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Zermelo Navigation Problems on Surfaces of Revolution and
Hamiltonian Dynamics

B. Bonnard∗, O. Cots†, B Wembe‡

April 27, 2021

Abstract

In this article, using the historical example from Carathéodory-Zermelo and a recent work describing
the evolution of a passive tracer in a vortex, we present the geometric frame to analyze Zermelo navigation
problems on surfaces of revolution, assuming the current invariant by symmetry of revolution. In this
context, normal (polar) coordinates distinguish parallels and meridians and one will consider the case
where the current is oriented along the parallels. The problem is set in the frame of time optimal control
and the Maximum Principle allows to select minimizers among geodesics, solutions of an Hamiltonian
dynamics. In the strong current domain, there exist both normal and abnormal geodesics, the later
representing limit curves of the cone of admissible directions. We present the concepts of conjugate points
in the normal and abnormal directions, associated to the singularity analysis of the central field defined by
the Lagrangian manifold formed by geodesics curves with fixed initial conditions, in relation with Hamilton-
Jacobi equation. This leads to a parameterization of the conjugate locus in the general case and conjugate
points along abnormal directions are cusp points of the geodesics when crossing the limit of the weak current
domain and are associated to non-continuity of the value function, due to bad accessibility propertie in
the weak current domain. The dynamics is Liouville integrable but this dynamics is intricated due to non-
compactness of the Liouville tori related to separatrices curves and interaction between parallels geodesics
causing the existence of Reeb components. We present a generalized Morse-Reeb classification associated
to an extended potential and this leads to a stratification of the geodesics set. Another complementary
point of view is described which goes back to the historical example, using the parameterization of the
geodesics by the heading angle of the ship, corresponding to the so-called Goh transformation in optimal
control. This leads to a different stratification of the set of geodesics using Lie brackets computations
and integration with Clairaut relation, interpreted as computing the control given by the derivative of the
heading angle. The abnormal geodesics being seen as a projection with two branches of a determinantal
variety. The final problem is to compute the cut locus and we introduce the first return mappings to
equator and meridian to order the geodesics and to compute the separating locus formed by intersecting
time minimizing geodesics. We apply our approach to analyse the historical example and a set of cases
studies related in particular to Zermelo navigation on spheres of revolution and the generalized vortex case
where the different techniques are used to analyze the dynamics of the geodesics and in fine to compute
the optimal syntheses in the geodesically complete case.

Key words

Zermelo navigation problems on surface of revolution, Abnormal geodesics, Integrable Hamiltonian dynamics
and Morse-Reeb classification, Conjugate and cut loci, Hamilton-Jacobi equation and regularity of the value
function.

1 Introduction and Summary
Our aim is to introduce the geometric frame from optimal control viewpoint to analyze Zermelo naviagation
problems on surfaces of revolution with application to numerous cases studies, motivated by applications. The
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first one being the historical example due to Carathéodory-Zermelo [21, 39] which is one founding study of
classical calculus of variations and which serves as a seminal motivation in our analysis. The second case
concerns the displacement of a passive tracer in the neighborhood of a vortex. This case with singularity has
been recently studied in [14, 15], motivated by applications in hydrodynamics [3] and in space and celestial
mechanics, in the relation with N-body problem, in the frame of Hamiltonian dynamics [28]. From geometric
point of view, the study of Riemannian metrics on surfaces of revolution is an important problem in Riemannian
geometry and the determination of the conjugate and cut loci for convex spheres goes back to the earliest
works by Poincaré and Myers [29, 30, 34]. Only very recently the conjugate and cut loci for oblate and prolate
ellipsoids of revolution were computed, solving the Jacobi conjecture about the astroidal shape of the conjugate
locus and later extended to general ellipsoids [26]. This leads to define a series of Zermelo navigation problems
on two-spheres of revolution, in the weak current case (where the drift current can be compensated) associated
to Randers geometry [24, 25] where the conjugate and cut loci can be computed by small deformation. But our
aim is to extend the analysis beyond the context of Riemann-Finsler geometry [5] by considering the strong
current case (in which the current is with larger norm than the unit Riemannian norm) and in the frame of
Hamiltonian dynamics coming form Maximum Principle [35]. In this article we shall consider the general case
where the ambient manifold M is a surface of revolution endowed with an induced Riemannian metric which
can be written g = dr2 + m2(r)dθ2 in (polar)normal coordinates with m(r) > 0 and the current is defined
by a vector field F0 = µ(r) ∂∂θ , and is oriented only along the parallels (the geometry being defined by the
two functions m(r) and µ(r)). Taking the orthonormal frame F1 = ∂

∂r , F2 = 1
m(r)

∂
∂θ , from optimal control

point of view the Zermelo navigation problems amount to minimize the transfer time between two points of
the ambient space for the control system

dq

dt
(t) = F0(q(t)) +

∑
i=1,2

ui()Fi(q(t)), u = (u1, u2), ‖u‖ ≤ 1. (1)

One first contribution of this article being, following Carathéodory-Zermelo point of view, to parameterize
the control by the heading angle of the ship α , observing that the control can be restricted to ‖u‖ = 1
and setting u1 = cosα, u2 = sinα. This correspond to Goh transformation in optimal control taking as
control v the derivative of the heading angle. Using this transformation and Maximum Principle the geodesics
candidate as minimizers can be interpreted as singular trajectories [11] of a single-input affine control systems.
Moreover they can be stratified into normal geodesics for which using [16] one can distinguish between small
time minimizing or maximizing trajectories, while they are separated by abnormal geodesics, called limit
curves by Carathéodory-Zermelo. The geodesics flow is Liouville integrable and in this frame we provide a
neat interpretation of the standard Clairaut relation and the integration of the geodesics by quadrature. The
stratification of the set of geodesics in this context being related to Lie brackets computations only.

The second contribution of this article is to use again the Maximum Principle to stratify the set of geodesics
using a generalized Morse-Reeb classification [7], introducing a one-dimensional mechanical systems with and
extended potential. This leads to a different stratification of the sets of geodesics in which either they fill
compact tori described by Liouville-Arnold theorem but also non-compact tori. Hence this leads to a compli-
cated Hamiltonian dynamics and in particular this gives a neat interpretation to Reeb components occurence
detected in the vortex case [15] and the relation to interactions between equators solutions (corrresponding to
parallel geodesics).

The third contribution is to apply our different techniques to three cases studies . The first one being
the historical example in which the complete analysis relies to the stratification using the heading angle and
we recover the time minimal synthesis described in [21]. The second study concerns the deformation of a
Riemannian case on a two-sphere of revolution in which we use the stratification of the set of geodesics
with the generalized Morse-Reeb classification. The final case being the extension of the vortex case to get
complicated Hamiltonian dynamics with several equators solutions and Reeb components.

The final contribution being to get a self-contained and neat presentation of the conjugate and cut points
for both normal and abnormal directions extending [16] to the abnormal case where the geodesics can have
cusp points corresponding to conjugate points [10] This is interpreted in terms of Lagrangian manifolds [9]
and Hamilton-Jacobi equation [27], showing in particular the relation with integrability properties of the
geodesics equations and of the value function. The important point remaining efficient algorithms to effective
computations of the conjugate loci in the case studies, combining in a modern setting mathematical analysis
and numerical computations based on [16], HamPathcode (www.hampath.org).

2



The article is organized as follows. In section 2, we introduce the general concepts and definitions and a
large collection of cases studies which are in fine the motivations of our work. In section 3 we introduce the
theoretical tools of our article. We recall the Maximum Principle and this leads to two parameterizations of
the geodesic curves, the first one is related to the extended Carathéodory-Zermelo-Goh transformation and we
construct semi-normal forms to parameterize the conjugate and cut loci in the normal and abnormal case. The
generalized Gauss curvature is introduced using Jacobi equation, which is useful to estimate conjugate points
for equator solutions. The second parameterization is described and leads to define the generalized potential.
We introduce the concepts and results related to the generalized Morse-Reeb classification of the geodesics. In
the final section 4, we present the applications of our techniques to analyze three cases studies. The first case
concerns the historical example for which we present a complete analysis in the frame of geometric control,
describing in particular the cut loci related to existence of abnormal curves and associated to non-continuity
of the value function and bad accessibility properties. The second case is a Zermelo navigation problem on
a two-sphere of revolution associated to Kepler orbital transfer but also to the so-called Grushin case, where
the metric is singular. We use the generalized Morse-Reeb classification and we decribe the conjugate and cut
loci for an initial point located on the equator solution. We show in particular the stratification of the cut
loci into two distinct components associated respectively the branch related to the abnormal solution (already
detected in the historical example in relation with limit curves) and the branch occuring in the Riemannian
case of revolution and associated to the general description of the conjugate and cut loci by Poincaré. The
third case aims to describe complicated dynamics related to generalizations of the single vortex case. Finally
a construction is presented to glue all the existing cases either along equators or meridians to get a general
classification of situations occuring on surfaces of revolution with a parallel current, opening the road extension
to a general current with rotational symmetry.

