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Semantic Information Retrieval On Medical Texts: Research
Challenges, Survey and Open Issues

LYNDA TAMINE, University of Toulouse Paul Sabatier, IRIT Laboratory, Toulouse 31062, France
LORRAINE GOEURIOT, Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, France

The explosive growth and widespread accessibility of medical information on the Internet have led to a surge
of research activity in a wide range of scientific communities including health informatics and information
retrieval (IR). One of the common concerns of this research, across these disciplines, is how to design either
clinical decision support systems or medical search engines capable of providing adequate support for both
novices (e.g., patients and their next-of-kin) and experts (e.g., physicians, clinicians) tackling complex tasks
(e.g., search for diagnosis, search for a treatment). However, despite the significant multi-disciplinary research
advances, current medical search systems exhibit low levels of performance. This survey provides an overview
of the state-of-the-art in the disciplines of IR and health informatics and bridging these disciplines shows how
semantic search techniques can facilitate medical IR. First, we will give a broad picture of semantic search
and medical IR and then highlight the major scientific challenges. Second, focusing on the semantic gap
challenge, we will discuss representative state-of-the-art work related to feature-based as well as semantic-
based representation and matching models which support medical search systems. In addition to seminal
works, we will present recent works that rely on research advancements in deep learning. Third, we make a
thorough cross-model analysis and provide some findings and lessons learned. Finally, we discuss some open
issues and possible promising directions for future research trends.

CCS Concepts: • Information systems → Evaluation of retrieval results; Retrieval effective-
ness.
Additional Key Words and Phrases: Information Retrieval, Medical Texts, Knowledge Resources, Rele-
vance, Evaluation
ACM Reference Format:
Lynda Tamine and Lorraine Goeuriot. 2020. Semantic Information Retrieval On Medical Texts: Research
Challenges, Survey and Open Issues. ACM Comput. Surv. 1, 1 (April 2020), 37 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION
1.1 From Information Retrieval To Semantic Information Retrieval
"Information retrieval (IR) deals with the representation, storage, organization and access to information items"
[6]. There are two main processes in IR. Indexing mainly consists of building computable representations of
content items using metadata, while retrieval is the process of matching queries to documents to optimize
relevance. Relevant pointers to previous introductory bibliographic resources that can help the reader get
started in IR are [6, 33, 59, 97, 139]. IR models have been developed in stages over almost 60 years (since 1960s)
evolving notably from the Boolean [138], vectorial [139], probabilistic [99, 135], language model (LM) [82],
learning-to-rank (LTR) [92] models and more recently neural models [105]. Those models offer various forms of
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2 L. Tamine and L. Goeuriot

formal support to set up a matching between query and documents for which the key output is an algorithmic
score of document relevance. Traditionally, both query document indexing and retrieval rely on a lexical
approach based on bag-of-words and this still operates as the main processes of modern search engines. Lexical
representation and matching suffer however from semantic gap and vocabulary mismatch issues induced by
the complex problem of language understanding. These issues are the most critical ones in search and have
attracted much attention [12, 27, 88, 93, 141, 157, 186]. While the semantic gap refers to the difference between
the computable representations of a document and its conceptual meaning, vocabulary mismatch refers to the
difference between the lexical representations of two semantically close candidate texts, here a document and a
query. The most prominent approach proposed so far to close the semantic gap and vocabulary mismatch falls
under the umbrella of semantic search [12]. In the IR area, semantic search mainly consists of enhancing query
and document representations to increase their level of understandability and performing a more meaningful
query-document matching driven by semantics [88]. Many techniques are proposed for this purpose ranging
from semantic query expansion to semantic relevance ranking that are based on a separate or combined use
of key semantic resources. The latter fall into two main categories: (1) structured knowledge resources (e.g.,
ontologies, thesaurus, knowledge graphs) that provide human-established real-world knowledge which is
crucial to relate words and their associated meanings. Examples of such resources make use of words/terms1
and concepts/entities to organize relational knowledge in general domains, such as WordNet and DBPedia, or
in specialized domains, such as MeSH used in the medical domain; (2) unstructured knowledge in the form of
raw textual corpora from which semantic representations of words, phrases, and documents are automatically
built and also semantic relationships between words automatically established.

1.2 Medical IR: Specificities and Challenges
Today, there is wider access to medical information whose forms are constantly increasing. We can distinguish
between knowledge-based information, which is derived from observational research, and patient-specific
information, such as radiology reports, progress notes etc. Among the specificities of medical IR, making
it significantly different from other domain-specific IR applications (e.g., legal IR, mobile IR), we mention
the following: (1) the high diversity of users including laypeople (e.g., patients and their families), medical
professionals and clinicians. The diversity of user profiles is characterized by a significant difference in
both their domain-knowledge and their level of expertise which has a huge impact on their vocabulary and
assessments of system results [119, 159, 175]; (2) the high diversity of tasks such as diagnosis search, advice
and support search and patient cohort search. All these tasks lead to different relevance requirements; (3) the
strong relationship between users’ web search activities and their personal daily life including, but not limited
to, health care utilization (HCU) [177, 188], and psychological attitudes [176, 178]. Taking the peculiarities of
medical search mentioned above, we identify three main challenges that encompass key-related issues:

• Semantic gap: the core issue in the representation of meaning is to deal with the semantic gap that
refers to the difference between the low-level description of texts and their high-level sense mainly
because of the complexity of human language. The semantic gap is particularly challenging in med-
ical texts because of the high variability of language and spelling, frequent use of acronyms and
abbreviations, and inherent ambiguity for automated processes to interpret concepts according to
document contexts [42, 61], the presence of negation and time factors [5, 90]. Through a failure analysis
performed on the evaluation results of a clinical search task for cohorts, Edinger et al. [42] reported
that the reasons for most precision and recall failures are related to bad lexical representations, pres-
ence of negation and time constraints. Examples of failure include: "Notes contain very similar term
confused with topic", "Topic terms denied or rule out", "Topic symptom/condition/procedure done in the past".

• Vocabulary mismatch: In IR, this issue also called the lexical gap, occurs when the vocabulary of the
query does not match the vocabulary of relevant documents, causing low recall. Vocabulary mismatch
occurs at the retrieval stage and is mostly induced by the semantic gap problem. Poor representation of
the meaning of queries and documents at the indexing stage are likely to manifest their mismatch at the
retrieval stage. Many studies outlined the effect of vocabulary mismatch in medical IR [38, 42, 56, 81].

1Compound words
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Semantic Information Retrieval on Medical Texts 3

The study performed by Edinger et al. [42] also revealed numerous reasons for failure that fall into
the vocabulary mismatch problem category, such as "Visit notes used a synonym for topic terms", "Topic
terms not named in notes and must be inferred". Another possible reason for vocabulary mismatch
is the difference in expertise levels of users. Previous studies showed that medical domain expertise
plays an important role in the lexical representation of information needs [119, 159, 175]. For instance,
Tamine and Chouquet [159] found that experts formulate longer queries and make use of more technical
concepts than novices leading to significant differences in system documents’ rankings for similar
information needs.

• Complexity of result appraisal: Appraisal of findings in the medical domain is the process of
examining research evidence to judge its trustworthiness, value and relevance in a particular context
(e.g., patient and his conditions). From the medical IR system perspective, result appraisal is the process
of assessing the relevance of search results w.r.t. a particular query issued in a particular task context.
Numerous studies showed that relevance assessment in the medical domain is a time-consuming and
a cognitively expensive process [80, 159, 168]. Result appraisal complexity can be explained by: (1)
the difficulty of interpretation of document content caused by: ambiguity in context, specificity of
language, temporality on relevance [80, 159], low level of domain-expertise of users [119, 159, 175];
(2) the variability in the perception of relevance for a given task. Previous work argues that there is a
strong relationship between the task (and the doer) peculiarities and the type of expected relevance
leading to significant variability of performance levels across tasks [160, 189].

By focusing on semantic IR in the medical domain, this survey is restricted to review the prominent solutions
proposed so far to specifically tackle the semantic gap and the vocabulary mismatch challenges.

1.3 Motivations, Scope and Contributions of this Survey
Motivations and Scope. These last years, both semantic search and medical search have become emerging

topics, addressed in different scientific communities with a variety of perspectives and methods.
In the IR community, medical search represents a domain-oriented application research topic where the major
problem studied is how to better understand complex information needs with a medical faceted intent and
how to map them to documents to improve the likelihood of relevance. Medical search increasingly appears
in special sessions of several IR and information-seeking conferences such as SIGIR2, CIKM3, and ECIR4
as well as workshops such as the Medical IR workshops at SIGIR (2013-2015) and special issues of journals
(e.g., JIR5 [51], JASIST6 [107]). In the health informatics field, medical search is viewed as the application of
information science and information technology findings and principles to healthcare and everyday wellness.
It is a fundamental research topic addressed within this scientific community through numerous special tracks
at major conferences (e.g., "Ontologies and knowledge representation and access" track at AIME’197 ) as
well as workshops (e.g., "Semantic extraction from Medical Texts" at AIME 2017, "Knowledge Representation
for Health" at AIME’19) and major journals in the area such as JAMIA8[128], BMC Medical informatics &
Decision Making [106, 120] and Medical informatics [19, 100, 187].
These research activities generally follow a mono-disciplinary approach which hampers the development of
collective knowledge to enhance overall research progress in the broad area of medical information access.
With this in mind, the main motivation behind this survey is to provide a comprehensive review on the hot
topic of semantic search on medical texts, targeting varied audiences from the IR and health informatics
disciplines. More precisely, we have two audiences in mind: (1) newcomers as well as mature researchers in
the IR community interested in the medical application domain; (2) academic researchers from the health
informatics community and companies interested in the design of clinical decision support systems. The ideas
2Special Interest Group on Information Retrieval
3Conference on Information and Knowledge Management
4European Conference on Information Retrieval
5Journal of Information Retrieval
6Journal of the American Society on Information Science and Technology
7Artificial Intelligence in MEdicine
8Journal of the American Medical Informatics Association
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4 L. Tamine and L. Goeuriot

and methodologies presented in the survey may help industrial practitioners to turn the research results into
products. To sum up, providing a single coherent resource as a point of reference for these two different
audiences would be highly useful. Our additional motivation is to provide a compiled view of the current
landscape of neural approaches of semantic search research in the medical domain.

Given, on the one hand, the wide range of tasks that can be performed on medical texts and, on the
other hand, our aim to make a thorough review of information retrieval, we only consider in this survey
the following: (1) raw textual documents as the focal units of search. This survey does not cover search on
images and other documents that have an inherently non-textual representation; (2) ranking and similarity
tasks, and to a lesser extent , classification and clustering tasks also studied in the IR discipline. Ranking or
similarity tasks consist respectively of selecting from a corpus a ranked list of search units that better match a
textual query, searching for similar or related items such as documents and concepts. Illustrations of these core
tasks in the medical domain include, but are not limited to, search for cohorts, patient search and similarity,
care episode search, diagnosis and concept classification and clustering. This survey does not cover major
Natural Language Processing (NLP) tasks such as named entity recognition (NER), relation extraction, relation
classification, entity/relation-based indexing and patient data de-identification which are core auxiliary tasks
that support or can help medical IR tasks.

Related Surveys and Contributions. Although several valuable introductory readings, tutorials, and
surveys [12, 43, 44, 60, 182] already exist for medical information access, management and mining at large on
the one hand and semantic search [12, 88] on the other hand, we are not familiar with any existing literature
review surveying research progress made in semantic IR within the medical domain. The primary objective in
[44] is to present computational aspects of big data in health informatics. The authors provide a comprehensive
overview of health data management covering data capturing, storing, sharing, analyzing, searching, and
decision support. In their paper, search techniques are addressed from the data mining community view to
find through unstructured and structured medical data a useful pattern. Other surveys [43, 182] focused on
data mining techniques for modeling electronic health records (EHRs) and related standards that structure
the clinical content for semantic inter-operability. In [182], the authors mentioned (Section 1. page 1:3) that
techniques related to mining semi-structured or unstructured data through and IR are excluded from the
survey because the technical challenges they pose are different from the challenges faced in mining structured
EHR data. Closer to our survey but significantly different both in the scope and the focus, Hersh [60] surveyed
methodologies of indexing and retrieving medical documents. However, the author emphasized lexical match-
ing techniques based on bag-of-words text representations. Additionally, there has been considerable progress
made in medical IR since the publication of the aforementioned survey. Regarding specifically the semantic
view of IR, a significant body of work proposed: (1) new hybrid approaches for combining multiple contexts
and types of knowledge to mine information and knowledge from medical texts; (2) new methodologies for
building rich semantic representations of complex unstructured medical texts (e.g., patient records); (3) new
learning-based approaches of relevance estimation and new related evaluation protocols. Therefore, a new
systematic review of the state-of-the-art is needed.
A structured comprehensive review of semantic search on texts and knowledge bases is provided in [12] from
the semantic web perspective. This survey is a relevant introductory reading of our survey providing the
preliminary concepts and technologies that are required to understand the various approaches of semantic
search in the medical domain, particularly through keyword search approaches.

