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Abstract: Ponds in agricultural areas are ubiquitous water retention systems acting as reactive bio-

geochemical hotspots controlling pesticide dissipation and transfer at the catchment scale. Several 

issues need to be addressed in order to understand, follow-up and predict the role of ponds in lim-

iting pesticide transfer at the catchment scale. In this review, we present a critical overview of func-

tional processes underpinning pesticide dissipation in ponds. We highlight the need to distinguish 

degradative and non-degradative processes and to understand the role of the sediment-water inter-

face in pesticide dissipation. Yet it is not well-established how pesticide dissipation in ponds gov-

erns the pesticide transfer at the catchment scale under varying hydro-climatic conditions and ag-

ricultural operation practices. To illustrate the multi-scale and dynamic aspects of this issue, we 

sketch a modelling framework integrating the role of ponds at the catchment scale. Such an inte-

grated framework can improve the spatial prediction of pesticide transfer and risk assessment 

across the catchment-ponds-river continuum to facilitate management rules and operations. 

Keywords: pesticide transport; pesticide transformation and dissipation; ponds; biogeochemical 

processes; agricultural catchment; agro-ecological modelling 

1. Introduction

The use of pesticides in agriculture contributes to non-point source pollution of con-

tinental water, threatening drinking water resources and aquatic ecosystems. Europe is a 

major pesticide consumer worldwide, with France, Germany and Spain being the biggest 

users in the European Union [1]. New pesticide commercial formulations appear each 

year due to modern industry and substitutions following regulations. Despite the recently 

implemented directives [2], the recurrent detection and persistence of pesticides and their 

transformation products in surface aquatic ecosystems and groundwater emphasizes the 

difficulties of using regulations to protect the environment [3]. Transformation products 
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are often unknown and may be more toxic and/or persistent than their parent pesticides. 

At the agricultural catchment scale, intense and long runoff events following pesticide 

application mainly drive the transfer of pesticides and their transformation products to-

wards surface waters [4–6]. As a result, pesticide concentrations exceeding drinking water 

standards are observed in more than 90% of surface waters in France. This leads to re-

stricted use of some pesticides to protect drinking water supplies and to reach good chem-

ical status of waterbodies [7]. 

In this context, evaluating and predicting the transfer of pesticides from agricultural 

lands into surface waters is crucial and requires integrative studies accounting for pre-

vailing zones and periods of pesticide dissipation and storage. Ponds are prevailing zones 

of pesticide dissipation in agricultural catchments, although they are primarily con-

structed for water storage and irrigation purposes. Ponds can intercept pesticide runoff 

and act as buffering areas in the agricultural landscape. Leading studies of the literature 

have addressed the pesticide transfer at different scales of agricultural basins (e.g., [4,6,8–

15]) and emphasize the role of ponds in reducing pesticide transfer. Ponds can thus be 

considered as an “off-farm” and “off-fields” mitigation strategy to limit at the catchment 

scale pesticide transfer towards downstream surface waters [11,13,15,16]. As defined here, 

a pond is a small body of still water, generally smaller (<2 ha) and shallower than a lake, 

formed naturally or by artificial means [14]. Ponds are temporally or permanently flooded 

by water and can be colonized by macrophytes. Using this definition, ponds include con-

structed stormwater ponds and artificial wetlands.  

Ponds are dynamic systems where biological, chemical and physical processes inter-

act to dissipate a variety of pollutants in upstream water, including pesticides [15,17,18]. 

Pesticide dissipation in ponds results from both degradative and non-degradative pro-

cesses determining the amount of a pesticide at a given time, in a given pond compart-

ment. Ponds favor pesticide dissipation processes, including hydrolysis, photolysis, sedi-

mentation, sorption, biodegradation, and plant uptake, by increasing at the catchment 

scale both the water residence time and the pesticide reaction time [19,20]. On the other 

hand, ponds can act as a secondary source of delayed pollution through the remobiliza-

tion of previously accumulated dissolved and solid-bound pesticides following a storm 

event [10], and favor the export of transformation products [21]. Yet the interplay between 

dissipation processes involved in the storage, transformation and transport of pesticides 

within ponds is poorly understood. 

In addition, only few studies have integrated the role of ponds in agricultural eco-

system management and related pesticide dissipation in ponds to pesticide transfer at the 

catchment scale. Integrating the role of ponds in agro-hydrological models accounting for 

the interlocked scales from the headwater catchment to larger river basins remains chal-

lenging [8,12,22–24]. Whenever existing, the capacity of ponds to dissipate pesticides is 

generally considered in models without validation steps relying on field measurements. 

Altogether, this results in large uncertainties concerning the predictions of pesticide trans-

fer, risk assessment and exposure level at the river-basin scale. 

2. Scope of the Review 

In this review, we addressed two issues which need to be solved to integrate the role 

of ponds in controlling pesticide transfer at the catchment and river-basin scales. The first 

issue lies in the evaluation of degradative and non-degradative processes contributing to 

pesticide dissipation in the pond compartments, including the sediment-water interface 

(SWI). The second issue is the integration of the role of ponds in agricultural catchment to 

predict pesticide transfer under varying hydro-climatic conditions, land cover and agri-

cultural practices. To explore this second issue, we sketched an integrative modelling 

framework (Figure 1) currently developed in France within the PESTIPOND project (see 

Supplementary Materials for detailed information). 
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Figure 1. Evaluation and prediction of pesticide dissipation in ponds and the role of ponds at the catchment scale. (A) Fluxes, processes and compartments of ponds. (B) Innovative tools to 

distinguish pesticide degradative and non-degradative processes. (C) Pond modelling framework sketched in this review and associated steps. (D) Modelling the catchment–pond connec-

tivity to integrate the cumulative effect of ponds in terms of risks of pesticides transfer and fluxes at the catchment scale and elaborate management scenarios.  TSS: total suspended solids; 

DOC: dissolved organic carbon; N: nitrogen; P: phosphorus; POC: particulate organic carbon.
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3. Probing Pesticide Dissipation in Ponds: Blindspots and Opportunities 

Available approaches to examine pesticide dissipation in ponds and to establish mass 

balances allow monitoring and sometime quantifying the capacity of ponds to dissipate 

dissolved and solid-bound pesticides [25]. Literature surveys highlighted that artificial 

ponds can reduce pesticide masses by 50% on average (see [13,18,26] for reviews). Inlet 

and outlet pesticide loads are typically calculated based on concentrations and water dis-

charges to estimate the dissipation efficiency of ponds (Figure 1A). The overall mass trans-

fer of pesticides in ponds can be estimated accounting for variable inputs and dynamic 

hydro-climatic conditions [13,18,26]. However, the contribution of pesticide dissipation 

processes to the overall dissipation in relation to temperature, water residence time, hy-

drological conditions or vegetation dynamics (Figure 1A), remains poorly quantified so 

far. 