2 Definitions and Notations. List of the Cases Studies

2.1 Definitions and Notations
Let M be a (smooth) surface of revolution and we denote by g the induced Riemannian metric ‖ .‖g and let
T ∗M be the cotangent bundle endowed with Liouville canonical form α = pdq. A Lagrangian manifold is a
2-dimensional submanifold where dα is zero. We denote by (r, θ) normal (polar) coordinates on the covering
Riemannian manifold M c where the metric takes the form g = dr2 + m2(r) dθ2, m(r) > 0. This defines a
canonical orthonormal frame F1 := ∂

∂r , F2 := 1
m(r)

∂
∂θ . The lines r= constant are called the parallels and the

lines θ = constant are called the meridians. A Zermelo navigation problem is defined by the pair (M,F0) and
where F0 is a vector field invariant by θ− rotation, representing the current and oriented along the parallel,
so that in the covering space it can be written as F0 := µ(r) ∂∂θ . If µ(r) = v constant (resp. linear) this is
called the constant (resp. linear) current case. Let q0 = (r0, θ0), an adapted neighborhood of q0 is a rectangle
R := {r1 ≤ r ≤ r2; θ1 ≤ θ ≤ θ2}. From control point of view, a Zermelo navigation problem can be written in
q−coordinates as : Minimize the transfer time between two points (q0, q1) for the system :

dq(t)

dt
= F0(q(t)) +

∑
i=1,2

ui(t)Fi(q(t)),

where the control u(·) = (u1(·), u2(·)) is an absolutely continuous function defined on [0, T ], whose (euclidian)
norm is ‖u‖ =

√
u21 + u22 and one may assume ‖u‖ ≤ 1. The heading angle α of the ship in the canonical frame

is defined by: u1 = sinα, u2 = cosα where according to Clairaut interpretation, α is the angle with respect
to the parallel. One can decompose the covering space with coordinates (r, θ) into rectangles r0 < r < r1
in which we have either weak current if ‖F0‖g < 1 or strong current case if ‖F0‖g > 1. Transition between
the two cases being called the moderate currrent case given ‖F0‖g = 1. The Zermelo navigation problem is
called (geodesically) complete if for each pair (q0, q1) such that q1 is accessible to q0, there exists a minimizing
trajectory of the control system joining q0 to q1. Fixing the initial point q0, we denote by q1 → T (q0, q1) the
time minimal value function representing the minimized transfer time from q0 to q1.
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2.2 List of motivating cases studies
2.2.1 Historical example of Caratheodory-Zermelo ([21, ?])

One founding problem in classical calculus of the variations is the problem introduced by Carathéodory and
Zermelo of a ship navigating on a river aiming to reach the opposite shore in minimum time. Hence M is the
2-dimensional Euclidian space with metric g = dx2 + dy2 in the coordinates q = (x, y), y being the distance
to the shore. To make a complete analysis, Carathéodory-Zermelo considered a linear current of the form
F0 = y ∂

∂x . Using our notation to fix parallels and meridians, one must set x = θ, y = r, so that the ambient
manifold is the Euclidian space with metric g = dr2 + dθ2 and F0 = r ∂∂θ .

2.2.2 The vortex case ([15, 14])

In the vortex case one consider the punctured Euclidian space where the vortex is localized at the origin and
the ship is a passive tracer in hydrodynamics whose motion is described by

dx(t)

dt
= − ky(t)

x(t)2 + y(t)2
+ u1(t)

dy(t)

dt
= +

ky(t)

x(t)2 + y(t)2
+ u2(t),

where k > 0 is the circulation parameter and one has F1 = ∂
∂x , F2 = ∂

∂y and ‖u‖ ≤ 1. The problem is written
in polar coordinates x = r cos θ, y = r sin θ so that the Euclidian metric takes the form g = dr2 + r2 dθ2 and
the current transforms into F0 = k

r2
∂
∂θ . The ambient manifold is defined by r 6= 0, F0 having a pole at the

origin identified to r = 0.

2.2.3 Averaged Kepler case ([9])

The ambient space M is the two-sphere of revolution, the metric being defined m2(r) = sin2 r
1−λ sin2 r

where λ is
an homotopy parameter deforming the round sphere if λ = 0 to the singular metric called Grushin case for
λ = 1 and λ = 4/5 corresponds to the averaged Kepler case, where e = sin r is the eccentricty.

2.2.4 Ellipsoid of revolution ([26])

The ellipsoid is generated by the curve : y = sinϕ, z = ε cosϕ where 0 < ε < 1 corresponds to the
oblate (flattened) case while ε > 1 corresponds to the prolate (elongated) case. The metric takes the form
g = F1(ϕ)dϕ2 + F2(ϕ) dθ2, with F1(ϕ) = cos2 ϕ + ε2 sin2 ϕ, F2 = sin2 ϕ. The metric can be written in the
normal form by setting dr =

√
F1(ϕ)dϕ. This defines the metric on the two-sphere of revolution.

2.2.5 The Serret-Andoyer case ([12])

The Serret-Andoyer metric in the normal form is given by m2(r) = (Acn2(αr, k) + Bsn2(αr, k))−1, where cn
and sn are Jacobi elliptic function so that m(r) is periodic and moreover m(r) = m(−r). One has k2 = B−A

C−A ,
α =
√
C −A, where 0 < A < B < C are parameters. This corresponds to a representation of the mechanical

pendulum.
For the previous metrics, this defines Zermelo navigation problem associated to constant and linear current,

on the covering space. In the ellipsoid case, the oblate case is different from the prolate case, in relation with
permuting meridians and parallels and our study will cover only the oblate case. Note also that a two-sphere
a constant current corresponds to a linear rotation with axis 0z.

3 The geometric tools from optimal control theory and the Hamil-
tonian analysis

3.1 Generalities and Maximum Principle
If not mentioned, all the objects are in a smooth (C∞ or Cω) category. We consider a Zermelo navigation
problem determined by a triplet (M,F0, g) where M is a 2D-manifold with normal coordinates: (q = (r, θ)),
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F0(q) is a vector field defining the current (or wind) given by:

F0 := µ(r)
∂

∂θ

and where g is a metric of revolution in the form: g = dr2 +m2(r)dθ2. Taking F1 = ∂
∂r , F2 = 1

m(r)
∂
∂θ , from

optimal control point of view, the Zermelo navigation problem is a time minimal transfer between two points
(q0, q1) for the control system:

q̇ = F0(q) +
2∑
i=1

uiFi, u = (u1, u2) ‖u‖ ≤ 1, (2)

u = (u1, u2) and the set of admissible controls U is the set of bounded measurable mapping defined on [0,+∞[
and valued in the domain U := {u / ‖u‖ ≤ 1}. Fixing q(0) = q0, we denote by q(·, q0, u) the solution of (2)
with q(0) = q0, associated to u(·) and defined on a maximal interval J . We introduce the following:

Definition 3.1. The fixed extremity mapping is the map Eq0,tf : u(·) 7→ q(tf , q0, u(·)) and the extremity
mapping is the map Eq0 : u(·) 7→ q(·, q0, u(·)). The set of inputs being defined on a subdomain of L∞. The
time accessibility set A(q0, tf ) is the image of Eq0,tf and the accessibility set A(q0) =

⋃
tf
A(q0, tf ) is the image

of the extremity mapping.

Maximum Principle. We recall the maximum principle from [35] to parameterize the minimizers.

Proposition 3.1. Let Hi = p ·Fi(q) be the Hamiltonian lift of Fi(q) for i = 0, 1, 2 and H(q, p, u) = H0(q, p) +∑2
i=1 uiHi(q, p) denote the Hamiltonian lift of the system called pseudo-Hamiltonian. If q(·, u) are candidates

as minimizers, there exists an absolutely continuous function p(·) (with p(t) 6= 0) such that (q, p, u) is solution
of:

q̇ =
∂H

∂p
, ṗ(t) = −∂H

∂q
,

H(q, p, u) = max
‖v‖≤1

H(q, p, v),
(3)

Moreover, the cost extended Hamiltonian M(q, p, u) = H(q, p, u) + p0 is such that p0 is constant and ≤ 0.
While p0 ≥ 0 corresponds to time maximizing solutions. Solving (3) leads to the following formulation

Proposition 3.2. Denote by M(z), z = (q, p), the maximized Hamiltonian M(z) = max‖v‖≤1H(z, v), one
has

• The maximizing controls are given by

ui(z) =
Hi√

H2
1 +H2

2

, i = 1, 2. (4)

• The maximized Hamiltonian is given by

M(z) = H0(z) +
»
H2

1 +H2
2 + p0 (5)

where p0 is a constant and p0 ≤ 0 in the time minimizing case and p0 ≥ 0 in the time maximizing case.

• Candidates as time minimizers or maximizers are solutions of the Hamiltonian dynamics:

ż(t) =
# —

M(z(t)), (6)

with
# —

M =
∂M

∂p

∂

∂q
− ∂M

∂q

∂

∂p

Definition 3.2. An extremal is a solution z(·) = (q(·), p(·)) of (6) and a projection of an extremal is called
a geodesic. A geodesic is called regular if t 7→ q(t) is a one-to-one immersion. It is called strict if p is unique
up to a factor, normal if p0 6= 0 and abnormal (or exceptional) if p0 = 0. In the normal case it is called
hyperbolic (resp. elliptic) if p0 < 0 (resp. p0 > 0).
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One has the following (see [16])

Proposition 3.3. Let z(·) = (q(·), p(·)) be a reference extremal defined on [0, T ] associated to u. If we endow
the set of controls (valued in ‖u‖ = 1) with the L∞-norm topology we have:

1. In the normal case, u is a singularity of the fixed time extremity mapping, that is the image of the Fréchet
derivative is not of maximal rank.

2. In the abnormal case, u is a singularity of the extremity mapping.

Definition 3.3. Fixing q(0) = q0, the exponential mapping is the map (t, p(0)) 7→ Π(exp t
# —

M(z(t))) where
Π : (q, p) 7→ q is the q-projection. Take a regular normal geodesic q(·), a conjugate point along q(·) is a point
where the exponential mapping is not an immersion and taking all such geodesics, the set of first conjugate
points will form the conjugate locus C(q0). Given a geodesic, the cut point is the first point where it loses
optimality and they will form the cut locus Σ(q0). The separating line L(q0) is the set of points where two
minimizing geodesics starting from q0 are intersecting.

Computation of minimizers can be carried out using the maximized or non maximized Hamiltonian. We
introduce the following.

3.2 Carathéodory-Zermelo-Goh transformation and evaluation of the accessibil-
ity set

3.2.1 Carathéodory-Zermelo-Goh (CZG) transformation

In the historical example [21], the authors integrated the dynamics of the heading angle α to parameterize
the geodesics. This corresponds to the Goh transformation in optimal control and this will be crucial in our
analysis.

