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In the last years, several asymptotic expansion algorithms have appeared, which have the property that they can deal with very general types of singularities, such as singularities arising in the study of algebraic differential equations. However, attention has been restricted so far to functions with strongly monotonic asymptotic behaviour: formally speaking, the functions lie in a common Hardy field, or, alternatively, they are determined by transseries.

In this article, we make a first step towards the treatment of functions involving oscillatory behaviour. More precisely, let be an algebraic function defined on [¡1; 1] q , let F 1 (x); : : : ; F q (x) be exp-log functions at infinity in x, and let (x) = (sin (F 1 (x)); : : : ; sin (F q (x))):

We give a method to compute limsup x!1 (x). Moreover, the techniques we use are stronger than this result might suggest, and we outline further applications.

Introduction

In the last years, several asymptotic expansion algorithms have appeared [START_REF] Shackell | Growth estimates for exp-log functions[END_REF][START_REF] Shackell | Limits of Liouvillian functions[END_REF][START_REF] Gonnet | Limit computation in computer algebra[END_REF][START_REF] Richardson | Expansions of exp-log functions[END_REF][START_REF] Van Der Hoeven | Automatic asymptotics[END_REF]. These algorithms are have the property that they can deal with very general types of singularities, such as singularities arising in the study of certain algebraic differential equations. However, attention has been restricted so far to functions with strongly monotonic asymptotic behaviour. This means that the functions lie in a common Hardy field, or, alternatively, that they are determined by transseries. In this article, we make a first step to the treatment of functions involving oscillatory behaviour. We also notice that Grigoriev obtained some very interesting related results in [START_REF] Grigoriev | Deviation theorems for solutions to differential equations and applications to lower bounds on parallel complexity of sigmoids[END_REF][START_REF] Grigoriev | Deviation theorems for solutions to linear ordinary differential equations and applications to lower bounds on parallel complexity of sigmoids[END_REF] although his more probabilistic point of view is different (even complementary) from ours.

The structure of this paper is as follows: in section 2, we recall a classical density theorem for linear curves on the n-dimensional torus (see for example [START_REF] Koksma | Diophantische approximationen[END_REF][START_REF] Kuipers | Uniform distribution sequences[END_REF]). In section 3, this theorem is generalized to more general classes of curves on the torus.

In section 4, we study exp-log functions at infinity: an exp-log function is a function which is built up from the rationals Q and x, using the field operations, exponentiation and logarithm. An exp-log function at infinity is an exp-log function which is defined in a neighbourhood of infinity. We present a more compact version of an expansion algorithm of exp-log functions at infinity, originally due to Shackell [START_REF] Shackell | Limits of Liouvillian functions[END_REF] (see also [START_REF] Richardson | Expansions of exp-log functions[END_REF]). For this, we assume the existence of an oracle for deciding whether an exp-log function is zero in a neighbourhood of infinity. This problem has been reduced to the corresponding problem for exp-log constants in [START_REF] Van Der Hoeven | Generic asymptotic expansions[END_REF][START_REF] Van Der Hoeven | Automatic asymptotics[END_REF]. A solution to the constant problem was given by Richardson in [START_REF] Richardson | How to recognise zero[END_REF], modulo Schanuel's conjecture: Conjecture 1. (Schanuel) If 1 ; : : : ; n are Q-linearly independent complex numbers, then the transcendence degree of Q[ 1 ; : : : ; n ; e 1 ; : : : ; e n ] over Q is at least n.

In section 5, we are given an algebraic function defined on [¡1; 1] q , and exp-log functions at infinity F 1 (x); : : : ; F q (x) in x. We show how to compute limsup x!1 (sin (F 1 (x)); : : : ; sin (F q (x))):

In section 5, we will assume the existence of an oracle for checking the Q-linear dependence of exp-log constants. Actually, Richardson's algorithm can easily be adapted to yield an algorithm for doing this modulo Schanuel's conjecture.

A density theorem on the n-dimensional torus

Let 1 ; : : : ; n be Q-linearly independent numbers: we will use vector notation, and denote the vector ( 1 ; : : : ; n ) by . In this section, we prove that the image of x 7 ! x, from R in the n-dimensional torus T n = R n /Z n is dense. Notice that we use the same notation for x and its class modulo Z n . Moreover, we show that the density of the image is uniform is a sense that will be made precise. The following theorem is classical: Theorem 2. (Kronecker) Let 1 ; : : : ; n be Q-linearly independent real numbers. Let e 1 ; : : : ; e n be the canonical base of R n . Then

1 e 1 Z + + n e n Z + R (e 1 + + e n ) is dense in R n .
Now let X be a measurable subset of T n , and let I be some interval of R. Denoting the Lebesgue measure by , we define We say that P holds for all I sufficiently close to infinity, if P holds for all sufficiently large a.