In particular, the contribution of degradative and non-degradative processes driving 

the pesticide dissipation in ponds is generally not addressed (Figure 1A). While pesticide 

fluxes in ponds could be reduced by 50–80% when the water retention time increases by 

one order of magnitude [9], the contribution of individual dissipation processes to the 

overall dissipation remains elusive. The sediment-water interface (SWI) is a specific hot-

spot of dissipation, involving both biological and physico-chemical processes, and confer-

ring upon ponds a substantial dissipation potential [27]. However, little is known about 

the interplay of hydrological and biogeochemical processes affecting pesticide storage and 

transformation at the SWI. In addition, microorganisms associated with pesticide biodeg-

radation in ponds and the SWI are often unknown and remain unidentified in situ. 

3.1. Distinguishing Degradative and Non-Degradative Processes Driving Pesticide Dissipation 

Pesticide dissipation within the different ponds compartments involves both non-

degradative processes, such as sorption, and degradative processes, including photolysis, 

hydrolysis and biodegradation (Figure 1A). An evaluation of pesticide degradation is es-

sential to quantify the net mass decrease of parent pesticides but also to infer information 

on prevailing transformation pathways in relation to the production of potentially toxic 

and persistent transformation products [3]. Recent advances in stable isotope chemistry 

[28] and DNA-based biomolecular tools [29], that can be deployed on different time and 

spatial scales, may help to address these challenges (Figure 1B). 

3.1.1. Evaluating Pesticide Biodegradation in Ponds Using Isotope Analysis 

Beyond the traditional “input-output” mass balance, several studies focused on pes-

ticide dynamics in different compartments and sub-compartments of ponds, including 

dissolved/suspended phases, top layers of the bottom sediment, macrophyte rhizosphere, 

roots, stems, leaves [10] and biofilms [30–32]. Most studies on pesticide dynamics in ponds 

currently rely on conventional approaches, based on concentrations of pesticides and their 

transformation products. However, these studies generally fail to determine where, when 

and how pesticide degradation occurs in ponds as a decrease of concentration in water 

might also refer to dilution or sorption. In addition, further dissipation of transformation 

products in ponds may severely limit the prediction of transformation pathways even 

when high-resolution mass spectrometry (HRMS) screening is used [33]. Hence, closing 

the mass balance of pesticides in complex, dynamic and multi-compartmented ponds is 

often uncertain and requires novel approaches. 

In this context, compound-specific isotope analysis (CSIA) may be useful to identify 

degradation and transformation pathways of pesticides in ponds (Figure 1B), even if no 

transformation products are detected [28]. Research on legacy, mainly industrial, hydro-

carbon molecules in contaminated aquifers and pond systems has shown that chemical 

and biological reactions, typically involving bond cleavage affecting pollutant molecules, 

exhibit a specific isotope effect [34–38]. This generally results in the gradual change of 



Water 2021, 13, 1202 5 of 21 
 

 

stable isotope ratios of typical elements (e.g., 2H/1H, 13C/12C, 15N/14N and 37Cl/35Cl) in or-

ganic pollutants during degradation or transformation, typically leading to an enrichment 

in the heavy isotope in the remaining parent compound [39]. This effect remains generally 

non-significant when non-degradative processes, such as sorption, dilution or volatiliza-

tion, are involved. Hence, the average isotope value of the non-reacted fraction of the pol-

lutant in environmental samples can be followed-up to evaluate the occurrence and the 

extent of degradation. It is worthy to note that isotope fractionation is also reaction-spe-

cific. Comparing changes of the stable isotope ratios of multiple elements (e.g., δ13C and 

δ15N) may thus serve to identify and distinguish transformation pathways of pollutants. 

While CSIA is today well-established for some legacy industrial compounds, pesticide 

CSIA is still emerging due to analytical challenges posed by low environmental concen-

trations (ng to µg L−1) and compound polarity. Overall, pesticide CSIA bears the potential 

to distinguish and quantify biotic and abiotic transformation of pesticides, such as the 

herbicide S-metolachlor, in ponds compartments [34], in soils [40], soil lysimeters [41,42] 

or even at the catchment scale [43]. Stable isotope data should be optimally interpreted 

with physicochemical and hydrological tracer data to evaluate retention and transport 

processes in ponds [44,45]. 

Special attention should also be paid to the fate of modern chiral pesticides and the 

transformation of their enantiomers in ponds (Figure 1B). Chiral pesticides, such as S-

metolachlor, entail at least two enantiomers, which are non-superimposable mirror im-

ages of each other, and constitutes a significant portion of pesticides worldwide [46]. Alt-

hough enantiomers of chiral pesticides have identical physico-chemical properties, they 

may display different toxicity levels. Knowledge of enantioselective degradation of chiral 

pesticides on the catchment scale is of increasing concern but remains very scarce [46,47]. 

It may be also valuable to combine enantiomer analysis of pesticides [48] with CSIA to 

jointly evaluate enantiomers and stable isotope fractionation of widely used fungicides, 

such as metalaxyl, as a result of stereoselective transformation by microorganisms [49]. 

Laboratory studies relying on enantiomers and/or isotope fractionation to evaluate bio-

transformation of chiral pesticides are currently scarce, with pond field studies missing so 

far. 

