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Genome-wide association analysis of venous thromboembolism identifies new risk loci and genetic overlap with arterial vascular disease

Venous thromboembolism (VTE) is a complex disease impacted by both environmental [START_REF] Heit | Epidemiology of venous thromboembolism[END_REF] and genetic determinants [START_REF] Bertina | Mutation in blood coagulation factor V associated with resistance to activated protein C[END_REF][START_REF] Poort | A common genetic variation in the 3'untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis[END_REF] , and the narrow-sense heritability of VTE has been estimated to be approximately 30% [START_REF] Klarin | Genetic Analysis of Venous Thromboembolism in UK Biobank Identifies the ZFPM2 Locus and Implicates Obesity as a Causal Risk Factor[END_REF] . At the time of analysis, genome-wide association studies (GWAS) revealed only 11 loci reaching genome-wide significance [START_REF] Klarin | Genetic Analysis of Venous Thromboembolism in UK Biobank Identifies the ZFPM2 Locus and Implicates Obesity as a Causal Risk Factor[END_REF][START_REF] Hinds | Genome-wide association analysis of self-reported events in 6135 individuals and 252 827 controls identifies 8 loci associated with thrombosis[END_REF][START_REF] Heit | A genome-wide association study of venous thromboembolism identifies risk variants in chromosomes 1q24.2 and 9q[END_REF][START_REF] Germain | Meta-analysis of 65,734 individuals identifies TSPAN15 and SLC44A2 as two susceptibility loci for venous thromboembolism[END_REF][START_REF] Hernandez | Novel genetic predictors of venous thromboembolism risk in African Americans[END_REF][START_REF] Tang | A genome-wide association study for venous thromboembolism: the extended cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium[END_REF][START_REF] Tregouet | Common susceptibility alleles are unlikely to contribute as strongly as the FV and ABO loci to VTE risk: results from a GWAS approach[END_REF] , leaving a significant portion of VTE heritability unknown.

Large-scale biobanks linking genetic and diverse phenotypic data in the electronic health record (EHR) are being developed throughout the world [START_REF] Collins | What makes UK Biobank special?[END_REF][START_REF] Gaziano | Million Veteran Program: A mega-biobank to study genetic influences on health and disease[END_REF] . Leveraging two large-scale biobanks -UK Biobank and the Million Veteran Program (MVP) -we sought to: 1) perform a genetic discovery analysis for VTE, 2) evaluate the causal role of blood lipids in VTE, 3) further characterize the role of plasminogen activator inhibitor-1 (PAI-1) in VTE, and 4) develop and evaluate a genome-wide polygenic risk score (PRS) for VTE.

We designed a two-phased VTE discovery GWAS (Fig. 1, Supplementary Fig. 1). In Phase 1, we used MVP release 2.1 data and performed testing for association separately among individuals of European (whites), African (blacks), and Hispanic ancestry and metaanalyzed results across ancestral groups. In UK Biobank, association testing was performed in individuals of European ancestry. We combined statistical evidence across MVP and UK Biobank and set a significance threshold of P < 5 ×10 -8 (genome-wide significance), and also required an internal replication P < 0.01 in each of the individual MVP and UK Biobank analyses, with concordant directions of effect, to minimize false positive findings. In Phase 2, an additional round of external replication was performed for lead variants using summary data of up to 15,572 VTE cases and 113,430 disease-free controls from the INVENT consortium [START_REF] Lindstrom | Genomic and Transcriptomic Association Studies Identify 16 Novel Susceptibility Loci for Venous Thromboembolism[END_REF] combined with 2,100 VTE cases and 53,865 controls from MVP 3.0 data, requiring P < 0.05 with consistent direction of effect for successful replication.

In MVP, the discovery analysis was composed of 11,844 VTE cases (8,929 white, 2,261 black, 654 Hispanic) and 211,753 controls from the MVP release 2.1 data. In UK Biobank we identified 14,222 VTE cases and 372,102 controls. The baseline characteristics for both cohorts are presented in Supplementary Tables 12. VTE cases were more likely to be older, have a history of smoking, a higher body-mass index, and have type 2 diabetes. Following trans-ethnic meta-analysis across MVP and UK Biobank, a total of 2,706 variants at 39 loci met a genome-wide significance threshold, with P < 0.01 and concordant effect directions in both datasets (Supplementary Fig. 2345). The F5 Leiden variant, rs6025 (p.R506Q, NC_000001.10:g.169519049T>C), was the top association result (2.5% frequency for the T allele; OR =2.53; 95%CI: 2.43-2.64; P < 1.0×10 -300 ). We replicated all 11 previously described genome-wide VTE loci, and identified 28 candidate novel VTE loci brought forward for external replication (Supplementary Tables 34). Of the 28 candidate novel loci, 22 successfully replicated in an independent set of up to 17,672 VTE cases and 167,295 controls (Supplementary Tables 56).