Regarding the previous literature reviews mentioned above, we make several contributions in this survey.
First, we perform a detailed and thorough investigation of the state-of-the-art in knowledge-base driven and
data-driven approaches to medical text representation and matching for relevance ranking and relevance
learning purposes. Second, we we make a through cross-model analysis and provide some findings and lessons
learned. Finally, we provide a list of promising research directions intended for both IR and health-informatics
audiences.

Survey Methodology. We adopt a top-down approach to surveying the literature about semantic search
in medical texts. As a result, our survey is structured as a reflection of a well-established practice in the IR
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Semantic Information Retrieval on Medical Texts 5

Fig. 1. Structure of the survey

community to use semantic knowledge resources with the goal of accurately either modelling or matching the
textual units about the (medical) domain for which it is intended to be used. There are two distinct approaches
used to extract and represent in-domain knowledge in the IR area. The first is driven by domain experts, using
structured knowledge resources that provide human-established real-world knowledge. Such knowledge is
crucial to relate words and their associated in-domain meanings (Section 3). The second is rather driven by
domain-knowledge (e.g., word and concept meanings and associated relationships) that are captured from raw
textual corpora through hidden linguistic regularities and patterns (Section 4).
As shown in Figure 1, we classify accordingly the research work carried out in the area into twomain categories:
(1) structured knowledge resources-based approaches that mainly include query expansion (QE) techniques and
feature-based relevance ranking models; (2) data-driven approaches whose objective is either to learn from
raw textual data item (word, concept, document, patient, etc.) representations that could be incorporated in a
ranking, classification or relevance prediction model.
The motivation behind our categorization is twofold: (1) these categories rely on radically different approaches
for both text representation and matching. While knowledge-driven models rely on the explicit use of items
from structured knowledge, data-driven models rely on learning-based techniques of item representations
over unstructured knowledge; (2) while the knowledge-driven model design is the earliest line of work that
leverages IR theoretical results that have matured over time, data-driven models are still in their early develop-
ment. Thus, we believe that this categorization is useful for providing generalizations, specifically explaining
contributions that fall in the same approach and also identifying gaps and pointing out pending issues.
For each of these two lines of work, we collected using the appropriate keywords, publications in major
conferences mostly in the period 2010-2020 (e.g., SIGIR, CIKM, ECIR), journals (e.g., IP&M9, JASIST) and
working notes from participants at major evaluation challenges (e.g., TREC10, CLEF11) in IR, as well as in
major conferences in health informatics (e.g., AMIA, AIME) and journals (e.g., Journal of the American Medical
Informatics Association, BMC Medical informatics & Decision Making, Medical informatics and Journal of
Biomedica Informatics). Based on each article, we enlarged the set of publications by following citation links
and selecting representative works based on bibliometrics or work’s relevance and specificity leading us to
collect publications from other various sources such as ACL12, IJCAI13 and AAAI14. After a manual review
of all the cited papers, we finally included in this review 204 among which 176 are key-related papers and
articles.

The rest of this survey is organized into five sections. Section 2 introduces some resources for medical
IR including information and evaluation tools. Section 3 reviews knowledge-resource driven approaches

9Information Processing & Management
10Text Retrieval Conference
11Cross-Language Evaluation Forum
12Association of Computational Linguistics
13International Joint Conferences on Artificial Intelligence
14Association for the Advancement of Artificial Intelligence
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6 L. Tamine and L. Goeuriot

for semantic search on medical texts, while Section 4 puts the focus on data-driven approaches. Section 5
summarizes the article and then discusses promising research directions.

2 RESOURCES FOR MEDICAL IR: TOOLS AND BENCHMARKS
2.1 Medical Text Semantic Annotation and Resources
In this section, we describe the semantic resources and the main methods to enrich semantically text.

2.1.1 Structured Knowledge Resources. The medical community works towards building rich knowledge
resources for several decades now. Knowledge resources have been built for several applications such as label
each electronic health record issued by a hospital with the major disease/finding, index biomedical documents,
identify named entities in a text, etc. We list in this section a few thesauri and then introduce a meta-thesaurus
initiative. A detailed description can be found in [144].

The International Classification of Diseases (ICD)15 is a "standard diagnostic tool for epidemiology,
health management and clinical purposes"16. It is maintained by the World Health Organization (WHO) and
is designed as a healthcare classification system: it aims at assigning diagnosis codes for various disorders,
symptoms, etc. The ICD is used worldwide for statistics on morbidity and mortality, by the hospitals for billing
and as a decision making support tool for medical professionals.

Medical Subject Headings (MeSH)17 is a controlled vocabulary created to index biomedical literature.
It has been created and is maintained by the National Library of Medicine (NLM). It is used to index all
the documents contained in MEDLINE, a database of biomedical and life sciences articles, which contains
more than 25 million references18. MeSH entries are defined with a unique identifier, a short description or
definition, links to related descriptors, and a list of synonyms (known as entry terms). MeSH contains 28,000
descriptors (concepts or entities), with over 90,000 entry terms. It has 3 types of relationships: hierarchical,
synonymous, and related. MeSH contains 16 categories, such as: ’anatomy’, ’diseases’, or ’chemical and
drugs’.The SystematizedNomenclature ofMedicine-Clinical Terms (SNOMED-CT) 19 is a multilingual
clinical healthcare terminology. Its purpose is to enable clinicians to record data with enhanced accuracy and
consistency. In 2020, the release of the SNOMED CT International Edition included 352,567 concepts.

The Unified Medical Language System (UMLS)20 has been initiated in 1986 by the National Library of
Medicine (NLM) to provide a mechanism to link existing medical thesaurus and controlled vocabularies. It
contains a metathesaurus (integrating more than 100 thesauri/vocabulary), a semantic network, and NLP tools.
UMLS contains over 1 million biomedical concepts and 5 million terms and covers multiple languages [20]. But
most of the non-English languages are far from the coverage of English [109, 174, 197]. A study done in 2006 [98]
shows that only 27% of UMLS concepts are non English ones. Several national or international initiatives
have gathered or created knowledge resources in languages other than English, such as21: UMLF, a unified
medical lexicon for French [204]; UTCMLS, a unified traditional Chinese medical language system [197];
MedLexSp22, a unified medical lexicon for Spanish [23]; TRIMED23, a trilingual terminological resource in
English, French and Italian [166].

2.1.2 Semantic Annotation of Medical Texts. Semantic annotation is the process by which knowledge can
be added to raw text. It consists in adding information (through annotations) in texts at several linguistic
levels [86, 144]: grammatical (morphological and syntactical), semantic, pragmatic. The result of the semantic
annotation is an enriched text, which serves as the essential basis of any semantic task.

Semantic annotation consists of linking documents to knowledge bases by identifying:

15https://www.who.int/classifications/icd/en/
16http://www.who.int/classifications/icd/en/
17https://www.ncbi.nlm.nih.gov/mesh/
18https://www.nlm.nih.gov/bsd/medline.html, accessed Dec. 2019
19http://www.snomed.org/snomed-ct/
20https://www.nlm.nih.gov/research/umls/index.html
21We list only some examples here. Providing a comprehensive list is out of the scope of the paper.
22http://www.lllf.uam.es/ESP/nlpdata/wp1/
23http://shiny.dei.unipd.it/TriMED/
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• Entities/concepts in the document: this task is called named entity recognition. For example, the
sentence "the female patient suffers from TIA and high blood pressure" contains the entities female
patient (UMLS CUI C0150905), suffers (UMLS CUI C0683278), TIA (UMLS CUI C0007787), high blood
pressure (UMLS CUI C0020538)

• Relationships (implicit or explicit ) between entities: this task is called relation extraction, and
often requires entities to be identified. For example, the sentence "HK1 gene involved in glycolytic
process" contains 2 entities (HK1 gene, CUI C1415554 and glycolytic process, CUI C0017952), and their
relationship is characterized by the verb involved.

• Relationship between an entity and a document: this task consists in assigning one or sev-
eral entities/concepts to a global document. This task can be considered as a document classifica-
tion task (e.g., MeSH entities for indexing documents on MEDLINE: PMID:3207429 is indexed with
Glucose/metabolism and Hexokinase/genetics

Semantic annotation can be done manually: it is the case of data curation, that includes some annotation
phase; manual indexing is pretty common in the medical domain, and is done for instance on MedLine
documents [4]; ICD coding in hospitals is also manually assigned. It can also be done automatically, as a
Named Entity Recognition task, relation extraction task, or classification task. In the remainder, we describe
briefly the NER process and a few open-source tools. Biomedical NER aims at identifying automatically medical
terms in text [144]. It is a three-step process: (1) determine the entity’s substring boundaries; (2) assign the
entity to a concept category; (3) assign the entity to the concept identifier in the knowledge base (called entity
normalization).

There are several open-source softwares for biomedical named entity recognition with UMLS. Metamap24

is one of the key players as it has been created by the National Library of Medicine to annotate biomedical
literature [3]. CTakes is an open-source system for processing clinical free-text data [140]. CTakes is based
on the Unstructured Information Management Architecture (UIMA) framework and includes a NER system
specifically trained for clinical data25. The processing pipeline is very similar to Metamap, as it includes
linguistic pre-processing of the text, span identification, and concept mapping with the UMLS. Metamap and
CTakes are widely used by the community but require considerable time to annotate an entire corpus of
biomedical text [148]. QuickUMLS is a python-based tool performing approximate matching to UMLS terms
and allowing to annotate corpus more efficiently26.

2.2 Evaluation of Medical IR
2.2.1 Evaluation methods. There are several ways to evaluate IR systems:
Laboratory-based evaluation consists of testing and comparing systems within a laboratory environment

that does not change. Such an evaluation was introduced by Cyril Cleverdon in the Cranfield College
of Aeronautics [34], where they were conducting retrieval experiments on test databases in controlled
settings. These Cranfield tests are still used in most of the academic evaluation settings and are the
founding basis of most of the evaluation challenges.

User-based evaluations come from the interactive IR domain and aims at measuring user satisfaction by
getting feedback on the search systems from real users in laboratory settings [75].

Online evaluations is an alternative to laboratory-based evaluations. It consists of observing real users
engaging with the system, and interpreting their actions to measure search systems effectiveness [67].

Both user-based and online evaluation allow getting direct feedback from users. This form of feedback is
very useful to assess the usability of the systems, how users interact with it [40, 57]. They are used to measure
user satisfaction, but can hardly evaluate a system’s performances. In this survey, we will focus on search
systems effectiveness, rather than usability. Therefore, we will focus on laboratory-based evaluations: they
consist in comparing several systems on a fixed set of test collections. Test collections contain: a set of topics
(users’ query enriched with information such as a textual description of the information need); a document

24https://metamap.nlm.nih.gov
25https://ctakes.apache.org/
26https://github.com/Georgetown-IR-Lab/QuickUMLS
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Venue Task Dataset Activity

TREC

Genomics adhoc retrieval Clinical information need
Biomedical articles 2003-2005

Genomics passage retrieval Clinical information need
Biomedical articles 2006

Medical records Patient cohort search 2011-2012
Clinical decision support /
Precision medicine

Case reports
Biomedical articles 2014-

CLEF
ImageCLEF medical retrieval Image and medical reports

Collection of medical images 2003-

CLEF eHealth consumer search Health information need
Large web crawl 2013-

CLEF eHealth technological
assisted reviews

Boolean queries
Biomedical articles 2017-2019

Changing venue BioASQ Annotated biomedical abstracts 2013-
and QA dataset

Table 1. Summarized view of the IR benchmarking activities in the medical domain

collection; Relevance judgments (manual construction of pairs of (𝑑, 𝑞) indicating that document 𝑑 is relevant
to query 𝑞. This manual assessment is usually carried out on a pool of the document collection.)