Definition 3.4. Consider the control system (2), with q = (r, θ) and u restricted to the unit sphere i.e
‖u‖ = 1. One can set u = (cosα, sinα), α being the heading angle of the ship. Denote q̃ = (q, α), X(q̃) =
F0(q) + cosαF1(q) + sinαF2(q) and Y (q̃) = ∂

∂α . This leads to prolongate (4) into the single-input affine
system:

˙̃q = X(q̃) + v Y (q̃) (7)

where the derivative of the heading angle v = α̇ is the accessory control and such tranformation is called
Carathéodory-Zermelo-Goh transformation.

The first consequence is the important geometric point of view presented next.

3.2.2 Evaluation of the extremity mapping and conjugate point computation in the regular
case

We shall make use of the results of [16] proved in a n-dimensional setting, for single input systems, to calculate
conjugate point in the normal and abnormal case for regular curves. It is based on the concepts of normal
forms, important also in our study. Consider system (7), with coordinates z̃ = (q, α, p, pα), p adjoint vector
associated to q and pα associated to α. This leads to introduce the extended Hamiltonian:

H̃(z̃, v) = p̃ · (X(q̃) + v Y (q̃)), with v ∈ R. (8)

From [16], using the Maximum Principle in this setting we obtain the following parameterization of the geodesic
curves. Let γ be a reference geodesic for the extended system defined on [0, T ]. We assume the following :

(A1) The q-projection of γ is regular, and hence along γ, X and Y are independent.

(A2) The reference geodesic is strict and hence along γ, Y and [X,Y ] are linearly independent.

(A3) For the computation of (4), the generalized Legendre-Clebsch condition is satisfied along γ, i.e : [[Y,X], Y ] /∈
Span{Y, [Y,X]}.
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Let us introduce the following determinants

D = det(Y, [Y,X], [[Y,X], Y ]),

D′ = det(Y, [Y,X], [[Y,X], X]),

D′′ = det(Y, [Y,X], X),

(9)

and the following vector field called the CZG-geodesic field:

Xs = X + vsY (10)

where vs is the feedback

vs = −D
′(q̃)

D(q̃)
, (11)

and also the Jacobi (or variational equations)ı̇δq̃(t) =
∂Xs

∂q̃
(q̃(t)) · δq̃, (12)

then, we have.

Theorem 3.1. The geodesics under the CZG transformation extend into solutions of Xs. Moreover

• hyperbolic geodesics are in DD′′ > 0,

• elliptic geodesics are in DD′′ < 0,

• abnormal (or exceptional) geodesics are located in D′′ = 0.

Given a nomal (hyperbolic or elliptic) geodesic defined on [0, T ] and the first associated conjugate time t1c on
]0, T [ i.e the first time for which the solution J(t) of the Jacobi equation with J(0) = Y (q̃(0)) is such that
det(J(t1c, Y (q̃(t1c)), X(q̃(t1c)) = 0. Abnormal geodesics are C1-time minimizing and maximizing up to the
first conjugate time t1c, hyperbolic (resp. elliptic) geodesics are C1-time minimizing (resp. maximizing).

This result is proved in [16] but we sketch the main step of the proof to understand the geometric con-
struction.

Sketch of the proof. The main tool is to construct a semi-normal form for a reference geodesic satisfying our
assumption for the feedback group. The reference geodesic denoted γ(t) and defined on [0, T ] is identified to
t 7→ (t, 0, 0) jet-space and the reference control can be taken as v ≡ 0, using a proper feedback. Normalization
are obtained in the space of [X,Y ] in the neighborhood of γ. We must distinguish normal and abnormal case.

Normal case. We can choose coordinates q̃ = (q1, q2, q3) such that the system takes the form:

X =

(
1 +

3∑
i,j=2

ai,j(q1)qiqj

)
∂

∂q1
+ q3

∂

∂q2
+ ε1,

Y =
∂

∂q3
,

(13)

with a33 < 0 (resp. a33 > 0) in the hyperbolic (resp. elliptic) case.

Abnormal Case We can choose coordinates q̃ = (q1, q2, q3) such that the system takes the form:

X = (1 + q2)
∂

∂q1
+

1

2
a(q1)q22

∂

∂q3
+ ε2,

Y =
∂

∂q2
.

(14)

See [16] for details of the computation and description of ε1, ε2. Taking εi = 0 and q1 = t in (13)-(14), one can
evaluate the accessibility set and it boundaries, filled by geodesics, and compute conjugate points deducing
the optimality status, one has:

7



Optimality status in normal case. Using the normalization in (13) one sets: q1(t) = t + w1(t) and
projection of the accessibility set in w1-direction is represented on Fig. 1. Note that hyperbolic and elliptic
geodesics amount respectively to minimize and maximize the w1-coordinate. If t > t1c (first conjugate time)
the fixed extremity mapping becomes open.

t

w1

0 t1c

elliptic case

t

w1

0 t1c

hyperbolic case

Figure 1: Projection of the fixed time accessibility set on the w1-coordinate; t1c bieng the first conjugate time.

Optimality status in abnormal case. In this case, one must evaluate the time evolution of the accessibility
set and it boundaries. It is represented on Fig. 2. The reference geodesic is γ : t 7→ (t, 0, 0) and is associated
to v ≡ 0. We fix t along the reference curve and let a time tf in a neighborhood of t. Using the model, we
compute geodesics such that :

q1(tf ) = t, q2(tf ) = 0, (15)

and the associated cost is given by

q3(tf ) =

∫ tf

0

a(q1)q22 dt. (16)

This give the parameterization of the boundaries of the accessibility set as:

q3(tf ) = α(t− tf )2 + o(t− tf )3 (17)

α being a positive invariant, given by the Jacobi equation. Note that the model (14) clearly shows that the
abnormal curve is a so-called limit curve, as observed by Carathéodory [21]. It’s also show that conjugate
points cannot occur in the 3d-case, see again [16] for the occurence of conjugate points along abnormal curve
in the n-dimensional case for n > 3. In this analysis, the integrability of the geodesic flow is not required but
in the model, the accessibility set can nevertheless be evaluated since in the models, the extremity mapping
can be computed (making εi = 0).

tf

q3

abnormal

hyperbolicelliptic

t

Figure 2: Projection of the accessibility sets on the q3-coordinate in the abnormal case.

Next, the CZG tranformation is used to integrate by quadrature the geodesic flow in the rotational case.
Moreover, a clear geometric integration is performed clarify the integration process in the historical example.
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3.2.3 The geometric frame and the integrability properties

Geometric frame Using the CZG extension and q̃ = (r, θ, α) the coordinates, we have:

X = cosα
∂

∂r
+

Å
µ(r) +

sinα

m(r)

ã
∂

∂θ
.

and Lie bracket computation gives:

[Y,X](q̃) = sinα
∂

∂r
− cosα

m(r)

∂

∂θ
,

[[Y,X], Y ](q̃) = cosα
∂

∂r
+

sinα

m(r)

∂

∂θ
,

[[Y,X], X](q̃) =

Å
−µ′(r) sinα+

m′(r)

m2(r)

ã
∂

∂θ
.

Hence we have:
D(q̃) =

1

m(r)
,

D′(q̃) = −µ′(r) sin2 α+
m′(r) sinα

m2(r)
,

D′′(q̃) = µ(r) sinα+
1

m(r)
.

So that by construction, conditions (A2) and (A3) are satisfied, but the collinearity condition (A1) can be
violated and we have

Lemma 3.1. The collinearity condition (A1) can be violated only along the abnormal curves at points where:

cosα = µ(r) +
sinα

m(r)
= 0.

The dynamics is given by
ṙ = cosα,

θ̇ = µ(r) +
sinα

m(r)
,

α̇ = µ′(r)m(r) sin2 α− m′(r) sinα

m(r)
.

(18)

and we have the following.

Proposition 3.4. The dynamics (18) can be integrated by quadrature.

Proof. The pseudo-Hamiltonian takes the form:

H = pr cosα+ pθ

Å
µ(r) +

sinα

m(r)

ã
+ p0. (19)

Moreover, from the maximization condition one has:

∂H

∂α
= 0,

which gives the Clairaut relation:
pr sinα =

pθ
m(r)

cosα.

So, (pr, pθ/m(r)) and (cosα, sinα) are parallels and thanks to this, one has (pr, pθ/m(r)) = λ(cosα, sinα),

with λ =
(
p2r +

p2θ
m2(r)

)1/2
. Plugging such pr into (19) allows us to define the following implicit relation between

α and r:
pθ

Å
µ(r) +

1

m(r) sinα

ã
+ p0 = 0. (20)
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for α 6= 0 [π]. By homogeneity one can fix λ(0) = 1 and have (pr0 , pθ/m(r0)) = (cosα0, sinα0). So that, one
gets pθ = m(r0) sinα and from the maximized Hamiltonian one deduces p0 = −1− pθµ(r0).

Equation (18) can be solved by quadrature. From geometric control point of view, it amounts to compute
first the control using the integration of the heading angle, r being given by equation (20). Then, θ can be
obtained using a further quadrature. In the case where α0 = 0 [π], one has:

α = α0, r(t) = ±t+ r0, and θ(t) =

∫ t

0

µ(r) dt.

One further consequence bieng the parameterization of the conjugate locus.

3.2.4 Parameterization of the conjugate locus in the normal case

Conjugate points are given using theorem 3.1 by the condition

det(J(t1c), Y (q̃(t1c)), X(q̃(t1c))) = 0

where J(t) denotes the Jacobi field which is semi-vertical at t = 0, i.e J(0) = Y (q̃(0)). Using the ad-formula,
one has:

J(t) = et adXs(Y (q̃(t)) =
∑
n≥0

tn

n!
adnXs(Y )(q̃(t)) (21)

where adXs · Y = [Xs, Y ] denotes the adjoint operator. Since q̃(t) is a geodesic curve one has

J(t) ∈ Span{Y (q̃(t)), [Y,Xs](q̃(t))}

and it can be written as
J(t) = λ1(t)Y (q̃(t)) + λ2(t)[Y,Xs](q̃(t)),

so conjugate times tc (in particular the first conjugate time t1c) are given by λ2(tc) = 0 i.e J(t) collinear to
Y (q̃(t)). Thus we have:

Proposition 3.5. In the rotational Zermelo navigation problem, the conjugate locus is defined by the Jacobi
field J(t) which can be integrated thanks to the integrability property of the dynamics and we have: J(t) belongs
to the kernel of the Cartan-Hilbert form ω defined by:

ω(Xs) = 1, ω(Y ) = ω([Y,Xs]) = 0,

and at the conjugate time tc, J(tc) is semi-vertical i.e collinear to Y (q̃(tc)).

