity values over different regions (Fig. S6). In the tropical regions, all models have a negative apparent sensitivity int

GPP  (-2.2±1.2 Pg C yr -1 o C -1 or -2.9±1.4 % o C -1 ;
significant for 7 out of 10 models), while JU11 has a positive int GPP  (0.4±0.7 Pg C yr -1 o C -1 or 0.6±1.0 % o C -1 , P>0.05) (Fig. S6c). JU11's GPP response to temperature variability over tropical regions, however, may be considered as more uncertain than models, since satellite FAPAR used by JU11 for spatial-temporal interpolation of GPP distribution between flux tower locations is often contaminated by cloudiness (Myneni et al., 1997). Furthermore, JU11

trained their MTE using spatial gradients among different sites (there are few long series) and then used the derived relationship to extrapolate to temporal interannual gradients. This assumes that spatial and interannual sensitivity of GPP to climate are the same, which may be not correct. Measurements of tree growth in tropical forests have shown negative correlation with temperature [START_REF] Clark | Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984-2000[END_REF][START_REF] Clark | First direct landscape-scale measurement of tropical rain forest Leaf Area Index, a key driver of global primary productivity[END_REF]. This result is also supported by short-term leaf level measurements in tropical forests which indicate a decrease in net carbon assimilation at higher temperature [START_REF] Tribuzy | Variacoes da temperatura foliar do dossel e o seuefeito na taxa assimilatoria de CO2 na Amazonia Central[END_REF]Doughty and Goulden, 2008). This negative response of vegetation productivity to MAT variability may arise from the fact that tropical forests already operate near to a high temperature optimum threshold above which vegetation photosynthesis declines sharply [START_REF] Corlett | Impacts of warming on tropical lowland rainforests[END_REF].

In boreal regions, vegetation growth is limited by temperature which controls the length of the growing-season, implying that rising MAT causes an extension of the growing season, and induces an increase in GPP [START_REF] Piao | Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades[END_REF][START_REF] Richardson | Influence of spring and autumn phenological transitions on forest ecosystem productivity[END_REF]. It has been suggested that rising temperature is enhancing vegetation growth in boreal regions [START_REF] Lucht | Climatic Control of the High-Latitude Vegetation Greening Trend and Pinatubo Effect[END_REF][START_REF] Piao | Effect of climate and CO2 changes on the greening of the Northern Hemisphere over the past two decades[END_REF]Piao et al., 2009;[START_REF] Wang | Spring temperature change and its implication in the change of vegetation growth in North America from 1982 to 2006[END_REF] except in regions affected by summer drought, during the analysis period, such as parts of Alaska [START_REF] Beck | Changes in forest productivity across Alaska consistent with biome shift[END_REF]. All the models show significant positive relationship (P<0.05) between boreal GPP and MAT with an average int GPP  of 0.8±0.3 Pg C yr -1 o C -1 (or 4.5±1.5 % o C -1 ), which is close to the int GPP  derived from the GPP of JU11 (0.9±0.3 Pg C yr -1 o C -1 or 4.7±1.5% o C -1 ) (Fig. S6a).

In temperate regions, the response of GPP to MAT depends partly on the balance between the positive effect of warming through extending the growing season in spring and possibly in autumn (although recent work suggest that the photoperiod may limit GPP, [START_REF] Bauerle | Photoperiodic regulation of the seasonal pattern of photosynthetic capacity and the implications for carbon cycling[END_REF], reaching more optimal growing temperature, and the negative effect of warming through enhanced soil moisture stress in summer. At the regional scale, most models (except CLM4CN and HYLAND) and JU11 data-product show a non-significant interannual correlation between MAT and GPP (Fig. S6b). significantly decreased aboveground NPP by -8% o C -1 (Fig. 4). The sign of this sensitivity in Haibei Alpine Research Station is correctly captured by six of ten models (Fig. 4). One can also see in Fig. 4 In addition, it should be noted that the methods we used to quantify the response of NPP to temperature change in models (interannual variability) and in field warming experiments (multi-years treatments have a higher amplitude of stepwise warming than the inter-annual range of natural variability, and no covariate precipitation change) are different, which may cause inconsistencies in evaluating models. Even at the same site, the magnitude of the temperature sensitivity of NPP depends upon the magnitude of warming. For example, field warming experiments at the drier site in Minnesota, USA (47°N, 92°W), show that temperature sensitivity of NPP for a step 2 o C warming (1 -6% yr -1 ) is larger than that for a step 3 o C warming (-3 -2% yr -1 ). Furthermore, int NPP R of processed-based models does not consider local heterogeneity of environmental conditions and land cover, and local biogeophysical feedbacks (e.g., [START_REF] Long | Food for Thought: Lower-Than-Expected Crop Yield Stimulation with Rising CO2 Concentrations[END_REF]). This spatial scale mismatch adds uncertainty to model evaluation using warming experiment sites. For instance, the temperature sensitivity of NPP derived from the warming experiment at the two Minnesota sites (47°N, 92°W) that are located in the same grid point of models, varies from -3% o C -1 to 22% o C -1 , which is a larger range than that predicted by the models over the corresponding grid point (from -2.7% o C -1 to 6.1% o C -1 ). In addition, the models may not fully represent ecosystem-level mechanisms underlying NPP responses to warming in experiments, such as warming-induced changes in nutrient availability, soil moisture, phenology, and species composition [START_REF] Luo | Terrestrial Carbon-Cycle Feedback to Climate Warming[END_REF]. Overall, the inconsistency of the response of NPP to temperature change between models and field warming experiments should be addressed by further studies, for instance running the same models with site observed forcing data and vegetation, soil parameters.