3.1.2. Towards Potential Markers of Pesticide Biodegradation in Ponds Based on Degra-

dation-Associated Taxa and Communities? 

Regarding the relationship between microorganisms and pesticide dissipation in 

ponds, the subject of tolerance and adaptation of microbial communities to pesticides in 

the environment has not been given the same level of attention as that of pesticide degra-

dation. Next-generation sequencing techniques relying on environmental DNA (eDNA) 

allows today to investigate the structure of macro- and micro-organisms populations and 

their response to individual or mixtures of pesticides [29,50]. In particular, comparative 

studies of protist, fungal and/or bacterial communities and their interplay may help to 

address microbial adaptation in agricultural pond receiving pesticides. Structural and 

functional characteristics of microbial communities represent potential indicators for 

monitoring the effects of pesticides in ponds and assessing their biological status. Alt-

hough reference degrading strains are not available for most pesticides and functional 

genes for degradation are not known, approaches to identify bioindicators of toxicity 

based on bacterial community dynamics are emerging [51]. Exposure of bacterial com-

partments to pesticides can mediate adaptive responses of the pond microbial communi-

ties (Figure 1B). Those responses may in turn alter the composition and function of micro-

bial communities [51] and eventually affect C, S or N cycles in ponds [52]. 

It has rarely been explored how pesticides affect directly or indirectly the nitrogen 

cycle [53] and consequently the living biota in aquatic systems [54]. For example, chloro-

thalonil inhibited soil denitrification process in riparian sediment by deteriorating organic 

matter metabolism (electron production), electron respiration chain (electron transport) 

and denitrifying enzymes activities (electron utilization), more than by altering denitrifier 
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communities or denitrifying gene abundances [55,56]. More generally, microbial interac-

tions between pesticides and C, N, P cycles and co-metabolic degradation of pesticides 

may be largely underestimated in ponds and in integrative studies of agricultural catch-

ments, where nitrogen loads by fertilizers inputs are significant. However, hydrological 

and hydrochemical fluctuations and vegetation development in ponds may mask the ef-

fects of pesticide exposure on overall bacterial community compositions [57]. 

Overall, there is a substantial potential and interest to examine with unprecedented 

sensitivity today the response of the pond’s microbial communities exposed to pesticides. 

More fundamentally, the contribution and rates of oxidative and reductive pathways of 

pesticide transformation and the associated microbial diversity at the sediment-water in-

terface are largely unknown. 

3.2. Understanding the Role of the Sediment-Water Interface in Pesticide Dissipation 

Processes sustaining pesticide sorption, settling with suspended particulate matter 

and degradation are manifold and interact with each other across biogeochemical gradi-

ents formed at the sediment-water interface (SWI) of ponds. Vertical gradients of light, 

temperature and oxygen concentrations affect biogeochemical conditions in both the wa-

ter and the sediment compartments and control the pesticide behavior over depth (Figure 

1A). Pesticide photodegradation prevails generally in the first centimeters of the water 

column in less vegetated ponds [44]. Hydrophobic pesticides (logKow>3) sorb onto sus-

pended particles [6], and especially on finer particles [10]. Finer particles partly remain 

suspended in the water column or settle, depending on the water level and depth, hydro-

logical dynamics and the vegetation [58]. 

The presence, diversity, density and patchiness of macrophytes in ponds control the 

SWI dynamics, and thus affect the transport and the dissipation of dissolved and solid-

bound pesticides. The vegetation controls the SWI dynamics directly by the release of rhi-

zosphere carbonaceous exudates that enhance biofilm development and/or sorption. The 

vegetation also controls the SWI dynamics indirectly by slowing down water flow, in-

creasing sedimentation rate of pesticides in the particulate phase [59] or reducing photo-

lytic degradation by creating shaded zones. Heterotrophic biofilms exert a major influence 

on the biochemical transformation of pollutants [60]. Reductive processes sustained by 

the decomposition of vegetal organic matter may affect pollutant sorption with organic 

matter in the sediment, influence pesticide sorption onto particulate and dissolved or-

ganic matter in the water column and favor transformation under anoxic conditions 

[61,62]. Overall, ponds enhance sedimentation while upstream particulate matter is regu-

larly deposited on the surface layers of bottom sediment, altering sediment physico-chem-

ical properties and biogeochemical processes of the SWI [63]. The fine sediments and as-

sociated pesticides can be mobilized during flood events and exported from the pond fol-

lowing a storage phase in the bottom sediment under low flow conditions [63,64]. 

Despite the dynamic character of the SWI, pesticide behavior at the SWI of ponds has 

been mainly studied under static conditions [65]. In particular, the overlying water veloc-

ity is recognized as a critical factor controlling the chemical distribution across the SWI, 

and thus pesticide degradation across biogeochemical gradients formed at the SWI [66]. 

New concepts and approaches, including high-resolution and less-invasive sampling, 

pesticide CSIA and modelling accounting for sediment redox zonation and diagenesis 

(Figure 1C), are required to evaluate and predict pesticide transformation at the SWI of 

ponds. Modelling the SWI of ponds integrating transient storm events is numerically chal-

lenging, although recent advances have been made to predict pesticide behavior at the 

SWI [67,68]. Most importantly, SWI modelling of ponds requires to integrate both biotic 

and abiotic reactive transport processes. Specific emphasis should be placed on the con-

tribution of biodegradation, as it mainly contributes to mass depletion of pesticides and 

the formation of transformation products. 

Yet the relationship between pesticide dissipation at the SWI and pond scales and 

pesticide transfer at the catchment scale is not well-established. We explore below this 
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issue by sketching a modelling framework integrating the role of pond in pesticide dissi-

pation at catchment scale. This framework addresses processes simplification from the 

pond to the headwater catchment, and from the headwater catchment to the larger river 

basin scales (Figure 2). 

4. Towards a Framework Integrating the Role of Ponds at the Catchment Scale 

An integrated modelling approach predicting pesticide transfer in agricultural basins 

should include spatially distributed land use and agricultural management practices, soil 

characteristics and hydro-climatic conditions, upstream transfer risks (Figure 1D) and dis-

sipation processes in ponds (Figure 1C). Such an integrated approach remains scarce and 

concerns mainly the pond hydrological dynamics [69] or the dissipation efficiency of 

macro-pollutants, such as nitrogen or phosphorus [70,71]. 

