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Effects of Genetically Determined Iron Status on Risk of Venous
Thromboembolism and Carotid Atherosclerotic Disease: A Mendelian
Randomization Study
Dipender Gill, MD;* Christopher F. Brewer, MD;* Grace Monori, BSc; David-Alexandre Tr�egou€et, PhD; Nora Franceschini, MD, MPH;
Claudia Giambartolomei, PhD; INVENT Consortium;† Ioanna Tzoulaki, PhD; Abbas Dehghan, MD, PhD

Background-—Systemic iron status has been implicated in atherosclerosis and thrombosis. The aim of this study was to investigate
the effect of genetically determined iron status on carotid intima-media thickness, carotid plaque, and venous thromboembolism
using Mendelian randomization.

Methods and Results-—Genetic instrumental variables for iron status were selected from a genome-wide meta-analysis of 48 972
subjects. Genetic association estimates for carotid intima-media thickness and carotid plaque were obtained using data from
71 128 and 48 434 participants, respectively, and estimates for venous thromboembolism were obtained using data from a study
incorporating 7507 cases and 52 632 controls. Conventional 2-sample summary data Mendelian randomization was performed for
the main analysis. Higher genetically determined iron status was associated with increased risk of venous thromboembolism. Odds
ratios per SD increase in biomarker levels were 1.37 (95% CI 1.14-1.66) for serum iron, 1.25 (1.09-1.43) for transferrin saturation,
1.92 (1.28-2.88) for ferritin, and 0.76 (0.63-0.92) for serum transferrin (with higher transferrin levels representing lower iron
status). In contrast, higher iron status was associated with lower risk of carotid plaque. Corresponding odds ratios were 0.85 (0.73-
0.99) for serum iron and 0.89 (0.80-1.00) for transferrin saturation, with concordant trends for serum transferrin and ferritin that
did not reach statistical significance. There was no Mendelian randomization evidence of an effect of iron status on carotid intima-
media thickness.

Conclusions-—These findings support previous work to suggest that higher genetically determined iron status is protective against
some forms of atherosclerotic disease but increases the risk of thrombosis related to stasis of blood. ( J Am Heart Assoc. 2019;8:
e012994. DOI: 10.1161/JAHA.119.012994.)

Key Words: atherosclerosis • Mendelian randomization • thrombosis

T hrombosis is a common underlying mechanism for
ischemic heart disease, ischemic stroke, and venous

thromboembolism (VTE), and thrombotic disease processes
together are the leading cause of global mortality and
constitute the largest contributor to the global disease burden
as measured by disability-adjusted life years.1-4 Iron has been

implicated in multiple aspects of pathological thrombosis,
including oxidative stress, thrombocytosis, and increased
erythrocyte viscosity.5,6 Previous observational studies have
provided evidence of a nonlinear relationship between iron
status and thrombotic disease, with both iron deficiency and
iron overload shown to increase risk of VTE7-9 and carotid
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atherosclerosis.5,10-12 However, the effect of iron-status
variation within the normal range is less well established.

Mendelian randomization (MR) is a technique that uses
genetic variants as proxies for a modifiable exposure (genetic
instruments) in order to investigate for a causal effect on risk
of disease.13 If there is causal association between the
exposure and disease of interest, the genetic variants
instrumenting the exposure will relate to the disease, provided
that the requisite assumptions of the model are met. Because
these variants are randomly allocated at conception, their
association with the disease outcome is less susceptible to
the potential environmental confounding factors and reverse
causation biases that can affect observational studies.13 MR
can therefore provide more reliable estimates of causal
relationships. We have previously used the MR approach to
demonstrate a contrasting effect of higher genetically deter-
mined iron status on different thrombotic disease processes:
increasing risk of cardioembolic stroke14 while conferring
protection in coronary artery disease,15 consistent with
observational analyses.16-18 Consequently, we have sug-
gested that higher iron status may bestow a protective effect
on atherosclerosis while, on the other hand, it increases the
risk of thrombosis related to stasis of blood.14

Quantifiable biomarkers of iron status, including serum
iron, ferritin, transferrin, and transferrin saturation, can be
used as phenotypic proxies for overall iron status.19,20

Genetic variants associated with these biomarkers in a
pattern concordant with an overall relation to increased iron
status (increased serum iron, ferritin and transferrin satura-
tion, and decreased transferrin levels) therefore represent
potential genetic instruments for iron status. In this study we
used such instruments to perform an MR analysis to gain
further insight into the role of iron status in thrombotic
disease processes. Specifically, we investigated how iron
status affects carotid artery intima-media thickness (cIMT)
and carotid plaque, 2 correlated but distinct phenotypes of
vessel narrowing that may be used to facilitate mechanistic
insight. Increasing evidence suggests that cIMT is associated
with vessel hypertrophy and hyperplasia in response to shear
stress associated with aging, whereas carotid plaque may
represent the product of a dynamic inflammatory cascade in
atherosclerosis.21-23 In addition, we investigated the associ-
ation between iron status and VTE. These analyses were
selected to offer further insight into the role of iron status in
thrombotic disease, which, given the variations in iron status
observed worldwide,24 could have significant potential clinical
and public health implications.

Materials and Methods
This work used summary data obtained from published
studies that had each previously received appropriate ethics
and institutional review board approvals, and further sanction
was therefore not required. The data and statistical coding
used in this work can be obtained from the corresponding
author on reasonable request. All statistical analysis was
performed using R version 3.4.2 (The R Foundation for
Statistical Computing, Vienna, Austria) and the MendelianRan-
domization and MR-PRESSO software packages.25,26

Genetic Instrument Selection
Single-nucleotide polymorphisms (SNPs) to proxy iron status
were obtained from a genome-wide association study (GWAS)
meta-analysis performed by the GIS (Genetics of Iron Status)
consortium,27 combining data from 48 972 subjects of
European descent. Genetic associations between SNPs and
iron biomarkers were identified for each sex separately using
standardized residuals after making study-specific adjust-
ments (Table S1).27

Increased systemic iron status is associated with increased
serum iron, transferrin saturation, and ferritin and with
decreased transferrin.19 These markers can therefore be
used as proxies for systemic iron status—the independent
(endogenous) variable under consideration in this study.
Accordingly, SNPs shown to have significant directional
association with these 4 biomarkers (increased serum iron,

Clinical Perspective

What Is New?

• Thrombotic disease is the leading cause of global mortality.
• The Mendelian randomization technique uses randomly
allocated genetic variants to instrument the effect of an
exposure in investigating for a causal effect on a particular
outcome and is less prone than traditional observational
research to environmental confounding and reverse causa-
tion.

• In this study Mendelian randomization analysis was per-
formed to investigate for an effect of higher genetically
determined iron status on venous thromboembolism,
carotid plaque, and carotid artery intima-media thickness.

What Are the Clinical Implications?

• Higher iron status was found to increase the risk of venous
thromboembolism, decrease the risk of carotid plaque, and
have no significant effect on carotid artery intima-media
thickness.

• These results are consistent with previous studies that
suggest higher iron status has a protective role in
atherosclerosis but increases the risk of thrombosis related
to stasis of blood.
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ferritin, transferrin saturation, and decreased transferrin
levels) were considered as potential genetic instruments.
The GWAS meta-analysis performed by the GIS consortium
identified 12 SNPs associated with the aforementioned
biomarkers of iron status (Table S2). Three of these
(rs1800562 and rs1799945 in the hemochromatosis [HFE]
gene and rs855791 in the transmembrane protease
[TMPRSS6] serine 6 gene) demonstrated an association with
all 4 biomarkers that was concordant with an effect on
systemic iron status at genome-wide significance (P<5910�8).
These were therefore selected as genetic instruments.

Linkage disequilibrium between the 2 loci within the HFE gene
was low (r2<0.01), consistent with their independence. The
biological effects of the HFE and TMPRSS6 proteins on
systemic iron status are detailed in Data S1.

Instrument strength was evaluated using the F statistic,28

derived from a measure of the exposure variance explained by
each SNP. To limit potential weak instrument bias, only SNPs
with an F statistic of >10 were used.28

Genetic Associations
Association estimates between the SNPs and risk of VTE were
derived from a GWAS meta-analysis performed by the
International Network on Venous Thrombosis Consortium.29

Data from 12 studies were included (Table S3, with details of
adjustments and exclusion criteria), incorporating 7507 cases
of VTE and 52 632 controls. Subjects were of European
ancestry and had a diagnosis of VTE (deep vein thrombosis or
pulmonary embolism) made objectively by a physician follow-
ing clinical evaluation.

A GWAS meta-analysis performed by the Cohorts for Heart
and Aging Research in Genomic Epidemiology Consortium
was used to derive association estimates between SNPs and
cIMT and carotid plaque.30 The meta-analysis included data
from 31 studies for cIMT and 17 studies for carotid plaque
trait (Table S4, with details of adjustments and exclusion
criteria), incorporating 71 128 and 48 434 (21 540 cases
and 26 894 controls) participants, respectively. Subjects
were of European ancestry and were evaluated using high-
resolution B-mode ultrasonography for carotid plaque and
cIMT parameters.31 Carotid plaque was defined as atheroscle-
rotic thickening of the carotid artery wall or luminal stenosis
>25%. cIMT parameters were defined as the mean of maximal
values from several common carotid artery measurements,
measured in millimeters.