(I ; X) = (fx 2 I j x 2 X g) (I) : ( 1 
The next theorem is also classical, but for convenience of the reader we present a proof, since similar techniques will be used in the next section: Theorem 4. (Bohr, Sierpi«ski, Weyl) Let 1 ; : : : ; n be Q-linearly independent real numbers and let be given by (1). Let

X = [a 1 ; b 1 [ [a n ; b n [ T n
be an n-dimensional block, with 0 6 a i 6 b i 6 1 for all i. Then lim

(I)!1 (I ; X) = (X); uniformly in I.
Proof. The theorem trivially holds if a i = 0 and b i = 1 for all but one 1 6 i 6 n. Hence, it suffices to prove the theorem when the a i 's and the b i 's are rational numbers. Indeed, let a 1 0 ; b 1 0 ;:::; a n 0 ; b n 0 be rational numbers with

ja 1 0 ¡ a 1 j + jb 1 0 ¡ b 1 j + + ja n 0 ¡ a n j + jb n 0 ¡ b n j 6 , and denote X 0 = [a 1 0 ; b 1 0 [ [a n 0 ; b n 0 [
. Then j(I ; X 0 ) ¡ (I ; X)j 6 2 for (I) sufficiently large, uniformly in I.

Because of Proposition 3(a) and (b), it suffices to prove the theorem for fixed p = (p 1 ;:::; p n ) 2 (N ) n and for all

X = X k = k 1 p 1 ; k 1 + 1 p 1 k n p n ; k n + 1 p n ;
with 0 6 k 1 < p 1 ; : : : ; 0 6 k n < p n . We remark that [0; 1[ n = `k X k , so that P k (I ; X k ) = 1. Now let " > 0. For each k, we can find x k , with d( x; k) < "/n, by Proposition 2. Consequently, we have (S ¡x k X k 4 X 0 ) < ", where A 4 B denotes the symmetric difference of A and B. Hence, (X l 4 S (x l ¡x k ) X k ) < 2 ", for each l with l 1 < p 1 ; : : : ; l n < p n . Using Proposition 3, we can now estimate

j(I ; X l ) ¡ (I ; X k )j 6 j(I ; S (x l ¡x k ) ) ¡ (I ; X k )j + (X l 4 S (x l ¡x k ) X k ) 6 j(S x k ¡x l I ; X k ) ¡ (I ; X k )j + 2 " 6 jx k ¡ x l j (I) + 2 ":
Taking (I) > jx k ¡ x l j/", for any k and l, we get

(I ; X k ) ¡ 1 p 1 p n 6 1 p 1 p n X k j(I ; X k ) ¡ (I ; X l )j < 3 ":
Hence j(I ; X k ) ¡ (X k )j < 3 ", for sufficiently large (I), uniformly in I. This completes our proof.

A more general density theorem

In this section we will obtain a more general uniform density theorem on the torus, when the application x 7 ! x from section 2 is replaced by a non linear mapping, which satisfies suitable regularity conditions. Before coming to this generalization, we will need some definitions and lemmas. We say that a function f defined in a neighbourhood of infinity is steadily dominated by x, if f has a continuous second derivative, f tends to infinity, f 0 decreases strictly towards zero, and f 00 / f 0 tends to zero. We remark that such functions admit functional inverses in a neighbourhood of infinity.

More generally, we say that if f and g are functions in a neighbourhood of infinity, such that g is invertible, then f is steadily dominated by g, if f g inv is steadily dominated by x. In this case, we write f s g. It is easily verified that if f s x and g s x, then f g s x, so that s is transitive. We also remark that if f s g and if h is a function, which has a continuous second derivative and tends to infinity, then f h s g h. We finally have the following property of steady domination: Lemma 5. Let h be steadily dominated by x and let l > 0 and " > 0 be given. Then for all sufficiently large x we have jh 0 (x + d) ¡ h 0 (x)j < " h 0 (x), for all d with jdj < l.