Pesticide dissipation processes implemented in agro-hydrological models are very 

often not specific to ponds. For example, existing modelling approaches at the SWI scale 

such as PCPF-1 [72] focus on pesticide behavior in paddy fields. Small ponds and large 

lakes are considered at the catchment scale using similar procedures and equations in the 

Soil and Water Assessment Tool (SWAT) model [24,73] (Figure 2). In addition, the ability 

of buffering objects to dissipate pollutants is addressed without any validation steps. This 

is mainly due to the discrepancy between the availability of consistent datasets and the 

modelling requirements, which increases the uncertainties of pesticide transfer predic-

tions at the catchment scale. 

In this context, we propose an integrated modelling framework in the five steps de-

scribed in Figure 1 and Tables 1 and 2. The framework covers four nested scales, from the 

SWI of ponds up to the river basin (Figure 2). 
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Figure 2. Modelling framework integrating the role of ponds to control pesticide transfer at the headwater catchment and 

the large river basin scales. The framework involves a modelling chain from pesticide dissipation within pond compart-

ments up to pesticide transfer in river basins. Pdf: probability density function. 1 Based on Stokes-Darcy-Brinkman con-

ceptualization [74]; 2 Reactive transport (e.g., [43]); 3 Multi-compartment models [72]; 4 Adapting the behavior of pesticide 

and ponds compartments in SWAT [75], with empirical relationships (0D modelling) derived from the results of the 2D 

models at the pond scale. The 0D modelling attributes a dissipation rate to each pesticide, depending on the measurable 

variables and the ponds’ characteristics and connectivity; 5 [76–78]. 6 [75]; 7 following the approach developed by [79]; 8 A 

detailed mass balance can be performed from the existing databases to identify the optimal formalisms and provide a 

diagnosis with existing data from upstream catchment and ponds. Datasets are obtained from the well-referred experi-

mental sites of the PESTIPOND project (Figure S1 and Table S1 of the Supplementary Materials). The PESTIPOND exper-

imental sites belong to the RI-OZCAR (Research Infrastructure—Critical Zone Observatories: Research and Application 

[80]), the RECOTOX network (Research initiative in toxicology/ecotoxicology [81]), the RI-RZA (LTSER Zones Ateliers 

network [82]), and/or the European RI-eLTER (European Long-Term Ecosystem Research). 9 Monitored river-basin such 

as the Save (Site of the LTSER Zone Atelier Pyrénées-Garonne, Gascony, 1100 km2) [77,83,84] can support the development 

and the validation of the last upscaling step of impact of ponds from the headwater catchments to the large river basins. 
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4.1. Step 1: Evaluating Pesticide Dissipation in Ponds with 2D Models 

Mechanistic models allow the dynamic simulation of pesticide dissipation in relevant 

compartments of ponds as a function of the hydraulic residence time, hydraulic efficiency 

[85], water depth, vegetation growth and pesticide partitioning in the inlet of ponds (dis-

solved and particulate). Relevant functional compartments of ponds include surface wa-

ter, the SWI, the plant/water and the sediment/plant interfaces. 3D computational fluid 

dynamics (CFD) models incorporating these compartments may require excessive calcu-

lation time [86]. However, the diversity of existing ponds geometry justifies an explicit 

description of the spatial variability of ponds using both horizontal and vertical 2D ap-

proaches. The 2D modelling approaches can improve predictions of the dynamics of water 

pathways, transit times in relation to biogeochemical processes and pesticide dissipation 

(Table 1). 

In particular, the horizontal 2D (x,y) modelling approaches are useful to include ex-

plicitly the vegetation patches and to estimate the water pathways and their transit times 

in ponds [68]. A pseudo 3D model could be obtained by coupling the 2D modelling ap-

proaches with the horizontal dimension for the hydraulic step and the vertical dimension 

for the biogeochemical step (Figure 1C). 

The 2D horizontal modelling approach integrates the system geometry [87] and the 

vegetation patches under steady-state conditions [88]. The vegetation patches can be rep-

resented as equivalent porous medias, with porosity and conductivities properties, to pro-

vide hydraulic efficiency characteristics including shortcuts, dead-zones and speed fields 

[89]. The vertical 2D (x,z) approach can describe explicitly stratification of biological, 

chemical and physical processes at the SWI [89] and their impact on pesticide dissipation 

for systems with a simplified geometry (Figure 1C). Such an approach has been recently 

developed for phosphorus mitigation in constructed wetlands [90]. 

A sub-daily time step should be used to represent accurately hydraulic dynamics and 

pesticide distribution in pond compartments during high-flow events. This requires data 

of inlet pesticide concentrations acquired at high temporal resolution, which is generally 

missing, to feed into the pond model. In addition, pesticide dissipation and pesticide ex-

port from the ponds should be examined under both low-flow conditions between hydro-

periods (i.e., the portion of year the system holds ponded water), and high flow conditions 

during transient hydroperiod. 

4.2. Step 2: Considering Pesticide Dissipation in Ponds during and between Hydroperiods 

During dry periods, i.e., without significant water discharges entering into ponds, 

modelling approaches may integrate biogeochemically-relevant compartments, including 

the overlying water, the SWI and the sediment and processes typically observed under 

static conditions. Pesticide dissipation processes, major biogeochemical cycles (C, N and 

S) and physico-chemical parameters (e.g., pH, temperature, dissolved oxygen content) in-

fluencing the biogeochemical stratification in the water column and the sediment can be 

included in a 2D vertical SWI model, such as the 2D SWI model developed for marine 

sediment [91]. 