Participant overlap in the studies used to obtain genetic
association estimates for the exposure and the outcome can
introduce bias into MR analysis.32 Based on the cohorts
included in the considered GWAS meta-analyses (Tables S1,
S3, and S4), the Erasmus Rucphen Family Study contributed
participants for investigation of iron status, cIMT, and carotid

plaque, whereas the Nikmegen Biomedial Study contributed
participants for investigation of iron status and cIMT.27,30 This
therefore resulted in a potential overlap of 1420 participants
in the investigation of cIMT and of 549 participants for the
investigation of carotid plaque. No cohorts overlapped for the
investigation of iron status and VTE.27,29

Mendelian Randomization Analysis
The main MR effect estimates were derived using the Wald
Estimator,33 with the Delta method used to calculate standard
error.34 Individual MR estimates for each measure of iron
status were then combined using fixed-effect inverse-
variance–weighted (IVW) meta-analysis, to establish their
overall effect on VTE and carotid plaque risk (calculated as
odds ratio [OR] per SD unit increase in iron-status biomarker),
and effect on carotid intimal artery thickness (calculated as
millimeter variation in cIMT per SD change in iron-status
biomarker).28 A statistical significance threshold of P<0.05
was used for these main MR analyses. This threshold was not
adjusted for multiple testing of the different iron-status
biomarkers, as they each represented a proxy for overall iron
status, which was the clinically relevant trait under consid-
eration. Furthermore, adjustment for multiple testing of
distinct outcomes was also not required, as each trait was
specifically investigated to follow up the findings of previous
research that had already identified significant effects.14,15

For the main IVW MR analyses, the minimum and
maximum true causal effects required to achieve 80%
statistical power were estimated to provide an indication of
the potential for false-negative findings.35

Pleiotropy
MR analysis is based on the assumption that SNP outcome
effects are mediated solely through the exposure (iron status
in this study). Violation of this assumption through horizontal
pleiotropy, whereby there is an association between the
instrument and disease independent of the exposure of
interest, can introduce directional bias.36

Statistical sensitivity analyses more robust to the inclusion
of potentially pleiotropic variants can be used to help
establish the validity of causal inference from MR analysis.
However, such analyses typically require more than 3
instruments. Therefore, to increase the number of genetic
instruments and allow for such statistical sensitivity analyses,
the instrument selection criteria were relaxed in the GIS
GWAS meta-analysis to also include other SNPs associated
with at least 1 biomarker reflecting higher iron status (ie,
increased serum iron, ferritin, and transferrin saturation and
decreased transferrin levels) at genome-wide significance,
with concordant directions of association with the other
biomarkers, even if they did not reach genome-wide statistical
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significance.14 Three further SNPs were identified using these
selection criteria: rs7385804 as part of the transferrin receptor
2 (TFR2) gene, rs9990333 from the transferrin receptor
(TFRC) gene, and rs411988 in the testis-expressed 14
intercellular bridge-forming factor (TEX14) gene. IVW MR
analysis was subsequently repeated using all 6 SNPs for risk
of cIMT and carotid plaque and with 5 SNPs for VTE (association
estimates were not available for the rs1799945 SNP and
VTE, nor was a suitable proxy with linkage disequilibrium
r2>0.8).

Additional sensitivity analyses were performed using the
MR-Egger, weighted median and MR-pleiotropy residual sum
and outlier (PRESSO) methods.26,37,38 The MR-Egger tech-
nique provides an estimate of horizontal pleiotropy from the
intercept of a linear regression of SNP-outcome and SNP-
exposure association estimates (deemed statistically signifi-
cant based on P<0.05). In the absence of pleiotropic bias,
either through the genetic instruments having no horizontal
pleiotropy or directional pleiotropic effects canceling each
other out, this intercept tends to 0. This method relies on the
assumption that the SNP-outcome association estimates are
not correlated with the extent of pleiotropy arising from that
instrument (instrument strength independent of direct effect
assumption).39 In contrast, the weighted median MR sensi-
tivity analysis does not rely on the instrument strength
independent of direct effect assumption. This method calcu-
lates the median of an empirical distribution of MR associ-
ation estimates weighted for their precision and provides
consistent estimates when at least 50% of information for the
analysis comes from valid instruments. Finally, MR-PRESSO
regresses the SNP-outcome estimates on the SNP-exposure
estimates, with the gradient of the regression line represent-
ing the MR estimate.26 Furthermore, MR-PRESSO is able to
identify outlier variants based on their observed distance from
the regression line, as compared with their expected distance
based on the assumption of no horizontal pleiotropy.26

Given the lower statistical power of these sensitivity
analyses,40 no formal significance threshold was set, and
results were evaluated for consistency with the main analysis.

Results
Association estimates for SNP iron-status biomarkers are
shown in Table S5. The F statistics for genetic instruments
were between 47 and 2127 across the 4 biomarkers of iron
status. MR estimates, expressed as OR per SD unit increase in
iron-status biomarker for carotid plaque and VTE, and
millimeter change in cIMT per SD unit increase in iron-status
biomarker for cIMT, are shown in Table S6. The minimum and
maximum true causal effects required to achieve 80%
statistical power for the main IVW MR analysis are detailed
in Table S7.

The results demonstrate a detrimental effect on risk of VTE
for serum iron (OR 1.37; 95% CI 1.14-1.66; P=1910�3),
transferrin saturation (OR 1.25; 95% CI 1.09-1.43; P=1910�3)
and (log-transformed) ferritin (OR 1.92; 95% CI 1.28-2.88;
P=2910�3) (Figure 1). Concordant with a detrimental effect
of high iron status, transferrin levels (reflecting lower systemic
iron) were associated with a decreased risk of VTE (OR 0.76;
95% CI 0.63-0.92; P=0.01).

In contrast, the MR analysis demonstrated a protective
effect on the risk of carotid plaque for serum iron (OR, 0.85;
95% CI, 0.73-0.99; P=0.04) and transferrin saturation (OR,
0.89; 95% CI, 0.80-1.00; P=0.05) (Figure 2). The other
biomarkers reflected a protective role of higher iron status
in carotid plaque, although their effect estimates did not reach
significance ([log-transformed] serum ferritin OR, 0.72; 95%
CI, 0.51-1.01; P=0.06; serum transferrin OR, 1.15; 95% CI,
0.97-1.35; P=0.11).

Therewas no significant association between iron status and
cIMT (millimeter variation in cIMT per SD change in serum iron
0.00, 95% CI �0.01 to 0.01, P=0.90; transferrin saturation
0.00, 95% CI �0.01 to 0.01, P=0.75; [log-transformed]
serum ferritin 0.01, 95% CI �0.02 to 0.03, P=0.58;
serum transferrin �0.01, 95% CI �0.01 to 0.01, P=0.32)
(Figure 3).

Consistent directional effects for all analyses were
observed in the IVW MR, MR-Egger, weighted median, and
MR-PRESSO sensitivity analyses (incorporating the aforemen-
tioned genetic instruments selected from the GWAS search
for loci with association with at least 1 biomarker of iron
status) (Table S6). The MR-Egger intercepts did not provide
evidence of directional pleiotropy in any analysis, and neither
did MR-PRESSO identify outliers (Table S6).

Discussion

Contextual Findings and Mechanistic Insight
This study provides MR evidence of a contrasting role of
higher genetically determined iron status on different
thrombotic disease processes—increasing VTE risk, reducing
risk of carotid plaque, and having no significant effect on
cIMT.

Several observational studies have investigated the asso-
ciation between iron status and carotid atherosclerotic
disease, with inconsistent results. Three studies found a
sex-specific positive association between serum ferritin and
carotid plaque41,42 or cIMT,43 2 studies provided evidence for
a positive association with carotid plaque in both sexes
combined,10,44 and 2 others did not find any association
between serum ferritin and carotid atherosclerosis.45,46 In
contrast, 2 further case-control studies have reported a
negative association between serum ferritin and cIMT.47,48
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These discrepancies may in part be due to unmeasured
confounding such as that related to inflammation. Further-
more, they may represent a contrasting role of iron in
different atherosclerotic phenotypes, with cIMT representing
arterial hyperplasia (in response to hypertension) and carotid
plaque representing fatty atherosclerotic lesions.49 The
mechanisms by which iron may affect these processes
remain unclear, although higher iron status has been impli-
cated in carotid plaque development through oxidative
modification of circulating lipids.50,51 Within the wider context
of atherosclerotic disease, there is evidence of a protective
role of higher iron status in coronary heart disease in both
observational18 and genetic studies.15

In contrast to atherosclerosis there have been relatively
few studies investigating the association between iron status
and VTE. Consistent with our results, a nested case-control
study found evidence of an increased risk of VTE in patients
with higher hepcidin, a biomarker positively associated with
iron levels.52 The study, which included 390 patients with
confirmed VTE along with 802 age- and sex-matched controls,
identified a dose-dependent relationship between hepcidin
and risk of VTE (independent of C-reactive protein, a marker of
inflammation). However, the authors noted that their results
were limited by potential confounding from other unmeasured
mediators of iron metabolism (eg, underlying comorbidities,
medications/supplements) as well as by the delay between

Figure 1. Individual SNP and pooled MR estimates for the effect of iron status on venous thromboembolism. Results for each biomarker are
represented in a different forest plot. Each square represents an individual SNP MR estimate, with size proportional to the precision of the
estimate, and horizontal lines representing 95% CIs. The diamonds underneath represent the pooled MR estimate, with corresponding widths
representing 95% CIs. MR indicates Mendelian randomization; OR, odds ratio; SNP, single-nucleotide polymorphism.

Figure 2. Individual SNP and pooled MR estimates for the effect of iron status on carotid plaque. Results for each biomarker are represented
in a different forest plot. Each square represents an individual SNP MR estimate, with size proportional to the precision of the estimate, and
horizontal lines representing 95% CIs. The diamonds underneath represent the pooled MR estimate, with corresponding widths representing 95%
CIs. MR indicates Mendelian randomization; OR, odds ratio; SNP, single-nucleotide polymorphism.
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sampling and recorded VTE events. Our current MR study,
which utilized genetic instruments associated with 4 different
biomarkers of iron status, provides further evidence of a
detrimental role of higher iron status in VTE, which is more
robust to the confounding suffered in traditional observational
studies.

Taken together, these findings provide evidence of a
protective role of higher iron status in some atherosclerotic
processes, although it increased the risk of thromboembolic
phenomena related to stasis of blood. This is consistent with
previous MR analyses, which demonstrated a positive asso-
ciation between higher iron status and cardioembolic
stroke,14 despite a reduced risk of coronary artery disease.15

The underlying mechanisms for this dichotomous relationship
are unclear but may in part be due to the oxidizing properties
of unliganded iron.53 Indeed, iron-induced oxidative stress has
been implicated in endothelial dysfunction, platelet activation,
fibrin formation, and impaired plasminogen activation, which
may in turn potentiate thromboembolic disease.54-56 Consis-
tent with our results, a systematic analysis of iron status and
coronary heart disease concluded that serum iron is associ-
ated with lower risk of coronary heart disease, for which
atherosclerosis is a major mediator.18 A possible explanation
for this protective effect is due to a reduction in circulating
low-density lipoprotein cholesterol levels attributable to a
higher iron status.57 This may explain why our results
demonstrate a protective role of higher iron status in carotid
plaque only, since this is a marker of dyslipidemia and fatty
plaque formation, whereas cIMT reflects vessel hyperplasia in
response to hypertension.49 This is consistent with 2
observational analyses that demonstrated a positive associ-
ation between serum ferritin and carotid plaque but not

cIMT.41,42 Alternatively, higher iron status may demonstrate a
protective effect by acting as a surrogate marker for normal
hemoglobin levels, which may be protective in atherosclero-
sis.18 Indeed, lower iron status is associated with iron-
deficiency anemia, which is in itself an established risk factor
for coronary heart disease.18

Strengths and Limitations
A key strength of this MR analysis is its ability to overcome
the environmental confounding encountered in traditional
observational studies by using genetic variants to instrument
the exposure. Indeed, biomarkers of iron status are implicated
in other pathologies, including inflammation, liver disease,
renal failure, and malignancy, all of which could affect
observational associations with thrombotic disease.58,59 Fur-
thermore, our study offers insight into how iron status affects
distinct thrombotic disease processes and supports evidence
from 2 previous MR analyses investigating related pathophys-
iological mechanisms.14,15 The minimum and maximum true
causal estimates required to achieve 80% statistical power for
the main IVW MR analysis (Table S7) also indicate that this
study had adequate statistical power to detect clinically
relevant effects.

