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Zermelo navigation problems on surfaces of revolution and
geometric optimal control

B. Bonnard∗†, O. Cots‡, B Wembe§

01 July 2023

abstract. In this article, the historical study from Carathéodory-Zermelo about computing the quickest
nautical path is generalized to Zermelo navigation problems on surfaces of revolution, in the frame of geometric
optimal control. Using the Maximum Principle, we present two methods dedicated to analyzing the geodesic
flow and to compute the conjugate and cut loci. We apply these calculations to investigate case studies related
to applications in hydrodynamics, space mechanics and geometry.

résumé. Dans cet article, on généralise l’étude historique de Carathéodory-Zermelo sur le calcul du chemin
nautique le plus rapide, aux problèmes de navigation de Zermelo sur des surfaces de révolution, dans le cadre du
contrôle optimal géométrique. En utilisant le Principe du Maximum, on présente deux méthodes permettant
d’analyser le flot géodésique et de calculer les lieux conjugués et de coupure en lien avec l’optimalité locale
et globale des trajectoires. Ces calculs sont ensuite appliqués à des cas d’études liés à des applications en
hydrodynamique, en mécanique spatiale et en géométrie.

Key words. Zermelo navigation problems, Optimal control, Abnormal geodesics, Conjugate and cut loci,
Regularity of the value function.

1 Introduction
A Zermelo navigation problem on a surface of revolution M is defined by the pair (g, F0) where g is the metric
on M induced by the Euclidean metric of R3 and F0 is a vector field on M called the current. Using the
control formalism, see[16], the Zermelo navigation problem can be set as the time minimal transfer between
two points q0, q1 for the control system:

dq(t)

dt
= F0(q(t)) +

2∑
i=1

ui(t)Fi(q(t)),

u = (u1, u2), ∥u∥ =
√

u2
1 + u2

2 ≤ 1, where q = (r, θ) are the polar coordinates for the metric g which takes the
form g = dr2 +m2(r) dθ2, see [6], the current F0 being invariant by rotation and F1, F2 form an orthonormal
frame. The surface M is split into rectangles r0 < r < r1 with weak current if ∥F0∥g < 1 or strong current if
∥F0∥g > 1. Such a problem is a generalization of the historical problem of the quickest nautical path analyzed
by Carathéodory and Zermelo [18, 34], which have provided a complete study in the case of a linear current.

The first contribution of this article is to set the problem in the frame of geometric control, starting with
the Maximum Principle [28] to introduce two different methods to analyze the geodesic flow. First of all, using
the heading angle α of the ship, the system can be extended to an affine single input system:

dq̃(t)

dt
= X(q̃(t)) + v(t)Y (q̃(t)), (1)
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with q̃ = (r, θ, α) and v is the time derivative of α. Such a transformation being called a Carathéodory-
Zermelo-Goh (CZG) transformation in this article. Using this approach, geodesics correspond to the so-called
singular trajectories associated to (1) with v ∈ R, see [10] for this concept, and the geodesics can be classified
into normal and abnormal geodesics, the second being on the zero level of the induced Hamiltonian. This
approach allows to compute conjugate points along normal geodesics, where optimality is lost for the C1-
topology on the set of geodesics that is in a conic neighborhood defined by the heading angle, this using
the results and technical approach in [14], based on the computation of semi-normal forms. Furthermore,
using similar techniques a first result of this article is to define and compute conjugate points along abnormal
geodesics. More precisely, as already detected in the historical study, they correspond to a cusp singularity of
the abnormal geodesics, when meeting the transition set ∥F0∥g = 1 between the strong and weak currents.

The second main technical contribution of this article is (following the approach used by I. Kupka in SR-
geometry [25]) to analyze the set of geodesics using a one-dimensional mechanical system, with an extended
potential V (r, pθ) where the r-dynamics takes the form:Å

dr(t)

dt

ã2
= 1− V (r(t), pθ), (2)

pθ being the adjoint variable of θ which is constant using the Clairaut relation in the Hamiltonian frame. This
leads to the analysis of the geodesic flow using an extension of the Morse-Reeb classification for 2d-Hamiltonian
dynamics, see [6, p. 21], and in particular to provide a stratification of the set of geodesics into r-periodic or r-
aperiodic curves (i.e. periodic or not with respect to the variable r). Also in this frame, complicated dynamics
can occur, in particular related to the existence of Reeb components in the geodesic foliation of M , see [20, 22]
for such occurrences in the modern study of foliation and dynamical systems.

Finally, the third contribution of this article is to use the above techniques to analyze in details different
case studies which form the core of this article, motivated by geometry and control theory. In each case, our
aim is to compute the time optimal synthesis in the sense of [30, 31] in an adapted rectangular domain R of
the initial point q0. This means to compute in each case the cut locus Σ(q0), where optimality is lost along
geodesics initiating from q0, when restricted to R. In particular, three cases are studied in details. The first
case is to analyze the historical example in our frame. In this case, every geodesic is r-aperiodic and the cut
locus contains a single branch of the abnormal geodesic, terminating with a cusp singularity, when meeting
the set ∥F0∥g = 1. The second case deals with the Riemannian metric on a two-sphere of revolution, which
appears in space mechanics and was analyzed in full details in [7]. Introducing a small current corresponds
to the Finsler case analyzed in [5] for which the properties of conjugate and cut loci are well known, thanks
to the continuity of the value function, and it is similar to the Riemannian case [19, p. 267]. Moreover, the
techniques of Poincaré and Myers can be used to compute the cut locus [27]. But we extend the analysis to the
case of a strong current, and we show that the cut locus splits into two branches. This phenomenon is related
to the optimality status of the abnormal geodesics [15] and to the shape of the small-time balls [12]. The
third case study concerns the extension of the evolution of a passive tracer near a vortex and it was analyzed
in details in [13]. This study motivated by applications in hydrodynamics [1] but also in relation with the
N-body dynamics [26] is generalized and indicate the complexity of the geodesic dynamics, in relation with
many Reeb components.

This article is organized as follows. In Section 2, we introduce the general concepts and definitions, and
a large collection of case studies. In Section 3, we introduce the geometric tools of this article in relation
with the geodesic curves, solution of the Maximum Principle. We define two different parameterizations of
those curves. The first one is the CZG-extension related to conjugate points computations in both normal and
abnormal cases and integration of the geodesic curves, using quadratures, in relation with Clairaut condition
on surfaces of revolution. The second parameterization is described in Section 4 introducing the generalized
potential and the generalized Morse-Reeb classification of the geodesics. In Section 5, which is the core of this
article, we investigate in details the case studies. The final Section 6 is the conclusion which summarizes our
contributions and proposes further studies.
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2 Definitions, notations and the list of case studies

2.1 Definitions and notations
Let M be a smooth surface of revolution with g the induced Riemannian metric and let T ∗M be the cotangent
bundle endowed with the Liouville canonical form α = p dq. We recall for Theorem 4.1 that a Lagrangian
manifold is a 2d-submanifold where dα is zero. We denote by q = (r, θ) the normal (polar) coordinates on the
covering Riemannian manifold M c defined as 0 < r < r̄ and θ ∈ R for a certain r̄, cf. [9]. Considering these
coordinates, the metric takes the form g = dr2 +m2(r) dθ2 setting m(r) > 0 and the vector fields F1 = ∂

∂r

and F2 = 1
m(r)

∂
∂θ define the canonical orthonormal frame. The lines r = constant are called the parallels

and the lines θ = constant are called the meridians. A Zermelo navigation problem of revolution is defined
by a triplet (M, g, F0) where the vector field F0 defining the current is invariant by θ-rotation, and we shall
assume to cover the case studies that F0 is oriented along the parallels only so that on M c it can be written
F0 = µ(r) ∂

∂θ . If µ(r) is constant (resp. linear) this is called the constant (resp. linear) current case. We define
an adapted neighborhood of a point q0 ∈ M c as a rectangle R = [r1 , r2]× [θ1 , θ2] ⊂ M c containing q0.

From the control point of view, the Zermelo navigation problem can be written in q-coordinates as: mini-
mize the transfer time between two points (q0, q1) for the system

dq(t)

dt
= F0(q(t)) +

∑
i=1,2

ui(t)Fi(q(t)),

with admissible controls in the set of measurable functions defined on [0 ,+∞) and valued in {u | ∥u∥ ≤ 1}.
The heading angle α of the ship in the canonical frame is defined by u1 = sinα, u2 = cosα, whenever ∥u∥ = 1,
where according to Clairaut interpretation, α is the angle with respect to the parallel. Due to the symmetry
of revolution, we can decompose the covering space into rectangles where we have either (at least in their
interiors) a weak current if ∥F0∥g < 1 or a strong current if ∥F0∥g > 1, the transition between the two cases,
when ∥F0∥g = 1, being called the case of a moderate current. Furthermore, we can cover M c by adapted
neighborhoods on which we can restrict the dynamics. For such an adapted neighborhood denoted R and a
fixed point q0 ∈ R, the navigation problem is called geodesically complete on R from q0 if for any q1 in R,
there exists a geodesic contained in R joining q0 to q1. Besides, we denote by q1 7→ T (q0, q1) the time minimal
value function representing the minimal transfer time from q0 to q1.

2.2 List of motivating case studies
2.2.1 The historical example

A founding problem in classical calculus of variations is the problem called quickest nautical path introduced
by Carathéodory and Zermelo [18, 34] for a ship navigating on a river and aiming to reach the opposite shore in
minimum time. Hence, M is the 2d-Euclidean space with metric g = dx2 + dy2 in the coordinates q = (x, y),
y being the distance to the shore. To make a complete analysis, they have considered a linear current of the
form F0 = y ∂

∂x . We shall refer to this case all along this article as the historical example. Using our notation
to fix parallels and meridians, we must set x = θ, y = r, so that the ambient manifold is the Euclidean space
with metric g = dr2 + dθ2 and F0 = r ∂

∂θ .