This defined the conjugate locus in the normal case. Moreover, note that the semi-normal form (13) defines
a canonical form of Jacobi equation in the general frame of single-input affine systems, this gives the singularity
of the time value mapping associated to conjugate points in the normal case.

3.2.5 Historical example as a model of the cusp singularity in the abnormal case

We can refer to [14] for a complete presentation. Recall first that for a Zermelo navigation problem the
domain in the (r, θ) coordinates is split into bord r0 < r < r1 where, if q = (r, θ) is such that ‖F0‖g < 1
(resp. ‖F0‖g > 1) the current is called weak (resp. strong). Transition between the two case being a moderate
current where ‖F0‖g = 1. In the weak case, there is no abnormal geodesics. In the strong case there is
two abnormal derections defined by two distinct heading angles denoted {α1, α2} and they form the tangent
to the indicatrix defined by: F0(q) + ‖u‖ where u is given by u = (cosα, sinα). We consider the following
coordinates q̃ = (x, y, γ) = (θ, r, π/2 − α), where r, θ and α are understood in the sense of the previous
section. It’s interesting to use the historical example of Caratheodory-Zermelo as a model (normal form) to
make the following analysis. We get the following, illustrated on figures 3-4 (see [21] for more details): The
two abnormal directions at the initial point are given by

γ1a = arccos

Å
− 1

y0

ã
and γ2a = − arccos

Å
− 1

y0

ã
.
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A cusp point denoted (xcusp, ycusp, γcusp) occurs along an abnormal geodesic at time tcusp when ẋ(tcusp) =
ẏ(tcusp) = 0. This gives

tcusp = tan γ0, γcusp = 0 [π] and ycusp = sign (y0) .

Finally, xcusp is deduced from the analytical expressions given above. And we deduce:

• The abnormal geodesic with the cusp singularity is the limit curve of the micro-local sector, formed by
self-intersecting hyperbolic geodesics.

• The abnormal geodesic is optimal up to the cusp point. Hence it corresponds to a concept of conjugate
point along the nonsmooth abnormal geodesic.

• Moreover, due to the loss of local accessibility associated to the limit geodesic, the time minimal value
function is not continuous. This is clear from Fig. 4. To reach from the initial point q0 a point B at
right of the limit curve, one must use a self-intersecting normal geodesic so that at the intersection with
the abnormal geodesic, the time is longer along the normal than along the abnormal geodesic. We also
observe that in this sector, the normal geodesic is optimal up to the intersection point with the abnormal
geodesic.

F0(q0)

abnormal (α)

abnormal (−α)

hyperbolic

elliptic‖u‖ = 1

q0

ä

ä

ä

ä

abnormals

hyperbolic

elliptic

S(q0, r)

time maximizing

q0

Figure 3: (Left) ball of directions, (Right) Small sphere and ball in the strong current case. (F0 parallel
direction)

3.2.6 Conclusion: models of conjugate points

Normal case. It is deduce using the CZG-representation by (13) where Xs can be set thanks to integrability
as Xs = ∂/∂x and the accessory LQ problem from [16] can be set to (q = (x, y, z)):

1 + L(t, y, z)
∂

∂x
+ z

∂

∂y
+ u

∂

∂z

where the reference geodesic is normalized to t 7→ (t, 0, 0) and the quadratic form L is given by

L(t, y, z) = a(t)z2 + 2b(t)yz + c(t)y2,

and a < 0 (resp. a > 0) in the hyperbolic (resp. elliptic) case. While a, b, c can be compute using Lie brackets
along the reference geodesic. The associated Jacobi equation takes the form of the second order diffrential
operator:

d2ϕ

dt2
+
da

dt
+ a−1

dϕ

dt
+

Å
db

dt
− c
ã
a−1ϕ = 0

11
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-2.5

-2
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x
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q0

•
B

cusp

-2 -1.5 -1
0

1

2

3

4

y

T

Figure 4: (Left) The initial point is q0 = (−2, 0). The abnormal geodesic with the cusp singularity is in
green while the others geodesics in red are hyperbolic. We can see that the cusp singularity is the limit of
self-intersecting hyperbolic geodesics. Besides, to reach the point B from q0, one has to use a hyperbolic
self-intersecting geodesic. When this hyperbolic geodesic intersects the abnormal, the time is longer along the
hyperbolic than the abnormal. At this intersection, the hyperbolic geodesic ceases to be optimal. (Right) The
time minimal value function along the dashed segment from the left subgraph. The discontinuity occurs at
the intersection between the hyperbolic and abnormal geodesics. It is represented by the green dot, which is
the time along the abnormal geodesic.

If we set A = da
dt a
−1, B =

(
db
dt − c

)
a−1, C = exp

∫ t
0
−A(s)

2 ds and K = d2C
dt2 +AdC

dt +BC, this equation can be
set in the canonical form

d2J

dt2
+K(t)J = 0 (22)

and by analogy with the Riemannian case, K(t) is called the curvature of the Zermelo navigation problem.

Abnormal case. Conjugate point can be computed as a cusp singularity of the historical model described
by (18) where p0 = 0 (abnromal case) and using Lie brackets only with the relation D′′ = 0 and A = (0.0, 1.5)
initial point gives the reference abnormal arc. We get the following figure 5 summarizing the two cases
excerpted from geodesic beheviors only.

Figure 5: Conjugate points in the 2D-space
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3.3 The mechanical representation and Hamiltonian dynamics anlysis. The gen-
eralized Morse-Reeb classification. Micro-local analysis

Definition 3.5. Let dx
dt = X(x) be a smooth dynamical system and we may assume that the vector field X is

complete. We denote by x(t, x0) the solution emanating from x0 at t = 0. A point x1 is called a ω- l imit point
(resp. α− limit point) if there exists an increasing sequence 0 < t1 < · · · < tn, tn → +∞ (resp. a decreasing
sequence 0 > t1 > ... < tn, tn → −∞) such that x1 = limtn→+∞x(t, x0) (resp. x1 = limtn→−∞x(t, x0)).
Taking all such points, they will define the ω − limit set Λ+(x0) (resp. the α− limit set Λ−(x0)).

Theorem 3.2 (Liouville-Arnold). Let H be an Hamiltonian vector field on T ∗M (M being 2-dimensional)
with an additional first integral G so that {H,G} = 0. Assume the corresponding vector field are complete
and moreover H and G are functionally independant. Then the hamiltonian vector field is called Liouville
integrable and moreover if the set Tξ defined by [H = c1, G = c2; ξ = (c1, c2)} is regular. Then we have.

1. Tξ is a smooth manifold invariant by the flow of H and G.

2. If Tξ is connected and compact, then Tξ is diffeomorphic to the 2-dimensional torus T 2 and it is called
a Liouville torus.

3. The Liouville foliation is trivial that is in some neighborhood of the torus Tξ being a direct product of T 2

and the disc D2.

4. In the neighborhood of U = T 2×D2 there exist action-angle variables so that the dynamics can be written
: dsi

dt = 0, dϕidt = αi(s1, s2), i = 1, 2.

Application to the averaged Kepler case. In this case the ambient manifold M is the (compact) 2-
dimensional sphere. If g is the metric in normal coordinates the hamiltonian vector field is defined by H =
1
2 (p2r +

p2θ
m2(r) ) and G = pθ is the additional (linear) first integral. Trajectories of H splits into three cases :

the meridians defined by θ constant, the equator which can be identified to π/2 with r ∈ [0, π] in the normal
coordinates on the sphere. All the other trajectories are formed by solutions so that r oscillates periodically
of the mechanical system Å

dr

dt

ã2
= 1− V (r, pθ) = G(r, pθ),

which can be integrated starting from the equator r0 = π/2 and using by example the ascending branch, the
term V =

p2θ
m2(r) being the potential. One further integration is necessary in order to recover the θ−variable

using the hamiltonian dynamics. Parameterizing by r on each branch this dynamics takes the form

dθ

dr
=

1√
G(r, pθ)

∂H

∂pθ
.

This allows to compute the variation denoted ∆θ/2 of the angle θ starting from the equator and on the
ascending branch the total variation to return to the equator being ∆θ. Note that in the limit case of the
equator the rotation is stationary since r is constant. This gives the complete description of the Liouville tori,
with periodic trajectories if ∆θ/2π is rational and dense orbits if ∆θ/2π is irrational.

Theorem 3.3. Given a Zermelo navigation problem on a surface of revolution, with parallel current.

1. Denoting ‖p‖g =
(
p2r0 +

p2θ
m2(r0)

)1/2
, the evolution of the in the (r, pr) space is decribed by the hamiltonian

dynamics
dr

dt
=

pr
‖p‖g

,
dpr
dt

= −pθµ′r) +
p2θm

′(r)

m3(r)‖p‖g
.

2. It can be integrated using the mechanical system representationÅ
dr

dt

ã2
+ Vε(r, pθ) = 1
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where the generalized potential is given by

Vε(r, pθ) =
p2θ

m2(r)(ε+ pθµ(r))2
,

where ε = −p0 < 0,= 0, > 0 corespond respectively to the hyperbolic, elliptic and abnormal case.

3. Since the hamiltonian is constant we normalyze ‖p(0)‖g = 1, i.e (ε+ pθµ(r0)) = −1, one has:

p2r = (ε+ pθµ(r0))2 − p2θ
m2(r)

with
pθ ∈ J(r0, pr0) = {pθ | ‖p(0)‖g = 1} .

Proof. The first point of theorem is a consequence of the Maximum Principle, in particular it comes from
equation (3).