Although these results have potentially significant clinical
implications, it is important they be interpreted in context. Iron
status exhibits a nonlinear relationship with thrombotic disease,
with both iron deficiency and overload potential risk factors
for atherosclerosis and thromboembolic processes.5,7-12,16

Because MR analysis assumes a linear relationship between
the instrumental variable and disease process,60 these
findings should not be extrapolated beyond the normal range

Figure 3. Individual SNP and pooled MR estimates for the effect of iron status on carotid intima-media thickness. Results for each biomarker
are represented in a different forest plot. Each square represents an individual SNP MR estimate, with size proportional to the precision of the
estimate, and horizontal lines representing 95% CIs. The diamonds underneath represent the pooled MR estimate, with corresponding widths
representing 95% CIs. MR indicates Mendelian randomization; OR, odds ratio; SNP, single-nucleotide polymorphism.
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of iron status. Furthermore, by using genetic variants as
proxies for iron status, we consider the lifetime effect of
genetically determined iron status on thrombotic disease;
hence, association estimates are likely to be greater than
seen in comparable observational analyses.

Pleiotropy, whereby genetic instruments affect the disease
outcome through pathways independent of the instrumented
exposure, can also introduce bias into MR analysis.13 Indeed,
previous MR work using the same instrument SNPs has
identified potential pleiotropic associations with low-density
lipoprotein cholesterol levels and systolic blood pressure.15 In
this study we relaxed the criteria for instrument selection to
include additional SNPs associated with at least 1 biomarker
of iron status at genome-wide significance. Although this
increased the risk of including invalid instruments, it did allow
for statistical sensitivity analyses that are more robust to the
inclusion of pleiotropic variants.40 MR-Egger, weighted
median, and MR-PRESSO analyses with these instruments
demonstrated consistent casual effects of iron status on each
thrombotic disease, supporting the validity of our results.
Furthermore, MR-Egger did not provide evidence of directional
pleiotropy, and MR-PRESSO did not identify any outliers.
However, MR-Egger often suffers particularly low statistical
power,40,61 in keeping with the generally wider CIs and
weaker P-values of our results with this method as compared
with the other approaches, and the findings from this should
therefore be interpreted cautiously.

The analyses performed in this study were undertaken
entirely in individuals of European ancestry. Further work will
therefore be required to investigate whether similar findings
are found in studying populations of different ethnicities.
Finally, although there was likely a small degree of participant
overlap in the studies used to obtain genetic association
estimates for the iron-status biomarkers and carotid
traits,27,30 the overlapping cohorts make up <3% of the
overall population considered in any given GWAS and are
therefore unlikely to have introduced significant bias.32

Conclusion
In this study we used MR analysis to investigate the
association between iron status and different thrombotic
disease processes. We found that higher iron status is
associated with increased risk of VTE and reduced risk of
carotid plaque disease but has no relation with carotid
thickness. These results provide further evidence for a
protective role of higher iron status in some forms of
atherosclerotic disease along with increasing risk of a
thromboembolic phenomenon related to stasis of blood.
Given the scale of variation in iron status worldwide and the
burden of thrombotic disease, these results have potentially

significant clinical and public health implications. Further
investigation is required to determine the precise mechanism
of the suggested effects.
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Data S1. 

 

Biological effects of the HFE and TMPRSS6 proteins on systemic iron status 

The biological effects of the HFE and TMPRSS6 proteins on iron status are diverse and complex. HFE is a 

membrane protein which is thought to regulate iron uptake through competitive inhibition of the TRF1 

tranferrin receptor.1 When transferrin saturation (and thus systemic iron status) is high, the HFE protein is 

free to bind to a protein complex including TFR2, which potentiates expression of the iron transport 

regulator hepciden.2 Hepciden inhibits the gut enterocyte and macrophage iron export protein ferroportin, 

which is usually involved in the uptake and release of iron into the hepatic portal system.3, 4 As a result, iron 

absorption is reduced by hepcidin. In contrast, TMPRSS6 is a transmembrane serine protease which may 

inhibit hepciden production during systemic iron depletion, thus increasing iron uptake.5 
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Table S1. Cohort demographics and covariates for the Genetics of Iron Status Consortium GWAS meta-analysis, adapted from Benyamin 

et al. 2014.6 

Cohort Study 
Discovery/Replicati

on 
References (PMID) n Sex 

Mean age +/- SD 
(years) 

Population Covariates Exclusion criteria 

Australia-Adult 
QIMR Berghofer 

Adult 
Discovery 

19820699; 
21151130; 
20802479 

3432 M 47.5 +/- 12.3 
European Age, 5 PCs 

 

5716 F 46.0 +/- 12.8  

Australia-Adolescent 
QIMR Berghofer 

Adolescent 
Discovery 17539372 

1230 M 14.6 +/- 2.0 
European Age, 5 PCs 

 

1314 F 14.9 +/- 2.3  

Estonia (original) 
Estonian Genome 

Project 
Discovery 24518929 

440 M 37.3 +/- 15.4 
European Age, sex, 5 PCs 

 

453 F 37.5 +/- 15.7  

Val Borbera Val Borbera Study Discovery 19847309 

733 M 54.4 +/- 18.4 

European Age, 5 PCs 

 

926 F 54.8 +/- 18.7  

NBS 
Nikmegen Biomedial 

Study 
Discovery 

16254196; 
18794855 

889 M 66.3 +/- 7.1 
European  

 

902 F 56.6 +/- 10.8  

Cambridge 
UK Blood Services 
(UKBS) Common 

Controls panel 
Discovery 17554300 

1198 M 45.1 +/- 11.9 
European  

 

1221 F 42.1 +/- 12.7  

Micros/EURAC Micros/EURAC Discovery 17550581 
528 M 45.5 +/- 15.8 

European  
 

690 F 46.0 +/- 16.7  

ERF/Rotterdam ERF/Rotterdam Discovery 
15054401; 
16877869 

342 M 54.6 +/- 14.1 

European Age 

 

529 F 52.8 +/- 15.1  

KORA F3 

Kooperative 
Gesundheitsfor 
schung in der 

Region Augsburg 

Discovery 
16032513; 
16032514 

809 M 63.0 +/- 10.1 

European Age 

 

825 F 62.1 +/- 10.1  

KORA F4 

Kooperative 
Gesundheitsfor 
schung in der 

Region Augsburg 

Discovery 
16032513; 
16032514 

882 M 61.2 +/- 8.9 

European Age 

 

927 F 60.6 +/- 8.8  

BHS 
Busselton Health 

Study 
Discovery 19643935 

397 M 54.0 +/- 15.4 
European  

 

480 F 55.5 +/- 14.9  

Estonia (replication) 
Estonian Genome 

Project 
Replication 24518929 

547 M 54.4 +/- 16.1 

European Age, sex, 5 PCs 

 

470 F 53.4 +/- 15.9  

InCHIANTI InCHIANTI study Replication 19880490 
536 M 67.1 +/- 15.3 

European Age, sex, centre 

 

670 F 69.1 +/- 15.6  

SardiNIA 
SardiNIA study on 

aging 
Replication 16934002 

2051 M 43.7 +- 18.1 
European 

Age, age-squared, 
sex 

 

2643 F 43.1 +/- 17.3  
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CoLAUS Cohorte Lausanne Replication 18366642 
2550 M 52.9 +/- 10.8 

European 
Age, sex, first 5 
ancestry PCs 

 

2869 F 52.9 +/- 10.8  

PREVEND 
Prevention of Renal 

and Vascular 
Endstage Disease 

Replication 
Website: 

http://www.prevend.o
rg/index.php 

1875 M 50.9 +/- 12.8 
European Age, sex, first 5 PCs 

 

1769 F 48.2 +/- 12.0  

FENLAND Fenland Study Replication 21248185 

615 M 44.5 +/- 7.4 

European Age, sex, 4 PCs 

Psychosis; diabetes; 
illness with a 

prognosis <1 year; 
requiring walking 

aids 

787 F 45.4 +/- 7.2 

Psychosis; 
pregnancy; lactation; 
diabetes; illness with 
a prognosis <1 year; 

requiring walking 
aids 

INTERACT (cases) InterAct (cases) Replication 21717116 
2087 M 54.7 +/- 8.0 

European 
Age, sex, centre, 5 

PCs 

 

2251 F 55.6 +/- 8.3  

INTERACT 
(subcohort) 

InterAct (controls) Replication 21717116 
1816 M 52.2 +/- 9.2 

European 
Age, sex, centre, 5 

PCs 

 

3140 F 51.7 +/- 9.6  
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Table S2. Association estimates for SNPs associated with biomarkers of iron status at genome-wide significance identified from the Genetics of Iron Status Consortium GWAS meta-
analysis.6                  