2.2.2 The vortex case

This case was analyzed in [13] and will be generalized in our study. The ambient space is the punctured
Euclidean space and the vortex is localized at the origin and the ship is a passive tracer in hydrodynamics
whose motion is described by:

dx

dt
(t) = − ky(t)

x(t)2 + y(t)2
+ u1(t),

dy

dt
(t) = +

kx(t)

x(t)2 + y(t)2
+ u2(t),

where k > 0 is the circulation parameter. The problem is written in polar coordinates x = r cos θ, y = r sin θ
so that the Euclidean metric takes the form g = dr2 + r2 dθ2 and the current becomes F0 = k

r2
∂
∂θ . The

ambient manifold is defined by r ≥ 0, F0 having a pole at the vortex identified to r = 0.
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2.2.3 The averaged Kepler case

The Riemannian problem related to the averaged Kepler problem in space mechanics (see [7]) can be extended
to a metric on a two-sphere of revolution defined in normal coordinates by m2(r) = cos2 r

1−λ cos2 r where λ is a
homotopic parameter, deforming the round sphere (for λ = 0) to the singular metric called the Grushin case
(for λ = 1) and λ = 4/5 corresponds to the averaged Kepler case. For this case, we will consider a constant
current on the covering space.

2.2.4 Ellipsoid of revolution

This standard problem of geometry is analyzed in [24]. The ellipsoid of revolution is generated by the curve:
y = sinφ, z = ε cosφ where 0 < ε < 1 corresponds to the oblate (flattened) case while ε > 1 corresponds to the
prolate (elongated) case. The metric takes the form g = F1(φ) dφ

2+F2(φ) dθ
2, with F1(φ) = cos2 φ+ε2 sin2 φ,

F2 = sin2 φ. The metric can be set in the polar form using a quadrature. This defines a family of metrics on
a two-sphere of revolution, depending upon ε.

2.2.5 The Serret-Andoyer case

The Serret-Andoyer metric studied in [11] corresponds to a representation of a mechanical pendulum. It is
given in the normal form by taking m2(r) = (A cn2(αr, k)+B sn2(αr, k))−1, where cn and sn are Jacobi elliptic
functions so that m(r) is periodic and moreover m(r) = m(−r). we have k2 = B−A

C−A , α =
√
C −A, where

0 < A < B < C are parameters.

Remark 1. For the two last metrics, we can also define a Zermelo navigation problem by adding for instance
a constant or a linear current on the covering space. We refer to [23], for the analysis of the ellipsoid of
revolution in the Finslerian case. Note also that on a two-sphere of revolution a constant current corresponds
to a linear rotation with the axis 0z.

3 The geometric tools from control theory and the Hamiltonian anal-
ysis

3.1 Generalities and the Maximum Principle
If not mentioned, all the objects are in a smooth category. Recall that we consider a Zermelo navigation
problem of revolution determined by a triplet (M, g, F0). The vector field defining the current can be taken in
the form F0 = µ(r) ∂

∂θ which permit to cover all the cases defined above. The Zermelo navigation problem on
the covering space M c consists to a time minimal transfer between two points (q0, q1) for the control system:

dq(t)

dt
= F0(q(t)) +

∑
i=1,2

ui(t)Fi(q(t)), (3)

with u = (u1, u2), ∥u∥ ≤ 1 and the set of admissible controls U is the set of measurable mappings defined on
[0 ,+∞) and valued in the domain U = {u | ∥u∥ ≤ 1}. Given q0 ∈ M c and u ∈ U we denote by q(·, q0, u) the
solution of (3) with q(0) = q0, and defined on a maximal interval J . We introduce the pseudo-Hamiltonian
associated to the cost (extended) system

H(z, u) = H0(z) + u1H1(z) + u2H2(z) + p0

with z = (q, p), p = (pr, pθ) being called the adjoint vector, Hi(z) = p · Fi(q) being, for i = 0, 1, 2, the
Hamiltonian lift of the vector field Fi, where · denotes the standard inner product, and finally p0 is a constant
representing the dual variable of the cost. We define the maximized (or true) Hamiltonian by the maximization
condition:

H(z) = max
∥u∥≤1

H(z, u).

Let q0 ∈ M c and (tf , u) an optimal solution of the Zermelo navigation problem with q(·) = q(·, q0, u) the asso-
ciated optimal trajectory. According to the Pontryagin’s Maximum Principle [28], there exists an absolutely
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continuous function p and a scalar p0 ≤ 0 such that the 4-uplet (q, p, u, p0) satisfies, for almost every t ∈ [0, tf ],
the following conditions:

q̇(t) = ∇pH(q(t), p(t), u(t)), ṗ(t) = −∇qH(q(t), p(t), u(t)),

H(q(t), p(t)) = H(q(t), p(t), u(t)) = max
w∈U

H(q(t), p(t), w) = 0,

the pair (p(·), p0) never vanishes.

(4)

Definition 3.1. An extremal is a solution z(·) = (q(·), p(·)) of (4) and a projection of an extremal is called
a geodesic. It is called strict if p is unique up to a factor, normal if p0 ̸= 0 and abnormal (or exceptional) if
p0 = 0. In the normal case it is called hyperbolic (resp. elliptic) if p0 < 0 (resp. p0 > 0).

Since F1 and F2 form a frame, then the following will hold in our case.

Proposition 3.1. The trajectory q(·) is the projection of the extremal z(·) = (q(·), p(·)), solution of the system

ż(t) =
#—

H(z(t)) (5)

where the Hamiltonian vector field
#—

H is given by
#—

H = (∇pH,−∇qH). Besides, the optimal control is given in
feedback form by

ui(z) =
Hi(z)

∥p∥g
, i = 1, 2, (6)

and the maximized Hamiltonian reads H(z) = H0(z) + ∥p∥g + p0, setting ∥p∥g =
√

H2
1 (z) +H2

2 (z).

Introducing the following definition, we can use results from [10, Chap. 3] to characterize normal and
abnormal extremals.

Definition 3.2. The fixed time extremity mapping is the map Eq0,tf : u 7→ q(tf , q0, u) and the extremity
mapping is the map Eq0 : u 7→ q(·, q0, u), the set of inputs u being defined on a subdomain of L∞, endowed
with the L∞-norm topology. The accessibility set in time tf , denoted A(q0, tf ), is the image of Eq0,tf and the
accessibility set A(q0) =

⋃
tf≥0 A(q0, tf ) is the image of the extremity mapping.

Proposition 3.2. Take a reference extremal z(·) = (q(·), p(·)) on [0, tf ] where the corresponding control is
given by (6). If we endow the set of controls valued in ∥u∥ = 1 with the L∞-norm topology we have:

1. In the normal case, u(·) is a singularity of the fixed time extremity mapping.

2. In the abnormal case, u(·) is a singularity of the extremity mapping.

Definition 3.3. Let t 7→ q(t) be a response of (3). It is called regular if it is a one-to-one immersion. From
the Maximum Principle, the geodesics can be parameterized by the initial heading angle α0 and fixing q(0) = q0,
we can define the exponential mapping as the map expq0 : (α0, t) 7→ Π(exp(t

#—

H)(q0, p0(α0))) where Π is the
q-projection: (q, p) 7→ q. The cut point along a given geodesic is the first point where it ceases to be optimal
and they will form the cut locus Σ(q0). The separating line L(q0) is the set of points where two minimizing
geodesics starting from q0 are intersecting.

3.2 Carathéodory-Zermelo-Goh transformation and integration of the geodesics
3.2.1 Carathéodory-Zermelo-Goh transformation

In the historical example, Carathéodory-Zermelo integrated the dynamics using the heading angle α to pa-
rameterize the geodesics, see [16, p. 77]. This corresponds to the Goh transformation in optimal control, see
[10, p. 98]. Next, we use this crucial point to make computations in the Lie algebraic frame and to relate the
analysis of the navigation problem to the general study of [14].

Definition 3.4. Let us consider the control system (3) with the restriction ∥u∥ = 1. Then, we can set
u = (cosα, sinα), α being the heading angle of the ship. We denote by q̃ = (q, α) the extended state and we

5



introduce the vector fields X(q̃) = F0(q)+cosαF1(q)+sinαF2(q) and Y (q̃) = ∂
∂α . This leads us to prolongate

(3) into the single-input affine system:

dq̃

dt
(t) = X(q̃(t)) + v(t)Y (q̃(t)) (7)

and the derivative of the heading angle v(t) = dα
dt (t) is called the accessory control. Denoting z̃ = (q̃, p̃) =

((q, α), (p, pα)), this leads to define the extended pseudo-Hamiltonian

H̃(z̃, v) = p̃ · (X(q̃) + v Y (q̃)) + p0. (8)

Parameterization of the geodesic curves in this extension. From [10, Chap. 6], in this representation,
geodesic curves extend to singular trajectories of (7), where the accessory control v belongs to the whole set
R.

Definition 3.5. The Lie bracket of two vector fields U , V is computed with the convention

[U, V ](q̃) =
∂U

∂q̃
(q̃)V (q̃)− ∂V

∂q̃
(q̃)U(q̃)

and is related to the Poisson bracket {HU , HV }(z̃) = dHU (z̃) ·
#—

HV (z̃) by the relation

{HU , HV }(z̃) = p̃ · [U, V ](q̃),

where HU and HV are the Hamiltonian lifts of U and V .