For the second and third points, we have on one side, from the Hamiltonian: ‖p‖r = −ε− pθµ(r), so:

p2r = ‖p‖2r −
p2θ

m2(r)
= (ε+ pθµ(r))2 − p2θ

m2(r)
. (23)

On other side, from the restricted system in (r, pr) one has:

ṙ =
pr
‖p‖r

ṗr = −pθµ′(r) +
p2θm

′(r)

m3(r)‖p‖r
.

So that, ṙ2 =
p2r
‖p‖2r

. Finally, using these two relations, we deduce:

ṙ2 =
p2r
‖p‖2r

=
(ε+ pθµ(r))2 − p2θ

m2(r)

(ε+ pθµ(r))2

= 1− p2θ
m2(r) (ε+ pθµ(r))

2 ,

conclusion then follows.

Definition 3.6. The classification of trajectories of the restricted hamiltonian dynamics, where pθ is fixed is
called the Generalized-Morse-Reeb (GMR) classification defined by the generalized potential Vε.

Definition 3.7. Assume the hyperbolic case ε < 0. An equator r = r1 is an equilibrium point (r1, 0) of
the restricted dynamics. It is called L − elliptic if the linearized dynamics is with spectrum {±iα, α 6= 0},
L − hyperbolic if the spectrum is of the form {λ,−λ, λ 6= 0} and L − parabolic if the spectrum is zero.
The elliptic case corresponding respectively to a stable case associated a minimum of the potential and in the
hyperbolic case an unstable case associated to a maximum. An equator corresponding to a stationary rotation,
it is called positive rotation (resp. negative) if θ is rotating with a positive (resp. negative) frequency. A
separatrix geodesic is a geodesic e(t) = (r(t), ∗) such that r(t)→ r1 as t→∞ and it is contained in the same
level of the Hamiltonian and this is called a singular level.

Definition 3.8. A generalized Reeb component is a separatrix solution e(t) = (r(t), ∗) so that r(t) converges
respectively when t→ ±∞ to two equators solutions and with different orientations.

Definition 3.9. Let U be an adapted neighborhood of q0. Geodesics at the initial time decompose into starting
ascending branch, starting descending branch or tangential to the parallel for which one must consider the case
with positive or negative acceleration d2r

dt2 (0). Note that if we start from the equator both coincide. The first
return to the equator (resp. the meridian) associated to a geodesic is the first point such that the geodesic
reintersects the equator (resp meridian) passing through the initial point.
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Proposition 3.6. Let U be and adapted neighborhood of q0 = (r0, θ0). Levels sets sin the GMR-classification
splits into compact levels corresponding to r − periodic geodesics and non-compact level sets corresponding to
r − aperiodic geodesics restricted to the neighbohood U . If r1 is an equator which is L− elliptic, then locally
the Liouville foliation by Liouville tori is preserved.

Proposition 3.7. Let q0 be a fixed initial condition, then using the GMR-classification for each adapted
neighborhood of q0 one can stratified the set of geodesics emanating from q0 into micro-local (conic) sectors
corresponding to compact and non-compact geodesics.

Remark 1. The decomposition depens upon the adapted neighborhood and can be obtained using the potentiel
retricted to the domain. One can easily have situations with two compact sectors separated by a singular level
with a separatrix geodesic and an equator for which when retricting the domain, the singular level separates
compact and non-compact orbits.

Example 1. In the averaged Kepler case, the mico-local classification at a point on the equator gives the
following. Retricting to pθ positive, one has the following decomposition. The meridian with pθ = 0 formed by
the ascending and descending branches and correspond to non-compact orbit in the covering manifold M c, the
micro-sector formed by pθ ∈]0,m(π/2[ where the level set is filled by the same periodic orbit corrresponding
to different ascending and descending branches with ±pr(0) and the equator corresponding to pθ = m(π/2),
where the two branches are similar and the level set is a single point.

Example 2. In the Serret-Andoyer case, starting from the equator identified to zero and corresponding to the
stable position of the pendulum we have two sectors associated repectively to rotating and oscillating solutions
of the pendulum, separated by the separatrices. The rotating solutions correspons to non compact orbits on the
plane but periodic if they are interpreted on the cylinder. On this surface oscillating trajectories are homotopic
to a point but not the rotating trajectories.

4 Case studies

4.1 The Carathéodory-Zermelo historical example
In this presentation, all the details of the computations are not given, for a complete study of this example,
based on the Carathéodory-Zermelo-Goh point of view, see [14]. Recall that, considering the following coordi-
nates q̃ = (x, y, γ) = (θ, r, π/2−α), where r, θ and α are understood in the sense of section 3, dynamics takes
the form:

ẋ = y + cos γ, ẏ = sin γ, γ̇ = − cos2 γ.

Straighforward computations using the previous section leads to

D(q̃) = 1, D′(q̃) = cos2 γ and D′′(q̃) = y cos γ + 1,

and thanks to Theorem 3.1 we can parameterize abnormal, hyperbolic and elliptic extremals.

• Abnormal case. The abnormal geodesics are contained in D′′ = y cos γ+1 = 0. Hence, given an initial
condition (x0, y0, γ0) such that |y0| ≥ 1, the associated geodesic is abnormal if γ0 ∈ {γ1a, γ2a} with

γ1a = arccos

Å
− 1

y0

ã
and γ2a = − arccos

Å
− 1

y0

ã
.

If the current is strong, that is if |y0| > 1, then γ1a 6= γ2a and we have two abnormals. Else, if |y0| = 1
there is only one abnormal, and if |y0| < 1 (this correspond to a weak current) there is no abnormals.

• Normal case. The hyperbolic (resp. elliptic) geodesics are contained in DD′′ = D′′ > 0 (resp.
DD′′ = D′′ < 0). Hence, given an initial condition (x0, y0, γ0):

– if |y0| < 1, then y0 cos γ0 + 1 > 0 and thus the corresponding geodesic is hyperbolic.

– for |y0| = 1, if the geodesic is normal, then it is hyperbolic.
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– for |y0| > 1, if the geodesic is normal, then it is either hyperbolic or elliptic depending on the sign
of y0 cos γ0 + 1. Note that the hyperbolic and elliptic geodesics are separated by the abnormal
geodesics as illustrated in Fig. 3.

To complete the discussion about the historical example, we give the integration of the system.

Proposition 4.1. Let (x0, y0, γ0) be the initial condition, the corresponding solution (x(t), y(t), γ(t)) is given
as follows.

• For γ0 = ±π/2 one has:

γ(t) = γ0, y(t) = ±t+ y0 and x(t) = ± t
2

2
+ y0t+ x0.

• For γ0 ∈ (−π/2, π/2), one has:

γ(t) = atan (tan γ0 − t), y(t) = y0 +
1

cos γ0
− 1

cos γ(t)
,

x(t) =
1

2

ï
ln

∣∣∣∣ cos γ

1 + sin γ

∣∣∣∣òγ(t)
γ0

+
1

2

ï
tan γ

cos γ

òγ(t)
γ0

+

Å
y0 +

1

cos γ0

ã
t+ x0.

• For γ0 ∈ (−π,−π/2) ∪ (π/2, π], one has:

γ(t) = π + atan (tan γ0 − t), y(t) = y0 +
1

cos γ0
− 1

cos γ(t)
,

x(t) =
1

2

ï
ln

∣∣∣∣ cos γ

1 + sin γ

∣∣∣∣òγ(t)
γ0

+
1

2

ï
tan γ

cos γ

òγ(t)
γ0

+

Å
y0 +

1

cos γ0

ã
t+ x0.

Synthesis: Cusp singularity and regularity of the value function. We use the heading angle and
the Clairaut relation to stratified the Lagragian manifold L = exp tM(q0), where q0 is in the strong current
domain (see Figs. 6 and 7). One can also compute the time minimal synthesis. In the strong current case,
q0 is not strongly locally controllable, i.e A(q0, t) is not a neighborhood of q0 for small time. The time T (q0)
along the loop is the limit time such that A(q0, t) is a neighborhood of q0.

Denote by Σ(q0) the adherence of the cut locus for geodesics starting at q0 and contained in the adapted
neighborhood one has:

Proposition 4.2. Let q0 in a strong current domain, then:

1. For t > T (q0), A(q0, t) is a neighborhood of q0.

2. Σ(q0) is the abnormal curve up to the cusp point, corresponding to a conjugate point along the abnormal
curve.

4.2 The Averaged Kepler case
4.2.1 Riemannian case

One takes

m2
λ(ϕ) =

sin2 ϕ

(1− λ sin2 ϕ)

Where λ ∈ (0, 1) is an homotopy parameter, λ = 0 being the round sphere, λ = 1 is the Grushin case, with a
singularity at the equator while λ = 4/5 is associated to Kepler orbit transfers. The Gauss curvature is

Kλ =
1

(1− λ sin2 ϕ)
((1− λ)− 2λ cos2 ϕ).

The equator is ϕ = π/2 and we introduce r := π/2 − ϕ to normalize the equator to zero and it is the only
parallel solution. The metric is taken in the normal form g = dr2 + m2(r) dθ2 where we use the notation
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Figure 6: (Left) We display (in red) hyperbolic geodesics that started from the initial point q0 = (−2, 0)
portrayed in black, in the whole conic neighborhood delimited by the two abnormals (in green). (Right) We
display (in blue) elliptic geodesics from the same initial point and with the same sector.
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Figure 7: Minimal time optimal synthesis in an adapted rectangle neighborhood containing the limit loop.
The initial point is q0 = (−2, 0). The abnormal geodesics are represented in green, But since they coincide
with the cut locus (for the abnormal with a cusp, it is up to the cusp), this cut locus is shown in thick black
along them. In red are represented hyperbolic geodesics.

r = ϕ to emphasize that ϕ is an angle measuring the meridian. One set mλ(r) = mλ(π − ϕ) and the metric
is reflectionally symmetric with respect to the equator, that is m(r) = m(−r), which is crucial for the explicit
determination of the conjugate and cut loci. Using the Hamiltonian formalism, we associate to the metric the
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Hamiltonian

H =
1

2

Å
p2r +

p2θ
m(r)

ã
and parameterizing by arc-length amounts to set H = 1/2. To integrate the geodesisc leads to introduce the
characteristic equation Å

dr

dt

ã2
+ V (r, pθ) = 1, with V (r, pθ) =

p2θ
m(r)

.