One large randomized controlled trial showed that LDL cholesterol-lowering with a statin versus placebo led to a reduced risk of venous thromboembolic events [START_REF] Glynn | A randomized trial of rosuvastatin in the prevention of venous thromboembolism[END_REF] . We sought to explore potential causal relationships of blood lipids with VTE development by performing a multivariate Mendelian randomization analysis using a weighted polygenic score of 222 lipid-associated variants from the Global Lipids Genetics Consortium and summary data from the MVP release 2.1 and UK Biobank VTE GWAS restricted to Europeans (Supplementary Table 7) [START_REF] Liu | Exome-wide association study of plasma lipids in >300,000 individuals[END_REF] . We observed that a 1-standard deviation of genetically-elevated LDL cholesterol was associated with an increased risk of VTE (OR LDL = 1.17, 95% CI =1.05-1.29, P LDL = 0.003). In contrast, both a 1-standard deviation of genetically-elevated HDL cholesterol and a 1-standard deviation of genetically-elevated triglycerides were not associated with risk of VTE [OR HDL = 1.01, 95% CI =0.91-1.13, P HDL =0.82; OR Triglycerides = 0.88, 95% CI =0.77-1.00, P Triglycerides = 0.04] after Bonferroni correction (P < 0.016 = [0.05/3 lipid fractions]). An MR-Egger analysis [START_REF] Bowden | Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression[END_REF] indicated no pleiotropic biases of our lipid genetic instruments [MR-Egger intercept P > 0.05 for all 3 lipid fractions (Supplementary Table 8, Fig. 2)]. A PheWAS (1), an analysis of how DNA sequence variants differ in their contribution to vascular disease risk in the arterial and venous territories (2), an examination of VTE risk variant-pQTL associations (3), and results of a VTE fine-mapping analysis including a 99% credible set of 4 variants at the ZFPM2 locus which were genome-wide trans-pQTL associations with plasma PAI-1 concentration (4, Supplementary Table 9) are provided in the Supplementary Results.

Given the known role of PAI-1 in venous thrombosis and fibrinolysis in model systems [START_REF] Eitzman | Plasminogen activator inhibitor-1 and vitronectin promote vascular thrombosis in mice[END_REF] , we hypothesized that the ZFPM2 VTE GWAS and the PAI-1 trans-pQTL associations may represent colocalizing signals at the ZFPM2 locus. We used a recently described colocalization analysis pipeline [START_REF] Liu | Abundant associations with gene expression complicate GWAS follow-up[END_REF] to compute the colocalization posterior probability (CLPP) for the ZFPM2 locus. Using European MVP release 2.1 and UK Biobank European VTE meta-analyzed summary statistics, PAI-1 pQTL results in human plasma from the INTERVAL study [START_REF] Sun | Genomic atlas of the human plasma proteome[END_REF] , and reference LD information of 503 European participants from 1000 Genomes 20 phase 3 whole genome sequencing data, we calculated a CLPP of 0.203 at this locus. Previous work suggests that a CLPP > 0.01 is indicative of a "reasonably high" probability of colocalization [START_REF] Liu | Abundant associations with gene expression complicate GWAS follow-up[END_REF][START_REF] Hormozdiari | Colocalization of GWAS and eQTL Signals Detects Target Genes[END_REF] , and the LocusCompare plot at this site further indicates that the ZFPM2 VTE GWAS and PAI-1 pQTL associations likely represent a true colocalization event (Supplementary Fig. 6).

PAI-1 influences thrombosis by directly inhibiting conversion of plasminogen to plasmin and indirectly via disrupting the interaction of circulating monocytes with glycoprotein vitronectin within the thrombus and adjacent vein wall [START_REF] Fogo | Renal fibrosis: not just PAI-1 in the sky[END_REF] . Monocytes are a key source of factor III (tissue factor) as well as matrix metalloproteinases during thrombus clearance [START_REF] Pawlinski | Cellular sources of tissue factor in endotoxemia and sepsis[END_REF][START_REF] Henke | Deep vein thrombosis resolution is modulated by monocyte CXCR2-mediated activity in a mouse model[END_REF] . Given the colocalization between PAI-1 concentration and human VTE, we sought experimentally to determine the impact of PAI-1 levels on venous thrombus size in an experimental DVT model utilizing transgenic mice. PAI-1-/mice have no circulating active PAI-1, whereas those overexpressing PAI-1 (PAI-1 Tg), have levels approximately 137-fold greater than wild-type C57B/L6 (WT) mice [START_REF] Obi | Plasminogen activator-1 overexpression decreases experimental postthrombotic vein wall fibrosis by a non-vitronectin-dependent mechanism[END_REF] . At 6 days following IVC occlusion with generation of thrombus, the PAI-1 overexpressing mice had 1.5-fold larger thrombus size compared to PAI-1-/mice, with the WT mice demonstrating an intermediate phenotype. This difference persists during late thrombus resolution, at day 14 (Fig. 3), demonstrating progressive impairment in thrombus clearance in the setting of increasing PAI-1 protein levels.