Evaluation of search systems requires to measure (1) how well the system predicted which documents
are relevant and which ones are not (precision and recall); (2) how well did it rank the resulting documents.
Measures taking into account documents rank (2) are also based on the precision, integrating the rank of
the documents predicted as relevant, e.g., Precision @r (noted P@r), Mean Average Precision (MAP) [167],
normalized discounted cumulative gain (NDCG) [69]. The evaluation of medical IR uses the same metrics
as for classical IR, which depends on the search task. Classically, IR systems have considered the topical
relevance: if the document is on the same topic as the query, it is relevant. In reality, relevance has many other
dimensions [193] such as reliability, novelty, readability, etc. Assessing a document’s relevance wrt a topic,
therefore, consists in assessing each relevance dimension considered. In the medical domain, search systems
should provide patients with: readable and understandable documents and the information it contains should
be reliable. Medical professionals should be provided with documents containing up-to-date information, and
properly cover the topic searched. While the abovementioned metrics only take into account one dimension of
relevance, some metrics such as the uRBP allow to integrate several dimensions, such as the understandability
[202].

2.2.2 Benchmarking activities and Test Collections. Various conferences and organizations propose evaluation
challenges, which purpose is to provide a framework for testing IR systems in a similar framework and with a
similar dataset. To do so, each evaluation challenge tackles a particular search task, provides a test collection
to its participants, and evaluates the results of the submitted systems. The datasets are often shared with the
community once the challenge is over. These conferences are at the origin of the creation of many quality test
collections that are widely used in the literature. We describe in this section the benchmarking activities, the
test collections issued from them, as well as other test collections used in the literature.

Table 1 provides a summary of all the benchmarking activities focusing on medical IR. Most of these datasets
are available for the community and broadly used for evaluating medical search systems in the literature. The
tasks that were not IR centered (i.e. classification tasks, NLP tasks) are omitted.

In the remainder, we list the test collections used in the literature, issued from benchmarking activities or
publicly released.

• TREC Filtering Track ran from 1996 until 2002. In 2000, the task introduced a medical dataset, with the
purpose of improving the ability of systems to build persistent user profiles which successfully retrieve
relevant documents [134].
– Documents: a set of 348,566 references from MEDLINE, the on-line medical information database,
consisting of titles and/or abstracts from 270 medical journals over a five-year period (1987-1991).
This document collection is known as the OHSUMED collection [61]
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– Topics: the 63 selected queries were manually built by medical experts.
– Relevance judgement: three-point scale manual assessment of the relevance conducted by medical
professionals

– Metrics: P@N, linear utility, mean average precision

• TREC Genomics27 adhoc ran from 2003-2007 [62–66] and proposed a range of tasks in the domain of
genomics using IR, document classification, etc. The Adhoc retrieval task (2003, 2004, 2005) aimed at
retrieving biomedical literature citations for varied clinical information needs.
– Documents: 10 years of completed citations from the database MEDLINE from 1994 to 2003, with a
total of 4,591,008 records.

– Topics: built manually from interviewing experts on their information needs. Topics relate to gene
names (2003), and information needs statement (2004, 2005).

– Relevance Judgement: For each topic, documents are judged as definitely relevant (DR), possibly
relevant (PR), or not relevant (NR)

– Metrics: The primary evaluation measure for the task was mean average precision (MAP). As well as
the binary preference (B-Pref), precision at the point of the number of relevant documents retrieved
(R-Prec), and precision at varying numbers of documents retrieved (e.g., 5, 10, 30, etc. documents up
to 1,000)

TREC genomics aiming at studying very specific use cases, many team approaches fell back on semantics.
While queries in 2003 focused on a single gene, they were in 2004 and 2005 concerning relations between
biological objects such as genes, diseases, biological processes, etc. (description of the Generic Topic
Types can be found in [64]).
The Passage retrieval task (2006) intended to go beyond ad-hoc retrieval by challenging systems to
retrieve short passages that specifically addressed an information need. The Entity-based Question-
Answering (2007) was a continuation of the Passage Retrieval task where the questions were more
precise and also required relevant passages as an answer.
– Documents: a collection of biomedical articles from Highwire Press (full text in HTML format, which
preserved formatting, structure, table and figure legends, etc.). It represents 162,259 documents.

– Topics: biologically relevant questions.
– Relevance Judgement: judges were instructed to break down the question into required elements and
isolate the minimum contiguous substring that answered the question (definitely relevant, possibly
relevant, not relevant)

– Metrics: Multidimensional evaluation: passage retrieval, aspect retrieval, and document retrieval,
MAP was used to measure all dimensions

The passage retrieval queries were similar to the ad-hoc task and following the track generic topic types.

• TREC Medical Records Track28 was organized in 2011 and 2012 [168]. The task consists of searching in a
set of EHR to identify patient cohorts for (possible) clinical studies.
– Documents: The document set used in the track is a set of de-identified clinical reports (Radiology
Reports, History and Physicals, Consultation Reports, etc.). They are semi-structured reports with
ICD coding, the chief complaint made available to TREC participants through the University of
Pittsburgh NLP Repository29. EHR are grouped as "visits", the dataset contains 93,551 reports mapped
into 17,264 visits.

– Topics: description of the criteria for inclusion in a study. Topics were created by physicians (graduate
students in OHSU)from a list of research areas the U.S. Institute of Medicine (IOM) has deemed
priorities for clinical comparative effectiveness research. The dataset contains 35 topics in 2011, 50 in
2012.

27https://trec.nist.gov/data/genomics.html
28https://trec.nist.gov/data/medical.html
29Use of this dataset is now restricted to people having a license with Pittsburg NLP.
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– Relevance Judgement: conducted by 25 physicians(1–9 topics each). They rated each visit to determine
whether such a patient would be a candidate for a clinical study on the topic (3-points scale)

– Metrics: infNDCG, infAP, P@10

• TREC Clinical Decision Support30 / Precision Medicine Track31 started in 2014, as the Clinical Decision
Supports (CDS) track, and since 2017 until now (2020) is named Precision Medicine (PM) track [130–
133, 145]. The purpose of the task is to retrieve biomedical articles relevant for answering generic clinical
questions about medical records: given a case report, participants have to find full-text biomedical
articles that answer questions related to several types of clinical information needs.
– Documents: Full biomedical articles: open access subset1 of PubMed Central (PMC), snapshot of
733,138 articles.

– Topics: case reports and one of three generic clinical question types, such as "What is the patient’s
diagnosis?". Created by expert topic developers at the NLM. A case report typically describes a
challenging medical case, and is often organized as a well-formed narrative summarizing the portions
of a patient’s medical record that are pertinent to the case.

– Relevance Judgement: manual assessment done by physicians and graduate students on a 3-points
scale. 34,949 documents were judged across the topics, with a mean of 1265 documents judged per
topic.

– Metrics: infNDCG and P@10
The use case and topics for this task varied: TREC CDS aimed to retrieve biomedical articles relevant
for topics falling into a diagnosis, test, and treatment categories. Since 2017, TREC PM focuses on the
oncology domain and provides participants with more complex patient cases. The purpose is to retrieve
biomedical articles and clinical trials corresponding to the case.

• TREC COVID32 was organized in 2020 and aimed at helping medical professionals needing to constantly
search for reliable information on the virus and its impact. This presented a unique opportunity to
study methods for quickly standing up information systems for similar pandemic [129].

– Documents: CORD-19, COVID-19 Open Research Dataset containing over 280,000 scholarly articles33
– Topics: manually created topics by organizers with biomedical training, composed of a query, a
question and a narrative

– Results submission: 5 rounds of submissions allowing a cumulative set of relevance judgements
– Metrics: trec_eval measures

• ImageCLEF34 is one of the oldest CLEF tasks and has been running for 15 years [108]. ImageCLEF
has mostly been organizing tasks with images, but a few tasks have also targeted textual data. The
medical retrieval ad-hoc task (2003-2013) aims at retrieving images similar to the image query, and the
collection contains textual cases along with related images.
– Documents: images with multilingual textual notes
– Topics: images
– Results submission: Participants could submit results using only the images, only the text, or both
– Metrics: MAP, BPref, P@5, 10, 30
The purpose of the medical retrieval ad-hoc task is to search for images corresponding to a visual topic.
The images from the document collection come with text, which allows basing the retrieval on visual,
textual, or mixed approaches.
The case-based retrieval task (2009-2013) aims at retrieving biomedical text from a given image. The
purpose is to meet clinicians’ information need when facing a specific patient case. The task is built as
follows [71]:

30https://trec.nist.gov/data/clinical.html
31https://trec.nist.gov/data/precmed.html
32https://ir.nist.gov/covidSubmit/
33https://www.semanticscholar.org/cord19
34https://www.imageclef.org/
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– Documents: Full text biomedical articles
– Topics: medical cases images
– Metrics: MAP, BPref, P@5, 10, 30

• CLEF eHealth35 is running since 2013 and proposed a variety of tasks focusing on health-related
information extraction and retrieval [52, 54, 76, 77].
The patient-centered IR task/consumer health search task (CHS) (2013-2019) targets the retrieval of
relevant documents for consumer health search:
– Documents: Set of medical articles and certified documents (2013-2015), large web crawl (2016-2019)
– Topics: manually built patients queries built from real (or realistic) scenario.
– Relevance Judgement: documents are manually assessed by experts on their topical relevance, on
their readability since 2015, and also on their reliability since 2016.

– Metrics: P@10, MAP, NDCG, rank-biased precision, including understandability and reliability
The Technologically Assisted Reviews in Empirical Medicine Task (2017-2018) was running for two years
and aimed to develop methods to retrieve relevant studies with high precision and high recall [74].
– Topics: 20+30 topics for Diagnostic Test Accuracy (DTA) systematic reviews (training + test sets).
– Documents: MEDLINE database documents
– Relevance Judgement: Assessment was made based on systematic reviews provided by Cochrane
Library

– Metrics: AP, Recall @ k, Work saved oversampling at recall R@k, reliability, recall @ @threshold36

• BioASQ Evaluation Challenge37 has been held in various venues including CLEF38. BioASQ is a challenge
tackling large-scale biomedical semantic indexing and question answering [164]. BioASQ proposes 3
tasks:
– Large-Scale Online Biomedical Semantic Indexing (running every year)
– Biomedical semantic QA (running every year)
The Semantic indexing aims at assigning MeSH concepts to biomedical abstracts (to be included in
PubMed), which can be considered as multi-label classification.
– Data: annotated PubMed abstract (training dataset), non-annotated PubMed abstracts (test dataset)
in English and Spanish (2019)

– Metrics: F-measure and variations
The Biomedical QA task’s purpose is to find the relevant answer to a question. It is done in 2 steps: find
relevant articles and snippets (IR), and generate the answer (QA and summarization).
– Topics: medical professionals questions, e.g.Which 2 medications are included in the Qsymia pill?
– Documents: Subset of MEDLINE documents
– Metrics: MAP, F-measure, accuracy, ROUGE

• Other IR test collections.
Data sciences challenge platforms such as Kaggle and Glue Benchmark propose a range of medical
tasks. However, to the best of our knowledge, most of them are centered on learning tasks (such as
annotation and classification) rather than retrieval. The COVID-19 Open Research Dataset Challenge
(CORD-19)39 is an exception, with 17 tasks aiming at developing methods to provide specific types of
information from a corpus of of over 200,000 scholarly articles [172]. Example of tasks include:What
do we know about COVID-19 risk factors?, Create summary tables that address therapeutics, interventions,
and clinical studies, What has been published about medical care?
The NFCorpus [21] is a medical test collection on nutrition facts. It contains 3,244 natural language
queries (collected from the NutritionFacts.org website) and 9,964 medical documents mostly from

35https://clefehealth.imag.fr/
36in 2017, organizers considered 13 evaluation measures
37http://bioasq.org/
38CLEF in 2013-2015 and 2020-2021, ECML PKDD in 2019, EMNLP in 2018, BioNLP in 2016-2017
39https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge/
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Name Description Statistics

MIMIC III1 [70]
Openly available dataset developed by the MIT Lab for Computational
Physiology. It contains deidentified health records associated intensive
care unit admissions.

58,976 admissions
from 48,520 patients

STRIDE [94]
Unstructured clinical notes from 1.2 million patients, collected
over a 19-year span. The notes comprise a combination of pathology,
radiology, and transcription reports.

20 million notes
from 1.2 million patients

Healthmap2
Corpus of public health-related news articles in English extracted from
HealthMap, an online aggregator of news articles from all over the
world for disease outbreak monitoring and real-time surveillance of
emerging public health threats.

124,850 documents

DE-SynPUF3
Realistic set of claims data in the public health domain. Subset of the
CMS limited datasets. It contains five types of data – Beneficiary
Summary, Inpatient Claims, Outpatient Claims, Carrier Claims, and
Prescription Drug Events.

229 million records
from nearly 2 million
patients

PMC open
access subset

4

Free full-text archive of biomedical and life sciences journal literature
from PubMed at the U.S. National Institutes of Health’s National
Library of Medicine (NIH/NLM). It contains more than 5 million full-text
records.