Lemma 3.1. One has the following:

d

dt

∂H̃

∂v |(q̃,p̃,v)
= p̃ · [Y,X](q̃),

∂

∂v

d2

dt2
∂H̃

∂v |(q̃,p̃,v)
= p̃ · [[Y,X], Y ](q̃) =

∂2H

∂α2 |(q,p,u)
.

Proposition 3.3. Let us introduce the following determinants:

D = det(Y, [Y,X], [[Y,X], Y ]), D′ = det(Y, [Y,X], [[Y,X], X]), D′′ = det(Y, [Y,X], X).

Assume that D(q̃) is not vanishing, then the singular control v(·) associated to the geodesics is given by the
feedback

v(t) = vs(q̃(t)) = −D′(q̃(t))

D(q̃(t))
(9)

and the geodesics extend to smooth solutions of

dq̃

dt
(t) = X(q̃(t)) + vs(q̃(t))Y (q̃(t)).

For this dynamics, one has:

• hyperbolic geodesics are in DD′′ > 0,

• elliptic geodesics are in DD′′ < 0,

• abnormal (or exceptional) geodesics are located in D′′ = 0.

Proof. From [10, Sec. 3.4], taking a singular control-trajectory pair (q̃(·), v(·)), denoting z̃ = (q̃, p̃) one has

HY (z̃) = {HY , HX}(z̃) = 0,

{{HY , HX}, HX}(z̃) + v {{HY , HX}, HY }(z̃) = 0
(10)
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and this leads to
0 = p̃ · Y (q̃) = pα,

0 = p̃ · [Y,X](q̃),

0 = p̃ · ([[Y,X], X](q̃) + v [[Y,X], Y ](q̃)) .

(11)

Hence, since p̃ ∈ R3\{0}, p̃ can be eliminated using (11) and the singular control reads as the singular feedback

v(t) = vs(q̃(t)) = −D′(q̃(t))

D(q̃(t))
.

Since D(q̃) is never vanishing, one has that Y (q̃), [Y,X](q̃) are linearly independent and the adjoint vector p̃
is unique up to a factor. Thus, every geodesic is strict.

Moreover, the following condition called the strict generalized Legendre-Clebsch condition is satisfied:

∂

∂v

d2

dt2
∂H̃

∂v |(z̃,v)
= p̃ · [[Y,X], Y ](q̃) ̸= 0

along any geodesic extension. This amounts to the strict Legendre-Clebsch condition: ∂2H
∂α2 ̸= 0.

The classification of the geodesics (in the strict case) into hyperbolic, elliptic and abnormal geodesics
defines for the extension, the set DD” > 0, DD′′ < 0 and D′′ = 0.

Proposition 3.4. The dynamics of the geodesics in polar coordinates is given by:

ṙ = cosα, θ̇ = µ(r) +
sinα

m(r)
, α̇ = µ′(r)m(r) sin2 α− m′(r) sinα

m(r)
. (12)

Hence, the Hamiltonian geodesic flow is Liouville integrable [2, p. 269] with two involutive first integrals H
and pθ.

Proof. Computing with polar coordinates q̃ = (r, θ, α) one has:

X = cosα
∂

∂r
+

Å
µ(r) +

sinα

m(r)

ã
∂

∂θ

Y =
∂

∂α

and Lie brackets computations give:

[Y,X](q̃) = sinα
∂

∂r
− cosα

m(r)

∂

∂θ
,

[[Y,X], Y ](q̃) = cosα
∂

∂r
+

sinα

m(r)

∂

∂θ
,

[[Y,X], X](q̃) =

Å
−µ′(r) sinα+

m′(r)

m2(r)

ã
∂

∂θ
.

This leads to:

D(q̃) =
1

m(r)
, D′(q̃) = −µ′(r) sin2 α+

m′(r) sinα

m2(r)
, D′′(q̃) = µ(r) sinα+

1

m(r)
.

Then, (12) follows from (9). On the other hand, the pseudo-Hamiltonian in the q̃-representation takes the
form

H = pr cosα+ pθ

Å
µ(r) +

sinα

m(r)

ã
+ p0

and from the maximization condition with v ∈ R, one has ∂H
∂α = 0. This gives the Clairaut relation pr sinα =

pθ

m(r) cosα. Assuming pθ ̸= 0, then we have sinα ̸= 0 and then plugging such pr into H, we obtain the relation

pθ

Å
µ(r) +

1

m(r) sinα

ã
+ p0 = 0. (13)

relating r to α and this leads to the parameterization of the geodesics solution of (12). The case pθ = 0 is
clear since in this case, sinα = 0 and so α̇ = 0.
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Application to the historical example.

Proposition 3.5. Let (x0, y0, γ0) be the initial condition, where γ = π/2 − α. The corresponding solution
(x(t), y(t), γ(t)) is given as follows.

• For γ0 = ±π/2 we have:

γ(t) = γ0, y(t) = ±t+ y0 and x(t) = ± t2

2
+ y0t+ x0.

• For γ0 ∈ (−π/2, π/2), we have:

γ(t) = atan (tan γ0 − t), y(t) = y0 +
1

cos γ0
− 1

cos γ(t)
,

x(t) =
1

2

ï
ln

∣∣∣∣ cos γ

1 + sin γ

∣∣∣∣òγ(t)
γ0

+
1

2

ï
sin γ

cos2 γ

òγ(t)
γ0

+

Å
y0 +

1

cos γ0

ã
t+ x0.

• For γ0 ∈ (−π,−π/2) ∪ (π/2, π], we have:

γ(t) = π + atan (tan γ0 − t), y(t) = y0 +
1

cos γ0
− 1

cos γ(t)
,

x(t) =
1

2

ï
ln

∣∣∣∣ cos γ

1 + sin γ

∣∣∣∣òγ(t)
γ0

+
1

2

ï
sin γ

cos2 γ

òγ(t)
γ0

+

Å
y0 +

1

cos γ0

ã
t+ x0.

The geodesics split (see Fig. 1) into hyperbolic, elliptic and abnormal geodesics, using respectively the conditions
DD′′ > 0, DD′′ < 0 and D′′ = 0.
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Figure 1: (Historical example) Geodesic flow in the hyperbolic (left) and elliptic (right) cases, in the whole
conic neighborhood delimited by the two abnormal geodesics. The hyperbolic, elliptic and abnormal geodesics
are represented resp. in red, blue and green. The initial point is q0 = (0,−2).

3.2.2 Moderate current domain and regularity properties of the geodesic curves

By definition in polar coordinates, the moderate current domain ∥F0(q)∥g = 1 is given by the relation:

µ2(r)m2(r) = 1

and so one can compute the decomposition of the domain into weak and strong current domains using the
graph of the function f(r) = µ2(r)m2(r).
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Definition 3.6. Weak and strong current domains are defined respectively by: f(r) < 1 and f(r) > 1. A
moderate parallel r0 solution of f(r) = 1 is called regular if the intersection of the line L(r) = 1 with the graph
of f is transversal at r0, i.e. the root r0 is simple, so that at r0 the moderate parallel defines a non-empty
transition between weak and strong current domains.

Lemma 3.2. Let σ̃ = (q, α) be a reference geodesic solution of (12) on [0, tf ] and intersecting at time tf the
moderate current domain. Then:

1. σ̃ is either hyperbolic or abnormal.

2. If t 7→ σ̃(t) is hyperbolic, then, t 7→ q(t) is an immersion on [0, tf ], that is q̇(t) is non zero.

3. If σ̃ is abnormal, then, t 7→ σ̃(t) is an immersion on (0, tf ) but q̇(tf ) = 0.

Proof. Elliptic geodesics are contained in the strong current domain and only hyperbolic and abnormal
geodesics can intersect the moderate current domain ∥F0(q)∥g = f(r) = 1. Take a point q = (r, θ) in
the moderate current domain. Then, there exist a heading angle α such that the following holds:

F0(q) + cosαF1(q) + sinαF2(q) = 0. (14)

From (12), this leads to the following relations for the dynamics:

ṙ = cosα = 0, θ̇ = µ(r) +
sinα

m(r)
= 0. (15)

Hence we obtain:
α =

π

2
+ kπ, µ(r)± 1

m(r)
= 0.

Since ṙ = θ̇ = 0, the geodesic inersecting the moderate current domain with the heading angle π
2 + kπ is

abnormal. In hyperbolic case, one has q̇(tf ) ̸= 0. The lemma is proved.

3.3 Computation of conjugate points using the CZG-transformation
The aim of this section is to provide algorithms to compute conjugate points. The regular case is covered
in [14] whereas the recent article [15] analyzes in a general framework conjugate points along non-immersed
abnormal geodesics in Zermelo navigation problems. Note that in both cases, the integrability property of the
geodesic flow is not required, but in fine the semi-normal form is integrable cf. [14].

Definition 3.7. Let σ̃ be a reference geodesic curve defined on [0, tf ], σ̃(t) = (q(t), α(t)), σ̃(0) = (q0, α0),
with q0 a fixed initial point. The first conjugate time along σ̃ is the first time t1c such that σ̃ ceases to be
minimizing for t > t1c, with respect to geodesic curves q̃(·), with q̃(0) = (q0, α̃0), |α0 − α̃0| small enough, that
is in a conic neighborhood of the reference geodesic.

First of all, we shall analyze the case where σ̃(t) is a regular geodesic. It is based on [14].

3.3.1 A brief recap of [14] to determine conjugate points in the regular case

Semi-normal forms. We assume that the reference geodesic curve t 7→ σ̃(t) on [0, tf ] is a one-to-one
immersion. In this case, we can choose coordinates and a feedback so that σ̃ : t → (t, 0, 0) and it can be taken
as the response of the control v = 0. Further normalizations are obtained in the jet-spaces of (X,Y ) in the
neighborhood of σ̃.