Finally, we sought to examine the contribution of polygenic inheritance on VTE risk. Currently, the F5 Leiden (p.R506Q) and F2 (prothrombin) G20210A mutations, lowfrequency variants which confer a 2-3-fold risk of VTE, are frequently tested in clinical settings to evaluate the role of inherited thrombophilia predisposing to acute thrombotic syndromes. Given the individual associations of common genetic variants with VTE, heritable VTE risk may also be explained by an aggregate of common variant VTE risk alleles [START_REF] Wassel | A genetic risk score comprising known venous thromboembolism loci is associated with chronic venous disease in a multi-ethnic cohort[END_REF] . We hypothesized that those at the right tail of the normally distributed VTE PRS (highest 5%) would be at significantly increased VTE risk (Fig. 4a).

We generated a 297-variant VTE PRS using a pruning and thresholding method (R 2 < 0.2, P < 1×10 -5 ) from European MVP release 2.1 and UK Biobank European VTE meta-analyzed summary statistics (Supplementary Table 10). Notably, we excluded the LD blocks (R 2 > 0.2) containing the F5 p.R506Q and F2 G20210A variants from the PRS. We first assessed the associated VTE risk for the 5% of individuals with the highest PRS VTE relative to the rest of the population using prevalent data from MVP release 3.0, a set of 2,100 VTE cases and 53,865 VTE controls entirely independent from the individuals in the MVP discovery GWAS. We observed that the 2,798 individuals in MVP release 3.0 with the 5% highest PRS VTE had 2.89-fold increased risk of VTE relative to the rest of the population (OR PRS = 2.89, 95% CI =2.52-3.30, P PRS =7.2×10 -53 ). This effect estimate was similar in magnitude to those observed for F5 p.R506Q (OR F5 = 2.97, 95% CI = 2.63-3.36, P F5 =3.4×10 -67 ) and F2 G20210A (OR F2 = 2.61, 95% CI = 2.19-3.12, P F2 =5.2×10 -27 ) [Fig. 4b]. In addition, we observed that this risk was further compounded for individuals among the top 5% with increased polygenic VTE risk who were also F5 Leiden or F2 G20210A carriers.

We sought replication of our PRS findings using incident VTE data from the prospective Women's Health Initiative (WHI) Hormone Trial (HT). In total, among 10,975 European women prospectively followed for up to 25 years in the WHI-HT, 690 incident VTE events were identified among participants with genetic data. Demographic and clinical characteristics for WHI participants in our VTE incident event analysis are shown in Supplementary Table 11. We estimated the risk for carriers of F5 p.R506Q and F2 G20210A mutations as well as those among the 5% highest PRS VTE through Cox proportional hazards models. We observed that F5 p.R506Q carriers were at greater than 2-fold risk of developing VTE [Hazard Ratio (HR F5 ) = 2.34, 95% CI = 1.86-3.35, P F5 =2.8×10 -13 ], and the F2 G20210A mutation was nominally associated with increased VTE risk [HR F2 = 3.35, 95% CI = 1.10-10.23, P F2 =0.033]. The 549 individuals in WHI with the 5% highest PRS VTE had 2.51-fold risk of incident VTE relative to the rest of the population [HR PRS = 2.51, 95% CI =1.97-3.19, P PRS =4.4×10 -14 ] as depicted in Figure 5. Much like in MVP, the risk among the 5% of the population with the highest PRS VTE in WHI was comparable in effect size to that of large-effect, monogenic mutations in F5 and F2.

These findings permit several conclusions. First, our results lend human genetic support to LDL cholesterol lowering as a preventive strategy for VTE. In the JUPITER (Justification for the Use of statins in Prevention: an Interventional Trial Evaluating Rosuvastatin) trial, administration of 20mg of rosuvastatin in asymptomatic participants resulted in a reduced occurrence of symptomatic VTE [START_REF] Glynn | A randomized trial of rosuvastatin in the prevention of venous thromboembolism[END_REF] . This implies that the apparent VTE risk reduction from statins may be due to on-target lowering of lipoproteins, much like the benefits observed for multiple atherosclerotic syndromes [START_REF] Ridker | Rosuvastatin to prevent vascular events in men and women with elevated Creactive protein[END_REF][START_REF] Mihaylova | The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials[END_REF] . Second, partial antagonism of PAI-1 as a preventive treatment for VTE deserves further consideration. In our analysis, we noted colocalizing ZFPM2 VTE GWAS and PAI-1 pQTL associations and observed PAI-1 overexpressing mice had 1.5-fold larger thrombus size compared to PAI-1-/mice in an inferior vena cava ligation model. These results suggest that imbalance in the thrombosis-fibrinolysis pendulum in the human condition may lead to development of pathologic VTE, whereas lower active PAI-1 levels may allow for resolution of incidental venous thrombosis prior to becoming clinically relevant. Third, our data provide further evidence for the utility of polygenic risk prediction in the clinical realm. In a recent publication by Khera and colleagues [START_REF] Khera | Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations[END_REF] , the authors generated expanded PRS, and demonstrate that those within the right tail of the distribution have a >3-fold increased risk of developing the disease, akin to carriers of monogenic mutations. We build on these findings by extending polygenic scoring to incident VTE events, where we observed similar magnitudes of effect for our PRS VTE and the F5 p.R506Q/F2 G20210A mutations. Our data suggest that extending current thrombophilia genetic panels to include testing for polygenic VTE risk would significantly increase the yield of current genetic testing and may be warranted.