A geodesic is either a meridian, the equator or each other solution is such that r is periodic and oscillates
between −r+ and r+ and is entirely determined by a branch of the characteristic equation evaluated on the
quarter of period T/4 where r(t) belongs to [0, r+], r+ being the posive root of the equation V = 1, the period
being given by the integral

T

4
=

∫ r+

0

dr

(1− V (r, pθ))1/2
,

which depends upon pθ. By symmetry with respect to the meridian it can be supposed non negative and
belonging to ]0,m(0)[. To make the analysis we introduce the application called the period mapping of first
return to the equator: pθ 7→ T (pθ).

The geodesic flow is Liouville integrable and the transcendence is characterized basically by the transcen-
dence of the period mapping. More precisely, to integrate one introduces X = sin2 r, r ∈ (0, π/2) and one
gets ∫

dr

(1− V (r, pθ))1/2
=

∫
dx

2((X(1−X)(1− V (X))1/2
.

To integrate one can assume that r(0) = 0, θ(0) = 0 since every oscillating trajectory is such that r is
intersecting the equator and we use

dr

dt
=
»

1− V (r, pθ)

dθ

dt
=
∂H

∂pθ
=
V (r, pθ)

pθ
.

One gets that

θ(t) = (2n− 1)∆θ +

∫ 0

r(t)

V (r, pθ) dr

pθ(1− V (r, pθ))1/2
,

where n ∈ N counts the number of intersections with the equator and by symmetry we can asssume that the
number of intersections is odd. The function ∆θ for pθ ∈ (0,m(0) is the so-called first return mapping to the
equator. The following is crucial in our optimality analysis. We can restrict to an initial point at the equator
q0 = (0, 0).

Proposition 4.3. Assume that the first return mapping to the equator is monotone non increasing, then the
first conjugate time is given by the equation

∂θ

∂pθ
(r, pθ) = 0,

where θ is parameterized by r according to

θ(r, pθ) = ∆θ(pθ)−
∫ r

r+

V (r, pθ)

pθ(1− V (r, pθ))1/2

the first conjugate conjugate time being between T/2 and T/2 + T/4.

Integration of solutions Å
dr

dt

ã2
=

cos2 r − p2θ(1− λ cos2 r)

cos2 r
.

We denote Z+and Z− the roots of
1 + p2θ(λ− 1) = Z2(1 + λp2θ),
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where Z = sin r and the period reads

T

4
=

∫ Z+

0

dZ

(1 + p2θ(λ− 1)− Z2(1 + λp2θ))
1/2

.

Normalizing the amplitude of the oscillation by Z = Z+Y one has

T

4
=

∫ 1

0

dY

((1 + λp2θ)(1− Y 2))
1/2

=
1

(1 + λp2θ)
1/2

[arcsinY ]10.

Proposition 4.4. The period is given by

T (pθ) =
2π

(1 + λp2θ)
1/2

,

moreover one has:
arcsinY (t) = (1 + λp2θ)

1/2t.

This defines the renormalized time s = (1 + λpθ)
1/2t and the θ−variable is integrated using

dθ

dt
= pθ

1− λ(1− sin2 r)

1− λ sin2 r
.

Hence one gets

θ(t) =

∫
pθ dt

cos2 r
− λpθt

and we obtained the following.

Proposition 4.5.

θ(t) =
pθ

(1 + λp2θ)
1/2(1− Z2

+)1/2
atan((1− Z2

+)1/2tan(t(1 + λp2θ))− λpθt.

This leads to a complete parameterization of the geodesics curves and of the conjugate locus. Note that a
simplify and standard computation is to parameterize the angle θ by r instead of t. Moreover one can compute
the periodic curves. Indeed, one can obtain the first return mapping ∆θ(pθ) by setting in the above formula
t = T/2 and periodic mappings are such that ∆θ/2π is a rational number. In partiicular simple periodic
geodesics can be obtained and classified by ordering with respect to their length, by analogy with the prolate
ellipsoid case, the shortest being the meridian. In particular, in the averaged Kepler case they are described
in ([BC, Forum], that is five simple curves. To analyse the optimality in this Riemannian case we procced as
follows.

Determination of the conjugate and cut loci We recall that, the problem is called tame if the first
return mapping to the equator is monotone non increasing.

Proposition 4.6. In the tame case case the cut locut of a point on the equator is a subarc of the equator and
the injectivity radius is formed by the cusp extremity of the conjugate locus on the equator.

More generally the conjugate and cut loci of each point can be easily determined using an additional
computable condition that we describe next. One has the following.

Proposition 4.7. Assume that we are in the tame case. Moreover suppose that the first return mapping ∆θ
is such that ∆θ′ < 0 < ∆θ” on ]0,m(π/2)[ then:

1. The cut locus of a point not a pole is a segment of the antipodal parallel;

2. The conjugate locus has exactly four cusps points.

This can be applied to the our case for λ ∈]0, 1[ . Note that the conjugate locus of the equator is a standard
astroid with four cusps. The limit Grushin case can be analyzed similarly, except that the equator is not a
geodesic and the injectivity radius is zero. This gives a complete analysis of the Riemannian case.
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4.2.2 Transition from the Riemannian case to the Zermelo case with a constant current

Recall that the so-called constant current case is given on the covering space by

F0 = v
∂

∂θ
, g = dr2 +m2(r) dθ2,

where v is a non zero constant. We are in the:

• Weak case if sin2 r0 <
1

v2+λ , with q0 = (r0, θ0);

• Strong case if sin2 r0 >
1

v2+λ , with q0 = (r0, θ0);

• moderate case if sin2 r0 = 1
v2+λ , with q0 = (r0, θ0);

Assumptions 4.1. In the case where the constant v is such that v2 + λ < 1, the current will be weak at any
point of M . Thus in order to be in the strong case, we shall make the additional assumption

(A1) : v2 + λ > 1.

The following is a crucial geometric property.

Proposition 4.8. On the two-sphere of revolution the vector field F0 defines a linear vector field on R3 tangent
to the sphere and it corresponds to an uniform rotation whose axis is the axis of revolution. For the metric
the equator solution is also a stationary rotation since dθ

dt is constant along of the equator so that the effect of
the constant current can be superposed with this rotation.

To make the analysis we proceed as previously, the parameterization of the geodesics being similar but
the effect of the current is to obtain a more complicated mico-local analysis that we describe next, related to
vanishing or not of the derivative of θ−component. Here, the Hamiltonian vector field is given by:

M = pθv + ‖p‖g = −ε, ‖p‖g =

 
p2r +

p2θ
m2(r)

. (24)

with ε < 0 (resp. ε > 0) correspond to hyperbolic (resp. elliptic) case and ε = 0 to the abnormal one. we
fix by homogeneity ‖p‖g = 1, since from the Hamiltonian one has ‖p‖g = −(ε + pθv) is constant. Moreover
G = pθ is the additional (linear) first integral and this insured the Liouville integrability of the system. One
then gets the following:

Proposition 4.9. The r−dynamics can be integrated using the characteristic equationÅ
dr

dt

ã2
+ Vε(r, pθ) = 1

where ε = −p0 < 0,= 0, > 0 corespond respectively to the hyperbolic, elliptic and abnormal case.

Proof. In the constant current case, starting from the equator and using the ascending branch gives the
equation

dr

dt
=

Ç
p2θ(1− λ sin2 r)

sin2 r(ε+ pθv)2

å1/2

,

and since we have posed ‖p‖g = 1, that is (ε+ pθv) = −1, then one has

dr

dt
=

Ç
p2θ(1− λ sin2 r)

sin2 r

å1/2

,

which is the same expression as in the Riemannian case, computation is then similar.

To integrate θ we use the dynamics
dθ(t)

dt
=
∂H

∂pθ
.

Again note that θ can be computed easily, parameterizing by r instead of t and one gets the following
proposition. (In particular to determine the first return mapping to the equator).
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Proposition 4.10. θ-variable is given by:

θ(t) = (2n− 1)∆θ +

∫ 0

r(t)

Vε(r, pθ) dr

pθ(1− Vε(r, pθ))1/2
,

where n ∈ N counts the number of intersections with the equator and by symmetry we can asssume that the
number of intersections is odd. The function ∆θ for pθ ∈ (0,m(r0)) is the first return mapping to the equator.

This leads to the following stratification of the set of geodesics, using a stratification by the variable pθ
instead of the heading angle in the historical case. Indeed in this case the geodesics curves are reflectionally
symmetry with respect to the equator solution, the cone of direction being symmetric with respect to the
equator. One can consider only by symmetry the case of ascending branches at the initial condition.

Stratification of the set of geodesics Suppose that assumption (A1) hold. Starting from the equator
and assuming pr(0) > 0, one has the following stratification of the set of geodesics.

Proposition 4.11. geodesics of M split into:

• Abnormal geodesics : We have two distinct abnormal geodesics parameterized by paθ = −1/v and pr0 > 0
for the ascending one and pr0 < 0 for the descending one.

• Hyperbolic geodesics : which correspond to the time minimal solution and parameterized by pθ ∈]paθ ,m(r0)[.

• Elliptic geodesics : which correspond to the time maximal solution and parameterized by pθ ∈ [−m(r0), paθ [.

Moreover, in the hyperbolic case, the set of geodesics can be stratified in four classes namely (see Fig. 8):

• The equator which corresponds to the singular point: r = π/2, pr = 0 while pθ = m(r)

• The two meridians (ascending and descending one) which correspond to the non compact case ṙ > 0.
They are given by pθ = 0 and pr = ±1.

• Generic periodic orbits whcih split in two different families namely orbits without loop parametrized by
pθ ∈]0,m(r0)[ and orbits with loops, parametrized by pθ ∈]paθ , 0[ and contening by symmetry the orbits
associated to ±pr(0).