    Iron Transferrin Transferring Saturation Log10 Ferritin 

SNP Corresponding gene 
E
A 

EAF Estimate 
Standard 

Error 
p value Estimate 

Standard 
Error 

p value Estimate 
Standard 

Error 
p value Estimate 

Standard 
Error 

p value 

rs744653 WDR75–SLC40A1 T 0.854 0.004 0.010 0.702 0.068 0.010 1.35 × 10−11 −0.028 0.011 0.008 −0.089 0.010 8.37 × 10−19 

rs8177240 TF T 0.669 −0.066 0.007 6.65 × 10−20 −0.380 0.007 8.43 × 10−610 0.100 0.008 7.24 × 10−38 0.021 0.007 0.004 

rs9990333** TFRC T 0.460 0.017 0.007 0.014 −0.051 0.007 1.95 × 10−13 0.039 0.007 7.28 × 10−8 0.001 0.007 0.878 

rs1800562* HFE (C282Y) A 0.067 0.328 0.016 2.72 × 10−97 −0.479 0.016 8.90 × 10−196 0.577 0.016 2.19 × 10−270 0.204 0.016 1.54 × 10−38 

rs1799945* HFE (H63D) C 0.850 −0.189 0.010 1.10 × 10−81 0.114 0.010 9.36 × 10−30 −0.231 0.010 5.13 × 10−109 −0.065 0.010 1.71 × 10−10 

rs7385804** TFR2 A 0.621 0.064 0.007 1.36 × 10−18 −0.003 0.007 0.728 0.054 0.008 6.07 × 10−12 0.015 0.007 0.039 

rs4921915 NAT2 A 0.782 0.004 0.009 0.633 0.079 0.009 7.05 × 10−19 −0.026 0.009 0.004 0.001 0.009 0.886 

rs651007 ABO T 0.202 −0.004 0.009 0.611 −0.001 0.009 0.916 −0.006 0.009 0.498 −0.050 0.009 1.31 × 10−8 

rs6486121 ARNTL T 0.631 −0.009 0.007 0.202 −0.046 0.007 3.89 × 10−10 0.015 0.008 0.048 0.006 0.007 0.424 

rs174577 FADS2 A 0.330 0.001 0.007 0.878 0.062 0.007 2.28 × 10−17 −0.025 0.008 0.002 −0.012 0.007 0.098 

rs411988** TEX14 A 0.564 −0.002 0.007 0.770 0.014 0.007 0.052 −0.012 0.007 0.115 −0.044 0.007 1.59 × 10−10 

rs855791* TMPRSS6 (V736A) A 0.446 −0.181 0.007 1.32 × 10−139 0.044 0.007 1.98 × 10−9 −0.190 0.008 6.41 × 10−137 −0.055 0.007 1.38 × 10−14 

EA, effect allele; EAF, effect allele frequency           
                

* SNPs used in the main MR analyses 
             

**SNPs used in the MR sensitivity analyses 
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Table S3. Cohort demographics and covariates for the International Network against Thrombosis (INVENT) Collaboration GWAS meta-

analysis.7  

Cohort 
Discovery/R

eplication 
Design 

References 
(PMID) 

Sex n Cases (n) Control (n) 
Mean age 

+/- SD 
(years) 

Population 
Venous 

thromboem
bolism (%) 

Pulmonary 
embolism 

(%) 
Covariates 

Inclusion 
criteria 

Exclusion 
criteria 

Atherosclero
sis Risk in 

Communitie
s study 

Discovery Cohort 2646917 
M 3857 

241 8646 54.2 +/- 5.7 

United 
States (4 US 
communities

) 

100 41 
Age, sex, 

center and 3 
first PCs 

45-64 years 
old 

Prior VTE 

F 5030 

Cardiovascul
ar Health 

Study 
Discovery Cohort 

8275211; 
1669507 

M 1238 
95 3024 72.3 +/- 5.4 

United 
States (4 US 
communities

) 

100 29 
Age, gender 

and site 
65+ years 

old 
Prior VTE; 

CVD 
F 1881 

Early-Onset 
Venous 

Thrombosis 
Discovery Case-control 19278955 

M 622 

411 1228 

36 +/- 9 
(cases); 50 

+/- 6 
(controls) 

France 100 35 4 first PCs 

European 
VTE onset 
<50 years 

old 

Prior VTE; 
surgery; 

hospitalisati
on; cancer; 
autoimmunit

y; oral 
contraceptiv

e pill; 
pregnancy; 

post-partum; 
strong 

genetic risk 
for VTE 

F 1017 

Genetics In 
Familial 

Thrombosis 
Discovery Case-control 23742623 

M 1070 

434 1850 

42 +/- 8.1 
(cases); 59 

+/- 6.7 
(controls) 

The 
Netherlands 

65 33 
Family 

structure 

First VTE 
<46 years; 
sibling(s) 

with 
confirmed 

Prior VTE 

F 1214 

Heart and 
Vascular 
Health 

Discovery Case-control 7637142 

M 677 

858 1744 66.0 +/- 10.7 

United 
States 

(Washington 
State) 

100 52 

Age, sex, 
index year, 

hypertension 
status and 5 

PCs 

18-89 years 
old 

Prior VTE 

F 1925 

MARseille 
THrombosis 
Association 

study 

Discovery Case-control 22443383 

M 871 

1542 1110 

40.94 +/- 
15.70 

(cases); 
68.07 +/- 

2.24 
(controls) 

France 100 21 4 first PCs 
European; 
first VTE 

Prior VTE; 
surgery; 

hospitalisati
on; cancer; 
autoimmunit

y; oral 
contraceptiv

e pill; 
pregnancy; 

post-partum; 
strong 

genetic risk 
for VTE 

F 1781 
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Mayo GWAS 
of VTE 

Discovery Case-control 22672568 

M 1257 

1264 1301 
54.96 +/- 

16.03 

United 
States 

(Rochester, 
Minnesota) 

100 49 

Age, sex, 
stroke/MI 

and state of 
residence 

18+ years 
old 

Malignancy-
related VTE; 

active 
cancer; 

autoimmunit
y; 

rheumatolog
ic disease; 
prior bone 

marrow 
transplant; 
prior liver 

transplant; 
vasculitis; 
vascular 
anomaly; 

mechanical 
cause of 

thrombosis, 
e.g. 

pacemaker 
or CVC 

F 1308 

Multiple 
Environment

al and 
Genetic 

Assessment 
of risk 

factors for 
venous 

thrombosis 

Discovery Case-control 15701913 

M 1096 

1289 1049 

48.19 +/- 
12.84 

(cases); 
76.16 +/- 

5.35 
(controls) 

The 
Netherlands 

100 NA 
Age and 4 

PCs 
18-70 years 

old 
Prior VTE; 

cancer 

F 1242 

Nurses 
Health 
Study, 
Nurses 

Health Study 
II and Health 
Professional 
Follow-Up 

Study 

Discovery Case-control 7612801 

M 1891 

409 4844 58.3 +/- 9.9 
United 

States (11 
US states) 

49 20 
4PCs and 
study site 

NHS: 
women 30-

55 years old; 
NHSII 

women 25-
42 years old; 
HPFS: men 
40-75 years 

old 

Prior 
pulmonary 
embolism 

F 3362 

Nurses 
Health 
Study, 
Nurses 

Health Study 
II and Health 
Professional 
Follow-Up 

Study 

Discovery Case-control 7612801 

M 1537 

426 5720 61.9 +/- 8.9 
United 

States (11 
US states) 

49 27 
4PCs and 
study site 

NHS: 
women 30-

55 years old; 
NHSII 

women 25-
42 years old; 
HPFS: men 
40-75 years 

old 

Prior 
pulmonary 
embolism 

F 4610 

Women's 
Genome 

Health Study 
Discovery Cohort 18070814 

M 0 
538 22116 54.2 +/- 7.1 

United 
States 

100 44 
Age and 1 

PC 

Women; 45+ 
years old, no 
prior CVD; 

no prior 
cancer 

Prior VTE; 
prior cancer 

F 22654 

Etude des 
Déterminant
s/Interaction 

de la 
THrombose 

veineuse 

Replication Case-control 16634748 

M 1085 

1179 1179 65.5 +/- 17.6 
France 
(West) 

100 57 Age and sex  Prior VTE 

F 1273 

Etude des 
Facteurs de 
Risque de 

Replication Case-control 21980494 M 498 607 607 52.3 +/- 19.1 
France 
(Center) 

100 71 Age and sex 
18+ years 

old 

Prior VTE; 
cancer 

(active or 
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thrombose 
Veineuse 

F 716 

less than 5 
years ago); 

short life 
expectancy 

MARseille 
THrombosis 
Association 
study 2012 

Replication Case-control 22443383 

M 951 

1223 801 49.5 +/- 14.9 
France 

(South East) 
100 34 Age and sex 

European; 
first VTE 

Prior VTE; 
surgery; 

hospitalisati
on; cancer; 
autoimmunit

y; oral 
contraceptiv

e pill; 
pregnancy; 

post-partum; 
strong 

genetic risk 
for VTE 

F 1073 
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Table S4. Cohort demographics and covariates for the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) 

Consortium GWAS meta-analysis.8  

Cohort 
Discovery/R
eplication 

Design 
References 

(PMID) 
Sex N Population 

Parameter 
measured 

cIMT (n) 

Carotid 
plaque cases 
and controls 

(n) 

Carotid 
plaques 

cases (n) 

Mean age +/- 
SD (years) 

Covariates 
Exclusion 

criteria 

AGES Discovery Cohort 17351290 
M 1297 

Icelandic cIMT, Plaque 3068 3053 2043 76.4 +/- 5.4 Age, sex  

F 1771 

ARIC Discovery Cohort 9180252 

M 4067 
4 US 

communities; 
45-64 years 

old 

cIMT, Plaque 8663 8857 1626 54.3 +/- 5.7 
Age, sex, 
region, 10 

PCs 

 

F 4596 

ASPS Discovery Cohort 
7800110; 
10408549 

M 127 

Austrian; 45-
85 years old 

cIMT 303   65.5 +/- 11.0 Age, sex 

Previous 
stroke; 

previous TIA; 
neuropschiatri

c disease, 
including 
dementia; 
abnormal 

neurology on 
examination 

F 176 

ASPS-FAM Discovery Cohort 
7800110; 
10408549 

M 334 

Austrian Plaque  773 490 65.9 +/- 8.0 Age, sex 

Previous 
stroke; 

previous TIA; 
neuropschiatri

c disease, 
including 
dementia; 
abnormal 

neurology on 
examination 

F 439 

CAPS Discovery Cohort 12006917 
M 443 

German cIMT 886   48.9 +/- 13.3 
Age, sex, 4 

PCs 
 

F 443 

CHS Discovery Cohort 1669507 
M 1975 

US 
communities; 
over 65 years 

old 

cIMT, Plaque 3239 3125 2069 72.3 +/- 5.4 
Age, sex, 

clinic 
 

F 1265 

DHS Discovery Cohort 21409311 

M 25 

US  915   61.4 +/- 9.5 
Age, sex, 2 

PCs 
 

F 112 

ERF Discovery Cohort 15845033 
M 1214 

Netherlands cIMT, Plaque 2270 2443 1218 48.7 +/- 14.4 
Age, sex, 

family 
structure 

 

F 1507 

FHS Discovery Cohort 
5921755; 
474565; 