Our study should be interpreted within the context of its limitations. First, our VTE phenotype is based on EHR data and may result in misclassification of case status. Such misclassification should, however, reduce statistical power for discovery and bias results toward the null. Second, while our colocalization analysis and murine functional data support the role of PAI-1 in VTE, further research is needed to fully understand the causal variant at the ZFPM2 locus and its underlying mechanism. Lastly, while those with the highest PRS VTE are at increased risk for VTE, the PRS's mechanism of action represents a combination of many causal risk factors, rather than one single pathway that leads to disease. However, assessment of individual risk may help identify a subpopulation more likely to benefit from thromboprophylaxis during periods of increased risk -for instance perioperatively [START_REF] Bahl | A validation study of a retrospective venous thromboembolism risk scoring method[END_REF] or during hospitalizations for acute, medical illness [START_REF] Anderson | Risk factors for venous thromboembolism[END_REF] .

In conclusion, our data provide new mechanistic insights into the genetic epidemiology of VTE and suggest a greater intersection between blood lipids, VTE, and arterial vascular disease than previously understood.

Online Methods

Study Populations

We conducted genetic association analyses using DNA samples and phenotypic data from two cohorts: the Million Veteran Program (MVP) and UK Biobank. In MVP, individuals aged 19 to over 100 years were recruited from 63 VA Medical Centers across the United States. In our initial MVP analysis, we evaluated 11,844 VTE cases (8,929 white, 2,261 black, 654 Hispanic) and 211,753 VTE-free controls.

In UK Biobank, individuals aged 45 to 69 years old were recruited from across the United Kingdom for participation. In this study, we identified 14,222 VTE cases and 372,102 controls of European ancestry. Further details of cohort descriptions and disease definitions are described in the Supplementary Note. All studies received ethical and study protocol approval by their appropriate Institutional Review Boards and informed consent was obtained from all participants. Additional information regarding experimental design and participants are provided in the Life Sciences Reporting Summary.

In addition, we examined incident VTE data from the WHI randomized clinical trial of Hormone Therapy (HT) for our PRS analysis. The overall design of the WHI study has been described previously [START_REF]The Women's Health Initiative Study Group. Design of the Women's Health Initiative clinical trial and observational study[END_REF] . In brief, at the inception of the WHI study (1993-1998), 161,808 postmenopausal women between the ages of 50 and 79 years were eligible for inclusion in multiple clinical trials. Exclusion criteria related to the presence of medical conditions predisposing to shortened survival or safety concerns. The protocol and consent forms were approved by institutional review committees and all participants provided written informed consent. The WHI-HT initially comprised 27,347 postmenopausal women who were randomized to receive either estrogen plus progestin or estrogen alone versus placebo until the trials were stopped early in July 2002 and March 2004, respectively. All WHI-HT participants subsequently continued to be followed without intervention until close-out. Of the various components of WHI, VTE was adjudicated by physician adjudicators for participants who were enrolled in the HT trials.

Genetic Data and Quality Control for Association Analysis

DNA extracted from whole blood was genotyped in MVP using a customized Affymetrix Axiom biobank array, the MVP 1.0 Genotyping Array. Veterans (U.S. military personnel) of three mutually exclusive ethnic groups were identified for analysis: 1) non-Hispanic whites (European ancestry), 2) non-Hispanic blacks (African ancestry), and 3) self-identified Hispanics. After pre-phasing using EAGLE 33 v2, genotypes from the 1000 Genomes Project 20 phase 3, version 5 reference panel were imputed into MVP participants via Minimac3 software [START_REF] Howie | Fast and accurate genotype imputation in genome-wide association studies through pre-phasing[END_REF] . Ethnicity-specific principal component analysis was performed using the EIGENSOFT software [START_REF] Price | Principal components analysis corrects for stratification in genome-wide association studies[END_REF] . Additional details of quality control procedures used to assign ancestry and perform genotype imputation are described in the Supplementary Note.

In MVP, sample and variant quality control was performed as previously described [START_REF] Klarin | Genetics of blood lipids among ~300,000 multi-ethnic participants of the Million Veteran Program[END_REF] . In brief, duplicate samples, samples with more heterozygosity than expected, an excess (>2.5%) of missing genotype calls, or discordance between genetically inferred sex and phenotypic gender were excluded. In addition, one individual from each pair of related individuals (kinship > 0.0884 as measured by the KING 37 software) were removed. In total, we identified 312,571 multi-ethnic participants passing quality control from the MVP release 2.1 data (used in association analysis), and another 69,578 from the MVP release 3.0 data used for the PRS analysis.