More than 5 million
full-text records

PubMed -
MedLine

5 Baseline set of MEDLINE/PubMed citation records in XML format for
download on an annual basis by NLM.

Annual release with
varying size

MedNorm6[16] Corpus of annotated textual descriptions extracted from
biomedical and social media domains corpora 27,979 documents

Table 2. Non exhaustive list of medical and clinical corpora openly available and used in the papers cited in
the survey

PubMed. The relevance judgement are automatically extracted from the NutritionFacts website, based
on the hyperlinks (a direct link is a high relevance, a intermediary link is a moderate relevance, a
topic/tag system connection is a low relevance).

2.2.3 Other Resources: Text Corpora and Word Embeddings. In addition to test collections, medical IR systems
can rely on other sources, such as textual corpora for query expansion, or as training material; or word/concept
embeddings, used as a knowledge resource or a representation model. Table 2 and Table 3 describe the major
resources found in the literature along with their references.

3 STRUCTURED KNOWLEDGE RESOURCE DRIVEN APPROACHES FOR SEMANTIC SEARCH
IN MEDICAL IR

This category of works primarily relies on predefined lists of senses inventoried in external knowledge
resources (See Section 2.1) to tackle the semantic gap problem in medical IR. Knowledge resources include
dictionaries, thesaurus, ontologies, etc. which could be combined with corpora (i.e., collections) of texts.

1https://mimic.physionet.org/
2http://www.healthmap.org
3https://www.cms.gov/Research-Statistics-Data-and-Systems/Downloadable-Public-Use-Files/SynPUFs/DE_Syn_PUF
4https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
5https://www.nlm.nih.gov/databases/download/pubmed_medline.html
6https://github.com/mbelousov/MedNorm-corpus
1http://bio.nlplab.org/
2https://github.com/ncbi-nlp/BioWordVec
3https://github.com/dartrevan/ChemTextMining/blob/master/README.md
4http://diego.asu.edu/Publications/ADRMine.html
5http://www.ke.tu-darmstadt.de/resources/medsim
6https://data.mendeley.com/datasets/b9x7xxb9sz/1
7https://github.com/dmis-lab/biobert
8https://github.com/EmilyAlsentzer/clinicalBERT
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Name Description
Word2vecPMC1 [124] Word2vec embeddings built from PMC full text articles
Word2vecPubMed+PMC1 [124] Word2vec embeddings built from PMC full text articles and PubMed abstracts
Word2vecPubMed1 [124] Word2vec embeddings built from PubMed abstracts
Word2vecPubMed+PMC+wiki1 [124] Word2vec embeddings built from PMC full text articles, PubMed abstracts and Wikipedia
Word2vecOSHUMED [35] Word2vec built from OHSUMED document collection
BioWordVecIntrinsic2 [190] FastText built from PubMed and MeSH
BioWordVecExtrinsic2 [190] FastText built from PubMed and MeSH
BioWordVec2 [190] FastText built from PubMed and MIMIC III
HealthVec3 [142] Word2vec built with health reviews
DrugTweetsVec4 [114] Word2vec built with drug related tweets
PubMedVec5 [101] AiTextML built with PubMed abstracts
Drug2Vec5 [101] Word2vec built with PubMed and DrugBank
MedNorm6 [16] DeepWalk and Word2vec SkipGram with MedNorm corpus
BioBERT7 [85] BERT pre-trained with biomedical articles (PubMed and PMC)
ClinicalBERT8 [1] BERT pre-trained with clinical data (MIMIC III)
Table 3. Major off-the-shelf embeddings in the medical domain. The list is an extended version of the list
provided in [73]. If they are available in a public repository, resource’s URLs are indicated.

The key idea of the works belonging to this category is to enhance, using external knowledge, either the
query/document-representation or their matching as described in the following sub-sections.

3.1 Query Expansion
(Automatic) Query expansion (QE or AQE) refers to the act of automatically revising the query by adding new
terms. QE has received a great deal of attention for several years in the literature and has been acknowledged
as the most successful technique to deal with the vocabulary mismatch issue [25]. Medical search leverages
today on the firmer theoretical foundations and a better understanding of the usefulness and limitations of a
variety of QE approaches known in IR [13, 17, 18]. We review in what follows state-of-the art works and then
discuss their effectiveness results obtained in similar benchmarks.

3.1.1 Overview of QE techniques. We further categorize the semantic QE used in medical IR based on two key
impacting dimensions that have arisen from previous work [39, 203]: (1) the context of knowledge used to
expand the query that might be global to the medical domain as held by the knowledge resource, local to the
search at hand or hybrid by combining both of them. The most common local context used so far refers to the
top-ranked query results retrieved in response to the initial user query and associated relevance feedback
signals; (2) the number and the nature of the knowledge resource used in terms of domain specialization. Table
4 provides a detailed classification of representative works along these two key dimensions. The methods are
ordered chronologically.

A critical stage of QE is the generation and ranking of potential candidate expansion terms to select a
subset to expand the user’s query. In practice, a score is computed for each candidate expansion term and the
𝑚 terms with the higher scores are selected as the expansion terms. Term generation and ranking stage are
generally run in two steps using respectively the local search context and the global knowledge context:

(1) Local context: first, an initial retrieval run is performed to build a list of ranked documents in response
to the user’s query. Most of the proposed QE methods are based on traditional document ranking
models such as the language model [38, 115, 153, 181, 198] and the probabilistic model [151, 201]. Then,
terms contained in the top-ranked documents are extracted using a blind or pseudo-relevance feedback
approach. Additional document/query processing allows the mapping between these terms and the
concept-based entries of one or multiple knowledge resources.

(2) Global context: candidate expansion terms are identified based on their explicit vs. implicit one-to-one or
one-to-many semantic relationships with the query terms or the terms issued from the local context (if
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Reference Data Context Knowledge Resources
Domain Number

Dinh and Tamine [38] Local & Global Specialised Multiple
(MEsH, SNOMED, GO, ICD)

Zhu and Carterette [198] Local & Global Specialised Multiple
(MeSH, medical collections)

Limsopatham et al. [89] Local & Global Specialised Multiple
(MeSH, MedDRA40, DOID41)

Oh and Jung [115] Local & Global Specialised (Medical collections) Multiple
& General (Medical collections)

Shondi et al. [153] Local Specialised (MeSH) Single
(corpus and top ranked documents)

Martinez et al. [100] Global Specialised (UMLS) Single
(knowledge resource)

Wang and Akella [170] Local & Global Specialised (UMLS) Single
Znaidi et al. [201] Local & Global Specialised (UMLS) Single
Soldaini et al. (a) [152] Local & Global General (Wikipedia) Single
Soldaini et al. (b) [151] Local General (Wikipedia) Single
Xu et al. [181] Local & Global Specialised (MeSH) Single
Balaneshinkordan Local & Global Specialised Multiple
and Kotov [10] (UMLS, DGIdb42, COSMIC catalog)43)
Fujita [46] Local & Global Specialised Multiple

(LocusLink and MeSH)
Ando et al [2] Global Specialised (LocusLink, GO, Multiple

MeSH and SwissProt)
Huang et al [68] Global Specialised Multiple

(AcroMed and LocusLink)
Demner-Fushman et al[37] Global Specialised (UMLS) Single
Shen et al [143] Global Specialised (UMLS) Single
Zhou et al [196] Local & Global Specialised (MeSH, Multiple

Entrez Gene/LocusLink)
Zhu et al [199] Global Specialised (UMLS) Single

Table 4. A fine classification of representative AQE methods in medical IR.

any). The semantic relationships are established within a global context provided by a single or multiple
knowledge resources that could be either general (e.g., Wikipedia) or specialized (e.g., UMLS, MeSH). In
practice, term ranking is based on a relevance score that estimates the strength of the semantic relation-
ships of the candidate expansion terms with one or multiple query terms or terms from the local context.

Several key issues heavily impact the effectiveness of structured knowledge resources driven approaches to
semantic search onmedical texts [39, 203]. Among themost important ones: (1) conceptmappingwhich consists
of performing exact associations between mentions and knowledge resource entries. Regardless of the domain
application, semantic search based on knowledge resources is highly dependent on the performance of concept
mapping (or entity recognition) which is still a challenging problem; (2) knowledge resource characteristics:
structure, specialization level, number of resources used and possible combinations. The concept mapping
performance is out of the scope of this paper. We consider the knowledge resource characteristics and the
number of resources to be the first level of our categorization of QE techniques. The motivation behind our
choice is that using single vs. multiple resources leads to fundamental differences in the key stage of term
generation and ranking in QE.

Mono-Resource Based QE.. The simplest form of term generation and ranking is based on the use of
evidence provided by a single knowledge resource. In Table 5 we show the main term-ranking functions
associated with the mono-resource based QE methods presented in Table 4.
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Reference Term Ranking/Selection Function
Shondi et al. [153] Enhanced term query frequency

if term 𝑡 is associated to relevant types (e.g., disease)
Martinez et al. [100] PageRank term score over the query graph

Relationships between terms are provided by the resource
Wang and Akella [170] Maximum likelihood estimation

of term assignment to relevant types
Znaidi et al. [201] Term score based on a recursive propagation

algorithm through the query graph
Soldaini et al. (a)[152] Likelihood of being health-related
Soldaini et al. (b) [151] Likelihood of being health-related
Xu et al. [181] Learning-to-rank -based score

Table 5. Main term ranking and selection functions used in AQE methods using a single resource.

To identify candidate expansion concepts, most previous work in the area of medical IR used either a
specialized ontological resource (e.g., UMLS [170, 181] or MeSH [153, 201]) or a raw specialised textual
corpus (e.g., health-related pages of Wikipedia [152]). Basic ontological-based approaches commonly identify
candidate concepts: related concepts having generalization/specialization or part of relationships with the
query concepts; terms generated from the local context [152, 201]. For example, with respect to the UMLS
resource, the query ’cancer’ is likely to be expanded with the synonymous concept ’malign tumour’ and
the query ’osteoporosis’ could be expanded with the (preferred) term of concept ’Boniva’ since UMLS states
that ’Bonivia’ is the treatment of ’osteoporosis. In [181], a LTR based term ranking method is adopted. The
main characteristic of this method is the joint use of MeSH-based features and corpus-based features to
identify semantically related candidate terms. A different class of methods for term selection and ranking
was suggested in [100, 201] by considering the whole structure of the candidate term graph built from the
relationships provided by the knowledge resource. In [100], a graph-based representation is proposed to
structure the query concepts with the relations provided in the UMLS Meta-thesaurus. The concepts are
then ranked using random walks over the graph, mainly using a traditional PageRank score. Using a similar
approach, [201] generate the query sub-graphs for a PICO query structure with the MeSH concept-to-concept
relationships. The authors compute a candidate term expansion score by performing a recursive propagation
algorithm. The latter propagates the scores of the active query concepts to their sub-concepts considering
each query sub-graph by iteratively summing the scores of the hyponym concepts.
Another term ranking method is unlikely based on the use of raw textual data as background knowledge to
compute the candidate term selection scores [151, 152]. In [152], Soldaini et al. introduced the HTPRF (Health
Terms Pseudo Relevance Feedback) score computed for each term appearing in the N top-ranked documents
in response to the original user’s query. The HTPRF score is estimated using the maximum likelihood of being
health-related based on the odds ratio between term frequencies in health-related Wikipedia pages over the
whole Wikipedia corpus.

Multi-Resources Based QE. Another common practice for term generation and ranking is to leverage
multiple knowledge resources by using a variety of semantic relationships between terms. We mainly distin-
guish approaches that use semantic term relations provided by homogeneous data sources [10, 38], namely
ontological knowledge, from approaches combining them with term relations inferred from local corpus
statistics [89, 115, 198]. When QE is based on multiple resources, a key question is how to deal with term
relations that overlap between resources. The approach generally adopted directly or indirectly assigns a
relevance weight to each resource and then injects this weight into the computation of the candidate term
score. It is expected that resources with little relevant informative content for the current query evaluation, in
terms of semantic association, should have a lower impact on term score importance. Following this general
paradigm, various term-ranking functions have been proposed that assign scores that best contextualize the
candidate term relevance to both the query and the global knowledge provided by each resource.
In Table 7 we show the main term-ranking functions associated with the multi-resource based QE methods
presented in Table 5.
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Test Collection Reference Metric Value

TREC Genomics 2004
Ando et al [2] (2005) MAP 0.4552
Dinh and Tamine [38] (2011) MAP 0.4529
Fujita [46] (2004) MAP 0.4075

TREC Genomics 2005

Huang et al [68] (2005) MAP 0.3011
Ando et al [2] (2005) MAP 0.2883
Dinh et al [39] (2013) MAP 0.2859
Dinh and Tamine [38] (2011) MAP 0.2685

TREC Genomics 2006 Zhou et al [196] (2006) MAP 0.174 (passage)
0.537 (document)

Demner-Fushman et al [37] (2006) MAP 0.047 (passage)
0.379 (document)

Xu et al [181] (2019) MAP 0.0706 (passage)
0.2818 (document)

TREC Medical Records 2011
Zhu and Carterette [198] (2012) BPREF 0.583
King et al [78] (2011) BPREF 0.5523
Martinez et al [100] (2014) BPREF 0.5469
Limsopatham et al [91] (2013) BPREF 0.5283

CLEF eHealth CHS 2014 Oh and Jung [115] (2015) MAP 0.8478
Thakkar et al [162] (2014) MAP 0.4146
Shen et al [143] (2014) MAP 0.4069

OHSUMED Oh and Jung [115] (2015) MAP 0.1934
Table 6. Overview of the performances of theQE approaches presented in the paper, when they are comparable:
tested on the same test collection with the same metric. The challenges’ participant best run are underlined.