17372189 

M 1403 
US 

community 
cIMT, Plaque 3004 3008 530 58.5 +/- 9.7 

Age, sex, 10 
PCs 

 

F 1601 

3C-Dijon Discovery Cohort 
14598854; 
18063810 

M 937 

French; over 
65 years old 

cIMT, Plaque 2518 2473 1218 72.6 +/- 4.0 
Age, sex, 4 

PCs 

Aged over 80 
years; carotid 

artery 
surgery; no 

genome-wide 
genetic 

information 

F 1581 
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LBC1936 Discovery Cohort 22253310 
M 396 

Scottish cIMT, Plaque 759 759 220 72.8 +/- 0.8 
Age, sex, 4 

PCs 
 

F 363 

MESA Discovery Cohort 12397006 
M 1198 

6 US 
communities 

cIMT, Plaque 2500 2492 393 62.6 +/- 10.3 
Age, sex, site, 

4 PCs 
 

F 1309 

NEO Discovery Cohort 23576214 

M 2726 
Dutch; 45-65 

years old 
cIMT 5675   56.0 +/- 5.9 

Age, sex, 4 
PCs 

 

F 2949 

NESDA Discovery Cohort 
18763692; 
19065144; 
21745125 

M 204 European; 
18-65 years 

old 
cIMT, Plaque 572 572 86 44.7 +/- 12.2 Age, sex 

Non-fluent 
Dutch 

speaker; 
psychiatric 
condition 

F 368 

ORCADES Discovery 
Cross-

sectional 
18760389 

M 1128 
Scottish 

archipelago 
cIMT 1914   53.7 +/- 14.9 

Age, sex, 3 
PCs 

 

F 763 

RS I Discovery Cohort 19728115 
M 1978 

Dutch; over 
55 years old 

cIMT, Plaque 

4946 4910 2920 69.0 +/- 8.8   

F 2968 

RS II Discovery Cohort 19728115 
M 901 

1980 2016 1509 64.7 +/- 7.9   

F 1079 

SHIP Discovery Cohort 
11565448; 
20167617 

M 1781 

German; 20-
79 years old 

cIMT, Plaque 

3619 3666 1989 53.3 +/- 13.7 Age, sex 

Non-German 
citizenship; 

resident 
outside of 
study area 

F 1838 

SHIP-TREND Discovery Cohort 
11565448; 
20167617 

M 432 

983 985 338 50.1 +/- 13.7 Age, sex 

Non-German 
citizenship; 

resident 
outside of 
study area 

F 551 

ALSPAC Discovery Cohort 
22507743; 
22507742 

M 0 

UK cIMT 3200   47.9 +/- 4.5 Age, 10 PCs  

F 3200 

YFS Discovery 
Cross-

sectional 
18263651 

M 909 
Finnish cIMT, Plaque 2015 2013 48 37.7 +/- 5.0   

F 1106 

BRHS Discovery Cohort 12540690 
M 889 

UK cIMT 889   78.7 +/- 4.8 Age, sex  

F 0 

EAS Discovery Cohort 12540690 

M 353 Edinburgh, 
UK; 55-74 
years old 

 731   69.8 +/- 5.6 Age, sex 

Terminal 
illness; 
severe 

psychiatric 
disease 

F 378 

ET2DS Discovery Cohort 19077235 
M 445 

UK  868   68.9 +/- 4.2 Age, sex 

Non-diabetic; 
unable to 
complete 

examinations 
F 423 

IMPROVE Discovery Cohort 19952003 M 1636 cIMT 3389   64.5 +/- 1.9  
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F 1753 
5 European 
countries 

Age, sex, 3 
PCs 

LIFE-Adult Discovery Cohort 26362881 

M 1531 

German cIMT, Plaque 

3208 4534 2726 59.1 +/- 11.9 Age, sex  

F 1677 

LIFE-Heart Discovery Cohort 26362881 

M 1240 

1924 2755 2117 62.5 +/- 11.0 Age, sex 
Myocardial 
infarction 

F 684 

MDC Discovery Cohort 8429286 
M 1050 

Swedish cIMT 2142   57.4 +/- 6.0 Age, sex 

Mental 
incapacity; 
non-fluent 
Swedish 
speaker 

F 1093 

MRC1946 Discovery Cohort 16204333 
M 603 

UK cIMT 1258   63.3 +/- 1.1 Age, sex  

F 655 

NBS Discovery Cohort 28082374 

M 268 

Dutch cIMT 549   57.8 +/- 5.2 Age, sex  

F 281 

PIVUS Discovery Cohort 
www.medsci.
uu.se/PIVUS 

M 482 Uppsala 
County, 
Sweden 

cIMT 964   70.2 +/- 0.2 Age, sex  

F 482 

WHII Discovery Cohort 1674771 
M 1699 

UK cIMT 2177   60.8 +/- 5.9 Age, sex  

F 508 
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Table S5. SNP-iron association estimates obtained from the Genetics of Iron Status Consortium GWAS meta-analysis.6 
  

SNP-iron status associations (n=48 972) 
   

   Iron Transferrin Saturation Log10 Ferritin Transferrin 

SNP EA EAF R2 F E SE R2 F E SE R2 F E SE R2 F E SE 

rs1800562 A 0.07 1.3 668 0.33 0.016 4.2 2127 0.58 0.016 0.5 256 0.2 0.016 2.9 1446 −0.479 0.016 

rs1799945 G 0.15 0.9 450 0.19 0.010 1.4 676 0.23 0.010 0.1 53 0.07 0.010 0.3 163 −0.114 0.010 

rs855791 G 0.55 1.6 806 0.18 0.007 1.8 889 0.19 0.008 0.1 73 0.06 0.007 0.1 47 −0.044 0.007 

SNP indicates single nucleotide polymorphism, EA, effect allele, EAF, effect allele frequency F, F statistic, E, Estimate, SE, standard error, R2, percentage of the iron marker variation explained 
by the SNP 
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Table S6. MR estimates and statistical sensitivity analyses. 
      

Outcome Exposure Method Estimate 95% CI P-value 

Carotid intima-media thickness 
(units are millimeter change) 

Iron 

Main IVW MR 0.00 -0.01-0.01 0.90 

Sensitivity IVW MR 0.00 -0.01-0.01 0.70 

MR-Egger 0.00 -0.01-0.02 0.61 

MR-Egger intercept 0.00 0.00-0.00 0.28 

Weighted median 0.00 -0.02-0.01 0.58 

MR-PRESSO 0.00 -0.01-0.01 0.76 

Ferritin 

Main IVW MR 0.01 -0.02-0.03 0.58 

Sensitivity IVW MR 0.00 -0.02-0.02 0.92 

MR-Egger 0.02 -0.01-0.05 0.25 

MR-Egger intercept 0.00 0.00-0.00 0.11 

Weighted median 0.00 -0.03-0.03 0.97 

MR-PRESSO 0.00 -0.03-0.03 0.96 

Transferrin saturation 

Main IVW MR 0.00 -0.01-0.01 0.75 

Sensitivity IVW MR 0.00 -0.01-0.01 0.88 

MR-Egger 0.01 -0.01-0.02 0.26 

MR-Egger intercept 0.00 0.00-0.00 0.11 

Weighted median 0.01 -0.01-0.02 0.11 

MR-PRESSO 0.00 -0.01-0.01 0.92 

Transferrin 

Main IVW MR -0.01 -0.02-0.01 0.32 

Sensitivity IVW MR -0.01 -0.02-0.01 0.33 

MR-Egger -0.01 -0.03-0.00 0.07 

MR-Egger intercept 0.00 0.00-0.00 0.05 

Weighted median -0.01 -0.02-0.00 0.11 

MR-PRESSO -0.01 -0.02-0.01 0.45 

Carotid plaque (units are odds 
ratio) 

Iron 

Main IVW MR 0.85 0.73-0.99 0.04 

Sensitivity IVW MR 0.84 0.72-0.97 0.02 

MR-Egger 0.86 0.70-1.06 0.17 

MR-Egger intercept -0.01 -0.03-0.02 0.69 

Weighted median 0.85 0.72-1.01 0.06 

MR-PRESSO 0.84 0.75-0.94 0.03 

Ferritin 

Main IVW MR 0.72 0.51-1.01 0.06 

Sensitivity IVW MR 0.70 0.51-0.97 0.03 

MR-Egger 0.75 0.49-1.17 0.21 

MR-Egger intercept -0.01 -0.03-0.02 0.61 

Weighted median 0.73 0.51-1.04 0.08 

MR-PRESSO 0.70 0.54-0.90 0.04 

Transferrin saturation 

Main IVW MR 0.89 0.80-1.00 0.05 

Sensitivity IVW MR 0.89 0.80-0.99 0.04 

MR-Egger 0.92 0.80-1.06 0.25 

MR-Egger intercept -0.01 -0.04-0.02 0.49 

Weighted median 0.89 0.79-1.00 0.06 

MR-PRESSO 0.89 0.81-0.98 0.06 

Transferrin 

Main IVW MR 1.15 0.97-1.35 0.11 

Sensitivity IVW MR 1.13 0.96-1.33 0.15 

MR-Egger 1.06 0.87-1.29 0.57 

MR-Egger intercept 0.02 -0.01-0.04 0.20 

Weighted median 1.13 0.95-1.33 0.17 

MR-PRESSO 1.13 0.94-1.35 0.24 

Venous thromboembolism (units 
are odds ratio) 

Iron 

Main IVW MR 1.37 1.14-1.66 1.0x10-3 

Sensitivity IVW MR 1.36 1.13-1.64 9.0x10-4 

MR-Egger 1.32 1.04-1.68 0.02 

MR-Egger intercept 0.00 -0.03-0.03 0.92 

Weighted median 1.37 1.12-1.67 2.0x10-3 

MR-PRESSO 1.34 1.18-1.52 0.01 

Ferritin 

Main IVW MR 1.92 1.28-2.88 1.7x10-3 

Sensitivity IVW MR 1.83 1.26-2.66 1.6x10-3 

MR-Egger 1.76 1.09-2.85 0.02 

MR-Egger intercept 0.00 -0.03-0.03 0.87 

Weighted median 1.80 1.19-2.73 0.01 

MR-PRESSO 1.81 1.40-2.35 0.01 

Transferrin saturation 

Main IVW MR 1.25 1.09-1.43 1.1x10-3 

Sensitivity IVW MR 1.25 1.10-1.43 8.0x10-4 

MR-Egger 1.23 1.04-1.45 0.01 

MR-Egger intercept 0.00 -0.03-0.03 0.81 

Weighted median 1.25 1.09-1.43 2.0x10-3 

MR-PRESSO 1.24 1.16-1.34 4.4x10-3 

Transferrin 

Main IVW MR 0.76 0.63-0.92 0.01 

Sensitivity IVW MR 0.76 0.63-0.92 3.9x10-3 

MR-Egger 0.79 0.65-0.98 0.03 

MR-Egger intercept -0.01 -0.04-0.01 0.35 

Weighted median 0.78 0.65-0.95 0.01 

MR-PRESSO 0.76 0.64-0.90 0.03 

cIMT represents carotid intima-media thickness; IVW, inverse-variance weighted; MR, Mendelian 
randomization; SD, standard deviation; and OR, odds ratio. 
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Table S7. The minimum and maximum true causal effects required to achieve 80% statistical power for the main IVW MR 

analysis. 