Comparison with the field warming experiments

Response of GPP to precipitation variations ( int

GPP

 )

Over the past few decades, many regions have experienced drought, which has a negative effect on vegetation productivity [START_REF] Zhao | Drought-induced reduction in global terrestrial net primary production from 2000 through 2009[END_REF] hemisphere mid-latitudes, for example, led to an estimated reduction of vegetation NPP by 5% compared to the average of the previous two decades (Zeng et al., 2005). Although individual drought events cannot be attributed to anthropogenically-induced climate change, there is a concern that a general situation of more extreme weather events is emerging, including the potential for alteration to the global hydrological cycle. Over the northern hemisphere, all models have a positive int GPP  . However the interannual correlation between GPP and precipitation was found not significant for JU11, HYLAND, LPJ-GUESS, and VEGAS in boreal regions (Fig. S7a), and JU11, HYLAND in northern temperate regions (Fig. S7b).

There has been much discussion in the literature about the impact of drought on vegetation growth and mortality in tropical regions [START_REF] Nepstad | Amazon drought and its implications for forest flammability and tree growth: a basin-wide analysis[END_REF][START_REF] Costa | Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest[END_REF][START_REF] Phillips | Drought Sensitivity of the Amazon Rainforest[END_REF][START_REF] Houghton | How well do we know the flux of CO2 from land-use change?[END_REF]. A rainfall exclusion experiment in an east-central Amazonian rainforest at Tapajos showed that a 50% reduction in precipitation led to a 25% reduction in vegetation NPP over the first two years of the experiment [START_REF] Nepstad | The effects of partial throughfall exclusion on canopy processes, aboveground production, and biogeochemistry of an Amazon forest[END_REF].

It has been suggested that spatial GPP variability in 30% of tropical forest and in 55% of tropical savannahs and grasslands is primary correlated with the precipitation [START_REF] Beer | Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate[END_REF]. Indeed, at the continental scale, all models show a positive correlation of GPP with annual precipitation over tropical regions (not significant in JU11 and HYLAND), but the magnitude of int Overall, at the global scale, int GPP  averaged across the 10 models is 4.1±2.0 Pg C yr -1 per 100 mm (or 3.1±1.5% per 100 mm) (Fig. 3b). Among the 10 models, 8 exhibit significant correlations between global GPP and annual precipitation (all variables detrended).

Considering that global GPP was not correlated with MAT in any of the models (see section 3.2.1), we conclude that interannual variation of GPP is more closely controlled by precipitation rather than by temperature (Piao et a., 2009;[START_REF] Jung | Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations[END_REF]. The TRIFFID model has the highest int GPP  (7.6±1.5 Pg C yr -1 per 100 mm or 5.5±1.1% per 100 mm) as seen in Fig. 3b. Differences in simulated land cover between models, in addition to structural sensitivities (i.e., sensitivity of stomata to soil moisture) may also explain the variability among models, particularly in arid and temperate regions [START_REF] Poulter | Impacts of land cover and climate data selection on understanding terrestrial carbon dynamics and the CO2 airborne fraction[END_REF].