Given a set of terminologies (MeSH, SNOMED, ICD-10 and GO), data fusion techniques (e.g., CombMax,
CombMNZ) are used in [38] to select among the concepts extracted from the N top-ranked documents in
response to the query the best candidates for QE. To do so, resource importance is implicitly considered in
the computation of concept scores. More precisely, for each feedback document among the 𝑁 candidates, the
authors combine the average weight of associated concepts issued from each terminology and the document
rank in the ordered list of documents. Interesting extensions of the multi-resource based QE technique that
use both ontological and corpus-based knowledge are described in [10, 89, 198]. The general underlying idea
is to leverage from both explicit human-established term associations provided in ontological resources and
hidden term associations inferred from textual corpora to select expansion terms. A basic method proposed
in [89], consists of building statistical-based association rules using term co-occurrences in the corpus and
lexical-based association rules based on the resource knowledge graph. However, the issue of term association
overlap between resources is not addressed. Instead, all the resources are given equal importance weights.
The same hypothesis related to the benefit of combining ontological and corpus-based knowledge is adopted
in [10]. However, instead of using an additive function to compute the overall candidate expansion concept
score as done in [38], the authors compute a joint feature-based posterior probability of relatedness of concept
to the different resources. Instead of using static resource weights, Zhu et al. [198] propose a query-adaptive
resource weighting strategy that relies on the hypothesis that a good expansion resource for a query allows
building an expanded query topically close to the user’s original query. Thus, a collection weight is simply the
normalized similarity between the initial query and expanded query language models using the Jensen-Shanon
divergence metric.

3.1.2 Discussion. Despite the relatively limited number of test collections in the domain, one cannot compare
methods across papers, as they might not be evaluated on the same test collection or metrics. However, we
provide in Table 6 a summarized view of the methods described in this section, when comparable. We only
present in this table methods centered on AQE, without specific semantic ranking (presented in Section 3.2.2).
Firstly, we can observe from Table 6 that the range of performance levels obtained across datasets varies greatly.
This shows the diversity of the evaluated tasks and the differing effects of the QE techniques used on retrieval
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Reference Term Ranking/Selection Function
Dinh and Tamine [38] CombRank: sum of terminological

concept ranks
Zhu and Carterette [198] Mixture of term relevance model
Limsopatham et al. [89] Conceptual-based association

within terminologies
Oh and Jung [115] Feedback model
Balaneshinkordan Conceptual-based association
and Kotov [10] within terminologies

Table 7. Main resource selection functions used in AQE methods using multiple resources.

effectiveness. The results obtained on the TREC Genomics 2004 test collection show that a careful selection of
the expansion candidates, as done by [38] gives better results. Ando et al [2] took part in the challenge in 2005
and presented results on 2004 and 2005 datasets. Their best run approach combined structural feedback with
AQE, expanding terms with synonyms from LocusLink, GO, MeSH and SwissProt. Fujita [46] obtained the top
ranked results (with MAP) in the evaluation campaign set in 2004 by combining blind relevance feedback with
term and acronym expansion with synonyms from LocusLink and MeSH. The results obtained on the TREC
Genomics 2005 test collection indicate that expanding queries with term variants obtained with lexical rules
and knowledge bases (AcroMed and LocusLink) gives better results [68] than using term variants provided
from multiple resources [38]. TREC Genomics 2006 provides a dataset for passage retrieval and a dataset for
document retrieval. The method proposed by [37], based on UMLS synonyms expansion and ranking fusion,
seems to be more efficient for documents than for passages. On the contrary, the method proposed by [181],
based on Learning-to-rank applied to candidate expansion terms, appears to be more efficient on passages
than on documents. The best submission (with MAP) to the Genomics 2006 challenge was Zhou et al [196]
who combined AQE with semantic matching and ranking. This approach is described in Section 3.2.2.

All of the QE techniques evaluated in the TREC Medical Records track prove that the techniques help
in improving cohort search. Regarding the these techniques, it seems that combining multiple knowledge
resources [198], graph-based term selection [100] as well as concept-co occurrence based selection [91] are
equally effective. The best run of the challenge was submitted by King et al [78], who expanded the queries
with UMLS related terms and most similar terms from an encyclopedia, found with a PRF approach. They also
filtered documents using the age, gender, race and admission status attributes of the records.

Oh and Jung [115] conducted their experiments on several datasets including CLEF eHealth and show that
their clustered-based external expansion model is efficient on medical IR on various search tasks (TREC CDS,
CLEF eHealth). However, their approach seems to be challenged by the OHSUMED test collection, which might
be caused by the challenging search task and the relatively short queries. The results they obtain for MAP are
surprising, since they obtained 0.3989 MAP in the challenge in 2014 [53] with a similar query-likelihood with
Dirichlet smoothing approach. Their paper did not allow to understand this increase. Shen et al [143] propose
a query expansion approach on CLEF eHealth CHS 2016 topics, expanding queries with synonyms listed in
UMLS. This approach seems to be efficient at tackling circumlocution in the topics by expanding them with
equivalent terms that better match the documents. The best run in CLEF eHealth (with MAP) was obtained by
Thakkar et al [162] with the query likelihood model without any semantics.

3.2 Relevance Ranking
In its most intuitive form, the relevance ranking problem consists of estimating the document relevance based
on some knowledge mined from the initial query and corresponding search results on the one hand and
knowledge mined from knowledge resources on the other hand. In this section, we review existing approaches
to relevance ranking models and techniques that involve external knowledge resources and then discuss their
effectiveness results when obtained on the same benchmarks.

3.2.1 Overview of models and techniques. Based on how the document relevance estimation model is designed,
we classify relevance ranking methods into two main categories in this section.

Inference-based relevance ranking. In inference-based relevance ranking [24, 56, 81, 183], document
relevance is formally estimated using a mapping score between knowledge held by the query and knowledge
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held by candidate documents. A typical inference-based relevance ranking framework includes either offline
(document) vs. online (query and search results) topic processing and then semantic inference-based ranking
that bridges the gap between queries and documents using knowledge resources. The key problems are how to
map document knowledge (through concepts) with the noisy initial query and how to transform this mapping
into strength scores to be incorporated into the relevance estimation function.
Following this general approach, different techniques have been proposed with different conditions of semantic
inference. Koopman et al. [81] designed a model of relevance ranking based on two mechanisms of inference
that are prevalent in the medical domain: (1) conceptual implication between concepts driven by knowledge
resources (for instance general implications between instances of organisms and diseases, e.g. Varicella zoster →
Chicken pox); (2) conceptual associations between concepts that reveal some natural dependencies (e.g., anxiety
and depression) that are not necessarily provided by knowledge resources but derived using corpus statistics.
Both types of inferences are applied to query concepts and document concepts to estimate relevance. More
specifically, documents are first pre-processed as concept-based graphs using a knowledge resourceto highlight
both conceptual and association relationships between concepts. Then, the retrieval model is designed as an
inference process over the graph whose ultimate objective is to compute document relevance for a query as
the cumulative strength of implications between their concepts similar to a probabilistic language modeling.
Instead of using implications and associations between concepts of queries and documents, Yan et al. [183]
argue that the analysis of topical granularities of both queries and documents provide signals of relevance.
Granularity is estimated with the combination of generality and cohesion based on the depth of associated
concepts and the strength of the semantic relationships between them in the knowledge resource (e.g., the
Resnik [127] concept-to-concept similarity). Using a document re-ranking function, the relevance ranking
model moderates the traditional query-document relevance score with the granularity gap between them.
To reveal the hidden relationships between the query and document concepts, [24] propose a probabilistic
inference model that operates on a probabilistic knowledge graph (called clinical picture and therapy graph
CPTG) built upon corpus-based knowledge resources including EHRs and scientific articles (e.g., PubMed
articles). The underlying motivation is to compute a probability distribution of concepts over all the concept
dependencies (and implications) that can be observed in all the possible clinical pictures and therapies of
patients. Hence, the semantic scope of concept dependencies in this work is higher than it is in [81, 183].

Feature-based relevance learning. This category of works relies on a learning approach of relevance
[9, 91, 149, 180]. Formally, the relevance estimation is turned into a LTR problem which can be formulated as
finding the optimal ranked list of documents using manually crafted features from query and documents and
combining them with a ranking objective. The key problem is to identify the best set of intrinsic query or
document features, as well as mutual features of query-document matching that is predictive of relevance. A
basic approach is proposed by Soldaini and Goharian [149] who leverage a large pool of features including
traditional statistic-based features (e.g., term frequency tf, inverse document frequency idf ) and semantic
features (e.g., concept frequency, semantic types, and word embeddings). Each document and query is first
represented by a vector of features. They tested a set of loss functions such as LamdaMART, AdaRank, and
ListNet to perform a supervised document ranking. Through a feature analysis, the authors acknowledged that
statistical-based features have the most impact on retrieval performance. An interesting revised LTR model,
called Latent-ListMLE, is proposed by Xiong and Callan [180]. It consists of extending the traditional ListMLE
loss function by adding a latent layer in the ranking generation process to jointly learn the best representation
of queries and document rankings. Query representation relies on query-object relationships inferred from
external resources (e.g., MeSH). Traditional features are used to represent such relationships including textual
similarity features and concept frequency mean similarity score between concepts. Feature-based learning is
employed by Balaneshin-Kordan and Kotov [9] to learn the feature weights of concepts used in the computation
of document relevance score. Traditional statistical and semantic features are used similar to those used in
[149].

3.2.2 Discussion. We provide in Table 8 a summarized view of the methods described in this section, when
comparable. We only present in this table methods centered on semantic-based ranking, and methods adopting
both semantic-based AQE and ranking.
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Test collection Reference Metric Value

TREC Genomics 2006 Wang and Akella [171] MAP 0.473 (document)

Zhou et al [196] MAP 0.174 (passage)
0.537 (document)

TREC CDS 2015 task A Balaneshin et al [9] infNDCG 0.3109
Goodwin and Harabagiu [56] infNDCG 0.311

TREC CDS 2015 task B Song et al [155] infNDCG 0.3821
Balaneshin et al [9] infNDCG 0.3690
Goodwin and Harabagiu [56] infNDCG 0.382

CLEF eHealth CHS 2013
Wang and Akella [171] P@10 0.572

NDCG@10 0.587

Zhu et al [199] P@10 0.5180
NDCG@10 0.4665

Table 8. Overview of the best results obtained by each team for ranking methods and mixed methods (AQE +
ranking) on the same test collection with the same metrics. Best runs submitted to the tasks are underlined.

Only twomodels were evaluated using similar datasets andmetrics for ranking-only approaches [9, 56]. They
both used the TREC CDS test collection, which proposed 2 subtasks. The performance of teams approaches
are very close on both tasks, which shows that learning-based matching approaches [9] and inference-based
approaches [56] can be efficient on a clinical decision use case.

As for methods using both AQE and ranking, if we first compare results with those described in Table 6, we
observe that combined methods give higher results on TREC Genomics 2006. Wang and Akella [171] extract
UMLS concepts from the queries and documents with Metamap, and propose a concept-based relevance model.
Zhou et al [196] mixed a 2-dimensional ranking (word-based and concept-based) and introduce a semantic
matching model. They combine this model with an AQE model using synonyms from EntrezGene/LocusLink
and MeSH and some pseudo relevance feedback, by selecting the most similar concepts from the top 15 ranked
documents. Wang and Akella’s method proves its efficiency on a consumer health search scenario [171]. Team
Mayoclinic [199] obtained the best results in CLEF eHealth CHS 2013 with a double index (word-based and
concept-based) and some concept-based relevance feedback using UMLS, although the improvement was not
statistically significant in comparison with the organizers BM25 baseline [50].