Normal case. We can choose coordinates q̃ = (q1, q2, q3) such that the system takes the form:

X =

Ñ
1 +

3∑
i,j=2

aij(q1)qiqj

é
∂

∂q1
+ q3

∂

∂q2
+ ε1(q),

Y =
∂

∂q3
,

(16)

where ε1(q) can be neglected in the analysis and with a33 < 0 (resp. a33 > 0) in the hyperbolic (resp. elliptic)
case.
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Abnormal case. We can choose coordinates q̃ = (q1, q2, q3) such that the system takes the form:

X = (1 + q2)
∂

∂q1
+

1

2
a(q1)q

2
2

∂

∂q3
+ ε2(q),

Y =
∂

∂q2
,

(17)

where ε2(q) can be neglected in the analysis and where a is strictly positive.

See [14] for details about the computations and the descriptions of the mappings q 7→ ε1(q), ε2(q). In
both cases, since q1(t) = t along the reference geodesic σ, one can replace q1 by t in the semi-normal form
(restricting our analysis to a conic neighborhood) and this allows to evaluate the accessibility set and its
boundary. Hence, computing conjugate points to deduce the optimality status of the reference geodesic.

Definition 3.8. The Jacobi (or variational) equation along the reference geodesic σ̃ is the equation:ı̇δq̃(t) = ∂Xs

∂q̃
(σ̃(t)) δq̃(t) (18)

with Xs = X + vsY and vs given by (9). A Jacobi field J(t) is a solution of (18) which is said semi-vertical
at t = 0 if J(0) ∈ RY (σ̃(0)).

From [14], one deduces the following.

Proposition 3.6.

1. In the normal case, if tc is a conjugate time, then, there exists a non-trivial Jacobi field J semi-vertical
at t = 0 such that

det(J(tc), Y (σ̃(tc)), X(σ̃(tc))) = 0.

Let t1c be the first conjugate time, then, if the geodesic is hyperbolic (resp. elliptic) it is time minimizing
(resp. maximizing) with respect to all geodesics in a conic neighborhood of the reference geodesic σ, up
to time t1c.

2. In the abnormal case, the reference geodesic is both minimizing and maximizing in a conic neighborhood
of σ̃.

Remark 2. The result is clear in the abnormal case due to (17), since q3(·) is strictly positive, unless the
geodesic curve is the reference geodesic. It was already observed by Carathéodory and Zermelo, see [18] where
the abnormal geodesic are called "limit curves".

The concept of generalized curvature using CZG-transformation in the normal case. It was
defined in [10, p. 163] and it can be used in our Zermelo problem. The Jacobi equation along σ̃ : t 7→ (t, 0, 0)
takes the form:

δÿ(t) +
ȧ(t)

a(t)
δẏ(t) +

ḃ(t)− c(t)

a(t)
δy(t) = 0 (19)

where a(t), b(t), c(t) denote in short the coefficients of a33, a23 + a32, a22 in formula (16). The existence of
conjugate time t1c means that there exists a non-trivial solution of (19) satisfying δy(0) = δy(t1c) = 0. It can
be written in the normal form

ẍ(t) +K(t)x(t) = 0 (20)

setting δy(t) = C(t)x(t) where

C(t) = exp

Ç∫ t

0

−A(s)

2
ds

å
= − 1√

a(t)
, A(t) =

ȧ(t)

a(t)

and K(t) is the generalized curvature defined by

K(t) = C−1(t)(C̈(t) +A(t)Ċ(t) +B(t)C(t)) (21)

where B(t) =
ḃ(t)− c(t)

a(t)
.

10



Remark 3. Note that the generalized curvature depends upon the reference geodesic parameterization contrary
to the Gauss curvature in Riemannian geometry. In Section 5, the averaged Kepler case will exhibit some
geodesic images such that each of them is parameterized by an hyperbolic trajectory and an elliptic trajectory
(for instance the equator).

3.3.2 Cusp singularity associated to a conjugate point in the non-regular (abnormal) case

Next, we use [15] to describe the cusp singularity of the abnormal geodesics when meeting the transition
between the strong and weak current domains. It is based on [32] in the algebraic case and [3] in the C∞-case.
Let γ : t 7→ (x(t), y(t)) be a planar smooth curve. We recall that if a point γ(tcusp) is a cusp point of order
(p, q), 2 ≤ p ≤ q, then γ(p)(tcusp) and γ(q)(tcusp) are independent. It is called an ordinary (or a semicubical)
cusp point if it is a cusp point of order (p, q) with p = 2 and q = 3. From [32, p. 56], an algebraic model
in R[x, y] at an ordinary cusp γ(tcusp) is given by the equation x3 − y2 = 0. Moreover it is the transition
between a R-node solution of the equation x3 − x2 + y2 = 0, where the origin is a double point with two
distinct tangents at 0: x± y = 0 and a C−node solution of x3 + x2 + y2 = 0 with two complex tangents at 0
given by x± iy = 0 and with two distinct components x = y = 0 and a smooth real branch (see also [15] for
more details and Fig. 2 for an illustration).

Figure 2: Miniversal unfolding of the cusp singularity in the quickest nautical path and with fixed horizontal
symmetry in an adapted neighborhood. Red, green and blue respectively correspond to y < −1,= 0, > −1.

A neat description from singularity theory suitable in our analysis is given by [3, p. 65] and is associated to
a typical perestroika of a plane curve depending on a parameter and having a semicubical cusp point for some
value of the parameters, where the curves sweep an umbrella while their inflectional tangents sweep another
umbrella surface. Below, we give some results to describe the properties of semicubical cusp points in relation
with abnormal geodesics as well as the optimality of abnormal and hyperbolic geodesics in the neighborhood
of cusp points.

Proposition 3.7. Consider a reference abnormal geodesic σ̃a = (σa, αa) defined on [t1, t2], t1 < 0 < t2 so
that at t = 0, σa meets a regular moderate parallel r0 at q1 = σa(0). Denote σ(t1) = q0 and assume that
α̇a(0) ̸= 0. Then, there exists a neighborhood V of q1 such that for every geodesic starting from q0 one has:

1. The abnormal geodesic σa meets the boundary at a semicubical cusp with a vertical tangent.

2. Hyperbolic geodesics are self-intersecting curves corresponding to a R-node.

3. elliptic geodesics exist only in the strong current domain and correspond to a C-node.

Proof. The proof follows from [15] and is illustrated by Fig. 3.

Theorem 3.1. Under the previous assumptions, there exists a neighborhood V of q1, a point q0 in V ∩ σa(·)
in which we have:

11



1. The abnormal arc is optimal from q0 up to the cusp point q1 included which corresponds to a conjugate
point in the abnormal case.

2. Self-intersecting geodesics starting from q0 are optimal up to their intersection point q2 with the abnormal
arc, the point q2 being excluded. Hence, q2 corresponds to a cut point.

3. The time minimal value function T : q2 7→ T (q0, q2) is discontinuous for each q2 ̸= q1 on the abnormal
geodesic.

Proof. The proof follows from [15] and is illustrated by Fig. 3. See also the cut loci of Fig. 4 for an illustration.

q0

q1

q2

q0

q1

Figure 3: Unfolding of the cusp singularity depending upon the heading angle in an adapted neighborhood.
(Left) Hyperbolic geodesics in a conic neighborhood with a self-intersection. (Right) Elliptic geodesics. The
abnormal arc q̄0q1 is the limit curve already observed by Carathéodory.

Corollary 3.1. Under the previous assumptions, the abnormal arc σa is optimal in the whole domain of strong
current up to r0, restricting to a conic neighborhood.

Proof. Let σ̃a : t 7→ σ̃a(t) = (σa(t), αa(t)), t ∈ [t1, 0], t1 < 0 (where −t1 not necessarily small) be the reference
abnormal geodesic. From the previous theorem, the abnormal arc starting from q2 = σa(t2) with t1 < t2 < 0,
t2 small enough, is optimal from q2 to q1. Moreover, the abnormal arc from q0 = σ(t1) corresponds to an
immersed curve and thus from [14], it is optimal on the whole strong current domain, restricting to a conic
neighborhood. Hence, concatenating the two arcs allows us to conclude.

3.3.3 Time minimal synthesis in the historical example in an adapted rectangle

In this section we use the global parameterization of the geodesic curves given by Proposition 3.4 to compute
the time minimal synthesis in an adapted rectangle containing the limit loop starting from q0. The limit loop
starting from q0, see Fig. 4 for an illustration, is the geodesic starting from q0 which returns to q0 in minimum
(positive) time. In the historical example, starting from q0 in the strong current domain, there exists a limit
loop denoted lloop(q0) with return time denoted t0. The time minimal synthesis is represented on Fig. 4 and
the main properties are the following.

Proposition 3.8. In the historical example, taking a point q0 in the strong current domain, then we can
choose an adapted rectangle R containing the limit loop lloop(q0) such that:

1. A(q0, tf ) is a neighborhood of q0 for tf > t0.

2. In the domain, the cut locus contains the whole branch of the abnormal geodesic arc q̄0q1 and is the
union of the separating line L(q0) where abnormal and normal minimizing arcs intersect with unequal
time and the terminating point q1 which is a conjugate point of the non-immersed abnormal arc.
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limit loop

Figure 4: Time minimal synthesis in two different adapted rectangles containing the limit loop lloop(q0).
The second rectangle being delimited by the limit loop to emphasize the dependence of the cut locus to
the considered adapted rectangle. In both cases, the cut locus (in black) contains the whole abnormal arc
terminating at the cusp singularity. In gray is represented the strong current domain. The red curves are
hyperbolic geodesics while the green represent abnormals.