Sediment is a key compartment for pesticide sorption, in particular between hydro-

periods. Sorption depends on the nature and amount of minerals and organic matter 

forming the sediment, including decaying vegetation and involving macrophyte stems 

and biofilms. Sorption onto sediment may store pesticides temporarily only. Indeed, de-

sorption and subsequent remobilization of pesticides from the sediment to the water col-

umn may occur, depending on the pesticide properties and abiotic factors, including the 

water physico-chemical conditions and the flow velocity. Linear or Freundlich sorption 

isotherms are used classically to represent pesticide sorption in ponds. However, concep-

tualizing sorption and desorption remains challenging and depends on pesticide parti-

tioning coefficient values (Kd). For instance, Passeport et al. [19] showed experimentally 

for different pond sediments that sorption of pesticides with low Kd values is similar to 

that of desorption for silty clay loam and pH 6.5 to 8.5. In contrast, desorption of pesticides 
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with intermediate or higher Kd values may be neglected as sorption is much faster than 

desorption. To discriminate pesticide degradation from sorption or dilution in ponds, 

coupling numerical modelling with compound-specific isotope analysis (CSIA) (Figure 

1B) may be helpful [92,93]. In particular, incorporating CSIA data in numerical models 

could help in reducing the equifinality issues and thus increase the accuracy of estima-

tions of pesticide dissipation in ponds [94,95]. 

During hydroperiods, modelling the dynamics of large and varying inlet discharges 

in relation to hydraulic characteristics of ponds, including their residential time and hy-

draulic efficiency, is difficult. The Stokes-Darcy-Brinkman equation [27,89,96] can be 

adopted for both the 2D vertical and horizontal discretizations to predict pesticide reac-

tive transport (Figure 1C and Table 1). This equation considers reactive transport across 

the water column-SWI-sediment layer continuum without discontinuity of numerical 

schemes at compartment interfaces (Figure 1C and Table 1). The Stokes-Darcy-Brinkman 

conceptualization may also incorporate vegetation as a porous media in models conceived 

at the pond scale [74]. Reactive transport model for ponds during high-flow conditions 

can be designed by combining conceptual scheme developed under dry period conditions 

and the Stokes-Darcy-Brinkman equation including dissolved and particulate pesticide 

transport. Upscaling approaches of pesticide dissipation from the pond to the headwater 

catchment scales could then be defined. For instance, empirical relationships can be de-

rived from these 2D physically-based models to calculate residence time functions [44] 

from pond geometry and inflow-outflow dynamic and to include biogeochemical pro-

cesses at the SWI [79] (Table 1) and improve existing modules for ponds in agro-hydro-

logical models [26] (Table 2). 

4.3. Step 3: Deriving Simplified Ponds Models for Implementation at Catchment Scale 

A preliminary step to derive simplified ponds models for further implementation at 

catchment scale is to develop empirical relationships using e.g., Monte-Carlo simulations 

summarizing results of the 2D models (Figure 1C, Table 1). These relationships can be 

included in a new lumped module within an agro-hydrological model. Such simplified 

modules can then provide efficiencies of pesticides dissipation in ponds as a function of 

parameters available at the headwater catchment scale, including pond geometry, vege-

tation density, pesticide properties, climatic variables and upstream runoff, sediment and 

pesticides fluxes simulated by agro-hydrological models (Table 2). 

A similar approach of empirical relationship was successfully developed by Billen et 

al. [79] to predict benthic nutrient fluxes. In addition, and most importantly, Monte-Carlo 

simulations can be used to determine confidence intervals (CI) and probability density 

functions (pdf) associated with pesticide dissipation estimates in ponds (Figure 2). The 

pdf of pesticide dissipation estimates obtained using such module can then be used to 

propagate the uncertainty associated with pesticide dissipation at the catchment and 

river-basin scales when ponds are included. 

4.4. Step 4: Adapting Agro-Hydrological Models to Integrate the Role of Ponds 

The role of “off-fields” buffer objects, such as grass strips, vegetated ditches, riparian 

zones and ponds or dams, in mitigating runoff, erosion and associated nutrients and pes-

ticides fluxes is only partly accounted for in current agro-hydrological models [24,97,98]. 

This is because (i) the calibration and the evaluation of their buffering effect remains del-

icate, (ii) consistent datasets are generally missing and (iii) current agro-hydrological 

models require adaptation. Comprehensive catchment models, such as SWAT [99], cover 

a wide range of processes for representing relevant hydrological and pesticide related 

processes [100]. Among 36 widely used pesticide models [101], SWAT may be particularly 

well-suited for modelling pesticide reactive transport under a wide variety of conditions 

[100]. Such agro-hydrological models can be used to estimate at the basin scale the risk of 

pesticide transfer including the contribution of pond, while improving predictions in a 

context of global change [102]. 
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As an example and to illustrate a model adaptation to integrate the role of pond at 

the catchment scale, the PESTIPOND project is developing a new module. This lumped 

0D module integrates at a daily time step the processes associated with pesticide dissipa-

tion at the SWI and the water column in each pond using simplified multi-parameters and 

multi-compartments formalisms (see Section 3.1., Figure 1C and Table 2). Model calibra-

tion and validation is a critical step that strongly depends on the data series obtained at 

the pond and at the catchment scales under various hydrological conditions (Figure 1A). 

To address the changes of organizational level (Figure 2), the SWAT model integrating 

the new pond lumped module (Tables 1 and 2) will be implemented first at the scale of 

the Auradé catchment (28 Ha) as a sub-catchment of the Save river basin (1100 km2), and 

before upscaling at the whole Save river basin (see SI for a description of Auradé catch-

ment). Pesticide transfer can then be related to factors controlling pesticide dissipation in 

the dissolved and the particulate phases including the residence time, organic matter con-

tent, sediment or the pond structure. Model calibration and validation rely on fluxes of 

both dissolved and solid-bound pesticides (Figure 2) monitored under both low- and 

high-flow conditions for two years [8,83,84]. 

To integrate the cumulative effect of successive ponds in pesticide dissipation at the 

river basin scale (Figure 1D), one option is to create a sub-basin at the outlet of each pond. 