The best run (with MAP) in TREC Genomics 2006 was obtained by Zhou et al [196]. The best run (with
infNDCG) in TREC CDS 2015 task A was obtained by [9]. While task B best run was submitted by Song et
al [155], by expanding queries with MeSH terms extracted from the title and snippets of top ranked documents
obtained by querying Google with the topic. Zhu et al [199] obtained the best results in the CLEF eHealth
2013 CHS challenge.

4 DATA DRIVEN APPROACHES FOR SEMANTIC SEARCH IN MEDICAL IR: FOCUS ON
NEURAL APPROACHES

Generally speaking, data-driven approaches for semantic representation and matching in the medical domain,
refer to a category of machine-learning (ML) based methods that learn semantics from raw textual medical
corpora. Early methods, reviewed in the previous section [9, 91, 149, 180], are generally based on feature-based
LTR methods combined with the use of symbolic knowledge provided by knowledge resources. So far, few
works have adopted the ML approach in medical IR because of the difficulty in achieving a reasonable balance
between the cost of human annotation and the gain through retrieval effectiveness.
Recently, the historical success achieved by deep learning approaches in a wide range of research disciplines
such as computer vision and speech recognition has given rise to a surge of interest in IR [105, 116] and
medical IR [36, 93, 150, 161]. Specifically, semantic search on medical texts leveraged on neural IR and NLP
models and techniques. Following the general approach in neural IR, neural models for medical search learn
semantics using unsupervised or semi-supervised matching models. Unsupervised models use pre-trained
item embeddings (e.g., word embeddings) and then inject them in a retrieval model [32, 110]. Semi-supervised
models (1) learn item embeddings from scratch such as representations of words and concepts [111] or more
complex items such as patients [156] and employ them in a retrieval task [93, 111], and (2) learn either
representations or relevance/semantic ranking in an end-to-end neural fashion by considering a target task
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(e.g., learning patient similarities [200]).

This section serves as an attempt to provide an overview of early research in both representation learning
and neural semantic matching in medical search. Since our goal is to provide key insights into specific medical
search problems the neural approaches can tackle, we scope our discussion to the representation learning
models of concepts, documents, and patients having the following features: (1) models that have already been
evaluated in ranking and similarity-based search tasks w.r.t. the article’s scope (See Section 1.3). Examples of
those tasks include document retrieval (e.g., scientific literature retrieval, care episode retrieval) and matching
(e.g., patient similarity and concept relatedness); (2) models that could be deployed in ranking and similarity-
based search tasks but to-date have been evaluated in other downstream tasks (e.g., diagnosis prediction and
mortality prediction). Models that do not fulfill both requirements are not covered in this survey since we
aim to provide a thorough examination of the fundamentals in neural medical search instead of providing a
general picture of neural approaches to all medical text mining tasks. A reader interested in deep learning
approaches used to mine knowledge from medical data is referred to dedicated surveys [72, 179].

In the following, we categorize the research works in the area with respect to the type of medical item
learned that can give rise to conceptually different retrieval tasks that are developed in context. For each
category of work, we present an overview of state-of-the art models and then discuss the trending results.

4.1 Representation Learning of Concepts
4.1.1 Overview of models. Medical concepts are traditionally encoded as discrete symbols based on their
ontological identifiers (e.g., Concept Unique Identifiers CUI). Their similarities are generally measured using
path-based measures and/or content-based measures [121]. In contrast with such symbolic representations, a
concept embedding encodes a concept as a low-dimensional continuous dense vector such that it is ideally
aligned with its ontological counterpart. Medical concept embeddings are typically built using large unlabelled
medical corpora either from scientific literature [150], health-related data [28, 49] or both [35, 93]. Following
the advancements in the design of neural language models, the earliest works applied and/or extended the
shallow models Skip-gram and Continuous Bag of Words (CBOW) [102], while the more recent ones fine-tuned
transformer-based including BERT model and its variants [165]:

• Skip-gram-based models [8, 32, 35, 48, 49]: Traditionally the Skip-gram variant builds word represen-
tations by optimising their ability to predict the representation of surrounding terms. For concept
embeddings, most of the work relies on a prior text pre-processing where words or compound words are
first associated with CUI from an external medical resource (e.g., UMLS). Then, training is performed
using sequences of concepts to build concept vector representations that are predictive of nearby
concepts. This was the general approach adopted by most of the representative works [32, 35], but
using different types of medical corpora in the learning process: (1) medical clinical narratives in [35]
using TREC Med track data, MCECN dataset [45]; (2) medical scientific literature in [32, 35] using
OHSUMED dataset; (3) other medical raw text corpora such as patient claims [32] or health-related
news corpora [48]. In general, concept vector representations highly depend on the medical training
data used, since the only information for their learning is their distribution over the corpora. Thus, the
impact of those representations on downstream tasks is highly variable.
For the concept relatedness task, Devine et al. [35] found that learning concept embeddings from
clinical narratives is less effective than learning them from the scientific literature. Their finding is
based on a quantitative analysis of the correlation between the vectorial-based vs. human-based pair-
wise similarity ranking of concept pairs. In contrast, through the analysis of concept vector clusters
built-up on different learning algorithms and different textual corpora, Choi et al. [32] argue that the
learning concept embeddings from clinical narratives lead to a significant qualitative and quantitative
improvement whose levels depend on the variant of the learning algorithm used. These findings clearly
show that the corpus characteristics have an impact on the quality of the embedding outputs. The need
for learning from multiple medical sources therefore became apparent.
Regarding disease classification, Gosh et al. [48] showed that learning concept representations from
medical corpora is more effective than using pre-trained word embeddings. The classifier was effective
for a wide range of diseases including endemic and rare diseases. Interestingly, Bai et al. [49] propose the
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JointSkip-gram model which embeds both diagnosis medical codes and words from clinical narratives
in the same embedding space. Thus, the learned representations benefit from both concept-to-concept,
word-to-word, and word-to-concept similarities. These representations are effective for a diagnosis
prediction task using a small EHR database. However, no comparison has been carried out over the use
of simple Skip-gram models to generate the visit embeddings. This work has been recently extended
to leverage multiple knowledge resources [8]. The key problem addressed is the diversity of medical
coding ontologies present in claims provided by different providers. To tackle this problem, the authors
proposed typePPMI that computes the joint frequency distribution of medical codes over multi-source
data. TypePPMI is then used to update the Skip-gram objective function in the negative sampling step
so as to better capture relationships between codes.

• Continuous bag-of-words (CBOW)-based models [22, 93, 185]: Unlike the Skip-gram model, the CBOW
models predict the current word given its context. Similar to the Skip-gram-based learning models, the
CBOW-based learning models require the pre-processing of medical documents to identify sequences of
CUI from resources and then learn the representation of a CUI according to the context CUI frequently
appearing around it. The basic approach of this learning model is used in [185]. Based on the idea that
if a word is well generated from a given context, its related words should also be well generated from
the same context, Liu et al. [93] proposed a variant of the CBOW model by regularising accordingly
the objective function. The regularizer consists of a log-likelihood of the co-occurrence of contextual
concepts given a target context. The authors evaluated the effectiveness of the concept representations
using two search tasks by using the TREC filtering based on the OHSUMED collection and CLEF
eHealth 2014-2015 datasets. By building query and document vectors based on the averages of related
concept embeddings, the authors evaluated a document retrieval task based on a re-ranking approach.
The results showed that the retrofitted vectors allow the achievement of higher performance levels over
traditional search models and basic CBOW-based models. However, it is still unclear to what extent the
level of improvement is impacted by the type of embedding, the nature of the task (document retrieval)
or the way the embedding has been incorporated into the relevance score function (linear combination
of exact retrieval score and neural retrieval score). A recent work by Cai et al. [22] incorporated the
temporal scopes of medical concepts in the learning process of their embeddings. More specifically,
based on the CBOW model, the authors used the attention mechanism to learn the importance of each
concept in a time-based scope. The latter is defined as the largest number of time-units between the
contexts and the target medical concepts. Comparative experiments have been carried out based on an
ICD-concept clustering task using private and public health-related datasets. The results clearly showed
that the time-aware attention was able to capture more accurately than the traditional CBOW model,
concept-context pairs that lead to a better improvement over a KNN concept clustering task. However,
more intensive experiments are required to assess whether the model performance is task-dependent
or resource-dependent.

• Fastext and Glove based models [15, 191]: recently, new concept embedding models based on Fastext
[191] and Glove [15] have been proposed. In [191], Zhang propose BioWordVec a new set of word
embeddings based on the subword embedding model. By using both unstructured data (biomedical
literature) and structured knowledge (MeSH term sequences), the subword embedding model learns the
text sequences and MeSH term sequences in a unified n-gram embedding space. In contrast, the central
idea in [15] is is similar to the one given in [8]. The authors extended the Glove model by introducing
the PMI word-context measure into the negative sampling step, leading to develop the SPPMI matrix
(shifted positive pointwise mutual information matrix) which is implemented with Glove.

• Deep neural- based models
– Transformer-based models [1, 84]: Lee et al. [84] and Alsentzer et al.[1] recently introduced respec-
tively BioBERT and Clinical BERT which are the first fine-tuned BERT models on large Biomedical
corpora. Unlike, previous medical language models described above, these language models do not
rely on any design extension of the BERT model but rather train the BERT-based embeddings on
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medical corpora. For instance, the overall process of BioBert relies on a three-stage training: 1)
pre-training on a general domain corpora, mainly Wikipedia and Books corpus; 2) fine-tuning on
domain specific data, mainly PubMed abstracts and PMC full-text articles; 3) further fine-tuning on
task-oriented datasets, including NER, relation extraction and question-answering. The results of the
question-answering task on the BioASQ dataset clearly show the effect of fine-tuning BERT model
on domain-specific knowledge.

– Other types of deep neural models [29, 150, 154]: other recent works use other neural architectures
such as CNN and multi-layer perceptrons (MLP). To overcome the limitation of the low-occurrence
of some medical concepts that impact negatively the quality of the learned outputs, Choi et al. [29]
proposed the GRAM, a graph-based attention model for concept representation learning. The key
underlying idea is to leverage the parent-child relationship provided by a resource to enhance the
likelihood of co-occurrence of less-observed concepts in context. The GRAM model is based on a
multi-layer perceptron architecture with an attention mechanism that learns in an end-to-end fashion
the concept importance in context based on hierarchical relationships provided at the input of the
learning process. The authors found that the GRAM’s performance on a diagnosis prediction task
using the MIMIC III dataset is slightly higher than the baselines but also found that the results do
not reach the same level of performance depending on different settings including the downstream
task evaluated. One possible explanation is that the embeddings of concepts are close to those of
their ancestors, which might not be relevant for all tasks. Song et al. [154] propose the MMORE
model that tackles this limitation by allowing the learning of multiple representations of concept
ancestors from multiple ontologies that carry multiple semantic meanings. Learning multi-sense
based representations of concepts is particularly relevant since co-occurrences statistics in the corpus
used for their learning do not necessarily fit with the semantic held by a single resource. Following
the GRAMmodel, the concept embeddings are built as the linear combination of the basic embeddings
of the ancestors learned using each ontology where attention weights act as damping factors. Exper-
iments on the MIMIC III dataset showed the relative performance of the MMORE model over the
GRAM model using a diagnosis prediction task. However, experiments were performed on only two
resources (ICD and CCS) and only using one downstream task (diagnosis prediction). The question
of the variability of the model performance in additional downstream tasks with respect to a more
general framework based on multiple resources is still open.

4.1.2 Lessons learned. Table 9 provides an overview of the reviewed representation learning models of medical
concepts organized on the basis of the core language model used. To allow for a fair comparison, we highlight
for each the intrinsic vs. extrinsic task as well as the datasets used for training and evaluation.