Proof. Let x 0 be such that jh 00 (x) / h 0 (x)j < " h 0 (x), for all x > x 0 ¡ l. We have jh 0 (x + d) ¡ h 0 (x)j 6 jd h 00 ()j < " h 0 (), for some between x and x + d. If d is positive, then h 0 () 6 h 0 (x), and we are done. In the other case, we have

jh 0 (x + d) ¡ h 0 (x)j 6 " h 0 (x) ¡ " jh 0 (x + d) ¡ h 0 (x)j, whence jh 0 (x + d) ¡ h 0 (x)j < ("/(1 ¡ ")) h 0 (x).
Now let X be a measurable subset of R. For each interval I, we define:

(I ; X) = (I \ X) (I) :
We say that X admits an asymptotic density (X) if lim

(I)!1 (I ; X) = (X);
uniformly in I, for I sufficiently close to infinity. More generally, if h is steadily dominated by x, then we say that X admits h-asymptotic density h (X) if lim

(h inv (I))!1 (I ; X) = (X);
uniformly in I, for I sufficiently close to infinity.

Lemma 6. Let X be a measurable subset of R and let h be steadily dominated by x. If (X) exists, then so does h (h(X)) and we have h (h(X)) = (X).

Proof. Let " > 0. Let l 2 R be such that j(I ; X) ¡ j < ", whenever (I) > l.

Let I = [; [ with (h inv (I)) > l and subdivide h inv (I) in q = b(h inv () ¡ h inv ())/lc > 1 parts of equal length l 0 > l: [(h inv (); h inv ())[ = [a 1 ; b 1 [ q q [a q ; b q [;
with b i = a i+1 for 1 6 i < q. Then we have

( ¡ ") X i=1 q Z a i b i h 0 (b i ) dx 6 X i=1 q Z a i b i X (x) h 0 (b i ) dx 6 (h inv (X) \ I) 6 X i=1 q Z a i b i X (x) h 0 (a i ) dx 6 ( + ") X i=1 q Z a i b i h 0 (a i ) dx:
By Lemma 5, for all sufficiently large x, we have jh 0 (x + d) ¡ h 0 (x)j 6 " h 0 (x), for all d with jdj 6 l 0 . Hence,

X i=1 q Z a i b i h 0 (x) dx ¡ X i=1 q Z a i b i h 0 (b i ) dx 6 X i=1 q Z a i b i jh 0 (x) ¡ h 0 (b i )j dx 6 " X i=1 q Z a i b i h 0 (x) dx = " (I);
and we have a similar estimation, when replacing b i by a i . Consequently,

( ¡ ") (1 ¡ ") (I) 6 (h(X) \ I) 6 ( + ") (1 + ") (I):
This completes our proof.

Let f 1 s s f p be continuous functions defined in a neighbourhood of infinity, which strictly increase towards infinity. Let i;j > 0 (1 6 j 6 n i ) be such that i;1 ; : : : ; i;n i are Q-linearly independent for each i. Now consider the curve g(x) = (f 1 ( 1;1 x); : : : ; f 1 ( 1;n 1 x); : : : ; f p ( p;1 x); : : : ; f p ( p;n p x)) on T n (n = n 1 + + n p ), which is defined for sufficiently large x. By analogy with the preceding section, we define

f ;g (I ; X) = (fx 2 I j g(f 1 inv (x)) 2 X g) (I) ; (2)
for intervals I sufficiently close to infinity, and measurable subsets X of T n .

Theorem 7. Let f 1 ; : : : ; f p ; g and be given as above and let

X = [a 1 ; b 1 [ [a n ; b n [ T n
be an n-dimensional block. Then

lim (I)!1 f ;g (I ; X) = (X);
uniformly, for intervals sufficiently close to infinity.