This sub-basin could integrate upstream hydrological processes, sources and transfer of 

pesticides (Table 1) into each pond, along with pond processes. Alternatively, virtual 

ponds representing the effect of cumulative ponds and a sub-basin related to the cumula-

tive effect could be created. However, pesticide transfer from agricultural plots into ponds 

should be accounted for to improve predictions at the river-basin scale. 

4.5. Step 5: Modelling Pesticide Transfer from Fields to Ponds at the River-Basin Scale 

With changes of organizational level from the headwater catchment scale (i.e., from 

ha to dozen of km2) to the river-basin scale (i.e., from dozen to thousands of km2), the 

predictive capacity of the model to account for pesticide transfer towards ponds should 

be preserved. Extrapolation of processes across scales requires simplifying processes 

while losing a minimal amount of information or processes across scales. 

From a qualitative viewpoint, Multi-Criteria Decision Aiding (MCDA) methods, 

such as ELECTRE III and Tri_C models, can be coupled to GIS to evaluate pesticide trans-

fer risks from agricultural fields to pond at the headwater catchment scale (Figure 2) and 

to assess agro-environmental risks of water surface contamination (Figure 1D) [77,78,103]. 

MCDA are complementary to semi-distributed agro-hydrological models (Figure 1D), 

such as SWAT [8,23,75,83]. The combination of MCDA and semi-distributed agro-hydro-

logical models have the potential to integrate current and potential risks of pesticide trans-

fer in a context of climate change, accounting for the pesticide applications, crops rotation, 

matter transport and upstream-downstream hydrological connectivity. This approach has 

been used already to evaluate daily nitrate loads [104] and pesticide transfer in the 1100 

km2 Save river-basin [8,77]. A specific feature of the MCDA method is that it integrates 

both qualitative and quantitative criteria that cannot be considered otherwise in agro-hy-

drological models. This includes pesticide inputs, land use and agricultural management 

practices, but also best management practices, such as filter strips and riparian zones, soil 

characteristics and slopes, and the nature of hydrological pathways from each farming 

parcels towards surface waters [77,103,105] that control inputs of dissolved and particu-

late-laden pesticides towards ponds. The MCDA method has been applied previously to 

evaluate erosion, nitrate and pesticide transfer in different areas and farming systems 

[103,105,106]. 

From a quantitative viewpoint, current agro-hydrological models can be used to sim-

ulate the transfer of suspended sediments and associated nutrients (C, N, P) [8,23]. Few 

models are able to simulate pesticide transfer in relation to hydro-climatic conditions and 

hydrological processes [12,83,107]. This is of fundamental relevance as the dominant hy-

drological processes controlling pesticide transfer from agricultural plots to ponds are 



Water 2021, 13, 1202 12 of 21 
 

 

surface runoff, lateral subsurface flow and tile drainage flow (e.g., [77,105], Table 1). In 

particular, seasonal factors, such as pesticide application, tillage practices, wet-dry cycles, 

flood events are crucial to determine and predict the role of ponds on pesticide dynamics 

[14].
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Table 1. Compartments, phases and reactive transport equations associated with the steps 1, 2, 3 and 5 of the integrated modelling framework. The step 4 of the modelling 

framework is detailed in the Table 2. 

 

Step 1: 

Evaluating Pesticide Dissipation in 

Ponds with 2D Models  

[89] 

 

Step 2: 

Considering Pesticide Dissipation in 

Ponds during and between 

Hydroperiods with 2D Models [89,108] 

Step 3: 

Deriving Simplified Ponds Models for 

Implementation at Catchment Scale with 2D Model 

Monte Carlo Runs 

 S
te

p
 4

: 
T

ab
le

 2
 

 

Step 5: 

Modelling Pesticide Transfer from the 

Fields to the Ponds at the River-Basin Scale 

with SWAT  

[100,109] 

Compartments Water, sediment, vegetation Water, sediment, vegetation Water, sediment, vegetation 

Phases Dissolved and particulate Dissolved and particulate Dissolved and Particulate 

Water mass 

balance 

 

𝑆1. 
𝜌

𝜖
.   

𝜕𝑢

𝜕𝑡
+ 𝑆2 .   

𝜇

𝐾
 .  𝑢 + 𝑆3.

𝜌

𝜖2
 .  (𝑢 .  𝛻) . 𝑢 −  𝑆4  .  

𝜇

𝜖 
 .  𝛻 .  (𝛻𝑢) +  𝛻𝑃 = − 𝜌 .  𝑔 .  𝛻𝑧 

𝛻 .  𝑢 = 0 

Pond Hydraulic Retention Time (HRT) = 

f(pond geometry ranges [lengh, width, depth, 

shortcuts, dead-zones], vegetation patches, and 

inflow) 

Rainfall, Infiltration, Evapotranspiration 

Percolation, Runoff, Lateral sub-surface flow, 

Capillary fringe, River/aquifer exchanges, soil 

erosion for both pond upstream and dowstream 

Physico-chemical 

process rates 

 

𝜖 .   
𝜕𝐶𝑖
𝜕𝑡

+  𝜌𝑏𝑢𝑙𝑘.  
𝜕𝑆𝑖
𝜕𝑡

+ 𝑢 .  𝛻𝐶𝑖  − 𝛻 .  (𝐷𝑖 .  𝛻𝐶𝑖) = 𝑟𝑖 

𝐷𝑖 = 𝐷𝑚,𝑖  .  𝐼 +  𝐷𝑑𝑖𝑠𝑝 =  (𝛼𝑇 .  |𝑢| + 𝐷𝑚) .  𝛿𝑙𝑚 +  (𝛼𝐿 −  𝛼𝑇) .  
𝑢𝑙 . 𝑢𝑚
|𝑢|

        𝑙,  𝑚 = 1,  2 

𝜕𝑆𝑖
𝜕𝑡

=  𝛼𝑖 .  (𝐾𝑑,𝑖 .  𝐶𝑖  − 𝑆𝑖) 
Pesticides partitioning between dissolved particulate, 

sediment and TOC phases and biofilm on vegetation 

and sediment = 

f(range of pond HRT, TSS, DOC, sediment range in 

inflow and physico-chemical properties of targeted 

pesticides, vegetation types and density) 

Pesticides degradation* = 

f(range of HRT, TSS, DOC, Oxygen consumption in 

sediment and physico-chemical properties of 

targeted pesticides) 

* including biodegradation, direct and indirect photolysis 

and hydrolysis 

• Between interstitial water and soil particles 

• Field scale degradation with a lumped half-life 

integrating volatilization, photolysis, 

hydrolysis and biodegradation 

• Transport from fields to rivers by soil water 

fluxes (surface runoff, lateral flow and 

percolation) in dissolved and particulate 

phases 

• In-stream process including degradation, 

volatilization, settling, diffusion and burial. 