4 Mechanical system and generalized Morse-Reeb classification

4.1 Mechanical representation in the Riemannian averaged Kepler case [7, 8]
In this section, we give a brief description of the mecanical representation in the Riemannian case, following
the example of the averaged Kepler metric. In the Riemannian setting, roughly speaking, the time and energy
minimization problems are equivalent. Classically, the (maximized) Hamiltonian associated to the energy
minimization problem is preferred. This Hamiltonian is given by

H =
1

2

Å
p2r +

p2θ
m2(r)

ã
+ p0,

where the ambient manifold M is the (compact) 2-dimensional sphere of revolution and the metric g on the
covering space M c is given by

g = dr2 +m2(r) dθ2, m2(r) =
cos2 r

1− λ cos2 r
, λ = 4/5.

Moreover, since θ is a cyclic variable, then G = pθ is an additional first integral given by the Clairaut relation.
Trajectories of

#—

H split into three cases: the meridians defined by θ = constant with pθ = 0, the equator
identified to r = 0 with pθ = m(r), and remaining geodesics with |pθ| ∈ (0 ,m(r)) formed by r-periodic
oscillating solutions of the mechanical system, defined by the so-called characteristic equationÅ

dr

dt

ã2
= 1− V (r, pθ) = R(r, pθ),

the term V (r, pθ) =
p2
θ

m2(r) representing the potential. A further integration is necessary in order to recover the
θ-variable using the Hamiltonian dynamics. Parameterizing by r on each ascending branch of the characteristic
equation, we have:

dθ

dr
=

1√
R(r, pθ)

∂H

∂pθ
.

This allows to compute the variation denoted ∆θ/2 of the angle θ starting from the equator and on the
ascending branch, the total variation to return to the equator being ∆θ. Note that in the limit case of the
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equator solution, the rotation is stationary since r is constant. This gives the complete description of the
Liouville torus T 2 defined in Theorem 4.1 hereinafter. Note that the geodesics split into periodic orbits if
∆θ/2π is rational and dense orbits in the Liouville Torus if ∆θ/2π is irrational.

Theorem 4.1. (See [6, Section 1.4] and [2, Chapter 10]) Let
#—

H be a Hamiltonian vector field on T ∗M (M
being 2-dimensional) and assume that there exists a first integral G such that {H,G} = 0. Assume also that
the vector fields

#—

H and
#—

G are complete and moreover that H and G are functionally independent on T ∗M , i.e.,
their gradients are linearly independent on T ∗M almost everywhere. Then, the Hamiltonian vector field

#—

H
is called Liouville-integrable. Let consider the level surface Tξ = {(x, p) ∈ T ∗M | H(x, p) = ξ1, G(x, p) = ξ2}
with ξ = (ξ1, ξ2). Then:

1. Tξ is a smooth Lagrangian manifold invariant by the flow of
#—

H and
#—

G.

2. If Tξ is connected and compact, then Tξ is diffeomorphic to the 2-dimensional torus T 2 (called Liouville
torus).

3. The Liouville foliation is trivial, that is, there exists a neighborhood U of Tξ such that U is the direct
product of the torus T 2 and the disk D2.

4. In the neighborhood U there exists symplectic coordinates (s, φ) (also called action-angle variables) such
that the dynamics

#—

H can be written in the form dsi
dt = 0, dφi

dt = αi(s1, s2), i = 1, 2, and for which the
motion is quasi-periodic.

Next, we present a generalization of the previous mechanical representation in the Zermelo case.

4.2 Mechanical representation in the Zermelo case
In this case, since we have a current, there is no longer equivalence between the time and energy minimization
problems. So, we consider the Hamiltonian associated to the time minimization problem given by

H(z) = H0(z) + ∥p∥g + p0 = µ(r)pθ +

Å
p2r +

p2θ
m2(r)

ã 1
2

+ p0.

The following theorem sets the framework for the classification of the geodesic flow.

Theorem 4.2. Consider a Zermelo navigation problem on a surface of revolution with parallel current. Then:

1. The evolution of the system in the (r, pr)-space is described by the Hamiltonian dynamics

dr

dt
=

pr
∥p∥g

,
dpr
dt

= −pθµ
′(r) +

p2θm
′(r)

m3(r)∥p∥g
. (22)

2. Restricted dynamics (22) can be integrated using the mechanical system representationÅ
dr

dt

ã2
+ Vε(r, pθ) = 1,

where the generalized potential is given by

Vε(r, pθ) =
p2θ

m2(r)(ε+ pθµ(r))2

with ε = p0 normalized to −1, 0, +1 respectively in the hyperbolic, abnormal and elliptic cases.

3. Moreover, the following relation holds

p2r = (ε+ pθµ(r))
2 − p2θ

m2(r)
.
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Proof. Item 1 is a direct compution of eq. (4) considering the Hamiltonian defined above. Moreover, since the

Hamiltonian H = ∥p∥g + pθµ(r) + p0 = 0 and ∥p∥g =
(
p2r +

p2
θ

m2(r)

)1/2

, we have:

p2r = ∥p∥2g −
p2θ

m2(r)
= (ε+ pθµ(r))

2 − p2θ
m2(r)

,

which gives item 3. Besides, from the restricted Hamiltonian system in (r, pr) we have:Å
dr

dt

ã2
=

p2r
∥p∥2g

=
(ε+ pθµ(r))

2 − p2
θ

m2(r)

(ε+ pθµ(r))2
= 1− p2θ

m2(r) (ε+ pθµ(r))
2 ,

which gives item 2.

Definition 4.1. The classification of trajectories of the restricted Hamiltonian dynamics (22), parameterized
by pθ is called the Generalized-Morse-Reeb (GMR) classification defined by the generalized potential Vε.

Orbits are classified according to the following definitions.

Definition 4.2. We consider the hyperbolic case ε = −1. A pair (r∗, p∗θ) is called an equator if (r∗, 0) is
an equilibrium point of the restricted Hamiltonian dynamics, parameterized by p∗θ. It is called L-elliptic if the
linearized dynamics is with spectrum {±iα, α ̸= 0}, L-hyperbolic if the spectrum is of the form {±λ, λ ∈ R\0}
and L-parabolic if the spectrum is zero. The L-elliptic and L-hyperbolic situations correspond respectively to
a stable case associated to a minimum of the potential and to an unstable case associated to a maximum. An
equator defines a stationary rotation in the (r, θ)-space, it is called a positive (resp. negative) rotation if θ is
rotating with a positive (resp. negative) frequency. A separatrix geodesic parameterized by p∗θ is a geodesic
(r(t), θ(t)) such that r(t) → r∗ as t → ∞ where (r∗, p∗θ) is an equator.

We give next some characterizations of equators and separatrices.

Proposition 4.1. Consider the hyperbolic case ε = −1.

1. A pair (r∗, p∗θ) is an equator if and only if it is a solution of:

Vε(r, pθ) = 1 and
∂Vε

∂r
(r, pθ) = 0. (23)

2. An equator (r∗, p∗θ) is L-hyperbolic (resp. L-elliptic) if and only if:

∂2Vε

∂r2
(r∗, p∗θ) < 0 (resp.

∂2Vε

∂r2
(r∗, p∗θ) > 0).

3. A separatrix geodesic is necessarily associated to a L-hyperbolic equator and if we denote by (r∗, p∗θ) this
equator, then we have:

p∗θ =
m(r∗)

µ(r∗)m(r∗) + δ
with δ = sign(p∗θ).

Proof. If (r∗, p∗θ) is an equator, then by definition ṙ = ṗr = 0, that is pr = ṗr = 0 and so also p∗θ ̸= 0. Besides,

pr = 0 ⇐⇒ p2r = (ε+ pθµ(r))
2 − p2θ

m2(r)
= 0

⇐⇒ (ε+ pθµ(r))
2 =

p2θ
m2(r)

⇐⇒ Vε = 1 if pθ ̸= 0.
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On the other hand:

∂Vε

∂r
(r, pθ) =

−2p2θ m(r)µ′(r)− 2p3θ m
′(r)(ε+ pθ µ(r))

m3(r)(ε+ pθµ(r))3

=
2p3θµ

′(r)

m2(r)∥p∥3g
− 2p2θm

′(r)

m3(r)∥p∥2g
, using ∥p∥g = −(ε+ pθµ(r))

=
2

∥p∥g

Å
pθµ

′(r)− p2θm
′(r)

m3(r)∥p∥g

ã
, using (ε+ pθµ(r))

2 =
p2θ

m2(r)

=
2

∥p∥g
ṗr.

This proves item 1. For the item 2, denoting λ = (r, pr), f = (f1, f2) =
(

pr

∥p∥g
,−pθµ

′(r) +
p2
θm

′(r)
m3(r)∥p∥g

)
and

A = f ′(r∗, 0) the differential of f at (r∗, 0), then the linearized dynamics around (r∗, 0) reads:

ı̇δλ = Aδλ with A =

Ü
∂f1
∂r

(r∗, 0)
∂f1
∂pr

(r∗, 0)

∂f2
∂r

(r∗, 0)
∂f2
∂pr

(r∗, 0)

ê
=

Ö
0

1

m2(r∗)
∂∂ṗr
∂r

(r∗, 0) 0

è
.

Indeed,
∂f1
∂r

=
∂f2
∂pr

=
m′(r)prp

2
θ

m3(r)∥p∥3g
and

∂f1
∂pr

=
p2θ

m2(r)∥p∥3g
since ∥p∥2g − p2r =

p2θ
m2(r)

.