Proof. We proceed by induction over p. If p = 0, we have nothing to prove. As before, it suffices to prove the theorem for multidimensional blocks X = X 1 X ~, with X 1 T n 1 and X ~ T n ~, where n ~= n 2 + + n p . We denote by g 1 (x) resp. g ~(x) the projections of g(x) on T n 1 resp. T n ~, when considering T n as the product of T n 1 and T n ~. Without loss of generality, we may assume that f 1 = x. Given a subset A of R or T n and its frontier @A, we denote for any " > 0

" A = fx 2 A j d(x; @A) > "g: Let " > 0. If g 1 (x) 2 " X 1 , then g 1 (x + d) 2
X 1 for all d with jdj < l, where l = max (1/ 1;1 ;:::; 1/ 1;n 1 ) ". Hence, for I sufficiently close to infinity,

I \ g 1 inv ( " X 1 ) (I \ l g 1 inv (X 1 )) + ]¡l; l[ I \ g 1 inv (X 1 ):
Therefore, Theorem 4 implies that for I sufficiently close to infinity

(I \ g 1 inv (X 1 )) (I) ¡ (X 1 ) < " (3) and (using that ( " X 1 4 X 1 ) < 2 n 1 ) ((I \ l g 1 inv (X 1 )) + ]¡l; l[) (I) ¡ (I \ g 1 inv (X 1 )) (I) 6 (2 n 1 + 1) ": (4) Now (I \ l g 1 inv (X 1 )) + ]¡l; l[ is a finite union of intervals, say I \ l g 1 inv (X 1 ) \ ]¡l; l[ = I 0 q q I q+1 ;
where I 1 ; : : : ; I q have length at least 2 l, and where I 0 and I q+1 have length at most 2 l. By the induction hypothesis, we have lim

(J)!1 (J \ f 2 (g ~inv (X ~))) (J) = (X ~);
uniformly, for J sufficiently close to infinity. Using Lemma 6 for h = f 2 inv , this gives us lim

(f 2 (J))!1 (J \ g ~inv (X ~)) (J) = (X ~);
uniformly, for J sufficiently close to infinity. In particular, we have

(J \ g ~inv (X ~)) (J) ¡ (X ~) < ";
for all J sufficiently close to infinity, with (J) > l. Thus, choosing I sufficiently close to infinity, we have

(I i \ g ~inv (X ~)) (I i ) ¡ (X ~) < ";
for all 1 6 i 6 q.

Taking (I) > 2 l /", and using (3) and (4), this gives us

j f ;g (I ; X) ¡ (X)j 6 ( `i=0 q+1 I i \ g ~inv (X ~)) (I) ¡ (X) + (I \ g inv (X)) (I) ¡ ( `i=0 q+1 I i \ g ~inv (X ~)) (I) 6 X i=0 q+1 (I i \ g ~inv (X ~)) ¡ (X ~) (I i ) (I) + (X ~) ( `i=0 q+1 I i ) (I) ¡ (X) + (2 n 1 + 1) " 6 X i=1 q (I i ) " (I) + (4 n 1 + 5) " 6 (4 n 1 + 6) ":
This completes the proof.

Expansions of exp-log functions at infinity

Let T denote the field of germs at infinity of exp-log functions and C the subfield of explog constants. Elements of T can be represented by exp-log expressions i.e. finite trees whose internal nodes are labeled by +; ¡; ; /; exp or log, and whose leaves are labeled by x or rational numbers. The set of exp-log expressions which can be evaluated in a neighbourhood of infinity is denoted by T expr . We have a natural projection f 7 ! f from T expr onto T. We make the assumption that we have at our disposal an oracle which can decide whether a given exp-log expression in T expr is zero in a neighbourhood of infinity.

In view of [START_REF] Van Der Hoeven | Generic asymptotic expansions[END_REF][START_REF] Van Der Hoeven | Automatic asymptotics[END_REF] it actually suffices to assume the existence of an oracle to decide whether a given exp-log constant is zero.

Grid-based series

Let us first recall some basic concepts. An effective asymptotic basis is an ordered finite set fb 1 ; : : : ; b n g of positive infinitesimal exp-log expressions in T expr , such that log b i log b i+1 (i.e. log b i = o(log b i+1 )) for 1 6 i 6 n ¡ 1. For instance, the set B = flog ¡1 x; x ¡1 ; e ¡x 2 g is an effective asymptotic basis. An effective asymptotic basis B generates an effective asymptotic scale, namely the set S B of all products b 1 1 b n n of powers of the b i 's, with the i 's in C. Elements of S B are also called monomials.

Given an effective asymptotic basis B, let G B expr denote the set of expressions which are built up from C; S B ; +; ¡; ; / and the operations " 7 ! exp ", resp. " 7 ! log (1 + "), for infinitesimal ". We observe that f can be expanded as a series in b n with coefficients in G fb 1 ; : : : ;b n¡1 g expr . Moreover, these coefficients can recursively be expanded in b n¡1 ; : : : ; b 1 :

f = X n 2C f n b n n f n ; : : : ; 2 = X 1 2C
f n ; : : : ; 1 b 1 1 :

The exp-log expressions of the form f n ; : : : ; i are called iterated coefficients of f . In particular, the iterated coefficients of the form f n ; : : : ; 1 are exp-log constants.