Biological process 

rates (Michaelis- 

Menten) 

 

Oxygen consumption in sediment 
𝑑[𝑂2]

𝑑𝑡
=  𝑘𝑂2 .  [𝑜2] 

Oxygen controlled degradation 

𝑘𝑜𝑥𝑖𝑐 =  𝑘𝑚𝑎𝑥, 𝑜𝑥𝑖𝑐 .  
[𝑂2]

[𝑂2] +  𝐾𝑀
 

𝑑[𝑝𝑒𝑠𝑡𝑖𝑐𝑖𝑑𝑒]

𝑑𝑡
= 𝑘𝑜𝑥𝑖𝑐 .  [𝑝𝑒𝑠𝑡𝑖𝑐𝑖𝑑𝑒] 

Modelling of stable isotope fractionation (e.g., carbon): 

𝑘13𝐶 =  (1 +  𝜖𝐶) .  𝑘
12𝐶 

Variables and 

parameters 

 

S1, S2, S3 and S4: coefficient for overlying water with Navier-Stokes (S1=S3=S4 = 1 and S2 = 0), the water-sediment transition layer (S1=S2=S3=S4 = 1) and the sediment bed with Darcy’s law (S2=S4 = 1 and 

S1=S3=0); u: fluid velocity, including horizontal and vertical components [L/T]; P : water pressure [M/L/T²]; r and µ : water volumetric mass density [M/L3]  and dynamic viscosity [M/L/T]; 𝜖: sediment 

porosity [L3/L3]; g : gravity [L/T²]; z: vertical position [L]; Ci: dissolved pollutant conc. [M/L3]; subscript i: pesticide targeted; Si: sorbed concentration [M/M]; bulk: bulk density of the porous medium 

[M/L3]; Di: dispersion tensor [L²/T] accounting for pollutant molecular diffusion Dm,i [L²/T] and longitudinal (aL) and transversal (aT) dispersions [L]; dlm: Kronecker function with l, m = 1, 2; ri : reactive 

term representing sorption or degradation of species i (i.e. hydrolysis, photolysis and biodegradation); Kd,i: phase partitioning coefficient of pesticide i [L3/M]; ai: first order rate of sorption [T-1]; kO2: 

oxygen consumption rate in sediment [T-1]; KM: half saturation constant for oxygen [M.L-3]; kmax, oxic :  oxic degradation rate [T-1]; k13C and k12C: isotopologue degradation rates [T1], 𝜖𝐶: isotopic 

fractionation factor (carbon) [‰]; HRT: Hydraulic Residence Time [T]; TSS DOC: Dissolved organic Carbon [Mcarbon/L] 
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Compounds used 

for validation 

NaCl and Foron Blue 91 used as conservative and sorptive tracers, respectively, and 

caffeine as a degradative organic compound 

Validation with data from well-referred experimental 

sites of the PESTIPOND project  

(see Supplementary Materials) 

33 different pesticides at the catchment scale 

Table 2. Lumped models for pesticide dissipation in wetlands, lakes or paddy fields. The lumped models could be adapted to predict pesticide dissipation in ponds. 

 PCPF-1 [72] AGRO-2014 [110] SWAT [109,111] Tank-in-Series TIS [22] 

Compartments 
Paddy water 

Paddy surface soil layer (1cm) 

Water column, Total suspended solids (TSS), 

Pore-water , Sediment 
Water, vegetation, soil, aquifer, river Water 

Phases 
No distinction between the dissolved and 

particulate phases 
Dissolved and particulate Dissolved and particulate 

No distinction between the dissolved and 

particulate phases 

Water mass balance 

𝑑ℎ𝑤
𝑑𝑡

= 𝑅𝑎𝑖𝑛 − 𝐼𝑟𝑟𝑖𝑔. −  

𝐷𝑟𝑎𝑖𝑛𝑎𝑔𝑒 − 𝑃𝑒𝑟𝑐𝑜𝑙.−𝐸𝑣𝑎𝑝𝑜𝑡𝑟𝑎𝑛𝑠𝑝. 

Constant water volume 

𝑉𝑤,𝑡

= 𝑉0

+  ∑𝑅𝑎𝑖𝑛 − 𝑟𝑢𝑛𝑜𝑓𝑓

𝑡

𝑖=1−𝐸𝑣𝑎𝑝𝑜𝑡𝑟𝑎𝑛𝑠𝑝.−𝑤𝑠𝑒𝑒𝑝 − 𝑄𝑜𝑢𝑡𝑓𝑙𝑜𝑤) 

𝑑𝑉𝑤
𝑑𝑡

= 𝑟𝑢𝑛𝑜𝑓𝑓𝑖𝑛𝑙𝑒𝑡 − 𝑟𝑢𝑛𝑜𝑓𝑓𝑜𝑢𝑡𝑙𝑒𝑡 

Physico-chemical 

process rates (1st 

order model) 

Desorption: 𝑘𝑑𝑒𝑠.
𝑑𝑆

ℎ𝑊
𝜌𝑏 

Photolysis: 𝑘𝑝ℎ𝑜𝑡𝑜.   
𝑑𝐸𝑈𝑉𝐵−𝐶

𝑑𝑡
 

 

Volatilization: 
𝑆𝑤 . 𝐸𝑉𝑃

𝑉𝑊
  

Settling: 
𝑆𝑤.𝑣𝑠 

 𝑉𝑤
 

Resuspension: 
𝑣𝑟

 𝑑𝑠
 

Lumped degradation rates:* 

Water: 
ln(2)