 

 

Exposure (units are 
standard deviation 

change) 

Exposure 
variance 

explained by 
instruments (%) 

Outcome 
Number of 
participants 

Proportion of 
outcome 

participants that are 
cases (%) 

Detectable effect 
at 80% power 

Serum iron 3.8 
Carotid intima-media 
thickness (units are 
millimeter change)  

71,128 Not applicable 

<-0.01 or >0.01 

Ferritin 0.7 <-0.02 or >0.02 

Transferrin saturation 7.4 <-0.01 or >0.01 

Transferrin saturation 3.3 <-0.01 or >0.01 

Serum iron 3.8 

Carotid plaque (units are 
odds ratio) 

48,434 44.5 

<0.88 or >1.44 

Ferritin 0.7 <0.73 or >1.35 

Transferrin saturation 7.4 <0.91 or >1.10 

Transferrin saturation 3.3 <0.87 or >1.15 

Serum iron 3.8 
Venous 

thromboembolism (units 
are odds ratio) 

60,139 12.5 

<0.83 or >1.18 

Ferritin 0.7 <0.61 or >1.43 

Transferrin saturation 7.4 <0.88 or >1.13 

Transferrin saturation 3.3 <0.81 or >1.21 
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Data S1. 

 

Biological effects of the HFE and TMPRSS6 proteins on systemic iron status 

The biological effects of the HFE and TMPRSS6 proteins on iron status are diverse and complex. HFE is a 

membrane protein which is thought to regulate iron uptake through competitive inhibition of the TRF1 

tranferrin receptor.1 When transferrin saturation (and thus systemic iron status) is high, the HFE protein is 

free to bind to a protein complex including TFR2, which potentiates expression of the iron transport 

regulator hepciden.2 Hepciden inhibits the gut enterocyte and macrophage iron export protein ferroportin, 

which is usually involved in the uptake and release of iron into the hepatic portal system.3, 4 As a result, iron 

absorption is reduced by hepcidin. In contrast, TMPRSS6 is a transmembrane serine protease which may 

inhibit hepciden production during systemic iron depletion, thus increasing iron uptake.5 
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Table S1. Cohort demographics and covariates for the Genetics of Iron Status Consortium GWAS meta-analysis, adapted from Benyamin 

et al. 2014.6 

Cohort Study 
Discovery/Replicati

on 
References (PMID) n Sex 

Mean age +/- SD 
(years) 

Population Covariates Exclusion criteria 

Australia-Adult 
QIMR Berghofer 

Adult 
Discovery 

19820699; 
21151130; 
20802479 

3432 M 47.5 +/- 12.3 
European Age, 5 PCs 

 

5716 F 46.0 +/- 12.8  

Australia-Adolescent 
QIMR Berghofer 

Adolescent 
Discovery 17539372 

1230 M 14.6 +/- 2.0 
European Age, 5 PCs 

 

1314 F 14.9 +/- 2.3  

Estonia (original) 
Estonian Genome 

Project 
Discovery 24518929 

440 M 37.3 +/- 15.4 
European Age, sex, 5 PCs 

 

453 F 37.5 +/- 15.7  

Val Borbera Val Borbera Study Discovery 19847309 

733 M 54.4 +/- 18.4 

European Age, 5 PCs 

 

926 F 54.8 +/- 18.7  

NBS 
Nikmegen Biomedial 

Study 
Discovery 

16254196; 
18794855 

889 M 66.3 +/- 7.1 
European  

 

902 F 56.6 +/- 10.8  

Cambridge 
UK Blood Services 
(UKBS) Common 

Controls panel 
Discovery 17554300 

1198 M 45.1 +/- 11.9 
European  

 

1221 F 42.1 +/- 12.7  

Micros/EURAC Micros/EURAC Discovery 17550581 
528 M 45.5 +/- 15.8 

European  
 

690 F 46.0 +/- 16.7  

ERF/Rotterdam ERF/Rotterdam Discovery 
15054401; 
16877869 

342 M 54.6 +/- 14.1 

European Age 

 

529 F 52.8 +/- 15.1  

KORA F3 

Kooperative 
Gesundheitsfor 
schung in der 

Region Augsburg 

Discovery 
16032513; 
16032514 

809 M 63.0 +/- 10.1 

European Age 

 

825 F 62.1 +/- 10.1  

KORA F4 

Kooperative 
Gesundheitsfor 
schung in der 

Region Augsburg 

Discovery 
16032513; 
16032514 

882 M 61.2 +/- 8.9 

European Age 

 

927 F 60.6 +/- 8.8  

BHS 
Busselton Health 

Study 
Discovery 19643935 

397 M 54.0 +/- 15.4 
European  

 

480 F 55.5 +/- 14.9  

Estonia (replication) 
Estonian Genome 

Project 
Replication 24518929 

547 M 54.4 +/- 16.1 

European Age, sex, 5 PCs 

 

470 F 53.4 +/- 15.9  

InCHIANTI InCHIANTI study Replication 19880490 
536 M 67.1 +/- 15.3 

European Age, sex, centre 

 

670 F 69.1 +/- 15.6  

SardiNIA 
SardiNIA study on 

aging 
Replication 16934002 

2051 M 43.7 +- 18.1 
European 

Age, age-squared, 
sex 

 

2643 F 43.1 +/- 17.3  
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CoLAUS Cohorte Lausanne Replication 18366642 
2550 M 52.9 +/- 10.8 

European 
Age, sex, first 5 
ancestry PCs 

 

2869 F 52.9 +/- 10.8  

PREVEND 
Prevention of Renal 

and Vascular 
Endstage Disease 

Replication 
Website: 

http://www.prevend.o
rg/index.php 

1875 M 50.9 +/- 12.8 
European Age, sex, first 5 PCs 

 

1769 F 48.2 +/- 12.0  

FENLAND Fenland Study Replication 21248185 

615 M 44.5 +/- 7.4 

European Age, sex, 4 PCs 

Psychosis; diabetes; 
illness with a 

prognosis <1 year; 
requiring walking 

aids 

787 F 45.4 +/- 7.2 

Psychosis; 
pregnancy; lactation; 
diabetes; illness with 
a prognosis <1 year; 

requiring walking 
aids 

INTERACT (cases) InterAct (cases) Replication 21717116 
2087 M 54.7 +/- 8.0 

European 
Age, sex, centre, 5 

PCs 

 

2251 F 55.6 +/- 8.3  

INTERACT 
(subcohort) 

InterAct (controls) Replication 21717116 
1816 M 52.2 +/- 9.2 

European 
Age, sex, centre, 5 

PCs 

 

3140 F 51.7 +/- 9.6  
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Table S2. Association estimates for SNPs associated with biomarkers of iron status at genome-wide significance identified from the Genetics of Iron Status Consortium GWAS meta-
analysis.6                  

    Iron Transferrin Transferring Saturation Log10 Ferritin 

SNP Corresponding gene 
E
A 

EAF Estimate 
Standard 

Error 
p value Estimate 

Standard 
Error 

p value Estimate 
Standard 

Error 
p value Estimate 

Standard 
Error 

p value 

rs744653 WDR75–SLC40A1 T 0.854 0.004 0.010 0.702 0.068 0.010 1.35 × 10−11 −0.028 0.011 0.008 −0.089 0.010 8.37 × 10−19 

rs8177240 TF T 0.669 −0.066 0.007 6.65 × 10−20 −0.380 0.007 8.43 × 10−610 0.100 0.008 7.24 × 10−38 0.021 0.007 0.004 

rs9990333** TFRC T 0.460 0.017 0.007 0.014 −0.051 0.007 1.95 × 10−13 0.039 0.007 7.28 × 10−8 0.001 0.007 0.878 

rs1800562* HFE (C282Y) A 0.067 0.328 0.016 2.72 × 10−97 −0.479 0.016 8.90 × 10−196 0.577 0.016 2.19 × 10−270 0.204 0.016 1.54 × 10−38 

rs1799945* HFE (H63D) C 0.850 −0.189 0.010 1.10 × 10−81 0.114 0.010 9.36 × 10−30 −0.231 0.010 5.13 × 10−109 −0.065 0.010 1.71 × 10−10 

rs7385804** TFR2 A 0.621 0.064 0.007 1.36 × 10−18 −0.003 0.007 0.728 0.054 0.008 6.07 × 10−12 0.015 0.007 0.039 

rs4921915 NAT2 A 0.782 0.004 0.009 0.633 0.079 0.009 7.05 × 10−19 −0.026 0.009 0.004 0.001 0.009 0.886 

rs651007 ABO T 0.202 −0.004 0.009 0.611 −0.001 0.009 0.916 −0.006 0.009 0.498 −0.050 0.009 1.31 × 10−8 

rs6486121 ARNTL T 0.631 −0.009 0.007 0.202 −0.046 0.007 3.89 × 10−10 0.015 0.008 0.048 0.006 0.007 0.424 

rs174577 FADS2 A 0.330 0.001 0.007 0.878 0.062 0.007 2.28 × 10−17 −0.025 0.008 0.002 −0.012 0.007 0.098 

rs411988** TEX14 A 0.564 −0.002 0.007 0.770 0.014 0.007 0.052 −0.012 0.007 0.115 −0.044 0.007 1.59 × 10−10 

rs855791* TMPRSS6 (V736A) A 0.446 −0.181 0.007 1.32 × 10−139 0.044 0.007 1.98 × 10−9 −0.190 0.008 6.41 × 10−137 −0.055 0.007 1.38 × 10−14 

EA, effect allele; EAF, effect allele frequency           
                

* SNPs used in the main MR analyses 
             

**SNPs used in the MR sensitivity analyses 
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Table S3. Cohort demographics and covariates for the International Network against Thrombosis (INVENT) Collaboration GWAS meta-

analysis.7  

Cohort 
Discovery/R

eplication 
Design 

References 
(PMID) 