Thus, sign(detA) = − sign

Å
∂ṗr
∂r

(r∗, 0)

ã
, since

1

m2(r∗)
> 0. On the other hand, one has

∂Vε

∂r
(r, pθ) =

2

∥p∥g
ṗr =⇒ ∂2Vε

∂r2
(r, pθ) =

2

∥p∥g
∂ṗr
∂r

− 2 ṗr
∥p∥g

∂∥p∥g
∂r

but since ṗr = 0 at (r∗, 0), then sign

Å
∂2Vε

∂r2
(r∗, p∗θ)

ã
= sign

Å
∂ṗr
∂r

(r∗, 0)

ã
and thus

sign(detA) = − sign

Å
∂2Vε

∂r2
(r∗, p∗θ)

ã
.

Item 2 then follows. For item 3, let us remark that the first equation of (23) is equivalent to pr = 0 along the
curve, and resolving this equation leads us to

pθ =
m′(r)

m(r)µ′(r) +m′(r)µ(r)
.

On the other hand, pr = 0 along the curve implies ṗr = 0 which gives

µ′(r) = δ
m′(r)

m2(r)
where δ = sign(pθ).

These two equations then lead us to

pθ =
m(r)

µ(r)m(r) + δ
.

Proposition then follows.

Definition 4.3. Let U be an adapted rectangular neighborhood of q0. Geodesics starting from q0 decompose
into starting ascending or descending r-branches. At the limit tangential case, monotonicity is given by positive
or negative acceleration d2r

dt2 (0). The first return to the equator (resp. the meridian) associated to a geodesic
is the first point such that the geodesic intersects again the equator (resp. the meridian).
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Proposition 4.2. Let U be a rectangular adapted neighborhood of q0 = (r0, θ0). Level sets of the Hamiltonian
in the GMR-classification split into compact levels corresponding to r-periodic geodesics and non-compact level
sets corresponding to r-aperiodic geodesics, when the dynamics is restricted to the neighborhood U . If (r∗, p∗θ)
is a L-elliptic equator, then locally the Liouville foliation by Liouville torus is preserved.

Remark 4. Let q0 be a fixed initial condition, then using the GMR-classification for each adapted rectangu-
lar neighborhood of q0 we can stratify the set of geodesics emanating from q0 into micro-local conic sectors
corresponding to compact and non-compact geodesics.

Remark 5. The decomposition depends upon the adapted rectangular neighborhood and can be described using
the generalized potential restricted to the domain. we can easily have situations with two compact sectors
separated by a singular level with a separatrix geodesic, or an equator for which when restricted to the domain,
the singular level separates compact and non-compact orbits. This property can be illustrated for example in
the Serret-Andoyer case, described in details in [11]. In this case the meridian can be identified to r = 0 and
starting from the meridian, geodesics split into r-periodic curves and r-aperiodic curves with a limit curve
corresponding to a separatrix. Only r-periodic curves have conjugate points. They are a representation of
the standard pendulum equation where the oscillating solutions correspond to r-periodic solution while rotating
solutions correspond to r-aperiodic solutions. But if they are interpreted on the cylinder, both types of solutions
are periodic, oscillating trajectories are homotopic to a point, but not the rotating ones.

5 Case studies

5.1 The averaged Kepler case
The aim of this section is to analyze the Zermelo navigation problem associated to the Riemannian case studied
in [7, 8]. We first recap the properties of the Zermelo problem associated to the Riemannian metric, when the
current is zero and then extend the results to the Zermelo case with strong current.

5.1.1 Riemannian case

Recall that the metric takes the form g = dφ2 +m2
λ(φ) dθ

2, with

m2
λ(φ) =

sin2 φ

1− λ sin2 φ
, (24)

where φ represents the angle on the two-sphere of revolution, where φ = 0 (resp. φ = π) corresponds to the
north (resp. south) pole and λ ∈ [0, 1] is an homotopic parameter, λ = 0 being the round sphere, λ = 4/5 is
associated to Kepler orbits transfer and λ = 1 is the so-called Grushin case with a singularity at the equator.

The Gauss curvature is given by

Kλ =
1

(1− λ sin2 φ)2
((1− λ)− 2λ cos2 φ),

and is strictly negative in the limit case λ = 1. The only equator solution corresponds to φ = π/2 and we
introduce r = π/2 − φ to normalize this equator to zero. The metric is then written g = dr2 + m2(r) dθ2,
where we set m(r) = mλ(π/2 − r) and it is symmetric with respect to the equator, that is m(r) = m(−r),
which is crucial for the explicit computations of the conjugate and cut loci, following[9]. Using the Hamiltonian
formalism we associate to the metric the Hamiltonian

H =
1

2

Å
p2r +

p2θ
m2(r)

ã
+ p0.

Fixing the parameterization to the arc-length amounts to set p0 = −1. So that the characteristic equation
takes the form: Å

dr

dt

ã2
+ V (r, pθ) = 1 with V (r, pθ) =

p2θ
m2(r)

.

A geodesic is either a meridian if pθ = 0, the equator if pθ = m(r) and any solution is such that r is periodic
and oscillates between −r+, r+ and is entirely determined by a branch of the characteristic equation evaluated
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on the quarter of period T/4, r(t) being restricted to [0, r+], where r+ is the positive root of the equation
V = 1, the period being given by the integral

T = 4

∫ r+

0

dr

(1− V (r, pθ))1/2
,

which depends upon pθ. By symmetry with respect to the equator it can be supposed non-negative and
belonging to (0,m(r(0))). To make the analysis we introduce the application called the period mapping
associated to the first return to the equator and defined by: pθ 7→ T (pθ).

The geodesic flow is integrated by quadrature using the characteristic equation and the transcendence of
the solutions is basically determined by the transcendence of the period mapping. In this context, this case
study is rather straightforward, since only elementary functions are necessary to parameterize the solutions.
In particular, it is related to the historical example, replacing the ambient Euclidean space by a two-sphere.
To integrate, we can assume that r(0) = 0 and θ(0) = 0, since every oscillating trajectory is such that r is
intersecting the equator and we use:

dr

dt
=
»
1− V (r, pθ),

dθ

dt
=

∂H

∂pθ
=

V (r, pθ)

pθ
.

One gets that

θ(t) = (2n− 1)∆θ +

∫ 0

r(t)

V (r, pθ)

pθ(1− V (r, pθ))1/2
dr,

where n ∈ N counts the number of intersections with the equator and by symmetry, we can assume that the
number of intersections is odd. The function ∆θ for pθ ∈ (0,m(0)) is the first return mapping to the equator
introduced in Definition 4.3. The following proposition coming from [9] is crucial in the optimality analysis.

Proposition 5.1. Restricting the initial point to q0 = (0, 0) and assuming that the first return mapping to
the equator is tame, that is monotone non-increasing, then the first conjugate time is given by the equation

∂θ

∂pθ
(r, pθ) = 0,

where θ is parameterized by r according to

θ(r, pθ) = ∆θ(pθ)−
∫ r

r+

V (ρ, pθ)

pθ
√

1− V (ρ, pθ)
dρ,

and the first conjugate time being between T/2 and T/2 + T/4.

Integration of the geodesics. We takeÅ
dr

dt

ã2
=

cos2 r − p2θ(1− λ cos2 r)

cos2 r
,

and we denote by Z+ and Z− the roots of 1 + p2θ(λ− 1) = Z2(1 + λp2θ), where Z = sin r and the period reads

T

4
=

∫ Z+

0

dZ»
1 + p2θ(λ− 1)− Z2(1 + λp2θ)

.

Normalizing the amplitude of the oscillation by Z = Z+Y one has

T

4
=

∫ 1

0

dY»
(1 + λp2θ)(1− Y 2)

.

Proposition 5.2. The period is given by

T (pθ) =
2π»

1 + λp2θ

.

Moreover we have arcsinY (t) =
»

1 + λp2θ t.
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This defines the re-normalized time s =
√
1 + λpθ t and the θ-variable is integrated using

dθ

ds
= pθ

1− λ(1− sin2 r)

1− λ sin2 r
.

A quadrature gives the following. The θ-dynamics is given by

θ(t) =
pθ»

(1 + λp2θ)(1− Z2
+)

atan
Ä
tan

(
(1 + λp2θ)t

)√
1− Z+

ä
− λpθt.

This leads to a complete parameterization of the geodesics. Moreover, we can compute explicitly the conjugate
and cut loci in the tame case according to the following propositions.

Proposition 5.3. In the tame case, the cut locus of a point on the equator is a sub-arc of the equator and
the injectivity radius is the distance to the cusp extremity of the conjugate locus on the equator.

Proposition 5.4. Assume that the problem is tame and moreover, suppose that the first return mapping ∆θ
is such that ∆θ′ < 0 < ∆θ′′ on (0,m((r(0))), then:

1. The cut locus of a point not a pole is a segment of the antipodal parallel.

2. For a point not a pole, the conjugate locus has exactly four cusp points.

Computing, we have.

Proposition 5.5. For λ ∈ (0, 1), the Riemannian metric where mλ is given by (24) is such that the problem
is tame and moreover ∆θ′ < 0 < ∆θ′′ on (0,m((r(0))), so that the assertions of Proposition 5.4 hold.

This can be applied to our case for λ ∈ (0 , 1). Note also that the conjugate locus of the equator is a
standard astroid with four cusps. The limit Grushin case λ = 1 can be analyzed similarly, except that the
equator is not a geodesic and the injectivity radius is zero. This gives a complete analysis of the Riemannian
case and this leads to the following analysis.