Following imputation, variant-level quality control was performed using the EasyQC R package [START_REF] Winkler | Quality control and conduct of genome-wide association meta-analyses[END_REF] and exclusion metrics included: ancestry-specific Hardy-Weinberg equilibrium P <1×10 -20 , posterior call probability < 0.9, imputation quality <0.3, minor allele frequency (MAF) < 0.0003, call rate < 97.5% for common variants (MAF > 1%), and call rate < 99% for rare variants (MAF < 1%). Variants were also excluded if they deviated > 10% from their expected allele frequency based on reference data from the 1000 Genomes Project [START_REF]A global reference for human genetic variation[END_REF] . Following variant-level quality control, we obtained 19.9 million, 31.9 million, and 28.1 million DNA sequence variants for analysis in white, black, and Hispanic participants, respectively.

In UK Biobank, analysis was performed separately in white individuals after genotyping using either the UK BiLEVE or UK Biobank Axiom Arrays. Approximately 500,000 individuals were genotyped and subsequently imputed to the haplotype reference consortium (HRC) and UK10K reference panels (UK Biobank v3 release). Details of these procedures are described elsewhere [START_REF] Bycroft | The UK Biobank resource with deep phenotyping and genomic data[END_REF] . We performed genome-wide association testing for VTE in the UK Biobank using all variants in the v3 release with MAF > 0.3% and imputation quality INFO > 0.4. To avoid potential population stratification, only European-ancestry samples were included in the analysis. This subset was selected based on self-reported white ethnicity that was subsequently confirmed using genetic principal components analysis. Outliers within the self-reported white samples in the first 6 principal components of ancestry were detected and subsequently removed using the R package aberrant [START_REF] Bellenguez | A robust clustering algorithm for identifying problematic samples in genome-wide association studies[END_REF] . In addition, individuals with sex chromosome aneuploidy (neither XX or XY), discordant selfreported and genetic sex, or excessive heterozygosity or missingness, as defined centrally by the UK Biobank were removed. Finally, one individual from each pair of second-degree or closer relatives (kinship > 0.0884) was removed, selectively retaining VTE cases when possible.

VTE Discovery Association Analysis

In MVP, genotyped and imputed DNA sequence variants were tested for association with VTE through logistic regression adjusting for age, sex, and 5 principal components of ancestry assuming an additive model using the SNPTEST (mathgen.stats.ox.ac.uk/ genetics_software/snptest/snptest.html) statistical software program. In our discovery analysis, we performed association analyses using MVP release 2.1 data separately for each ancestral group (whites, blacks, and Hispanics) and then meta-analyzed using an inversevariance weighted fixed effects method implemented in the METAL software program [START_REF] Willer | fast and efficient meta-analysis of genomewide association scans[END_REF] . We excluded variants with a high amount of heterogeneity (I 2 statistic > 75%) across the three ancestries. In UK Biobank, association testing was performed using a logistic regression model adjusted for age at baseline, sex, genotyping array, and the first 5 principal components of ancestry. All testing was performed in PLINK2 (https://www.coggenomics.org/plink/2.0/). We combined results across MVP release 2.1 and UK Biobank cohorts using inversevariance weighted fixed effects meta-analysis and set a significance threshold of P < 5 ×10 -8 (genome-wide significance). In addition, we also required an internal replication P < 0.01 in each of the MVP and UK Biobank analyses (e.g. MVP discovery and subsequent UK Biobank replication, and vice versa), with concordant direction of effect, to minimize false positive findings. Novel loci were defined as being greater than 500,000 base-pairs away from a known VTE genome-wide associated lead variant. Additionally, European linkage disequilibrium information from the 1000 Genomes Project 20 was used to determine independent variants where a locus extended beyond 500,000 base-pairs. All logistic regression P values were two-sided. For X chromosome analyses, male genotypes were coded as if they were homozygous diploid for the observed allele.

Replication

In Phase 2, an additional round of external replication was performed for lead variants using summary data of up to 15,572 VTE cases and 113,430 disease-free controls from the INVENT consortium's current VTE meta-analysis [START_REF] Lindstrom | Genomic and Transcriptomic Association Studies Identify 16 Novel Susceptibility Loci for Venous Thromboembolism[END_REF] combined with 2,100 VTE cases and 53,865 controls from MVP 3.0 data. Of note, UK Biobank data was excluded from the summary statistics provided by INVENT. We defined significant novel associations as those that were at least nominally significant in replication (P<0.05) with consistent direction of effect and had an overall P < 5×10 -8 (genome-wide significance) in the discovery and replication cohorts combined.

Venous Thromboembolism Disease Definitions

From the 312,571 multi-ethnic participants in MVP release 2.1, and 69,578 European participants in MVP release 3.0, individuals were defined as having VTE based on possessing at least two of the ICD-9/10 codes outlined in Supplementary Table 12 in their EHR. Individuals were defined as controls if did not meet the definition of a VTE case and their EHR reflected 2 or more separate encounters in the Veterans Affairs Healthcare System in each of the two years prior to enrollment in MVP. In UK Biobank, individuals were defined as having VTE based on the definition by Klarin and colleagues as previously described [START_REF] Klarin | Genetic Analysis of Venous Thromboembolism in UK Biobank Identifies the ZFPM2 Locus and Implicates Obesity as a Causal Risk Factor[END_REF] . All other individuals were defined as controls.