The above expansions of f have an important property [START_REF] Van Der Hoeven | Automatic asymptotics[END_REF]: the support of f as a series in b n is included in a set of the form 1 N + + p N + , where the i 's and are constants in C we say that f is a grid-based series. From this property, it follows that the support of f is well-ordered.

Another important property of the expansion of f in b n and the expansions of its iterated coefficients is that they can be computed automatically. By this we mean that for each integer i, we can compute the first i terms of the expansion of f and so can we for its iterated coefficients. In particular, we can compute the sign of f , test whether f is infinitesimal, etc.

For the computation of the expansions of f in b n , we use the usual Taylor series formulas. In the case of division 1/ f , we compute the first term f b n of f and then use the formula

1/ f = (1/ f ) b n ¡ (1/(1 + ")), where " = (f / f b n ) ¡ 1.
The only problem when applying these formulas is that we have to avoid indefinite cancelation: note that indefinite cancelation only occurs if after having computed the first i terms of the expansion, f is actually equal to the sum of these terms. But this can be tested using the oracle, and we stop the expansion in this case.

Automatic expansions of exp-log expressions

The asymptotic expansion algorithm takes an exp-log expression f 2 T expr on input, computes a suitable effective asymptotic basis B and rewrites f into an element of G B expr . The main idea of the algorithm lies in imposing some suitable conditions on B: we say that a linearly ordered set B = fb 1 ; : : : ; b n g is an effective normal basis if NB1. B is an effective asymptotic basis. Such a basis is constructed gradually during the algorithm i.e. B is a global variable in which we insert new elements during the execution of the algorithm, while maintaining the property that B is an effective normal basis. We also say that B is a dynamic effective normal basis. Let us now explicitly give the algorithm, using a PASCAL-like notation:

NB2. log b i 2 G fb

Algorithm expand(f ). The algorithm takes an exp-log expression f 2 T expr on input and rewrites it into a grid-based series in G B expr , where the global variable B contains an effective normal basis which is initialized by B := fx ¡1 g. 

case f 2 Q: return f case f = x: return (x ¡1 ) ¡1 case f = g > h,
g ¡ := g ¡ g + B := B [ fe ¡jg + j g return (e ¡jg + j ) ¡signg + e g ¡
Let us comment the algorithm. The first three cases do not need explanation. In the case f = log g, the fact that B is an effective normal basis is used at the end:

1 log b 1 + + n log b n is indeed an expression in G B expr
. The expansion of the exponential of a bounded series g is done by a straightforward Taylor series expansion. If g is unbounded, then we test whether g is asymptotic to the logarithm of an element in B i.e. we test whether := lim g /log b i is a non zero finite number for some i. If this is so, then f = b i e g ¡logb i and e g ¡logb i is expanded recursively. We remark that no infinite loop can arise from this, because successive values of g in such a loop would be asymptotic to the logarithms of smaller and smaller elements of B, while B remains unchanged. Finally, if g is not asymptotic to the logarithm of an element in B, then B has to be extended with an element of the order of growth of f . The decomposition g = g + + g ¡ is computed in order to ensure that B remains an effective normal basis.

On the automatic computation of limsups

In this section we show how Theorem 7 can be applied to compute limsups (or liminfs) of certain bounded functions, involving trigonometric functions. The idea is based on the following consequence of Theorem 7.

Theorem 8. Let 1 f 1 f p be exp-log functions at infinity. Let i;j > 0 ( 1 6 j 6 n i ) be such that i;1 ;:::; i;n i are Q-linearly independent for each i. Denote U = fx + ¡1 p y 2 Cj x 2 + y 2 = 1g and n = n 1 + + n p . Let be a continuous function from U n into R and let

(x) = (e ¡1 p 1;1 f 1 (x)
; : : : ; e

¡1 p p;np f p (x)
):