Response of vegetation productivity to CO 2

According to the results of simulation S1 driven by atmospheric CO2 only, model results consistently indicate that rising atmospheric CO2 concentration increased NPP by 3-10% with an average of 7% over the past three decades (for a 48 ppm CO2 increase) (or 0.05-0.2 % ppm -1 with the average of 0.16 % ppm -1 ). This relative response of NPP to CO2 ( NPP R ) is slightly larger than the sensitivity derived from FACE elevated CO2 experiments, which might be expected because of the saturating effect of CO2 on photosynthesis. [START_REF] Norby | Forest response to elevated CO2 is conserved across a broad range of productivity[END_REF] analyzed the response of NPP to elevated CO2 in four FACE experiments in temperate forest stands and concluded that the enhancement of NPP due to elevated CO2 (about 180 ppmv) was of about 23% (or 0.13% ppm -1 ). When comparing the results from the four FACE experiments with model simulations at the corresponding sites and climatic condition, however, we found that the models underestimated CO2 fertilization effect on NPP at the ASPEN FACE site, but overestimated it at the Duke and ORNL FACE sites (Fig. 6). The study of [START_REF] Hickler | CO2 fertilization in temperate FACE experiments not representative of boreal and tropical forests[END_REF] suggested that these currently available FACE results are not applicable to vegetation globally since there may be large spatial heterogeneity of the positive effect of CO2 on vegetation productivity across the global land surface. Hence we do not present the FACE values in global plot Fig 5a . As shown in Fig. 6, the modeled response of NPP to CO2 is generally larger in dryer regions. Among the four FACE experimental sites, a largest CO2 fertilization effect of NPP was also found in the driest (ASPEN FACE) site (Fig. 6 and Table S3). This NPP enhancement could be due to the additional saving of soil moisture induced by elevated CO2 on stomatal closure (i.e. increased water use efficiency of plants in water limited regions).

It has been suggested that the CO2 fertilization effect on vegetation productivity may be overestimated by not considering N limitations [START_REF] Hungate | Nitrogen and climate change[END_REF][START_REF] Bonan | Quantifying carbon-nitrogen feedbacks in the Community Land Model (CLM4)[END_REF][START_REF] Zaehle | Carbon and nitrogen cycle dynamics in the O-CN land surface model: 1. Model description, site-scale evaluation, and sensitivity to parameter estimates[END_REF]. As in Bonan and Levis 2010, we find that for CLM4, GPP  in the CLM4CN that considers C-N interaction and N limitations is lower than that estimated in the CLM4C without C-N interaction (Fig 5a 100ppm or 18±2% per 100ppm), which is two times larger than that estimated by CLM4CN (6.6±1.2 Pg C yr -1 per 100ppm or 7±1% per 100ppm) (Fig. S9c).

According to equation ( 3), the GPP data-driven product of JU11 shows weak sensitivity to CO2 at the global scale (Fig. 5a), although satellite data used to drive the empirical model of [START_REF] Jung | Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations[END_REF] includes a greening trend whose spatial pattern can be partly accounted for by rising CO2 [START_REF] Piao | Effect of climate and CO2 changes on the greening of the Northern Hemisphere over the past two decades[END_REF]. Furthermore, the model results show that GPP  derived from simulations S2 (i.e. consider both climate change and rising atmospheric CO2 concentration and equation ( 3)) are generally larger than GPP  from simulation S1 that only consider rising atmospheric CO2 concentration (Fig. 5a). This is particularly true in the tropical regions (Fig. S9c). This may be partly because the mean climate in the early decades of the 20 th century for S1 simulation is wetter than that in end decades of the 20 th century for S2 simulation in the tropical regions (IPCC, 2007), or indicate that the linear regression approach does not replicate the intricate non-linear complexity of the global carbon cycle.

Net Biome Productivity

NBP estimation

Global NBP is not significantly correlated with the global GPP across 10 models (R=0.48, P=0.16) (Fig. 1), suggesting that models predicting larger GPP does not necessarily translate into larger NBP. The ensembles model average NBP (all without land use change)

during the period 1980-2009 is 2.0±0.8 Pg C yr -1 , which is very close to the RLS of 2.1±1.2

Pg C yr -1 . However, there are large differences among different models, with NBP ranging from 0.24±1.03 Pg C yr -1 (VEGAS) to 3.04±0.98 Pg C yr -1 (HYLAND) (Fig. 1). The smaller NBP of VEGAS is related to the net tropical carbon source produced by this model (-0.12±0.9

Pg C yr -1 ). In contrast, the other 9 models (in absence of land-use) produce a net sink of 1.13±0.44 Pg C yr -1 on average (Fig. S2c), explaining 54% of global RLS.