Lipids and VTE Mendelian Randomization Analysis

Summary-level data for 222 genome-wide lipids-associated variants were obtained from the publicly available data from the Global Lipids Genetics Consortium 15 using a previously described genetic risk score instrument [START_REF] Klarin | Genetics of blood lipids among ~300,000 multi-ethnic participants of the Million Veteran Program[END_REF] . As previously described, cohorts either excluded participants on statins or adjusted total cholesterol and LDL cholesterol (by dividing by 0.8 or 0.7, respectively) if a statin was prescribed. One variant, rs77375493, was excluded from the current analysis after not passing quality control. We then utilized results from the MVP and UK Biobank GWAS meta-analysis restricted to Europeans. The effect alleles were matched with all lipid and VTE summary data and 3 different Mendelian randomization analyses were performed: 1) inverse-variance weighted; 2) multivariable; 3) MR-Egger to account for pleiotropic bias. First, we performed inverse-variance weighted Mendelian randomization using each set of variants for each lipid trait as instrumental variables. This method, however, does not account for possible pleiotropic bias. Therefore, we next performed inverse-variance weighted multivariable Mendelian randomization. This method adjusts for possible pleiotropic effects across the included lipid traits in our analyses using effect estimates from the variant-VTE outcome and effect estimates from variant-LDL cholesterol, variant-HDL cholesterol, and variant-triglycerides as predictors in 1 multivariable model. We additionally performed MR-Egger as previously described [START_REF] Bowden | Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression[END_REF] . This technique can be used to detect bias secondary to unbalanced pleiotropy in Mendelian randomization studies. In contrast to inverse-variance weighted analysis, the regression line is unconstrained, and the intercept represents the average pleiotropic effects across all variants. Bonferroni-corrected 2-sided P values (P=0.016; 0.05/3) for 3 tests were used to declare statistical significance. Analysis was performed using the R software program (version 3.2.1; Vienna, Austria).

Colocalization of ZFPM2 VTE GWAS and PAI-1 plasma pQTL Signals

To evaluate whether there was evidence of colocalization across the VTE GWAS and PAI-1 pQTL studies, we used European MVP release 2.1 and UK Biobank European VTE metaanalyzed summary statistics and PAI-1 pQTL results from the INTERVAL study [START_REF] Sun | Genomic atlas of the human plasma proteome[END_REF] . For the 2,178 variants within the 1-megabase region surrounding the lead ZFPM2 lead VTE GWAS variant, we performed a locus-wide colocalization analysis using FINEMAP [START_REF] Benner | FINEMAP: efficient variable selection using summary data from genome-wide association studies[END_REF] to generate posterior causal probabilities for each of these variants in the GWAS and the pQTL analyses. We used the European superpopulation subset of the 1000 Genomes 20 phase 3 whole genome sequence data as a reference for the linkage disequilibrium statistics, and assumed only 1 causal variant at the locus. We then analyzed these posterior probabilities with a publicly available pipeline [START_REF] Liu | Abundant associations with gene expression complicate GWAS follow-up[END_REF] to compute the CLPP for the entire locus as previously described [START_REF] Hormozdiari | Colocalization of GWAS and eQTL Signals Detects Target Genes[END_REF] . The R package LocusCompareR was used to visualize the colocalizing signals.