5.1.2 Transition from the Riemannian case to the Zermelo case with a constant current

Recall that the problem with constant current is given on the covering space by the pair

F0 = v
∂

∂θ
, g = dr2 +m2(r) dθ2,

where v is a non-zero constant. Depending on the current at the initial point q0 = (r0, θ0), we say that we are
in the weak (current) case if sin2 r0 < 1

v2+λ , strong case if sin2 r0 > 1
v2+λ and moderate case if sin2 r0 = 1

v2+λ .
In the case where v2 + λ < 1, the current will be weak on the whole domain. So we shall assume: v2 + λ > 1.
The following is a crucial geometric property.

Proposition 5.6. On the two-sphere of revolution embedded in R3, the vector field F0 defines a linear vector
field, tangent to the sphere, and it corresponds to a uniform rotation whose axis is the axis of revolution. For
the metric the equator solution is also a stationary rotation since dθ

dt is constant so that the effect of the current
can be added to this rotation.

Integration of the geodesics. From the previous proposition, the integration follows from the Riemannian
case. Introducing the generalized potential, recall that the r-dynamics is given by:Å

dr

dt

ã2
+ Vε(r, pθ) = 1

where ε = p0 < 0,= 0, > 0 correspond respectively to the hyperbolic, abnormal and elliptic cases. Taking the
ascending branch starting from the equator r0 = π/2, we have

dr

dt
=

Ç
p2θ(1− λ sin2 r)

sin2 r(ε+ pθv)2

å1/2

,

19



Since H = 0, ∥p∥g = −(pθv + ε), then, using a time reparameterization, one gets:

dr

ds
=

Ç
p2θ(1− λ sin2 r)

sin2 r

å1/2

,

which is like the r-dynamics in the Riemannian case, with the addition of v. Then, we can determine the first
return mapping to the equator r0 = π/2:

∆θ

2
=

∫ r+

π/2

∂H/∂pθ
∂H/∂pr

dr

where r+ is the maximum of r(t).
Again the geodesic curves are symmetric with respect to the equator, the cone of admissible direction being

symmetric with respect to the equator. This leads to the following stratification of the set of geodesics, using
the variable pθ instead of the heading angle in the historical example.

Proposition 5.7. Assume that λ = 4/5 and v = 0.9, then starting from the equator and considering only the
ascending branch, geodesics split into:

• Abnormal given by paθ = −1/v;

• Hyperbolic geodesics parameterized by pθ ∈ (paθ ,m(r0));

• Elliptic geodesics parameterized by pθ ∈ (−m(r0), p
a
θ).

Moreover, in the hyperbolic case, the set of geodesics can be stratified in four different classes (see Fig. 5 for
illustration):

• The equator which corresponds to r = π/2, pr = 0 and pθ = m(r0).

• The two pseudo-meridians (ascending and descending ones) which correspond, on the covering space, to
non-compact case where pθ = 0.

• Generic r-periodic orbits which split in two different families namely orbits without self-intersections,
parameterized by pθ ∈ (0,m(r0)) and orbits with self-intersections, parameterized by pθ ∈ (paθ , 0) and
±pr(0) corresponding to the symmetric orbits.

Remark 6. The other geodesics in the flow are obtained by a symmetry which respect to the equator.

The cut locus in this case will split into two branches. The first branch is associated as in the historical
example to the cusp singularity of the abnormal directions, which are symmetric with respect to the equator
(see Fig. 6 for an illustration). The second branch of the cut locus is the persistence of the segment formed by
the equator and related to the tame behavior of the first return mapping corresponding to non self-intersecting
geodesics. The conjugate points can be numerically evaluated. They exist for different types of geodesics but
occur after the intersection of the geodesics with the equator.

Theorem 5.1. Assume that the equator r0 = π/2 is in the strong current domain. Then the cut locus has two
branches, the first branch being formed by the abnormal curves occurring in the neighborhood of the cusp point
and associated to self-intersecting geodesics and the second branch being a segment of the equator, starting by
a cusp point of the conjugate locus and associated to non self-intersecting geodesics.

5.2 Complexity of the Hamiltonian dynamics in the generalized vortex case
A preliminary study of a navigation problem with a vortex localized at the origin is studied in [13], but the
aim of this section is to generalize this situation to get more intricate dynamics, in relation with the N-body
problem. A first step is to generalize the existence theorem to get a geodesically complete framework.
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Figure 5: (Left) Potential for the different classes of geodesics. (Right) Different types of hyperbolic geodesics in
the strong current case. The meridians are represented in black and hyperbolic geodesics with self-intersection
(resp. without self-intersection) are represented in red (resp. in blue). Abnormal geodesics are represented in
green. We take λ = 4/5 and v = 0.9.
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Figure 6: (Left) Illustration of the hyperbolic flow and of a part of the conjugate locus. (Right) Optimal
synthesis in minimal time in the adapted neighborhood R = {π/25 ≤ r ≤ 24π/25 ;−π/2 ≤ θ ≤ 4π/3}. In
thick black is represented the cut locus. The gray sector represents, in the considered neighborhood, the
accessible domain from the equator by geodesics. The white domain is not accessible from the equator by a
geodesic in this neighborhood. We take λ = 4/5 and v = 0.9.

5.2.1 Existence of optimal solutions

We consider the case where the Zermelo navigation problem is defined by:

F0 = µ(r)
∂

∂θ
, F1 =

∂

∂r
, F2 =

1

m(r)

∂

∂θ
.

In our preliminary study, we have µ(r) = k
r2 but in the general case we shall assume that µ(r) has a pole

of order β ∈ (1,+∞) at zero, so that near zero, we can take the approximation µ(r) ∼ 1
rβ

and moreover we
assume that µ(r) → 0 as r → +∞. We shall generalize the argument of [13] and relate the proof to existence
of minimizing solutions avoiding collisions in the N-body problem [21]. Also, we point the relation between
extending the solutions beyond the vortex and the Levi-Civita regularization for double collision [29].

Theorem 5.2. Take q0, q1 in the punctured plane R2 \{0}, then there exists a time minimizing trajectory to
transfer q0 to q1. Moreover, q0 = (r0, θ0) can be transferred to the origin in minimum time tmin = r0. Hence,
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Figure 7: Deformation of the geodesic flow and conjugate locus starting from the Riemannian case to the
strong Zermelian case. We take λ = 4/5 and v = 0.0, 0.4, 0.8, respectively in the Riemannian (top), Finslerian
(bottom) and Zermelian (Fig. 8) cases. In red is represented the hyperbolic geodesics. Conjugate locus for
the hyperbolic geodesics is represented in black.
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Figure 8: Deformation of the geodesic flow and conjugate locus starting from the Riemannian case to the
strong Zermelian case. We take λ = 4/5 and v = 0.0, 0.4, 0.8, respectively in the Riemannian (Fig. 7 top),
Finslerian (Fig. 7 bottom) and Zermelian (top) cases. In red (resp. in blue) is the hyperbolic (resp. elliptic)
geodesics. Conjugate locus for the hyperbolic (resp. elliptic) geodesics is represented in black (resp. in
dashed blue). The gray sector represents the strong current domain. Note that the conjugate locus is a closed
curve on the manifold, cf. the bottom figure.
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Figure 9: Zoom of Fig. 8. We can see on this figure the connection between the elliptic and the hyperbolic
conjugate locus.

we can extend the geodesic flow using a Levi-Civita type regularization beyond the collision with the pole by
reversing the time parameterization when crossing the vortex.

Proof. The geodesic dynamics in polar coordinates reads

dr

dt
=

pr
∥p∥g

,
dθ

dt
= µ(r) +

pθ
m2(r)∥p∥ g

.

As in [13], to prove the existence about minimizing trajectories it is sufficient to prove that the minimizing
trajectories avoid the collision. Using the expansion near the pole and comparing the time to make a rotation
around the pole on a circle of radius r denoted Tθ(r) and the minimal time to reach a circle of radius ε denoted
Tr(ε) a direct computation gives

Tθ(r) =
2πrβm(r)

r +m(r)
, Tr(ε) = r − ε.

Hence, the argument of [13] to replace a trajectory reaching a circle with small radius ε by the trajectory
making a rotation around the pole (see Fig. 10) is still valid and the existence result follows. Clearly from the
equations the time to reach the pole from q0 is obtained for pθ = 0 and is given by r0. Following the Levi-
Civita regularization we reverse the geodesics orientations when crossing the vortex. It amounts in particular
to replace µ(r) by −µ(r) and pθ by −pθ in the geodesics equations.

Remark 7. To replace the pole of the vortex potential by β > 1 in the general vortex case is similar to
the modification done by Poincaré in the Keplerian potential where he replaced the pole by β ≥ 2 (β ∈ N)
in order to avoid collisions. In our case the bound of the pole is given by the conditions Tθ(r) < Tr(ε) i.e.

ε < r

Ç
1− 2πrβ−1m(r)

rβ +m(r)

å
and 0 < ε < r.

5.2.2 The single vortex case in hydrodynamics

On the punctured plane we consider the case of an Euclidean metric in polar coordinates with

g = dr2 + r2 dθ2 and F0 =
k

r2
∂

∂θ
.
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Figure 10: Illustration of the construction of a strictly better admissible trajectory. The vortex is represented
by a red ball, while the trajectories are the solid black lines. We can see on the left, a trajectory crossing the
ball of radius ε. This trajectory is replaced on the right picture by a strictly better admissible trajectory.

The generalized potential is given by

Vε(r, pθ) =
p2θr

2

(εr2 + pθk)2
.

The geodesic curves can be classified using the potential and the main features are described hereinafter. See
[13] for more details and see also Figs. 11 and 12 for illustrations. We first introduce the following novel
definition.

Definition 5.1. A Reeb component is a foliation invariant by θ-rotation generated by a separatrix geodesic
(r(t), θ(t)) such that r(t) converges when t → ±∞ to two different equators, with different orientations.