In addition, for analysis of the interannual variability in modeled global NBP from 1980 to 2009, all models show generally good agreement with the observed variability of the RLS (P<0.05) (Fig. 2b). Interestingly, for NBP variability, CLM4CN has a lower correlation with RLS than CLM4C (Fig. 2b), implying that in this particular model, incorporation of the nitrogen cycle does not improve the performance for interannual variability, which may reflect model structural problems in describing processes controlling C-N interactions [START_REF] Bonan | Quantifying carbon-nitrogen feedbacks in the Community Land Model (CLM4)[END_REF]. Note, however, that a strong dampening of the interannual variability in the carbon cycle is not a general feature of nitrogen dynamics [START_REF] Zaehle | Carbon and nitrogen cycle dynamics in the O-CN land surface model: 1. Model description, site-scale evaluation, and sensitivity to parameter estimates[END_REF]). In addition, at the regional scale, the correlation of interannual NBP among different models is higher in the tropical regions than that in non-tropical regions (Fig. S5).

Response of NBP to temperature variations ( int

NBP

 )

Direct observational evidence for a positive feedback of the terrestrial carbon cycle to climate warming is limited [START_REF] Scheffer | Positive feedback between global warming and atmospheric CO2 concentration inferred from past climate change[END_REF][START_REF] Cox | Illuminating the Modern Dance of Climate and CO2[END_REF][START_REF] Frank | Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate[END_REF].

Applying the regression of Equation ( 1) to RLS timeseries defines an 'observed'contributive effect of temperature variations on the RLS variations ( int RLS  ) of -3.9±1.1 Pg C yr-1 o C -1 (Fig. 3a), which is larger than, but within the uncertainty range of int NBP  in the 10 models (-3.0±1.5

Pg C yr -1 o C -1 ). Except for HYLAND and SDGVM, 8 out of 10 models show significant negative correlation between NBP and MAT, but int NBP  varies among models from -1.0±0.6

Pg C yr -1 o C -1 in HYLAND to -5.1±0.9 Pg C yr -1 o C -1 in LPJ-GUESS. Such difference in across 10 models mainly depends on model differences in the response of GPP to temperature (R=0.63, P=0.05), rather than response of respiration to temperature (R=0.44, P>0.05).

Furthermore, the contribution of fire to the is also limited (Fig. S8a). The value of int

NBP  in CLM4CN (-2.1±0.5 Pg C yr -1 o C -1 ) is only half of that in CLM4C (-4.3±0.8 Pg C yr -1 o C -1 ),
which may be partly because during warmer years, increased soil nitrogen mineralization and availability may promote vegetation growth [START_REF] Melillo | Soil warming and carbon-cycle feedbacks to the climate system[END_REF]. However, int S6a) due to its highest int GPP  (Fig. S6a). Such model divergence on over boreal zone and the consistency in the sign of over tropical zone can explain why models agree more on the interannual variation of tropical NBP than on the interannual variations of boreal NBP (Fig. S5a andc). In the northern temperate regions, all models (except CLM4CN) show negative int NBP  with average of -0.44 ±0.45 Pg C yr -1 o C -1 (Fig. S6b).

Response of NBP to precipitation variations ( int

NBP

 )

The RLS is not significantly correlated with the precipitation (after statistically removing the contributive effect of temperature using partial correlation) at the global scale, but in contrast, 8 of 10 models still have a significant positive correlation between NBP and precipitation (all variables detrended) (Fig. 3b). Furthermore, 9 models (except LPJ-GUESS) estimate a higher int NBP  (average of 2.3±1.6 Pg C yr -1 per 100 mm of interannual precipitation change) compared to the observed RLS (0.8±1.1 Pg C yr -1 per 100 mm of interannual precipitation change) (Fig. 3b). These results indicate that current state-of-the-art carbon cycle models are likely to be too sensitive to precipitation variability. TRIFFID has the highest int NBP  sensitivity (6.0±0.9 Pg C yr -1 per 100 mm) due to highest. At the global scale, is significantly increased with the increase in by the slope of 0.61 across 10 models (R=0.81, P<0.01). In addition, the model estimated response fire emission to precipitation is much smaller than the inter-model differences in (Fig. S8).

It has been suggested that decreased CO2 sinks in the next century over tropical regions, in response to soil drying, was one of the principal mechanisms explaining the positive carbon cycle-climate feedback diagnosed from the C4MIP coupled models [START_REF] Friedlingstein | Climate-carbon cycle feedback analysis: Results from the (CMIP)-M-4 model intercomparison[END_REF][START_REF] Sitch | Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs)[END_REF]. In the tropics indeed, all models (nine of ten models significant) consistently produce a positive interannual covariance between precipitation and NBP.