Functional Assessment of PAI-1 in Murine Models

Male C57BL/6 (WT) mice (Jackson Laboratory, Farmington, CT), PAI-1-/-(backcrossed 5-10 generations on C57BL/6 mice) and PAI-1 over-expressing mice (PAI-1 Tg, backcrossed 5-10 generations on C57BL/6 background) were utilized in this study [START_REF] Obi | Plasminogen activator-1 overexpression decreases experimental postthrombotic vein wall fibrosis by a non-vitronectin-dependent mechanism[END_REF][START_REF] Eitzman | Bleomycin-induced pulmonary fibrosis in transgenic mice that either lack or overexpress the murine plasminogen activator inhibitor-1 gene[END_REF][START_REF] Baldwin | The role of urokinase plasminogen activator and plasmin activator inhibitor-1 on vein wall remodeling in experimental deep vein thrombosis[END_REF] . Previous data comparing homozygous littermates to wild type C57BL/6 controls demonstrated identical phenotype with regards to venous thrombosis with regards to size and cellular composition [START_REF] Obi | Plasminogen activator-1 overexpression decreases experimental postthrombotic vein wall fibrosis by a non-vitronectin-dependent mechanism[END_REF][START_REF] Baldwin | The role of urokinase plasminogen activator and plasmin activator inhibitor-1 on vein wall remodeling in experimental deep vein thrombosis[END_REF] . Therefore, in the interest of humane and responsible animal use, wild type C57BL/6 mice (WT) were utilized as controls. Animals underwent a wellcharacterized DVT model, stasis inferior vena cava (IVC) thrombosis, at 8-10 weeks of age and 20-25 grams body weight [START_REF] Henke | Deep vein thrombosis resolution is modulated by monocyte CXCR2-mediated activity in a mouse model[END_REF][START_REF] Obi | Plasminogen activator-1 overexpression decreases experimental postthrombotic vein wall fibrosis by a non-vitronectin-dependent mechanism[END_REF][START_REF] Wojcik | Interleukin-6: a potential target for post-thrombotic syndrome[END_REF][START_REF] Diaz | Critical review of mouse models of venous thrombosis[END_REF][START_REF] Obi | Endotoxaemia-augmented murine venous thrombosis is dependent on TLR-4 and ICAM-1, and potentiated by neutropenia[END_REF] . Isoflurane 2% was administered as inhaled anesthetic. A midline laparotomy was performed, the retroperitoneum exposed, and dorsal IVC branches were interrupted with electrocautery. The infrarenal IVC and any accompanying side branches caudal to the left renal vein were ligated with 7-0 prolene (Ethicon, Inc., Somerville, NJ) to generate blood stasis. A running continuous 5-0 Vicryl suture was used to close the fascia and Vetbond tissue adhesive was applied for skin closure (3M Animal Care Products, St. Paul, MN). Mice were euthanized at 6 and 14 days postthrombosis. The IVC and its associated thrombus were weighed (grams) and measured (centimeters) for weight to length analysis of thrombus size [START_REF] Henke | Deep vein thrombosis resolution is modulated by monocyte CXCR2-mediated activity in a mouse model[END_REF][START_REF] Henke | Targeted deletion of CCR2 impairs deep vein thombosis resolution in a mouse model[END_REF][START_REF] Laser | Deletion of cysteine-cysteine receptor 7 promotes fibrotic injury in experimental post-thrombotic vein wall remodeling[END_REF] . GraphPad Prism software version 6.0 was used to analyze the thrombus size. Data is presented as the mean +/ -the standard deviation. Statistical significance amongst multiple groups was determined using one-way analysis of variance followed by Tukey's multiple comparisons post hoc test.

A value of P < 0.05 was considered significant. All work was approved by the University of Michigan, University Committee on Use and Care of Animals and was performed in compliance with the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health.

VTE Polygenic Risk Score Generation

Polygenic risk scores (PRS) represent an individual's risk of a given disease conferred by the cumulative impact of many common DNA sequence variants. A weight is assigned to each genetic variant based on its strength of association with disease risk (β). Individuals are then additively scored in a weighted fashion based on the number of risk alleles they carry for each variant in the PRS.

To generate our score, we used summary statistics from the combined MVP release 2.1 and UK Biobank VTE summary statistics restricted to Europeans (23,151 VTE cases, 553,439 controls) and a linkage disequilibrium panel of 20,000 randomly selected European samples from UK Biobank. We restricted variants to those present in both MVP release 2.1 and UK Biobank VTE summary statistics with a consistent direction of effect. To increase the number of independent variants included in our score, we performed a pruning and thresholding analysis using the linkage disequilibrium-driven clumping procedure in PLINK version 1.90b (--clump). In brief, this algorithm formed "clumps" around variants with VTE association P < 1×10 -5 and with an R 2 > 0.2 based on the linkage disequilibrium reference. From our initial set of summary statistics, the algorithm selects only 1 associated variant from each clump below our pre-specified P value threshold. The final output from this procedure generated a score of 299 independent (R 2 <0.2), VTE associated (P < 1×10 -5 ) variants, representing the strongest disease-associated variant for each linkage disequilibrium-based clump across the genome. From this 299 variant PRS, we then removed the clumps containing the F5 p.R506Q and F2 G20210A variants, resulting in a 297 variant PRS VTE for downstream analysis.