𝐷𝑇50,𝑤
  

Sediment: 
ln(2)

𝐷𝑇50,𝑠
 

* Biodegradation, photolysis and hydrolysis 

Volatilization: 𝑣𝑣 ∗  
1

ℎ𝑊
 

Settling: 
𝑆𝑤.𝑣𝑠 

 𝑉𝑤
 

Sorption: 𝐶𝑠 = 𝐾𝑑 ∗ 𝐶𝑤   

Resuspension: 
𝑣𝑟

 𝑑𝑠
 

Lumped degradation rates:* 

Water: 
ln(2)

𝐷𝑇50,𝑤
 

Sediment:  
ln(2)

𝐷𝑇50,𝑠
 

* Biodegradation, photolysis and 

hydrolysis 

One parameter k describes the pesticide decay 

between the inlet and outlet of the wetland at 

each tank 

𝐶𝑜𝑢𝑡,𝑡𝑎𝑛𝑘
𝐶𝑖𝑛,𝑡𝑎𝑛𝑘

= 𝑒𝑥𝑝(−𝑘𝑡) 

 

Biological processes 

rates 

(1st order model) 

Biodegradation: 

Water: 
ln(2)

𝐷𝑇50,𝑤
  

Sediment: 
ln(2)

𝐷𝑇50,𝑠
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Pesticide mass 

balance 

Water:  
𝒅𝑪𝒘

𝒅𝒕
=  ∑𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒂𝒓𝒚 𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒆𝒔 

Sediment:  
𝒅𝑪𝒔

𝒅𝒕
=  ∑𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒂𝒓𝒚 𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒆𝒔 

 

Steady state 

𝐶𝑜𝑢𝑡
𝐶𝑖𝑛

= (1 +
𝑘(𝑇) .   𝐻𝑅𝑇

𝑁
)

−𝑁

 

Where N is the number of tanks 

Non-steady state 

 

𝐶𝑜𝑢𝑡,𝑇 ≈  ∑ 𝐶𝑖𝑛,𝑇−𝑖∗𝛥𝑡 .   𝑔
∗(𝑖 ∗ 𝛥𝑡) ∗ 𝑒𝑥𝑝(−𝑘(𝑇) ∗ (𝑖

𝑖𝑚𝑎𝑥

𝑖=0 ∗ 𝛥𝑡)) 

Where g* is the HRT distribution function normalized 

to unit sum over i 

Description of 

variables and 

parameters 

wseep: water entering the vadose zone from the soil profile; Qoutflow : pond outflow; Cw: Pesticide concentration in water; Cs: Pesticide concentration in the sediments; kdes: First-order rate constant for 

pesticide desorption from the sediment surface; ds: Depth of the sediment layer; hw: Water depth; Sw: Water surface area; Vw: Water volume; ρb: Bulk density of the sediment layer; kphoto: First-order 

rate coefficient of photochemical degradation with respect to the cumulative UV-B radiation as measured in laboratory conditions; EUVB-C: Cumulative UV-B radiation (kJM-2); EVP : Evaporation rate; 

DT50,s: Half-life in sediments; DT50,w: Half-life in water; kv: First-order rate constant for pesticide volatilization in water; vs: Settling velocity; vr: Resuspension velocity; Kd: Sediment-water partition 

coefficient, HRT: pond Hydraulic Residence Time. 

Pesticides used for 

validation 
Mefenacet, Pretilachlor, Bensufuronmethyl 

Metaflumizone, Kresoxim-methyl, 

Pyraclostrobin 
Chlorpyrifos, Diazinon Diazinon, Methomyl, Acephate 
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5. Conclusions 

The role of ponds to control pesticide transfer in interlocked scales from the headwa-

ter catchment to the river basin remains largely unexplored. This review emphasizes that 

processes associated with pesticide transfer, storage and transformation in ponds com-

partments should be thoroughly evaluated in relation to pesticide transfer at the catch-

ment scale. Pesticide dissipation in pond and pesticide transfer at the catchment scale are 

commonly treated separately, limiting accurate prediction of pesticide transfer and re-

lated operations at the catchment scale. We believe that considering the role of ponds at 

the catchment scale can help improving the prediction and the operational control of the 

downstream pesticide transfer in the agricultural landscape. However, several issues need 

to be addressed in order to understand, follow-up and predict the role of ponds in limiting 

pesticide transfer at the catchment scale. 

Regarding the functional processes underpinning pesticide storage and transfor-

mation in ponds, a major research direction is to develop concept and approach to distin-

guish the contribution of degradative and non-degradative processes in ponds. In partic-

ular, the direct and indirect role of microorganisms associated with pesticide degradation 

processes is poorly understood currently. Most importantly, a fundamental effort is re-

quired to follow-up and predict the interplay of physico-chemical, hydrological and bio-

logical processes at the sediment-water interface of ponds and its role for pesticide dissi-

pation. 

Concerning the development of an integrative modelling framework of pesticide 

transfer at the catchment scale including the role of ponds, this review underscores two 

issues that have not been answered yet. First, it is required to improve the implementation 

and parametrization of pesticide dissipation from the sediment-water interface of the 

pond, and from the pond or a set of ponds up to the catchment and the river-basin. Sec-

ond, specific attention should be paid to consolidate conceptual simplifications of pesti-

cide dissipation across scales. 

The integrative modelling framework sketched here in five steps is expected to de-

liver currently poorly accessible knowledge on hydrological and biogeochemical pro-

cesses at the pond scale. Such knowledge can be incorporated into models across scales to 

connect the pond functioning with the dynamics of the headwater catchment. An addi-

tional feature of the proposed modelling framework is that it can be used to co-construct 

with socio-economic actors scenarios of pond structure, functioning, location or manage-

ment. These scenarios can help to formulate new guidelines to optimize pesticide dissipa-

tion of ponds under various land uses and agricultural practices in a context of global 

changes. This includes managing existing ponds, existing either as individual or succes-

sive entities, and integrate them into the landscape to consider their impact on water qual-

ity. 
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