TRIFFID has the highest tropical int from previous studies that the nutrient limitation of vegetation productivity and carbon sequestration could decrease the land carbon sensitivity to atmosphere CO2 concentration [START_REF] Sokolov | Consequences of Considering Carbon-Nitrogen Interactions on the Feedbacks between Climate and the Terrestrial Carbon Cycle[END_REF][START_REF] Thornton | Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model[END_REF][START_REF] Zaehle | Carbon and nitrogen cycle dynamics in the O-CN land surface model: 1. Model description, site-scale evaluation, and sensitivity to parameter estimates[END_REF]. ORCHIDEE has the largest NBP  of 5.86±2.02 Pg C yr -1 per 100 ppm (Fig. 5b), probably due to its highest GPP  compared to other models (Fig. 5a). Indeed, there is a significant correlation between NBP  and GPP  across 10 models (P<0.05), suggesting that models have different NBP  partly because of the different CO2 fertilization effect on the vegetation growth [START_REF] Ciais | Europe-wide reduction in primary productivity caused by the heat and drought in 2003[END_REF].

Among the 10 models, CLM4CN simulates the lowest carbon sequestration efficiency under rising atmospheric CO2 concentration (4%), defined as the ratio of NBP  to GPP  , while ORCHIDEE has the highest carbon sequestration efficiency under rising atmospheric CO2 concentration (20%). The ratio of NBP  to GPP  for the ensemble model average is about 12 ±4%.

Similar to GPP  (Fig. 5a), NBP  derived from simulation S2 and equation ( 3) is generally larger than NBP  from simulation S1 (Fig. 5b), particularly in tropical regions (Fig. S10c). As shown in Fig. 5b, CLM4CN, OCN, SDGVM, and VEGAS estimated global NBP  from the simulation S2 with equation ( 3) is smaller than the diagnosed sensitivity of RLS to atmospheric CO2 ( RLS  , 8.12±2.38 Pg C yr -1 per 100 ppm) based on equation ( 3). However, it should be noted that since other factors such as ecosystem management and nitrogen deposition could also explain the trend of RLS over the last three decades [START_REF] Zaehle | The importance of age-related decline in forest npp for modeling regional carbon balances[END_REF][START_REF] Ciais | Carbon accumulation in European forests[END_REF][START_REF] Bellassen | Modelling forest management within a global vegetation model Part 1: Model structure and general behaviour[END_REF][START_REF] Magnani | The human footprint in the carbon cycle of temperate and boreal forests[END_REF][START_REF] Zaehle | Carbon-nitrogen interactions on land at global scales: current understanding in modelling climate biosphere feedbacks[END_REF], the sensitivity of RLS to CO2 from the equation (3) may be overestimated.

From model testing to directions for future research

To overcome the inevitable spread of curves resulting from a comparison of complex models with poorly constrained processes, we compared in this study the contributive response of models to climate variability, with available 'observations' (in fact other data-driven models). The main contributive responses to interannual climate drivers are γthe response to temperature anomalies in units of PgC yr -1 °C-1 , δ -the response to rainfall anomalies in units of PgC yr -1 100 mm -1 , and β -the response to CO2 trend, in units of PgC yr -1 100 ppm -1 . Four key datasets are used to estimate these contributive responses, a data-oriented gridded GPP field (JU11), imposed warming experiments, imposed raised atmospheric CO2 experiments (FACE) and the global residual land sink modeled to close the anthropogenic CO2 budget (RLS). These four datasets provide information on different contributive responses, JU11 constrains γ, δ and β of GPP, experimental warming site data constrain γ of NPP, the (scarce) FACE site data constrain β of NPP, and the RLS over 30 years constrains γ, δ and β of NBP. We report the following new findings.

1. The 10 carbon cycle models give a higher mean GPP and a higher year to year GPP variability than JU11, particularly in tropical regions. In tropical regions, the GPP interannual variance in JU11 may however be considered as too uncertain to falsify the process models.

JU11 trained their MTE using spatial gradients among different sites (there are few long series) and extrapolated temporal gradients, confounding spatial and interannual sensitivity of GPP to climate. To overcome this limitations of comparing the uncertain process-models with another uncertain data-driven model, we recommend future work to models at site scale at which the measurements are made (in particular the long term FLUXNET sites) to investigate their response to climate drivers for different time scales, and different ecosystems [START_REF] Schwalm | A model-data intercomparison of CO2 exchange across North America: Results from the North American Carbon Program site synthesis[END_REF]). This will also require better protocols with site-history to account for site specific disequilibrium of biomass and soil carbon pools (Carvaillhais et al. 2007(Carvaillhais et al. , 2008)).

2. The process models generally capture the interannual variation of the data-driven residual land carbon sink (RLS) estimation over the last three decades. But the models's contributive response to precipitation is too high, particularly in tropical forests and savannas [START_REF] Wang | Variations in atmospheric co2 growth rates controlled by tropical temperature[END_REF]. It is not clear, however, if this too high contributive response of NBP to rainfall is induced by a bias of GPP or ecosystem respiration to soil moisture, or to an inaccurate representation of soil moisture by models. We recommend future work to compare the contributive response of net and gross CO2 fluxes between models with independent large-scale flux estimations, such as from data-driven upscaling of fluxes and top down inversions.