VTE Polygenic Risk Score Analysis

From the 69,578 MVP release 3.0 participants (none of whom were included in the VTE discovery analysis), we identified 2,100 prevalent VTE cases and 53,865 controls. We first assessed the associated VTE risk for the 5% of individuals with the highest PRS VTE relative to the rest of the population using logistic regression adjusting for age, sex, and 5 principal components of ancestry. We then tested the association of the F5 p.R506Q and F2 G20210A variants among the 5% of individuals with the highest PRS VTE relative to the rest of the population in the MVP release 3.0 data using an identical logistic regression model. We replicated our findings using incident VTE data from the WHI. Data used in this analysis included genetic data from WHI-HT participants derived from three separate GWAS substudies: 1) the WHI Genomics and Randomized Trials Network study (WHI-GARNET, 457 incident VTE events among 4,233 participants), (2) the WHI Memory Study (WHIMS, 180 incident VTE events among 5,637 participants), and (3) the WHI Long Life Study (WHI-LLS, 53 incident VTE events among 1,105 participants). All individuals included in the incident event analysis were of European ancestry. Specific details of each WHI sub-study including genotyping, study design, and imputation are included in the Supplementary Note. Cox proportional hazards models were used to estimate hazard ratios (HR) and 95% confidence intervals for the associations of the F5 p.R506Q and F2 G20210A mutations with VTE adjusting for age, 10 principal components of ancestry, and hormone therapy intervention status during the active phase of the WHI-HT. We then tested the associated VTE risk for the 5% of individuals with the highest PRS VTE relative to the rest of the population using Cox proportional hazards models adjusting for age, 10 principal components of ancestry, and hormone therapy intervention status during the active phase of the WHI-HT. Results from WHIMS, WHI-LLS, and WHI-GARNET were combined using an inverse-variance weighted fixed effects meta-analysis. Bonferroni-corrected 2-sided P values (P=0.016; 0.05/[2 variants + 1 PRS VTE ) for 3 tests were used to declare statistical significance. Analyses were performed using the R software program (version 3.2.1). In UK Biobank, we performed an association analysis for DNA sequence variants in 14,222 VTE cases and 372,102 controls of European ancestry using logistic regression. These results were combined with association statistics from DNA sequence variants across 3 mutually exclusive ancestry groups in the Million Veteran Program release 2.1 data representing 11,844 VTE cases and 251,951 controls. Data from UK Biobank and MVP were meta-analyzed using an inverse-variance weighted fixed effects method. We set a significance threshold of two-sided P < 5 ×10 -8 (genome-wide significance), and also required an internal replication two-sided P < 0.01 in each of the MVP and UK Biobank analyses, with concordant direction of effect, to minimize false positive findings. We subsequently performed external replication using summary data from the INVENT consortium (up to 15,572 VTE cases and 113,430 controls) meta-analyzed with data from MVP 3.0 (2,100 VTE cases and 53,865 controls), requiring an external replication P < 0.05 with a consistent direction of effect. Abbreviations: MVP, Million Veteran Program; VTE, Venous thromboembolism; PCs, Principal Components 

Figure 1 .

 1 Figure 1. Venous thromboembolic disease genetic discovery and replication study design.

Figure 2 .

 2 Figure 2. Blood lipids and VTE risk. Association of the 222 variant lipid genetic risk score with VTE in a multivariable Mendelian randomization analysis. Logistic regression odds ratios are displayed per 1standard deviation genetically increased a) LDL cholesterol, b) HDL cholesterol, and c) triglycerides. Wald statistic two-sided values of P are displayed. Summary-level lipids data from up to 319,677 participants of the Global Lipids Genetics Consortium 15 , and VTE association data from MVP (N = 8,929 cases; 181,337 controls) and UK Biobank (N = 14,222 cases; 372,102 controls) were used for this analysis. Gray boxes reflect the inversevariance weight for each study. Abbreviations: HDL, High-Density Lipoprotein; LDL, Low-Density Lipoprotein; MVP, Million Veteran Program; UKB, UK Biobank

Figure 3 .

 3 Figure 3. Functional assessment of PAI-1 in murine models. Inferior vena cava venous thrombus size was measured at day 6 and day 14 after inferior vena cava ligation in PAI-1 Tg (day 6 N = 19; day 14 N = 20), wild type (day 6 N = 20; day 14 N = 49), and PAI-1 -/-mice (day 6 N =23; day 14 N =27). Thrombus size was observed to be larger in the PAI-1 Tg mice compared to PAI-1-/mice (one-way analysis of variance followed by Tukey's multiple comparisons post hoc test, *p=0.02, ****p<0.0001). A scatter dot plot depicting mean thrombus size ± standard deviation is shown. Abbreviations: PAI-1, Plasminogen Activator Inhibitor-1; Tg, Transgenic; WT, Wild Type

Figure 4 .

 4 Figure 4. Genome-wide polygenic risk score for VTE. a) Distribution of the PRS VTE in the MVP release 3.0 dataset (n = 55,965). The x-axis represents the PRS with values transformed to have a mean of 0 and standard deviation of 1. The region shaded in blue represents those with the highest 5% of PRS VTE values. b) VTE odds ratios in MVP release 3.0 data for carriers of the F5 p.R506Q and F2 G20210A mutations. In addition, the odds ratio for individuals with the highest 5% PRS VTE compared to individuals among the lower 95% of PRS VTE , as well as for carriers of the F5 p.R506Q and F2 G20210A mutations within the highest 5% PRS VTE are depicted. Wald statistic twosided values of P are displayed.

Figure 5 .

 5 Figure 5. Genome-wide polygenic risk score and incident VTE events. Hazard ratios calculated from the Cox Proportional hazards model for incident VTE events in the Women's Health Initiative study for carriers of the F5 p.R506Q and F2 G20210A mutations. The hazard ratio for individuals with the highest 5% PRS VTE compared to individuals among the lower 95% of PRS VTE is also depicted. Two-sided values of P are displayed. Abbreviations: VTE, Venous Thromboembolism; PRS, Polygenic Risk Score; Chr, Chromosome; CI, Confidence Interval
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