Then, in the single vortex case, whe have the following results.

Proposition 5.8. Considering the single vortex case, for a given q0 ∈ R∗ \ {0}, we have:

• The domain of strong current is near the vortex and limited by the circle of radius r = k of moderate
current. The only equator solution is in the domain of weak current and is defined by the circle with
radius r∗ = 2k. There exists a unique separatrix emanating from the vortex and converging to the equator
with dθ

dt = 0 on the circle of radius 2k/
√
3. This separatrix forms a Reeb component in the interior of

the disk delimited by the equator, whose foliation as a singularity at the vortex.

• At the exterior of the circle of radius r∗ there exists a unique separatrix emanating from the equator and
converging to the infinity.

• The separatrices split the geodesic flow into trajectories that converge towards the vortex and those that
go to infinity.

• There exists two pseudo-meridians converging with maximal radial speed either towards the vortex or to
the infinity.

5.2.3 Generalized single vortex case

In this section, we describe a generalization of the situation analyzed in Section 5.2.2 in which we have several
equators and separatrices in relation with similar studied in dynamical systems, see for instance [22]. We
assume m = 1 and µ(r) rational but complex dynamics can be obtained with this restriction. We consider a
system with a current of the form:

F0(q) = µ(r)
∂

∂θ
with µ(r) =

λ r + β

r3
,

λ, β ∈ R \ {0}, so that the generalized potential is now given by

Vε(r, pθ) =
p2θr

4

(εr3 + pθ(λr + β))2
.
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Figure 11: (Left) Reeb’s foliation formed by the separatrices in the perforated disk of radius 2k in the (x, y)
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Figure 12: (Left) Behavior of the trajectories around the separatrix (black). The geodesics below the separatrix
(blue), i.e. parameterized by pθ < p∗θ (p∗θ parameterizing the separatrix), converge towards the vortex and
those above the separatrix (red) go to infinity. However, in the neighborhood of the separatrix the geodesics
come from the vortex. (Right) Illustration of the two pseudo-meridians represented in red and blue. Note
that both orbits do not coincide because of the drift. The dotted lines represent the semi-orbits computed
backward in time.

Moreover we assume that λ2 > −3β and β < 0. To integrate the flow, as in the Kepler case, we first use the
characteristic equation to integrate the r-dynamics. This leads us to

dr

dt
=
»
1− Vε(r, pθ) =

Å
(εr3 + pθλr + β)2 − pθr

4

εr3 + pθλr + β)2

ã
.

Then, we use an additional quadrature to integrate the θ-dynamics. Indeed, the θ dynamics given by dθ
dt = ∂H

∂pθ

can be re-parameterized by
dθ

dr
=

pθµ(r) + Vε(r, pθ)

(1− Vε(r, pθ))1/2
.

Finally, the geodesic flow can be classified using the potential and the Clairaut parameter pθ. At the end, we
have the following.

Proposition 5.9. Considering the generalized single vortex case and assuming that λ2 > −3β and β < 0,
then we have:
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• There exist three equators 0 < r1 < r2 < r3 given by:

r1 = −λ+
√

λ2 − 3β, r2 = λ−
√
λ2 + 3β and r3 = λ+

√
λ2 + 3β, (25)

and respectively associated to the Clairaut constants:

p1θ =
m(r1)

1 + µ(r1)m(r1)
, p2θ = − m(r2)

1− µ(r2)m(r2)
and p3θ = − m(r3)

1− µ(r3)m(r3)
.

The equators r1 and r3 are L-hyperbolic and the equator r2 is L-elliptic. See Figs. 13 to 15 for illustrations
and Definition 4.2.

• Equator r1 forms a Reeb component delimited by the vortex and r1, as in the simple vortex case (see
Fig. 13). while equator r3 is an homoclinic trajectory (see Fig. 15).

• When t → +∞, the micro-local classification gives:

– Equators r1 and r3 have two sectors formed by geodesics converging either to the vortex when
t → +∞ or to infinity. The two sectors being delimited by a pseudo-meridian (see Fig. 16).

– Equator r2 has three sectors, two of them being as in the previous item, the third one corresponds
to an elliptic sector (see Fig. 17).

5.3 Algorithm in the general case and the gluing process
5.3.1 Algorithm

We can deduce from the previous studies the method of analysis to handle a general case, and we proceed
as follows. In the normal coordinates (r, θ) on the covering manifold M c we have r ∈ (0, R) and we can
decompose the domain into disks ci < r < ci+1 with alternatively weak and strong currents. We compute
the equators solutions listed as 0 < r1 < r2 < · · · < rp < R and they can be classified according to their
optimality status into L-hyperbolic or L-elliptic equators. Then, taking a point q0, we can parameterize the
geodesics using the mechanical representation with the generalized potential using improper integrals. This
allows to construct the time minimal synthesis fixing an adapted neighborhood, using the first return mappings
to equators and meridians combined with conjugate point analysis, in both normal and abnormal cases. Note
that in the strong current domain the size of the adapted neighborhood is defined by the limit loop of the
self-intersecting geodesics related to the abnormal geodesics. This can be extended to a larger domain by
gluing different adapted neighborhoods, see [30, 31] for such a procedure for general control problems in the
plane.

5.3.2 The gluing process

In the previous section we describe the method to obtain global syntheses, by gluing together the syntheses
using different adapted neighborhoods but intricate situations can be constructed starting from case studies
by gluing such cases using the normal coordinates (r, θ). Indeed, each case is described by a pair of covariant
(µi(r),mi(r)), parameterizing respectively the current and the metric. They can be glued together in the
C∞-category using bump functions. For instance the vortex case with Euclidean metric can be glued to the
averaged Kepler case, to represent the Zermelo navigation problem of a passive tracer, swallowed by the vortex
to enter into a Kepler domain, to visit an equator solution, with non zero curvature and with different types
of geodesics.

6 Conclusion
The main contribution of this article is starting from the historical navigation problem studied by Zermelo and
Carathéodory to introduce general tools from geometric control to analyze navigation problems on surfaces of
revolution, based on the inspection of the geodesic curves. Two complementary techniques have been intro-
duced. First of all, the system can be extended to a single-input control system using the Goh-transformation
and this extension is suitable to parameterize the geodesics by quadrature, using the heading angle of the ship
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The vortex is represented by the red dot and different initial points by the black dots. The green circle is the
equator associated to r1.
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Figure 14: L-elliptic equator associated to r2. (Left) The potential r 7→ Vε(r, p
2
θ), for ε = −1. (Right) The

green circle represents the equator associated to r2.

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

r

Vε

-6 -4 -2 0 2 4 6

-5

-4

-3

-2

-1

0

1

2

3

4

5

x

y

Figure 15: Homoclinic separatrix parameterized by p3θ. (Left) The potential r 7→ Vε(r, p
3
θ), for ε = −1. (Right)

The green circle represents the equator associated to r3.
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Figure 16: (Left) The potential r 7→ Vε(r, p
1
θ + 0.1), for ε = −1. From the potential plot, one can deduce that

the trajectories necessarily go to the vortex or to infinity.
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Figure 17: Different sectors around the L-elliptic equator r2. (Left) The potential r 7→ Vε(r, p
2
θ − 0.3), for

ε = −1. From the potential plot, we deduce that the trajectories starting close to r2 remain contained in an
annulus (see the midlle figure for an example); those coming from the vortex return to it and those starting
sufficiently far from the vortex go to infinity (cf. right figure).

and to compute conjugate points in normal and abnormal cases. Second, we observe that the dynamics can
be integrated using a generalization of the methods used for 2d-integrable mechanical systems as a step to
compute action-angle variables. This leads to introduce in our frame, an extended potential. The application
is to analyze the geodesics using an extension of the Morse-Reeb classification[6].

These techniques are used to study three case studies which are the core of the article. The first one is to
recover in a neat geometric context the seminal results in the historical example. The second study is related
to celestial and space mechanics and is analyzed by homotopy starting from the weak current to strong current,
and deforming metrics on two-spheres of revolution. The interest of this case is to prove that in general the
cut locus splits into two branches. The first branch being formed by the standard Riemann-Finsler case,
thanks to continuity of the value function. But a second branch occurs in the strong current domain and is
associated to the semicubical singularity of the abnormal direction, with neighboring self-intersecting normal
extremals. Cut point occurs as intersection of abnormal and normal minimizing arcs but with distinct minimal
times. This phenomenon, already observed in the historical example, is shown to be related to non-continuity
property of the value function and is interpreted in a general frame of singularity theory. The third case study
concerns a generalization of the navigation of a passive tracer, to generate complex dynamics, in particular
with several equators and separatrices. All these cases can be glued to provide a serie of case studies, using
combination of mathematical and numerical computations, with nice 2d-representations and using adapted
softwares.

This article paves the road to many further studies. First of all, the techniques extend to general Zermelo
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navigation problems on surfaces of revolution, since the assumption about parallel current can be relaxed,
although the Morse-Reeb classification is more complex. Second, the results about the semicubical singularity
of the abnormal geodesic when meeting the boundary of the strong domain can be generalized to generic
Zermelo navigation problems, since the integrability of the geodesic flow is not an issue[15]. Finally, a new
branch of the cut locus is detected in the problem in relation with non-continuity of the value function. A
mathematical challenge is to make a complete description of the cut points, at least for 2d-Zermelo navigation
problems and a first step towards is a generalization to planar time minimal control problems.

Finally, this article is a step towards the aim of an automatic computations of planar time minimal
syntheses, in relation with classification of solutions of dynamical systems. Note in particular the relation
between Reeb’s graphs[6] and the generalized Morse-Reeb classification in our study.
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