3. In response to interannual variation in temperature, all the models are found to simulate a stronger negative response of NBP than GPP, implying that respiration responds positively to temperature. To investigate this effect, we evaluated for the first time the global process models against site-data from a collection of ecosystem warming experiments. We find that models tend to under-predict the response of NPP to temperature change at the temperate sites. However it is difficult to tell from the warming experiments for NPP, which have significant between-site variation, whether this results predominantly from plant or soil respiration, or possibly both, where the balance varies strongly depending on geographical variation. The different approaches to derive the NPP response to temperature between global models forced offline by gridded climate data, and local field warming experiments that are coupled to the atmosphere, bias as well as the fact that process models do not consider sub-grid scale heterogeneity in environmental conditions and vegetation distribution. We recommend to design a global benchmarking of carbon cycle models against ecosystem warming and drought experiments, and to compile a database of experiments results and forcing data that would be open-access.

4. Despite the fact that carbon cycle models are often suspected to overestimate CO2 fertilization as a driver of net land uptake, we found that the ensemble mean global NPP enhancement is comparable with FACE experiments observation. The CLM4CN model that have nitrogen limitations do show a sensitivity of NPP to CO2 that is 50% lower than the same models versions (CLM4C) but without nitrogen. The strength of the CO2 fertilization on the NBP is poorly quantified. The magnitude of NBP response to CO2 is not merely dependent on the NPP response. NPP increases could create higher litterfall enhancing soil carbon stores also available to respire. We recommend all carbon cycle models to include nutrients, and pursue the evaluation of C-N interactions using both global and local observations (e.g., [START_REF] Zaehle | Carbon and nitrogen cycle dynamics in the O-CN land surface model: 1. Model description, site-scale evaluation, and sensitivity to parameter estimates[END_REF].

Overall, reducing these uncertainties of climate sensitivities of carbon fluxes is essential to more accurately predict future dynamics of the global carbon cycle and its feedbacks to climate system, and thus it is a priority for the carbon cycle modeling community. We recommend carbon cycle models to be run both "free running" with their default parameters values used in global simulations, and "adjusted" with parameters calibrated or optimized against site observations (e.g, warming, precipitation, and elevated CO2 experiments, fluxnet data) so that the" portability" of improvements gained from small scale can be assessed at larger, regional or global scale. The red line shows the 1σ range of GPP  estimated by JU11's GPP products using Eq. 3.

Model abbreviations are the same as in Figure 1. experiment sites (Table S2) and estimated relative response of NPP to rising atmospheric CO2 (, the ratio of estimated by the Eq. 2 to 30 year average NPP) by 10 models for the period 

  is the carbon flux of each model from S2, or RLS from FR10, and CO2, Tmp, and Prcp are the atmospheric CO2 concentration, MAT and annual precipitation respectively. Quantities β, a, b, and c are regression coefficients, while ε is the residual error term. The regression coefficients are calculated using maximum likelihood estimates (MLE). Our Eq. 3 attributes the time series of the y flux to what we consider as the dominant drivers of change i.e. temperature, precipitation, and CO2. However we do recognize that other land surface changes or meteorological forcing might influence too, and these become implicit in our regression co-efficients. Such effects are for example land use, forest demography, nitrogen deposition, solar radiation, humidity, and wind speed, which influence the trend of RLS time series. Therefore, although we believe rising CO2 to be strongly influencing the RLS trend the precise values of our regression co-efficients should be treated with caution. Generally, a and b indicate the contributive effect of temperature (resp. precipitation) variations on the carbon fluxes variations (Fig.S1). The period 1980-2009 is used to estimate the carbon fluxes sensitivities to climate and CO2, except for GPP where the period considered is1982-2008. 
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 4 Fig.4shows the spatial distribution of the

  with TRIFFID and LPJ having the largest int GPP  (about 2.2±0.4 Pg C yr -1 per 100 mm or 2.8±0.5 % per 100 mm for TRIFFID, and 1.8±0.4 Pg C yr -1 per 100 mm or 2.7±0.5 % per 100 mm for LPJ) (Fig.S7c). The average of tropical int GPP  across the 10 models is 1.4±0.5 Pg C yr -1 per 100 mm (or 1.8±0.7% per 100 mm), which is three times larger than int GPP  of the JU11 data-oriented GPP (0.5±0.3 Pg C yr -1 per 100 mm or 0.6±0.4 % per 100 mm).