Then limsup x!1 (x) = sup x2U n (x):
Proof. We first notice that we will be able to apply Theorem 7 on our input data: by a well known theorem, which goes back to Hardy [START_REF] Hardy | Properties of logarithmico-exponential functions[END_REF], the germs at infinity of f 1 ; : : : ; f p lie in a common Hardy field. Consequently, f 1 s s f p , and f 1 ; : : : ; f p are strictly increasing in a suitable neighbourhood of infinity. The mapping is defined in a neighbourhood V of infinity, and can be factored where 1 and 2 are both continuous. Since T n is compact, there exists a point x in which 2 attains its maximum. Let " > 0. There exists a neighbourhood V of x, such that j 2 (y) ¡ 2 (x)j < ", for any y in V . By Theorem 7, there exist x, with 1 (x) 2 V as close to infinity as we wish. For such x, we have j (x) ¡ sup x2U n (x)j < ".

V ! ! ! ! ! ! ! ! ! ! R = V ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! 1 T n ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! 2 R, with 1 (x) = 1;1 f 1 (x) 2 
We now turn to the computation of this limit.

Theorem 9. Let F 1 ; : : : ; F q be exp-log functions at infinity. Let : U q ! R a real algebraic function, where we consider U q as a real algebraic variety. Assume that we have an oracle to test the Q-linear dependence of exp-log constants. Then there exists an algorithm to compute the limsup of (x) = (e ¡1 p F 1 (x) ; : : : ; e ¡1 p F q (x) ).

Proof. Using the identity e ¡x = 1/e x , we may always assume without loss of generality, that the F i 's are all positive. Now the algorithm consists of the following steps:

Step 1. Compute a common effective normal basis for F 1 ;:::; F p , using the algorithm from section 4. Order the F i 's w.r.t. ; that is, F i F j or F i F j , whenever i < j.

Step 2. Simultaneously modify the F i 's and the algebraic function in the e ¡1 p F i 's, until we either have F i F j , or F i = F j , for some , whenever i < j. As long as this is not the case, we take j maximal, such that the above does not hold, and do the following:

First compute the limit of Step 3. Compute exp-log functions f 1 f p , and constants i;j (1 6 j 6 n i ), such that each F l can be written as F l = i;j f i , for some i and j. Replacing e ¡1 p F i by its limit for each bounded F i , we reduce the general case to the case when 1 f 1 .

F i /F j . Next insert F i 0 := F i ¡ F j and F j 0 := F j into
Step 4. This step consists in making the i;j 's Q-linearly independent for each fixed i. Whenever there exists a non trivial Q-linear relation between the i;j 's (for fixed i), we may assume without loss of generality that this relation is given by

a n i i;n i = a 1 i;1 + + a n i ¡1 i;n i ¡1 ;
for a 1 ;: : : ; a n i in Z and a n i > 0. As long as we can find such a relation, we do the following: For all j < n i , replace i;j by i;j 0 := i;j / a n i and e ¡1 p i; j f i by (e ¡1 p i; j ) a n i ¡1 in the expression for i.

0 f i ) a n i in
Step 5. By Theorem 8, the limsup of is the maximum of on U n , where n = n 1 + + n p . To compute this maximum, we determine the set of zeros of the gradient of on U n . Then is constant on each connected component and the maximum of these constant values yields max U n . To compute the zero set of the gradient of and its connected components, one may for instance use cylindrical decomposition (see [START_REF] Collins | Quantifier elimination for real closed fields by cylindrical algebraic decomposition[END_REF]). Of course, other algorithms from effective real algebraic geometry can be used instead.

The correctness of our algorithm is clear. The termination of the loop in step 2 follows from the fact that the new F i 0 is asymptotically smaller then F j , so that either the -class of F j strictly decreases, or the number of i's with F i F j , but not F i = F j for some . The number of -classes which can be attained is bounded by the initial value of q.

Corollary 10. Let F 1 ;:::; F q be exp-log functions at infinity and be an algebraic function in q variables, defined on [¡1; 1] q . Assume that we have an oracle to test the Q-linear dependence of exp-log constants. Then there exists an algorithm to compute the limsup of (x) = (sin (F 1 (x)); : : : ; sin (F q (x))).