Sex n Cases (n) Control (n) 
Mean age 

+/- SD 
(years) 

Population 
Venous 

thromboem
bolism (%) 

Pulmonary 
embolism 

(%) 
Covariates 

Inclusion 
criteria 

Exclusion 
criteria 

Atherosclero
sis Risk in 

Communitie
s study 

Discovery Cohort 2646917 
M 3857 

241 8646 54.2 +/- 5.7 

United 
States (4 US 
communities

) 

100 41 
Age, sex, 

center and 3 
first PCs 

45-64 years 
old 

Prior VTE 

F 5030 

Cardiovascul
ar Health 

Study 
Discovery Cohort 

8275211; 
1669507 

M 1238 
95 3024 72.3 +/- 5.4 

United 
States (4 US 
communities

) 

100 29 
Age, gender 

and site 
65+ years 

old 
Prior VTE; 

CVD 
F 1881 

Early-Onset 
Venous 

Thrombosis 
Discovery Case-control 19278955 

M 622 

411 1228 

36 +/- 9 
(cases); 50 

+/- 6 
(controls) 

France 100 35 4 first PCs 

European 
VTE onset 
<50 years 

old 

Prior VTE; 
surgery; 

hospitalisati
on; cancer; 
autoimmunit

y; oral 
contraceptiv

e pill; 
pregnancy; 

post-partum; 
strong 

genetic risk 
for VTE 

F 1017 

Genetics In 
Familial 

Thrombosis 
Discovery Case-control 23742623 

M 1070 

434 1850 

42 +/- 8.1 
(cases); 59 

+/- 6.7 
(controls) 

The 
Netherlands 

65 33 
Family 

structure 

First VTE 
<46 years; 
sibling(s) 

with 
confirmed 

Prior VTE 

F 1214 

Heart and 
Vascular 
Health 

Discovery Case-control 7637142 

M 677 

858 1744 66.0 +/- 10.7 

United 
States 

(Washington 
State) 

100 52 

Age, sex, 
index year, 

hypertension 
status and 5 

PCs 

18-89 years 
old 

Prior VTE 

F 1925 

MARseille 
THrombosis 
Association 

study 

Discovery Case-control 22443383 

M 871 

1542 1110 

40.94 +/- 
15.70 

(cases); 
68.07 +/- 

2.24 
(controls) 

France 100 21 4 first PCs 
European; 
first VTE 

Prior VTE; 
surgery; 

hospitalisati
on; cancer; 
autoimmunit

y; oral 
contraceptiv

e pill; 
pregnancy; 

post-partum; 
strong 

genetic risk 
for VTE 

F 1781 
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Mayo GWAS 
of VTE 

Discovery Case-control 22672568 

M 1257 

1264 1301 
54.96 +/- 

16.03 

United 
States 

(Rochester, 
Minnesota) 

100 49 

Age, sex, 
stroke/MI 

and state of 
residence 

18+ years 
old 

Malignancy-
related VTE; 

active 
cancer; 

autoimmunit
y; 

rheumatolog
ic disease; 
prior bone 

marrow 
transplant; 
prior liver 

transplant; 
vasculitis; 
vascular 
anomaly; 

mechanical 
cause of 

thrombosis, 
e.g. 

pacemaker 
or CVC 

F 1308 

Multiple 
Environment

al and 
Genetic 

Assessment 
of risk 

factors for 
venous 

thrombosis 

Discovery Case-control 15701913 

M 1096 

1289 1049 

48.19 +/- 
12.84 

(cases); 
76.16 +/- 

5.35 
(controls) 

The 
Netherlands 

100 NA 
Age and 4 

PCs 
18-70 years 

old 
Prior VTE; 

cancer 

F 1242 

Nurses 
Health 
Study, 
Nurses 

Health Study 
II and Health 
Professional 
Follow-Up 

Study 

Discovery Case-control 7612801 

M 1891 

409 4844 58.3 +/- 9.9 
United 

States (11 
US states) 

49 20 
4PCs and 
study site 

NHS: 
women 30-

55 years old; 
NHSII 

women 25-
42 years old; 
HPFS: men 
40-75 years 

old 

Prior 
pulmonary 
embolism 

F 3362 

Nurses 
Health 
Study, 
Nurses 

Health Study 
II and Health 
Professional 
Follow-Up 

Study 

Discovery Case-control 7612801 

M 1537 

426 5720 61.9 +/- 8.9 
United 

States (11 
US states) 

49 27 
4PCs and 
study site 

NHS: 
women 30-

55 years old; 
NHSII 

women 25-
42 years old; 
HPFS: men 
40-75 years 

old 

Prior 
pulmonary 
embolism 

F 4610 

Women's 
Genome 

Health Study 
Discovery Cohort 18070814 

M 0 
538 22116 54.2 +/- 7.1 

United 
States 

100 44 
Age and 1 

PC 

Women; 45+ 
years old, no 
prior CVD; 

no prior 
cancer 

Prior VTE; 
prior cancer 

F 22654 

Etude des 
Déterminant
s/Interaction 

de la 
THrombose 

veineuse 

Replication Case-control 16634748 

M 1085 

1179 1179 65.5 +/- 17.6 
France 
(West) 

100 57 Age and sex  Prior VTE 

F 1273 

Etude des 
Facteurs de 
Risque de 

Replication Case-control 21980494 M 498 607 607 52.3 +/- 19.1 
France 
(Center) 

100 71 Age and sex 
18+ years 

old 

Prior VTE; 
cancer 

(active or 
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thrombose 
Veineuse 

F 716 

less than 5 
years ago); 

short life 
expectancy 

MARseille 
THrombosis 
Association 
study 2012 

Replication Case-control 22443383 

M 951 

1223 801 49.5 +/- 14.9 
France 

(South East) 
100 34 Age and sex 

European; 
first VTE 

Prior VTE; 
surgery; 

hospitalisati
on; cancer; 
autoimmunit

y; oral 
contraceptiv

e pill; 
pregnancy; 

post-partum; 
strong 

genetic risk 
for VTE 

F 1073 
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Table S4. Cohort demographics and covariates for the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) 

Consortium GWAS meta-analysis.8  

Cohort 
Discovery/R
eplication 

Design 
References 

(PMID) 
Sex N Population 

Parameter 
measured 

cIMT (n) 

Carotid 
plaque cases 
and controls 

(n) 

Carotid 
plaques 

cases (n) 

Mean age +/- 
SD (years) 

Covariates 
Exclusion 

criteria 

AGES Discovery Cohort 17351290 
M 1297 

Icelandic cIMT, Plaque 3068 3053 2043 76.4 +/- 5.4 Age, sex  

F 1771 

ARIC Discovery Cohort 9180252 

M 4067 
4 US 

communities; 
45-64 years 

old 

cIMT, Plaque 8663 8857 1626 54.3 +/- 5.7 
Age, sex, 
region, 10 

PCs 

 

F 4596 

ASPS Discovery Cohort 
7800110; 
10408549 

M 127 

Austrian; 45-
85 years old 

cIMT 303   65.5 +/- 11.0 Age, sex 

Previous 
stroke; 

previous TIA; 
neuropschiatri

c disease, 
including 
dementia; 
abnormal 

neurology on 
examination 

F 176 

ASPS-FAM Discovery Cohort 
7800110; 
10408549 

M 334 

Austrian Plaque  773 490 65.9 +/- 8.0 Age, sex 

Previous 
stroke; 

previous TIA; 
neuropschiatri

c disease, 
including 
dementia; 
abnormal 

neurology on 
examination 

F 439 

CAPS Discovery Cohort 12006917 
M 443 

German cIMT 886   48.9 +/- 13.3 
Age, sex, 4 

PCs 
 

F 443 

CHS Discovery Cohort 1669507 
M 1975 

US 
communities; 
over 65 years 

old 

cIMT, Plaque 3239 3125 2069 72.3 +/- 5.4 
Age, sex, 

clinic 
 

F 1265 

DHS Discovery Cohort 21409311 

M 25 

US  915   61.4 +/- 9.5 
Age, sex, 2 

PCs 
 

F 112 

ERF Discovery Cohort 15845033 
M 1214 

Netherlands cIMT, Plaque 2270 2443 1218 48.7 +/- 14.4 
Age, sex, 

family 
structure 

 

F 1507 

FHS Discovery Cohort 
5921755; 
474565; 

17372189 

M 1403 
US 

community 
cIMT, Plaque 3004 3008 530 58.5 +/- 9.7 

Age, sex, 10 
PCs 

 

F 1601 

3C-Dijon Discovery Cohort 
14598854; 
18063810 

M 937 

French; over 
65 years old 

cIMT, Plaque 2518 2473 1218 72.6 +/- 4.0 
Age, sex, 4 

PCs 

Aged over 80 
years; carotid 

artery 
surgery; no 

genome-wide 
genetic 

information 

F 1581 
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LBC1936 Discovery Cohort 22253310 
M 396 

Scottish cIMT, Plaque 759 759 220 72.8 +/- 0.8 
Age, sex, 4 

PCs 
 

F 363 

MESA Discovery Cohort 12397006 
M 1198 

6 US 
communities 

cIMT, Plaque 2500 2492 393 62.6 +/- 10.3 
Age, sex, site, 

4 PCs 
 

F 1309 

NEO Discovery Cohort 23576214 

M 2726 
Dutch; 45-65 

years old 
cIMT 5675   56.0 +/- 5.9 

Age, sex, 4 
PCs 

 

F 2949 

NESDA Discovery Cohort 
18763692; 
19065144; 
21745125 

M 204 European; 
18-65 years 

old 
cIMT, Plaque 572 572 86 44.7 +/- 12.2 Age, sex 

Non-fluent 
Dutch 

speaker; 
psychiatric 
condition 

F 368 

ORCADES Discovery 
Cross-

sectional 
18760389 

M 1128 
Scottish 

archipelago 
cIMT 1914   53.7 +/- 14.9 

Age, sex, 3 
PCs 

 