As can be seen from Table 9, two major types of tasks have been used for evaluation: (1) concept clustering
and relatedness which are both intrinsic evaluation tasks leading to similar conclusions about the vectorial
similarity of concept embeddings regarding a human-assessed medical knowledge resource; and (2) search
(e.g., literature retrieval, search for cohort, question-answering) and diagnosis prediction as extrinsic tasks.
We can also see that the MIMIC III dataset, as can be expected given its large size in comparison to other
biomedical datasets (See Section 2.3), is widely used for both types of tasks. While concept clustering tasks
make use generally of UMNSRS, CCS and ICD9 ground truths for evaluation, search tasks rather use limited
human relevance assessments generally provided in benchmarks such as TREC OHSUMED, TREC CDS and
CLEF e-health datasets (See Section 2.3). The differences observed on several impactful factors used for

29http://clinicalml.org
30https://www.healthmap.org
31https://mimic.physionet.org/
32https://www.cms.gov/Research-Statistics-Data-and-Systems/Downloadable-Public-Use-Files/SynPUFs/DE_Syn_PUF
33https://www.hcup-us.ahrq.gov
34https://www.cms.gov
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Reference Neural model extended Task Used datasets
(I: Intrinsic, E: Extrinsic) (T: Training, E: Evaluation)

Devine et al. [35] Skip-gram Concept relatedness (I) TREC-Med (T), TREC OHSUMED (T)
Pd, Cav datasets (E)[121]

Liu et al. [93] CBOW Literature retrieval (E) TREC OHSUMED (T, E)
Search for cohorts CLEF e-health 2014-2015 (T,E)

Choi et al. [32] Skip-gram Concept relatedness (I) UMLS (E), Clinicalml dataset29 (T)
Private Database of medical claims (T)

Gosh et al. [48] Dis2Vec: Skip-gram Diagnosis classification (E) HealthMap30 (T, E)
Bai et al. [49] Skip-gram Concept relatedness (I) ICD9 (T), MIMIC III31 (E)
Choi et al. [29] GRAM: MLP Diagnosis prediction (E) MIMIC III (T, E)

with attention mechanism Private database of EHRs (E)
Soldaini et al. [150] CNN: Search for cohort (E) TREC CDS dataset 2014-2016 (T, E)
Yu et al. [185] CBOW Concept relatedness PubMed collection (T)

UMNSRS-Sim [118] (E)
UMNSRS-Sim [118] (E)

Cai et al. [22] MCE: CBOW Disease code clustering (I) Private Database of EHRs (T)
De-SynPUF 32 (T)
CCS33 (E)
ICD9 (E)

Song et al. [154] MMORE: MLP Diagnosis prediction (E) MIMIC III (T, E)
with attention mechanism

Peng et al. [122] MC2Vec: CBOW Concept clustering (I) MIMIC III (T), CMS34 (T)
with attention mechanism CCS (E), ICD9 (E)

Bai et al. [8] typeSkip-Gram: Skip-gram Concept clustering (I) Database of EHRs [173] (T) ICD9 (E)
ICD9 (E)

Zhang et al. [191] BioWordVec: FastText Concept clustering (I) PubMed collection (T)
UMNSRS dataset [118] (E)

Beam et al. [15] CUI2vec: GLOVE Concept clustering (I) SNOMED-CT (E)
SNOMED-CT (E)

Lee et al. [84] BioBERT: BERT Question answering (E) PubMed collection (T)
Private database of medical claims (T)
SQUAD dataset[126] (T)

Table 9. Overview of recent research on neural representation learning models of medical concepts.

evaluation make the comparison between neural models both in the general and medical domain difficult.
Among them, it is worth mentioning differences in the sizes of the corpus used for training and evaluation,
the diversity of dimensions of the embeddings, the differences in the sizes of context windows used while
training the embeddings, and the number of sources used for training the embeddings [36, 73, 116]. However,
by making an in-depth analysis of the reviewed works, we can make some fair consensual conclusions
across models: (1) the size of the datasets used for training the embeddings is critical since large sizes are
required to achieve high quality concept embeddings. However quality of the embeddings comes at the
cost of the availability of annotated corpora which is still limited as can be seen from Table 2; (2) training
the embeddings over multiple corpora lead to significantly better performance regardless of the types of
embeddings and tasks [28, 84, 161]. The well-established practice is to train the model on a large out-of-domain
dataset (e.g., Wikipedia) and subsequently fine-tune the parameters of the model on medical datasets (e.g.,
Pubmed, MIMICIII). The improvements observed can be intuitively explained by the fact that heterogeneous
corpora may likely differ in terms of their vocabulary, content and contexts leading to higher capabilities
of generalizability of knowledge across tasks; (3) transformer-based models (BERT-based models) seem to
be more effective than other language models (e.g., ELMO) in similarity- based search tasks (e.g., question
answering) [84, 87, 123]. The levels of improvements are particularly impacted by the domains of the datasets
used for training. The more diverse the domains to cover complex implicit semantics as hold in the literature
and patient data (e.g., Wikipedia, PubMed, MIMICIII), the more effective are the embeddings to capture
matching signals. Other models such as CBOW and Glove exhibit lower performances but with unclear trends
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with regard to varying window sizes and ground truths used [22, 122]; (4) the effectiveness results of neural
models are still low and unstable across search tasks (e.g., literature retrieval, search for cohort) [93, 150, 161].
While the low performance of neural matching models have already been outlined in previous work in IR
[184], the effect of the ways of integrating embeddings in matching tasks, as done in neural medical IR, is still
under-studied. Regarding results instability across tasks, one possible explanation is related to the complexity
of relevance appraisal (See Section 1.3) that leads to neural model failure in capturing task-agnostic relevance
matching signals. Another possible explanation is the very limited size of ground-truth in search tasks (human
relevance assessments) that lead to sub-optimally trained embeddings; (5) time rises as a useful factor to
either implicitly (e.g., order of contexts used for learning) or explicitly incorporate (e.g., temporal attention
component) into traditional language models (e.g., CBOW, Skip-gram) or into MLP-based language models
of concepts [22, 28, 122]. It allows enhancing the effectiveness of both concept relatedness and diagnosis
prediction tasks.

4.2 Representation Learning of Documents
4.2.1 Overview of models. Documents and short texts (sentences, paragraphs) which are viewed as more
complex textual units than concepts and words, have also been the focus of a large body of works in the field of
neural-based representations [83, 104, 169]. A simple but efficient approach consists of inferring the document
representation by averaging embeddings of its words. As an extension of word2vec, the Paragraph-Vector
model (PV) [83] jointly learns paragraph (or document) and word representations within the same embed-
ding space. This joint learning relies on the compositional assumption underlying document representation
[104, 169] leading to a mutual benefit for learning the distributional semantics of both documents and words.
Leveraging these previous works, a consistent body of work proposed neural models for the representation of
medical scientific publications [101, 110, 161], patients visit reports [11, 28, 110] and care episode descriptions
[58, 106].
Moen et al. [11, 106] adopted the simplest way to generate care episode vectors. For instance, a care episode
embedding is obtained by averaging the w2vec embeddings of all the words that belong to the care notes. The
similarity between care episodes is then computed with the cosine similarity between their vectors. Regardless
of the domain of application, this basic approach has shown to be efficient but with limited improvement
particularly for search tasks [192]. Choi et al. [28] propose the Med2Vec model that learns patient visits
embeddings using an extended Skip-gram model. Given a visit, a multi-layer perceptron first converts a binary
code-based visit representation to an intermediate representation that is concatenated with demographic
data and then converts them to the final latent representation. The network is trained based on patient visit
sequences to predict past and future visits. The experimental evaluation carried out on private patient health
records using a disease prediction task shows both the model performance gains over the Skip-gram model
and the good level of interpretability of the visit representations.
Other works use document neural models to jointly learn concepts and document embeddings [101, 110, 161].
While authors in [101, 110] adapt the PV algorithm to learn the connection between the documents and
concepts, Tamine et al. [161] additionally leverage the concept-to-concept relationships provided by a resource
to regularize the learning objective. Nguyen et al. [110] proposed an offline learning approach of document
embeddings based on the PV model [83]. They formulate the document representation task as an optimization
problem based on the assumption that either using word or concepts in the flat document descriptor, both
representations might lead to the same latent semantic representation. Accordingly, word-based and concept-
based document embeddings are first learned in separate spaces and then the optimal hybrid vector is inferred
as the closest one to them. Experiments on a search task in medical documents (scientific literature and patient
visit) on TREC OHSUMED and TREC Med datasets particularly showed the relevance of the learned concepts
for a QE task. However, the quality of document embeddings was not evaluated since their impact on intrinsic
task performance was not addressed. This work was followed by a recent on-line model whose goal is to
obtain a shared vector space for documents, words, and concepts. To achieve this, a tripartite model extends
the conventional PV model to consider distributed word-concept semantic relations that could be captured
from raw hybrid representations [161]. More importantly, the model learns document embeddings such that
they are predictive of relational information established in structured resources. The model constrains the
distributional learning model towards better revealing similarity concept-to-concept relations even if they
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appear in an insufficient amount of similar training contexts. More precisely, the PV learning objective is
regularised towards making the representations of concepts close by considering their explicit relations in the
resource. An intensive experimental evaluation has been carried out on concept relatedness and document
literature retrieval tasks using TREC Med and TREC OHSUMED data. Although significant improvements
have been achieved over representative document representation models (e.g., model from [104, 169]), the
level of gains significantly vary from one task to another depending on a wide range of factors including
source used for training the documents, and the nature of the downstream task employing those embeddings.

Grnarova et al. [58] proposed a dedicated end-to-end neural architecture to tackle health-related specific
tasks. By considering a mortality prediction task, they proposed a two-layer architecture to model clinical
notes as a set of separate sentences. While the first layer builds sentence vectors, the second one combines
the sentence vectors and incorporates additional information such as visit category (e.g., nursing) that would
help the target task. Moreover, they compute an individual softmax mortality probability for every sentence
and incorporate them into the objective function. Through experiments on the MIMIC III dataset, the authors
showed that the proposed neural model outperforms a topical model based on LDA as well as neural basic
models based on averaged CBOW-based and doc2vec-based vectorial representations of sentences. Beyond
performance gains, the study lacks in-depth qualitative analysis. As such, the relationship of the sentence
characteristics and the patient class being predicted by the whole model are not known.

4.2.2 Lessons learned. Table 10 provides an overview of the reviewed representation learning models of
medical documents. We report for each of them the intrinsic vs. extrinsic task as well as the datasets used
for training and evaluation. We can observe from Table 10 that most embeddings rely on the PV model as
the core model [101, 106, 110, 161] of documents. All the models are based on a joint objective function that
exploits word or concept co-occurrences (as done in representation learning of concepts reported in Table 9)
and manually labelled document contexts (e.g., scientific publication as done in [101] or a cohort description
as done in [110]). Given, on one hand, the limited number of works that used document embeddings in
the medical domain, and on the other hand, the limited experimental evaluation in terms of datasets, tasks
and baselines, it is difficult to generalise lessons about their effectiveness. We can conjecture that document
embedding is another promising approach to leverage in medical data representations; however, since no
experimental evaluation has been carried out using similar datasets for similar tasks, there is a lack of clarity
as to what extent these methods perform better than concept-based methods reported in Table 9 and what
the intuition is behind the interference of concepts and documents that include these concepts particularly
in medical search tasks. Works in the field of learning medical document embeddings are considered as
preliminary works before tackling larger medical document contexts such as patient records which include
multiple documents. This space of research has recently attracted a significant body of research in the domain
as reported below.

4.3 Representation Learning of Patients
4.3.1 Overview of models. In simple terms, patient embedding is a single dense vectorial representation that
conflates all multi-modal patient data. Simple incremental works of patient embeddings extend word (e.g.,
Skipgram) and document (e.g., doc2vec) embedding models by learning from sequences of patients’ visits
[113, 117, 156, 158]. For instance, Stojaovic et al. [156] model patient embeddings by summing the vectorial
representations of discharge records that have been learned using the Skip-gram model. Each discharge
disease is a sequence of disease and procedure codes. The experimental evaluation using the prediction of total
charges on a hospital database of patient stays showed that the model is promising. However, the proposed
model has not been compared to strong baselines such as Med2Vec [28] or GRAM [29] models. Deep neural
architectures have also been proposed to handle classification and prediction tasks based on patient-related
information [14, 30, 41, 58, 103, 112, 113, 163]. Convolutional neural architectures (CNN) are proposed in
[112, 200]. Nguyen et al. [112] proposed the Deepr model based on CNNs. Similarly to [156], Deepr uses at the
bottom level of the network raw representations of patient discharge including diagnosis and procedures. Time

35https://www.merckmanuals.com/

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: April 2020.



26 L. Tamine and L. Goeuriot

Reference Neural model extended Task Used datasets
(I: Intrinsic, E: Extrinsic) (T: Training, E: Evaluation)

Nguyen et al. [110] ConceptualDoc2vec: doc2vec Literature retrieval (E) TREC OHSUMED collection (T, E)
Search for cohort (E) TREC Med collection (T, E)

Mencia et al. [101] doc2vec Concept relatedness (I) BioASQ collection (T)
UMNSRS-Res (E)
UMNSRS-Sim (E)

Choi et al. [28] Med2Vec: word2vec Disease prediction (I) Private database of EHRs (T, E)
Grnarova et al. [58] CNN Mortality prediction (E) MIMIC III (T, E)
Moen et al. [106] word2vec Private Database of EHRs (T, E)

retrieval
Hughes et al. [106] doc2vec Text classification (E) PubMed collection (T)

doc2vec Merck Manual dataset35 (E)
Wang & Koopman [106] Ariadne: doc2vec Ad-hoc document search (E) MEDLINE collection (T)

Database of medical guidelines (E)
Tamine et al. [161] SD2V: doc2vec Robust 4, OHSUMED collections (T)

DBPedia (T), TREC-Med collection (T)
Search for cohorts (E) DBPedia (T), TREC-Med collection (E)
Literature retrieval (E) TREC OHSUMED (E)

Table 10. Overview of recent research on neural representation learning models of medical documents.

gaps between diseases are discretised and coded in the network input to help the prediction task. Qualitative
results obtained using the risk prediction task show that Deepr better discriminates between patients. However,
the comparison is only performed to bag of word (BOW) representations.