Example 11. Consider the function (x) = 2 sin x 2 ¡ sin (x 3 /(x ¡ 1)) 3 + sin e x 2 ¡ sin (e x 2 + 1) :

The first step consists in expanding x 2 = x 2 , x 3 /(x ¡ 1) = x 2 + x + , e x 2 = e x 2 and e x 2 + 1 = e x 2 + 1. All these functions have the same -class, but they are not all homothetic. Therefore, some rewriting needs to be done. First, ; which corresponds to the rewriting sin (e x 2 + 1) = sin e x 2 cos 1 + sin 1 cos e x 2 :

x 3 /(x ¡ 1) = x 2 + x 2 /(x ¡ 
In step 4, no Q-linear relations are found, so that we have to determine the maximal value of 

Conclusion

We have shown how to compute limsups of certain functions involving trigonometric functions, exponentiation and logarithm. Actually, the techniques we have used are far more general than Theorem 9 might suggest. Let us now briefly mention some generalizations.

For more details, we refer to [START_REF] Van Der Hoeven | Automatic asymptotics[END_REF].

In Theorem 9, the crucial property of the functions F 1 ; : : : ; F q is that they are strongly monotonic and that we have an asymptotic expansion algorithm for them. Consequently, more general functions than exp-log functions can be taken instead, like Liouvillian functions, functions which are determined by systems of real exp-log equations in several variables, etc.

The crucial property of the function is that it belongs to a class for which a cylindrical decomposition algorithm exists. Again, more general classes of functions can be considered. In particular, modulo suitable oracles, one can consider the class of solutions to real explog systems in several variables.

Our techniques can also be used to compute automatic asymptotic expansions of sinexp-log functions at infinity of trigonometric depth one (i.e. without nested sines). However, some difficult number theoretical phenomena may occur in this case, as the following example illustrates:

2 ¡ sin x ¡ sin e x > 1 1 ¡ (x + 2) :
This asymptotic inequality follows from the number theoretical properties of e. In general, such inequalities are very hard to obtain (if decidable at all!): a systematic way to obtain them would in particular yield solutions to deep unsolved problems in the field of Diophantine approximation (for a nice survey, see [START_REF] Lang | Transcendental numbers and diophantine approximation[END_REF]). Nevertheless, we notice that the above example is degenerate in the sense that 2 is precisely equal to the limsup of sin x + sin x 2 . In the generic case, a complete asymptotic expansion for sin-exp-log functions at infinity of trigonometric depth one does exist. In the degenerate case, we need assume the existence of a suitable oracle for Diophantine questions.

)

  Let us also denote by d the Euclidean distance on T n . Let S d , resp. S d denote the shift operator on R (resp. R n or T n ): S d (x) = x + d and S d (x) = S (d 1 ; : : : ;d n ) (x 1 ;:::; x n ) = (x 1 + d 1 ;:::; x n + d n ) = x + d. The following are immediate consequences of the definition of : Proposition 3. We have a) (I ; X) = P i2N (I ; X i ), if X = `i2N X i . b) j(I ; X) ¡ (S d I ; X)j 6 jdj/ (I), for all d. c) (I ; X) = (S ¡d I ; S d X), for all d. It will be convenient to adopt some conventions for intervals I = [a; b] (resp. I = [a; b[; I = ]a; b] or I = ]a; b[) whose lengths b ¡ a tend to infinity: we say that a property P holds uniformly in I, if the property holds uniformly in a: 9l 0 ; 8a; 8l > l 0 ; P ([a; a + l]):

  1 ; : : : ;b i g expr for all i > 1, where log log b i ¡1 log b i . NB+. b 1 = log l ¡1 x for some l 2 N, where log l x = def log : : : l times log.

  where >2f+; ¡; ; /g: if > = / and h = 0 then error division by zero return expand(g) > expand(h) case f = log g: g := expand(g) Denote B = fb 1 = log l ¡1 x; b 2 ; : : : ; b n g. if g 6 0 then error invalid logarithm Rewrite g = c b 1 1 b n n (1 + "), with infinitesimal " in G B expr and c 2 C. if 1 = / 0 then B := B [ flog l+1 ¡1 xg return log c + 1 log b 1 + + n log b n + log (1 + ") case f = e g : g := expand(g) Denote B = fb 1 ; : : : ; b n g. if g = O(1) then return e c e g ¡c , where c := g 91<i6n; g log b i then := lim g /log b i return b iexpand(e g¡logb i ) Let i be such that log jgj log b i . g + := g

Figure 1 .

 1 Figure 1. Plot of the function from Example 11.

  the set of F i 's and remove F i . The new expression for is obtained by replacing each e ¡1

				p	F i
	by e ¡1 p	F i 0	e ¡1 p	F j 0 .
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