F 763 

RS I Discovery Cohort 19728115 
M 1978 

Dutch; over 
55 years old 

cIMT, Plaque 

4946 4910 2920 69.0 +/- 8.8   

F 2968 

RS II Discovery Cohort 19728115 
M 901 

1980 2016 1509 64.7 +/- 7.9   

F 1079 

SHIP Discovery Cohort 
11565448; 
20167617 

M 1781 

German; 20-
79 years old 

cIMT, Plaque 

3619 3666 1989 53.3 +/- 13.7 Age, sex 

Non-German 
citizenship; 

resident 
outside of 
study area 

F 1838 

SHIP-TREND Discovery Cohort 
11565448; 
20167617 

M 432 

983 985 338 50.1 +/- 13.7 Age, sex 

Non-German 
citizenship; 

resident 
outside of 
study area 

F 551 

ALSPAC Discovery Cohort 
22507743; 
22507742 

M 0 

UK cIMT 3200   47.9 +/- 4.5 Age, 10 PCs  

F 3200 

YFS Discovery 
Cross-

sectional 
18263651 

M 909 
Finnish cIMT, Plaque 2015 2013 48 37.7 +/- 5.0   

F 1106 

BRHS Discovery Cohort 12540690 
M 889 

UK cIMT 889   78.7 +/- 4.8 Age, sex  

F 0 

EAS Discovery Cohort 12540690 

M 353 Edinburgh, 
UK; 55-74 
years old 

 731   69.8 +/- 5.6 Age, sex 

Terminal 
illness; 
severe 

psychiatric 
disease 

F 378 

ET2DS Discovery Cohort 19077235 
M 445 

UK  868   68.9 +/- 4.2 Age, sex 

Non-diabetic; 
unable to 
complete 

examinations 
F 423 

IMPROVE Discovery Cohort 19952003 M 1636 cIMT 3389   64.5 +/- 1.9  
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F 1753 
5 European 
countries 

Age, sex, 3 
PCs 

LIFE-Adult Discovery Cohort 26362881 

M 1531 

German cIMT, Plaque 

3208 4534 2726 59.1 +/- 11.9 Age, sex  

F 1677 

LIFE-Heart Discovery Cohort 26362881 

M 1240 

1924 2755 2117 62.5 +/- 11.0 Age, sex 
Myocardial 
infarction 

F 684 

MDC Discovery Cohort 8429286 
M 1050 

Swedish cIMT 2142   57.4 +/- 6.0 Age, sex 

Mental 
incapacity; 
non-fluent 
Swedish 
speaker 

F 1093 

MRC1946 Discovery Cohort 16204333 
M 603 

UK cIMT 1258   63.3 +/- 1.1 Age, sex  

F 655 

NBS Discovery Cohort 28082374 

M 268 

Dutch cIMT 549   57.8 +/- 5.2 Age, sex  

F 281 

PIVUS Discovery Cohort 
www.medsci.
uu.se/PIVUS 

M 482 Uppsala 
County, 
Sweden 

cIMT 964   70.2 +/- 0.2 Age, sex  

F 482 

WHII Discovery Cohort 1674771 
M 1699 

UK cIMT 2177   60.8 +/- 5.9 Age, sex  

F 508 
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Table S5. SNP-iron association estimates obtained from the Genetics of Iron Status Consortium GWAS meta-analysis.6 
  

SNP-iron status associations (n=48 972) 
   

   Iron Transferrin Saturation Log10 Ferritin Transferrin 

SNP EA EAF R2 F E SE R2 F E SE R2 F E SE R2 F E SE 

rs1800562 A 0.07 1.3 668 0.33 0.016 4.2 2127 0.58 0.016 0.5 256 0.2 0.016 2.9 1446 −0.479 0.016 

rs1799945 G 0.15 0.9 450 0.19 0.010 1.4 676 0.23 0.010 0.1 53 0.07 0.010 0.3 163 −0.114 0.010 

rs855791 G 0.55 1.6 806 0.18 0.007 1.8 889 0.19 0.008 0.1 73 0.06 0.007 0.1 47 −0.044 0.007 

SNP indicates single nucleotide polymorphism, EA, effect allele, EAF, effect allele frequency F, F statistic, E, Estimate, SE, standard error, R2, percentage of the iron marker variation explained 
by the SNP 
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Table S6. MR estimates and statistical sensitivity analyses. 
      

Outcome Exposure Method Estimate 95% CI P-value 

Carotid intima-media thickness 
(units are millimeter change) 

Iron 

Main IVW MR 0.00 -0.01-0.01 0.90 

Sensitivity IVW MR 0.00 -0.01-0.01 0.70 

MR-Egger 0.00 -0.01-0.02 0.61 

MR-Egger intercept 0.00 0.00-0.00 0.28 

Weighted median 0.00 -0.02-0.01 0.58 

MR-PRESSO 0.00 -0.01-0.01 0.76 

Ferritin 

Main IVW MR 0.01 -0.02-0.03 0.58 

Sensitivity IVW MR 0.00 -0.02-0.02 0.92 

MR-Egger 0.02 -0.01-0.05 0.25 

MR-Egger intercept 0.00 0.00-0.00 0.11 

Weighted median 0.00 -0.03-0.03 0.97 

MR-PRESSO 0.00 -0.03-0.03 0.96 

Transferrin saturation 

Main IVW MR 0.00 -0.01-0.01 0.75 

Sensitivity IVW MR 0.00 -0.01-0.01 0.88 

MR-Egger 0.01 -0.01-0.02 0.26 

MR-Egger intercept 0.00 0.00-0.00 0.11 

Weighted median 0.01 -0.01-0.02 0.11 

MR-PRESSO 0.00 -0.01-0.01 0.92 

Transferrin 

Main IVW MR -0.01 -0.02-0.01 0.32 

Sensitivity IVW MR -0.01 -0.02-0.01 0.33 

MR-Egger -0.01 -0.03-0.00 0.07 

MR-Egger intercept 0.00 0.00-0.00 0.05 

Weighted median -0.01 -0.02-0.00 0.11 

MR-PRESSO -0.01 -0.02-0.01 0.45 

Carotid plaque (units are odds 
ratio) 

Iron 

Main IVW MR 0.85 0.73-0.99 0.04 

Sensitivity IVW MR 0.84 0.72-0.97 0.02 

MR-Egger 0.86 0.70-1.06 0.17 

MR-Egger intercept -0.01 -0.03-0.02 0.69 

Weighted median 0.85 0.72-1.01 0.06 

MR-PRESSO 0.84 0.75-0.94 0.03 

Ferritin 

Main IVW MR 0.72 0.51-1.01 0.06 

Sensitivity IVW MR 0.70 0.51-0.97 0.03 

MR-Egger 0.75 0.49-1.17 0.21 

MR-Egger intercept -0.01 -0.03-0.02 0.61 

Weighted median 0.73 0.51-1.04 0.08 

MR-PRESSO 0.70 0.54-0.90 0.04 

Transferrin saturation 

Main IVW MR 0.89 0.80-1.00 0.05 

Sensitivity IVW MR 0.89 0.80-0.99 0.04 

MR-Egger 0.92 0.80-1.06 0.25 

MR-Egger intercept -0.01 -0.04-0.02 0.49 

Weighted median 0.89 0.79-1.00 0.06 

MR-PRESSO 0.89 0.81-0.98 0.06 

Transferrin 

Main IVW MR 1.15 0.97-1.35 0.11 

Sensitivity IVW MR 1.13 0.96-1.33 0.15 

MR-Egger 1.06 0.87-1.29 0.57 

MR-Egger intercept 0.02 -0.01-0.04 0.20 

Weighted median 1.13 0.95-1.33 0.17 

MR-PRESSO 1.13 0.94-1.35 0.24 

Venous thromboembolism (units 
are odds ratio) 

Iron 

Main IVW MR 1.37 1.14-1.66 1.0x10-3 

Sensitivity IVW MR 1.36 1.13-1.64 9.0x10-4 

MR-Egger 1.32 1.04-1.68 0.02 

MR-Egger intercept 0.00 -0.03-0.03 0.92 

Weighted median 1.37 1.12-1.67 2.0x10-3 

MR-PRESSO 1.34 1.18-1.52 0.01 

Ferritin 

Main IVW MR 1.92 1.28-2.88 1.7x10-3 

Sensitivity IVW MR 1.83 1.26-2.66 1.6x10-3 

MR-Egger 1.76 1.09-2.85 0.02 

MR-Egger intercept 0.00 -0.03-0.03 0.87 

Weighted median 1.80 1.19-2.73 0.01 

MR-PRESSO 1.81 1.40-2.35 0.01 

Transferrin saturation 

Main IVW MR 1.25 1.09-1.43 1.1x10-3 

Sensitivity IVW MR 1.25 1.10-1.43 8.0x10-4 

MR-Egger 1.23 1.04-1.45 0.01 

MR-Egger intercept 0.00 -0.03-0.03 0.81 

Weighted median 1.25 1.09-1.43 2.0x10-3 

MR-PRESSO 1.24 1.16-1.34 4.4x10-3 

Transferrin 

Main IVW MR 0.76 0.63-0.92 0.01 

Sensitivity IVW MR 0.76 0.63-0.92 3.9x10-3 

MR-Egger 0.79 0.65-0.98 0.03 

MR-Egger intercept -0.01 -0.04-0.01 0.35 

Weighted median 0.78 0.65-0.95 0.01 

MR-PRESSO 0.76 0.64-0.90 0.03 

cIMT represents carotid intima-media thickness; IVW, inverse-variance weighted; MR, Mendelian 
randomization; SD, standard deviation; and OR, odds ratio. 
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Table S7. The minimum and maximum true causal effects required to achieve 80% statistical power for the main IVW MR 

analysis. 

 

 

Exposure (units are 
standard deviation 

change) 

Exposure 
variance 

explained by 
instruments (%) 

Outcome 
Number of 
participants 

Proportion of 
outcome 

participants that are 
cases (%) 

Detectable effect 
at 80% power 

Serum iron 3.8 
Carotid intima-media 
thickness (units are 
millimeter change)  

71,128 Not applicable 

<-0.01 or >0.01 

Ferritin 0.7 <-0.02 or >0.02 

Transferrin saturation 7.4 <-0.01 or >0.01 

Transferrin saturation 3.3 <-0.01 or >0.01 

Serum iron 3.8 

Carotid plaque (units are 
odds ratio) 

48,434 44.5 

<0.88 or >1.44 

Ferritin 0.7 <0.73 or >1.35 

Transferrin saturation 7.4 <0.91 or >1.10 

Transferrin saturation 3.3 <0.87 or >1.15 

Serum iron 3.8 
Venous 

thromboembolism (units 
are odds ratio) 

60,139 12.5 

<0.83 or >1.18 

Ferritin 0.7 <0.61 or >1.43 

Transferrin saturation 7.4 <0.88 or >1.13 

Transferrin saturation 3.3 <0.81 or >1.21 
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