A siamese based CNN neural architecture is proposed in [200]. The overall learning framework learns in
an end-to-end fashion to map patient representation to vectors, which can then be employed to compute
their similarity. Each patient is represented as a matrix of embeddings of patient visits. Limited experiments
have been carried out using a private database of EHRs. The PSDML model [113] is based on a quadruple
network architecture that includes an anchor patient, a positive patient, a negative patient and a similar
patient which are separately fed into four deep neural networks. The top layer of the network is a metric
layer relying on a quadruple loss function. The latter allows a fine-grained patient similarity by computing
two margins between positive and similar patients, similar and negative patients. An in-depth analysis of
the patient similarity results in two private patient datasets clearly show the usefulness of the quadruplet
architecture. This architecture induces however issues related to the choice of the more accurate patient
samples to ensure the model performance over siamese and triplet architectures.

The temporality of patient records has been explicitly considered using appropriate neural architectures
[14, 163]. Baytas et al. [14] proposed a time-aware LSTM model (T-LSTM) to handle the issue of irregular
time-stamps between diseases within the patient trajectory. The main idea is to model patient embeddings
by learning a subspace decomposition that better reveals patient subtypes. The input of the network is the
temporal patient data which is fed into T-LSTM. The latter decomposes the previous memory into long and
short term components and employs the gap times to discount the short term effects. While quantitative
analyses showed the performance gains of T-LSTM over representative baselines, qualitative analyses do not
provide a clear picture of patient sub-types. Tran et al. [163] proposed eNRBM, a neural model based on a
Restricted Boltzmann neural network architecture and in which an input layer is connected to an output
layer. The input layer consists of clinically observed variables over time (e.g., disease occurrences) and the
representation layer is composed of latent factors related to discovered health-related facets. More precisely,
the model embeds multi-modal data that comprises static information (e.g., gender) and healthcare trajectory
through real-value events (e.g., EEG signals). This information is represented in raw vectors and provided to the
network for algebraic transformations. Experimental evaluation has been carried out using a private hospital
database of patients that was assessed for suicidal risk. The results showed that the eNRBM model enabled
the accurate clustering of risk factors for scientific literature findings. However, the authors acknowledged
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Reference Neural model extended Task Used datasets
(I: Intrinsic, E: Extrinsic) (T: Training, E: Evaluation)

Tran et al. [163] eNRBM: Boltzmann machine Suicide risk prediction (E) Private Database of EHRs (T, E)
stratification
Comorbidity classification

Miotto et al. [103] DeepPatient: AutoEncoder Disease classification (E) Private Database of EHRs (T, E)
Nguyen et al. [112] Deepr: CNN Risk prediction (E) Private Database of EHRs (T, E)
Zhu et al. [200] Convolutional network Patient similarity (I) Private Database of EHRs (T, E)
Baytas et al. [14] LSTM Future Parkinson Private Database of EHRs (T, E)

sequence prediction (E)
OrmandyI et al. [117] Skip-gram Patient similarity (I) MIMIC III (T, E)
Stojanovic et al. [156] Skip-gram Total charges prediction (E) Private Database of EHRs (T, E)

Mortality prediction
Ni et al. [113] PSDML: Siamese neural network Patient similarity (I) Private Database of EHRs (T, E)
Sushil et a. [158] doc2vec Patient mortality prediction (E) MIMIC III (T, E)

Autoencoder Disease prediction
Dligach & Miller [41] MLP Disease prediction (E) MIMIC III (T)

I2b2 challenge dataset [55] (E)
Choi et al. [30] MIME: MLP Health failure prediction Private Database of EHRs (T, E)
Choi et al. [31] Graph convolutional transformer Mortality prediction (E) Collaborative research dataset36 (T, E)

Table 11. Overview of recent research on neural representation learning models of patients.

that some of the retrieved clusters are not clinically relevant and that it is unclear if this result could be more
crucially impacted when using other clinical data collections. Interestingly, Choi et al. [30] propose Multilevel
Medical Embedding (MiME) which learn the multilevel embedding of EHR data while jointly performing
prediction tasks. The tasks incorporate knowledge provided by EHR data into the embedding process such that
the main task can leverage prediction power from related auxiliary tasks. Works previously described [28, 101]
often conflate codes and treatment into a single visit representations. On the contrary, the MIME model
explicitly discriminates the hierarchy (patient-level) between diagnosis codes (diagnosis level), treatment codes
(treatment level) and their relationships in separate levels. MIME model has been evaluated using sequential
disease prediction and showed significant improvement over the Med2Vec and GRAM models. Incorporating
additional patient data such as demographic information and procedure instructions is left for the future.

4.3.2 Lessons learned. Table 11 provides an overview of the reviewed representation learning models of
patients. We report for each of them the intrinsic vs. extrinsic task as well as the datasets used for training and
evaluation. From Table 11, we can see that most of the research work in patient representation learning has
been carried out on private databases of EHRs, making across-model comparison not possible. This observation
can be expected from the nature of the task, since patient data is constrained by privacy-concerns due to
its sensitive content. A close look at the proposed models lead us however to make the following general
statements: (1) patient embeddings are generally processed based on a multi-level or multi-step training;
a supervised training level on diagnosis codes within patient visits and a semi-or non supervised training
level over the longitudinal structure of the patient record. This two-step process makes the models able to
capture hierarchical patterns and dependencies in patient data allowing them to be effective for a wide range
of downstream tasks including both similarity-based tasks (e.g., disease classification) and prediction tasks
(e.g., risk prediction, disease prediction) [30, 31, 41, 103]; (2) Deep neural architectures seem to be more suited
(than feed-forward networks) to capture patient-related data patterns as well as to detect patient similarities as
outlined in comparative experiments [30, 31] and can be inferred from model architecture adopted in related
works [14, 30, 31, 113]; (3) Model convergence and effectiveness of the models heavily depend on multiple
factors including the balance in disease classes among patients [113, 163], patient sampling strategy, mainly in
the case of end-to-end learning of patient similarities [113], and elapsed time irregularities to observe target
disease codes [14]. This line of work is still at its early stage. Further research collaboration is needed to tackle
the barriers of shareable data and tasks.
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5 CONCLUSION AND CHALLENGES AHEAD
Summary. In this survey, we reviewed the literature on semantic IR in the medical domain. We started

by introducing the medical domain, the type of data and the existing major semantic resources. Then, we
described how the medical domain was particularly challenging for IR: the semantic gap, the vocabulary
mismatch, and the complexity of result appraisal. We presented a comprehensive overview of the major
models and techniques, among which we distinguished structured knowledge resource-driven approaches, and
data-driven approaches. Knowledge-resources driven approaches fall into 2 categories. The first one relates to
QE approaches, where terms are added to the query to retrieve more relevant documents. These expansion
terms are identified in a local or a global context, using one or multiple knowledge resources. The second
category includes feature-based relevance ranking methods, hand-crafted based learning methods are applied
to representations of documents that include semantic information, to learn a new rank order for documents.
A cross-model analysis allowed us to provide a comparative evaluation. Data driven approaches particularly
include neural representation learning models, where either an item semantic embedding is learned from raw
text or a relevance function is learned in an end-to-end fashion. Those embeddings are generally used within
various intrinsic and extrinsic tasks, ranging from concept relatedness to disease prediction. From the deep
analysis of the representation learning models and their performance results, we provided trending lessons.

The main conclusion that one can draw from the literature review is that the increasing interest in the
IR and health-informatics communities in medical search have led to significant scientific progress and the
creation of various resources, increasingly allowing shareable and reproducible evaluations. However, research
collaboration and shared views between both communities are still at an early stage. Further investigation is
required to tackle pending challenges among which we identify those summarized below.

Challenges ahead and future research directions.
Semantic reasoning beyond semantic search. While the IR and health informatics communities actively design
tasks assisting medical practitioners’ information needs, the semantic IR models designed are not necessarily
closely related to the actual information flow in the medical practice. Particularly, for tasks such as diagnosis
that are inherently multi-step search tasks and induce a hypothetico-deductive cognitive process, professionals
require support that extends beyond a query-response paradigm. Such tasks are acknowledged as complex
[79] since beyond the semantic query-document matching, they should incorporate the decision-making
process of the user (here the medical professional). The real required assistance of medical professionals is not
only to fill the semantic gap but also to accomplish a task. One promising research opportunity would be the
design of models which better exploit the expressiveness power of knowledge resources by incorporating
the reasoning ability they offer. Beyond using simple structural relationships between knowledge nuggets
(e.g., concepts) to improve document and query representations, improved knowledge representation and
reasoning models are required to design deductive processes.

Acceptability and explainability of neural models in medical IR. Neural IR in general and neural medical
search specifically is not yet at a mature stage [116, 184]. The early research and progress made so far gave rise
to several issues that could lead to research opportunities in the near future. First, the need for a very large
amount of training data is still a bottleneck particularly in the medical domain where expert-based ground
truth is costly to collect. Various methods including transfer learning are explored to compensate for the lack
of training data [179]. However, in order to gain maturity, cross-disciplinary research is required to target the
learning strategies to specific medical search tasks. Second, the other challenge of neural approaches is the
black box effect: to date, we are not able to explain their results. AI regulations, such as the EU General Data
Protection Regulation (GDPR) present the “principle of transparency” of intelligent algorithms and emphasize
the fact that algorithmic decisions in AI systems should be explainable. Recent efforts have been made in the
recommendation and IR communities. As an example, Zhang et al [194, 195] have organized in SIGIR the
Workshop on Explainable Recommendation and Search (EARS). Studies in this new domain cover a wide range

36https://eicu-crd.mit.edu/about/eicu/
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of topics, including the design of explainable models and systems [146], investigations of various types of
explanations [47], studies aiming at understanding users needs and interaction with the results [26, 95]. In
domains such as medicine, not understanding a system’s output is particularly critical and effort needs to be
exerted towards system explainability. Legal and ethical acceptability of medical search systems integrating
deep learning strategies is still questionable. Acceptability is inherently related to the ability to explain and
interpret the results and the confidence that can be placed in them by medical professionals. Research has
shown that professional searchers value transparency more than ranking performances [137]. One relevant
research opportunity is the design of hybrid models that combine human-driven and data-driven learning
objectives. This research trend has recently been initiated [96] but is still at a very early stage. Qu et al [125]
propose a novel retrieval model that emulates how medical experts make structured relevance judgments.
To do so, they train document classifiers based on documents aspects (e.g., disease, gene, demographics) in
order to mimic experts cognitive process. As shown by these approaches, a focus on interpretable systems
is needed in the medical domain, to avoid providing users with automatically generated "explanations" of
complex blackbox systems that can be unreliable and misleading [136]. In that sense, [26, 147] provide very
insightful recommendations to make systems explainable. Sokol [147] publish a taxonomy to characterise and
assess explainable systems along five key dimensions: functional, operational, usability, safety and validation.
In order to gain maturity, we clearly need: (1) to empower system design with user-centered concerns (either
professional or patient) such as fairness, privacy and transparency, and (2) to design suitable evaluation
frameworks, including datasets and measures, which allow for the comparison of the effectiveness of system
decisions with medical professional-style decisions.

Cross-discipline collaboration for low-resource languages. Semantic IR strongly relies on semantic resources
and semantic annotation. The English language is well covered, with several thesauri focusing on specialized
fields, and the UMLS metathesaurus gathering hundreds of thesaurus, and several semantic annotation tools
such as MetaMap. However, languages other than English are far from being as covered as English, and
substantial effort is required to be able to assist medical professionals across the globe. A huge effort is needed
from various disciplines including IR, NLP, linguistics and health-informatics to cite but a few, toward to build
shareable resources. Thus, another relevant investigation would be the study of transfer learning strategies to
exploit the relationship between rich-resource and low-resource language lexicons. Recent neural translation
models [7] offer promising opportunities but the need for a huge amount of annotated corpora and the lack of
pivotal resources still hampers their success. Further work is needed toward automatically building training
data based on expert-style weak supervision.
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