Determination of the two branches of the conjugate and cut loci Next we can determine the
conjugate locus for a point at the equator. One needs only to aggregated the two branches associated first to
cut points and conjugate point related to the abnormal direction as in the historical examples and associated
to self-intersections and cusp singularity. Second branch of cut locus is associated to the tame behavior of the
first return mapping to the equator and conjugate points computed for simple geodesics using Jacobi equations
(observe that the generalized curvature can be easily computed along the equator since r is constant. Finally
observe that such points exists for non self-intersecting geodesics but appear after the self-intersection. This
leads to the following theorem

Theorem 4.1. Let suppose that assumption (A1) hold i.e we are in the strong current case along the equator.
Then, the cut locus have two distinguished branches, first being form by the abnormals up to their first cusp
point and second being a segment of the equator (see Fig.9).

Deformation of the conjugate locus by homotopy on the constant current v. Classical algorithm,
presented in section 2 is used here to compute the conjugate locus. In order to see the deformation of the
conjugate locus by introduction of a constant current, we start by setting v = 0 (that correspond to the average
Kepler case study by B. Bonnard and al. [9]), then increasing the value of v until

√
1− λ (to remains in the

weak case) one can clearly see the deformation (see Fig.10).
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Figure 8: (Left) We represent the potential for the different classes of geodesics in order to highlight the
periodicity of the solutions. The meridians and the equator are represented in black while hyperbolic geodesics
with a loop (resp. without loop) are represented in red (resp. in blue). Abnormal geodesics are represented
in green. (Right) illustration of different types of hyperbolic geodesics in the strong drift case. We take for
simulation λ = 4/5 and v = 0.9.
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Figure 9: (Right) Minimal time optimal synthese of the average Kepler case with a constant current taking
λ = 4/5 and v = 0.9 in adapted rectangle R = {π/25 ≤ r ≤ 24π/25;−π/2 ≤ θ ≤ 4π/3}. The meridians
and the equator are represented in black while the hyperbolic geodesics with a loop (resp. without loop) are
represented in red (resp. in blue). Abnormal geodesics are represented in green. Conjugate and cut loci are
resp. represented in thick black and orange. (Left) Maximal time optimal synthesis in adapted rectangle
R = {π/4 ≤ r ≤ 3π/4; 0 ≤ θ ≤ π/2}. Elliptic geodesics are represented in blue and abnormal ones in green.
Conjugate and cut loci are resp. represented in thick black and orange.
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Figure 10: Illustration of the deformation of conjugate locus in weak current case. Taking λ = 4/5 and
v = 0.0, 0.1, 0.2, 0.3, 0.4, 0.42 respectively from the left to the right. One can see in red hyperbolic geodesics,
in black conjugate locus and in maginta separatine line (that correspond here to cut locus).

4.3 The polar vortex singularity case
In the vortex problem (see [15] for a complete description of the problem), one has F0 = µ

r2
∂
∂θ , with µ being

a circulation parameter, so the current becomes infinite at the vortex (in particular α1 = α2) but still the
dynamics can be extended on the whole plane. We will first consider this case. Then, in order to presented
a more completed situation with many equators, compact and non compact geodesics, we will consider the
so-called general one vortex case. But first of all, we start by providing a generalization of the existence
theorem from [15], see also the relation with [22] in celestial mechanics.

4.3.1 Existence of optimal solution

Theorem 4.2. Consider the generalized vortex case:

F0 = µ(r)
∂

∂θ
, F1 =

∂

∂θ
, F2 =

1

m(r)

∂

∂r

on R2 \ {0}. Where (r, θ) are the polar coordinates, µ(·) is a smooth function with a pole of degre β ∈]1,+∞[
at zero and where m(·) is a positive smooth function of r. Take q0, q1 ∈ R2 \{0}, then there exist a minimizing
trajectory to transfer q0 to q1. Moreover q0 can be transfer to the origin in the minimum time tmin = r0, with
q0 = (r0, θ0).

Proof. We consider, for the proof, a neighborhood of the origin V = B(0, R) (i.e a ball centered at the origin
and of radius R). Without losing the generality, we suppose that on V , current µ(·) can be approximate by
µ(r) = 1

rβ
with β ∈]1,+∞[. This prove is an extension of one those in [15, Theorem 2.1], so see the paper

for more details. Its relatively technical and essentially based on two arguments: the controllability of the
system and the non-existence of a minimizing sequence that converges towards the pole. Controllability can
be shown quite easily. Indeed, starting from q0 and successively applying the control u = (±1, 0) until reaching
C(0, r1) then u = (0,±1) until reaching q1, allows us to construct an admissible trajectory. In order to prove
the non-existence of a minimizing sequence that converges to the pole, it is sufficient to show that there exist
ε > 0 such that every trajectory intersecting B(0, ε) can’t be optimal. For that, we first prove that there
exist 0 < ε < r̄ < r0 and rf such that the minimal time to make a complete round at the distance r̄ to the
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origin (denoted Tθ(r̄)) is smaller than the minimal time to reach the circle of radius ε (denoted Tr(r̄) from the
distance r̄. Indeed, by a straightforward computations we have:

Tθ(r) =
2πrβ m(r)

r +m(r)
and Tr(r) = r − ε.

So

Tθ(r) < Tr(r)⇔ ε < r

Ç
1− 2πrβ−1 m(r)

rβ +m(r)

å
and since m(r) > 0, β > 1, there exist r̄ > 0 such that

2πr̄β−1 m(r̄) < r̄β +m(r̄) i.e 1− 2πr̄β−1 m(r̄)

r̄β +m(r̄)
> 0.

This proves the existence of r̄ and ε. Now, suppose that an admissible trajectory q(·, q0) intersect the ball
B(0, ε), then one can construct another which is strictly better by taking from q0 to the ball B(0, r̄) the
same trajectory, then turn around B(0, r̄) and finally, from B(0, r̄) taking again q(·, q0). Thus the conclusion
follows.

4.3.2 Simple one vortex case : Extremal classifications

Zermelo problem is defined by the couple (M,F0) where

M = R2 \ {0}, g := dr2 + r2dθ2, F0(q) = F0 =
µ

r2
∂

∂θ
, with µ ∈ R and q = (r, θ).

In this case potential becomes:

Vε(r, pθ) =
p2θr

2

(εr2 + pθµ)
2 .

The equator and meridian can be characterized by their α and ω-limit sets as follows.

Proposition 4.12. For a given q0 = (r0, θ0),

1. Meridian parameterized by pθ = 0 is such that (Λ−(z0),Λ+(z0)) = ({0},∅) if pr0 < 0 and (Λ−(z0),Λ+(z0)) =
(∅, {0}) if pr0 > 0, where z0 = (q0, pr0, pθ). So, the vortex can be seen as an equator.

2. There exists an unique equator given by r∗ = 2|µ| and for r0 < r∗, the geodesic parameterized by
p∗θ = − 4µ r20

4µ2+r20
is the unique separatrix which form a Reeb component delimited by the vortex and the

equator (see Fig.11) such that:

• (Λ−(z0),Λ+(z0)) = ({0}, C(0, r∗)) if r0 < r∗.

• (Λ−(z0),Λ+(z0)) = (C(0, r∗),∅) if r0 > r∗.

• (Λ−(z0),Λ+(z0)) = (C(0, r∗), C(0, r∗)) if r0 = r∗ (orbit is periodic in this case).

If we parameterize geodesics by the heading angle, that is fixing ‖p(0)‖r = 1 and pose pr(0) = cosα, pθ =
r0 sinα. Denoted α∗ the heading angle assoiciated to the equator, then geodesics can be classified in four
different families according to their α and ω-limit sets.

Theorem 4.3 (Classification of geodesic orbits in the simple vortex problem). For a given q0 = (r0, θ0),
taking z0 = (q0, cosα, r0 sinα) one has:

• for α ∈]α∗, 0[, (Λ−(z0),Λ+(z0)) = ({0},∅)

• for α ∈]0, π[, (Λ−(z0),Λ+(z0)) = (∅,∅).

• for α ∈]π, π − α∗[, (Λ−(z0),Λ+(z0)) = (∅, {0})

• for α ∈]π − α∗, α∗[, (Λ−(z0),Λ+(z0)) = ({0}, {0}),
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Figure 11: Reeb foliation form by separatrix for q0 = (r0, θ0) taking in different domain of current. Above left
correspond to strong drift case (r0 < µ), above right correspond to weak drift case (with µ < r0 < 2µ. Below
left and bleow right correspond to the weak drift case with resp. r0 = 2µ and r0 > 2µ. Black circle correpond
to circle of radius µ i.e the circle in which drift is strong.

4.3.3 General one vortex case

In the simple vortex problem presented above, there is an unique equator for r0 = 2µ. In order to present
a more general and complicated situation where we encounter several separatrices and equators, we consider
drift F0 in the form:

F0(q) = µ(r)
∂

∂θ
, with µ(r) =

λ r + β

r3
, λ, β ∈ R∗.

The equilibrium points of the system are solutions of the second order equation:

δr2 + 2λr + 3β = 0, (25)

and supposing that β < 0, λ2 > 3β, one has:

• for δ = 1 i.e pθ > 0, (25) has one unique positive solution given by r1 = −λ+
√
λ2 − 3β,

• for δ = −1 i.e pθ < 0, (25) has two positive solutions given by r2 = λ−
√
λ2 + 3β and r3 = λ+

√
λ2 + 3β

Given an equator (r∗, 0), a geodesic parameterized by a given pθ will be a separatrix associated to this equator
if an only if:

∂Vε
∂r

(r, pθ) = 0, with pθ 6= 0. (26)

Using equation (26) one gets:

p1θ =
m(r1)

1 + µ(r1)m(r1)
, p2θ = − m(r2)

1− µ(r2)m(r2)
, p3θ = − m(r3)

1− µ(r3)m(r3)
.