  to negative NBP anomalies (abnormal CO2 source to the atmosphere) occurring during warm years over tropical regions (Fig.S6c).All models showstatistically significant interannual correlation of NBP with MAT in the tropical regions (R <0.05), and an average int NBP  of -3.0 ±1.2 Pg C yr -1 o C -1 . Compared with tropical regions, other regions have a relatively smaller int NBP  (Fig. S6). In the boreal zone, there are large differences in the magnitude and even in the sign of int NBP  among models. For example, LPJ, LPJ-GUESS, and TRIFFID have a int NBP  of -0.37 ±0.13 Pg C yr -1 o C -1 , -0.53 ±0.19 Pg C yr -1 o C -1 , and -0.29 ±0.1 Pg C yr -1 o C -1 , respectively, but VEGAS has a positive int NBP  of 0.23 ±0.08 Pg C yr -1 o C -1 (Fig.

  C yr -1 per 100 mm), while ORCHIDEE shows the smallest tropical int NBP  (0.3±0.3 Pg C yr -1 per 100 mm). In the extra-tropical regions however, several models predict a negative response of NBP to wetter years, but the NBP-precipitation relationship is generally not significant (HYLAND, CLM4CN, and SDGVM only exhibit a significant relationship in the boreal region, and TFIFFID, LPJ, OCN in the northern temperate regions as shown by Fig. S7). In both boreal and temperate regions, the highest int NBP  was also simulated by the TRIFFID model due to its highest int of NBP to rising atmospheric CO 2 concentration ( NBP  ) From the average of the 10 models, we estimated NBP  using simulation S1 to be 2.39 ±1.52 Pg C yr -1 per 100 ppm at the global scale. CLM4CN shows the smallest NBP  of 0.54 ±2.79 Pg C yr -1 per 100 ppm, which is only 23% of NBP  in CLM4C. This supports results

Figure 1 .

 1 Figure 1. The magnitude of global Gross Primary Production (GPP) and global Net Biome Productivity (NBP) estimated by the 10 carbon cycle models. x-axis indicates mean annual global GPP during 1982-2008 with error bars showing standard deviation of the inter-annual variations. y-axis indicate mean annual global NBP during 1980-2009 with error bars showing standard deviation of the inter-annual variations. The red line shows global GPP estimated by a data driven model tree ensemble approach (JU11, Jung et al., 2011), while black lines shows global Residual Land Sink (RLS) (Friedlingstein et al., 2010). Global RLS is estimated as the difference between CO2 emissions (from fossil fuel combustion and land use change) and carbon storage change in the atmosphere (atmospheric CO2 growth rate) and in the oceans (model simulated ocean carbon sink) (Friedlingstein et al., 2010). The 10 carbon cycle models include Community Land Model 4C (CLM4C), Community Land Model 4CN (CLM4CN), HYLAND, Lund-Potsdam-Jena (LPJ), LPJ-GUESS, O-CN (OCN), ORCHIDEE, Sheffield-DGVM (SDGVM), TRIFFID and VEGAS.

Figure 2 .

 2 Figure 2. Color-coded correlation matrixes for global GPP estimated by the 10 carbon cycle models and a data driven model tree ensemble approach (JU11, Jung et al., 2011) and global NBP estimated by the 10 carbon cycle models and global Residual Land Sink (RLS) (Friedlingstein et al., 2010). The correlation matrixes display (a) correlation coefficient in pairs among detrended GPP anomalies estimated by the different approaches during 1982-2008. (b) correlation coefficient in pairs among detrended NBP anomalies estimated by different models and RLS during 1980-2009. Model abbreviations are the same as in Figure 1.
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 3 Figure 3. The response of global Gross Primary Production (GPP), global Net Biome Production (NBP) and global Residual Land Sink (RLS) to (a) interannual variation in temperature ( int GPP 
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 4 Figure 4. Comparisons of observed relative response of Net Primary Production (NPP) to temperature change in warming experiments (Lu et al., in preparation, TableS1) and estimated relative response of NPP to interannual variation in temperature ( int NPP R , the ratio of
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 5 Figure 5. The response of global Gross Primary Production (GPP), global Net Biome Productivity (NBP) and global Residual Land Sink (RLS) to rising atmospheric CO2 concentration ( GPP 
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 6 Figure 6. Comparison of the observed relative response of Net Primary Production (NPP) to rising atmospheric CO2 concentration in the Free Atmospheric CO2 Enrichment (FACE) experiment sites (TableS2) and estimated relative response of NPP to rising atmospheric CO2 ( NPP R , the ratio of NPP 
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 2 Figure 2. The response of global Gross Primary Production (GPP) to interannual variation in temperature ( int GPP  ), interannual variation in precipitation ( int GPP  ), and rising atmospheric CO2

Figure 3 .

 3 Figure 3. Comparisons of observed relative response of Net Primary Production (NPP) to temperature change in warming experiments (Lu et al., in preparation, TableS1) and estimated relative response of NPP to interannual variation in temperature (, the ratio of to 30 year average NPP) by 10 models for the period of 1980-2009. The gray histogram at each site

Figure 4 .

 4 Figure 4. Comparison of the observed relative response of Net Primary Production (NPP) to rising atmospheric CO2 concentration in the Free Atmospheric CO2 Enrichment (FACE)

1980- 2009 .

 2009 The gray histogram at each site shows the frequency distribution of according to the ensemble of 10 model simulations at the grid containing the experiment site and at model grids with forest dominant land cover (forest vegetation more than 50% according to GLC2000 land cover map) and with similar climate to the experiment site (the difference in mean annual temperature less than 1 o C and difference in mean annual precipitation less than 50 mm). The mean of the model estimated is shown in dashed black line. Model estimates at the grid containing the experiment site are shown using model-specific symbol and color with horizontal error bars showing standard error of the estimated by the same model in the ensemble of this grid and grids with forest as the dominant land cover having similar climate. The position of model-specific mark in the vertical axis only represent alphabetical order of model abbreviations. Observed NPP response to rising atmospheric CO2 at different year at the same site are shown separately in red circles. The background color map shows spatial distribution of estimated from the average NPP of the 10 carbon cycle models. Solid pentagrams in the map show locations of the FACE forest sites. Model abbreviations are the same to Figure 1.

Figure 5 .

 5 Figure 5. The magnitude of global Net Biome Productivity (NBP) and color-coded correlation matrix for global NBP estimated by the 10 carbon cycle models and global Residual Land Sink (RLS) (Friedlingstein et al., 2010). (a) Mean annual global NBP during 1980-2009 with error bars showing standard deviation of the inter-annual variations. (b) The correlation matrix displays correlation coefficient in pairs among detrended NBP anomalies estimated by different models and RLS during 1980-2009. Global RLS is estimated as the difference between CO2 emissions (from fossil fuel combustion and land use change) and carbon storage change in the atmosphere (atmospheric CO2 growth rate) and in the oceans (model simulated ocean carbon sink)[START_REF] Friedlingstein | Update on CO2 emissions[END_REF]. Model abbreviations are the same as in Figure1.
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 6 Figure 6. The response of global Net Biome Productivity (NBP) and global Residual Land Sink (RLS) to interannual variation in temperature ( int NBP  and int RLS  , respectively), interannual
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  . In S2, models were forced with reconstructed historical climate fields and rising atmospheric CO2 concentration. All models used the same forcing files, of which historical

	climate	fields	were	from	CRU-NCEP	v4	dataset

(http://dods.extra.cea.fr/data/p529viov/cruncep/) and global atmospheric CO2 concentration

  that models tend to predict smaller Toivola and Alborn, and 17% at Duolun). The results of two field warming experiment sites in Minnesota, USA (47°N, 92°W) have shown that the wetter site (annual precipitation of 762 mm) has a much higher NPP sensitivity to warming (12 -22 % o C -1 yr -1 ) than the drier site (annual precipitation of 497 mm, -3 -6 % o C -1 yr -1 ) (Fig.4), implying that average climatic conditions (in particular through soil moisture availability) regulate the response of NPP to temperature. To mini minimize the effect of biases in the climate drivers, we also extract modeled sensitivities in 'climate neighbours' grid points where the mean annual temperature differs by less than 1 o C and mean annual precipitation by less than 50 mm from the conditions at each experimental site. As shown in Fig.4, however, the model estimated at JRGCE,

	R	int NPP	values than observed at the
	warming experiment temperate sites, particularly at Jasper Ridge Global Change Experiment
	(JRGCE), Kessler's Farm Field Laboratory (KFFL), Toivola and Alborn (Minnesota 2), and
	Duolun. One can assume that this may be because in the grid points containing these sites,

annual precipitation used in model forcing is less than actual precipitation at field sites (by 15% at Jasper Ridge Global Change Experiment, 8% at Kessler's Farm Field Laboratory, 46% at KFFL, Minnesota 2, and Duolun, is still systematically lower than observation, implying that the different forcing may be not the primary reason the mismatch between models and observations. A recent study comparing model simulations driven by site-level climate forcing and by gridded climate forcing suggested that model structure, rather than climate forcing, remained the main limitation for improving model-site data comparison

(Rackza et al., submitted)
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