Observations and discussions of potential associated to separatrices (see Fig.13-15) will allows us to classified
the geodesics.
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Figure 12: Illustration of the different families of geodesic orbits for q0 = (r0, θ0) in different domain of current.
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Figure 13: Potential along the separatrix (left) and behaviors of separatrix orbit (right). On the right one can
see the orbit of separatrix given by p1θ for two different value of r0. In thick blue orbit is crossed in positive
time and in dashed blue it’s crossed in negative time. Black dot correspond to the initial position while red
dot correspond to the vortex taking as origin.
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Figure 14: Potential along the separartrix (Left) and behaviors of separatrix orbit (Right). On the right one
can see the orbit of separatrix given by p2θ for two different value of r0. Along p2θ potential explose to infinity
for r between 1 and 2. At the right is potrayed the trajectories in the plan for different value of r0 in order to
present the different possibility.
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Figure 15: Potential along the separartrix (Left) and behaviors of separatrix orbit (Right). On the right one
can see the orbit of separatrix given by p3θ for two different value of r0. Along p3θ potential explose to infinity
for r between 1 and 2. At the right is potrayed the trajectories in the plan for different value of r0 in order to
present the different possibility.

Observations Accordiding to Fig.13-15 one can deduce:

• For pθ = p1θ, potential remains below one. Thus, for r0 ≤ r1 α and ω-limit set of the separatratrix are
given by (Λ−(α),Λ+(α)) = ({0}, C(0, r1)) and for r0 > r1 one has (Λ−(pθ),Λ

+(pθ)) = (C(0, r1),∅)

• For pθ = p2θ, in the neighborhood of r2, the potential is above one and takes the value one for r = r2.
Thus in this neighborhood, separatrix exists if and only if r0 = r2 and it defines the circle C(0, r2).

• For pθ = p3θ, separatrix exists and is well define for r0 ≥ 2.5 and for r0 ∈ [2.5, r3], one has Λ−(pθ) =
Λ+(pθ) = C(0, r3) while for r0 > r3, one has (Λ−(α),Λ+(α)) = (C(0, r3),∅)

GMR classification of geodesics. Representing the potential along the trajectories around the separatrix,
we deduce (see Fig.(16)) the different types of orbits encountered in the classification, thus we have:
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Figure 16: Potential along trajectories around separartrices. Above we consider pθ less than the pθ of separa-
trices, so we take pθ respectively equal to p1θ − 0.5, p2θ − 0.5 and p3θ − 0.5. Below we consider pθ greater than
the pθ of separatrices, so we take pθ respectively equal to p1θ + 0.5, p2θ + 0.5 and p3θ + 0.5. For pθ around p1θ
potential remains bounded, but we have, for more clearness of the figure, made a zoom around 1. In other
case, potential explose to infinity as in the previous case.

Proposition 4.13. Considering the general vortex problem with

F0(q) = µ(r)
∂

∂θ
, with µ(r) =

λ r + β

r3
, β < 0, and λ2 > 3β,

then orbits of the extremals can be classified into three different families (see Fig.17:

• Those that come from the vortex (resp. infinity) and go towards the vortex (resp. infinity)

• Those that come from the vortex (resp. infinity) and go towards infinity (resp. the vortex),

• Those that remain contained in a crown (these correspond to extremals such that pθ ∈]p2θ, p
3
θ[).

Different families being delimited by separatrices.

Remark 2. Thanks to the symmetry which respect to θ we have on one side, separatrix associated to p1θ which
form a Reeb foliation (see [7]). On other hand, separatrix associated to p3θ are a typical example of homocline
geodesic (i.e for which α and ω-limit set are equal). The behaviors of the both cases are illustrated on Fig.(18).

4.4 Algorithm in the general case and the gluing process
4.4.1 Algorithm

One can deduce from the previous studies the method of analysis to handle a general case and we proceed as
follows. In the normal coordinates (r, θ) on the covering manifold M c one has r ∈ (0, R). We can decompose
the domains into disks ci < r < ci+1 with alternately weak and strong current. We compute the equators
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point represented by black dot. Red dot represented the vortex. On the left we have an orbit which comes
from and go towards the vortex; on the middle we have an orbit which comes from vortex and go towards
infinity; and on the right we have a dense orbit which remains in a compact.
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Figure 18: Illustration of Reeb foliation forming by separatrix orbits, taking λ = 4 and β = −5. Above left
we have Reeb component parametrized by p1θ and above right we have homocline separatrix parametrized by
p3θ. Below the both are potrayed together. In thick correspond the trajectories crossed in positive time and in
dashed trajectories crossed in negative time. Red dot correspond to the vortex and black ones to the different
initial points we have consider. Circle in green represent the two Reeb circle associated to r1 and r3.
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solutions listed as 0 < r1 < r2 < ... < rp < R and they can be classified according to their optimality status
into elliptic or elliptic equators. Taking a point q0, one can parameterize the geodesics with the mechanical
representation with the extended potential using improprer integrals. This allows to construct the time-
minimal synthesis in an adapted neighborhood as in the cases studies using the first return mappings to the
equator and meridian, combining with conjugate point analysis. Note that in the strong current domain the
size of the adapted neighborhood is defined by the limit loop of the self-intersecting geodesics related to the
abnormal direction. This can be extended to a larger domain by gluing different adapted neighborhoods.

4.4.2 The gluing process

Note that complicated situations can be obtained by gluing cases studies using the normal coordinates (r, θ),
each case being defined by a pair (µi(r),mi(r)) parameterizing respectively the current and the metric. They
can be glued together in the C∞-category using bump functions . For instance the vortex case with Euclidian
metric can be glued to the averaged Kepler case to represent the motion of a passsive tracer swallowed by the
vortex to enter into a Kepler domain to visit an equator solution, with non zero-curvature.

References
[1] A. A. Agrachev & Y. L. Sachkov, Control theory from the geometric view-point, vol 87 of Encyclopaedia

of Mathematical Sciences, Springer-Verlag, Berlin (2004), xiv+412.

[2] A. Agrachev, N.N. Chtcherbakova, I. Zelenko, On curvatures and focal points of dynamical Lagrangian
distributions and their reductions by first integrals, J. Dyn. Control Syst. 11 (2005), no. 3, pp. 297–327.

[3] V. I. Arnold & B. A. Khesin, Topological Methods in Hydrodynamics, vol 125 of Applied Mathematical
Sciences, Springer-Verlag New York, 1998, 376 pages.

[4] V.I. Arnol’d, Mathematical methods of classical mechanics, Translated from the Russian by K. Vogtmann
and A. Weinstein. Second edition. Graduate Texts in Mathematics, 60. Springer-Verlag, New York, (1989),
xvi+508 pp. ISBN: 0-387-96890-3.

[5] D. Bao, S.-S. Chern & Z. Shen, An Introduction to Riemann-Finsler Geometry, vol 200 of Graduate
Texts in Mathematics, Springer-Verlag New York, 2000, 435 pages.

[6] D. Bao, C. Robles & Z. Shen, Zermelo navigation on Riemannian manifolds, J. Differential Geom., 66
(2004), no. 3, pp. 377–435.

[7] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian Systems, Geometry, Topology, Classification,,
Chapman and Hall/CRC, London, 2004.

[8] B. Bonnard, J.B. Caillau, Geodesic flow of the averaged controlled Kepler equation, Forum Math. 21
(2009), no. 5, pp. 797–814.

[9] B. Bonnard, J. B. Caillau, G. Janin, Conjugate-cut loci and injectivity domains on two-spheres of revo-
lution., ESAIM: COCV 19 (2013), no. 2, pp. 533–554.

[10] B. Bonnard, J. B. Caillau, R. Sinclair, M. Tanaka, Conjugate and cut loci of a two-sphere of revolution
with application to optimal control, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), no. 4, 1081-1098.

[11] B. Bonnard & M. Chyba, Singular trajectories and their role in control theory, vol 40 of Mathematics &
Applications, Springer-Verlag, Berlin (2003), xvi+357.

[12] B. Bonnard, O. Cots, N. Shcherbakova, Riemannian metrics on 2D-manifolds related to the Euler-Poinsot
rigid body motion, ESAIM: COCV 20 (2014), no. 3 pp. 864–893. https://doi.org/10.1051/cocv/2013087

[13] C. Balsa, O. Cots, J. Gergaud, B. Wembe, Minimum energy control of passive tracers advection in point
vortices flow. In: Gonçalves J.A., Braz-César M., Coelho J.P. (eds) CONTROLO 2020. Lecture Notes in
Electrical Engineering, vol 695. Springer, Cham. https://doi.org/10.1007/978-3-030-58653-9_22

30



[14] B. Bonnard, O. Cots, J. Gergaud, B. Wembe, Abnormal Geodesics in 2D-Zermelo Navigation Problems
in the Case of Revolution and the Fan Shape of the Small Time Balls, HAL Id : hal-02437507 (2020),
Submitted at System Control & Letters.

[15] B. Bonnard, O. Cots & B. Wembe, A Zermelo Navigation Problem with a Vortex Singularity, ESAIM:
COCV, 27 (2021) no 10, pp: 1-37, https://doi.org/10.1051/cocv/2020058

[16] B. Bonnard, I. Kupka, Théorie des singularités de l’application entrée/sortie et optimalité des trajectoires
singulières dans le problème du temps minimal, Forum Math., 5 (1993), no. 2, pp. 111–159.

[17] B. Bonnard, D. Sugny, Time-minimal control of dissipative two-level quantum systems: the integrable
case, SIAM J. Control Optim. 48 (2009), no. 3, pp. 1289–1308. (Reviewer: Paolo Mason) 82C10 (49K15
70Q05).

[18] U. Boscain, B. Piccoli, Optimal syntheses for control systems on 2-D manifolds, Mathématiques &
Applications (Berlin) [Mathematics & Applications], 43. Springer-Verlag, Berlin, (2004), xiv+261 pp

[19] A. E. Bryson & Y.-C. Ho, Applied optimal control, Hemisphere Publishing, New-York, 1975.

[20] J.-B. Caillau, O. Cots & J. Gergaud, Differential continuation for regular optimal control problems,
Optimization Methods and Software, 27 (2011), no. 2, pp. 177–196.

[21] C. Carathéodory, Calculus of Variations and Partial Differential Equations of the First Order, Part 1,
Part 2, Holden-Day, San Francisco, California, 1965–1967; Reprint: 2nd AMS printing, AMS Chelsea
Publishing, Providence, RI, USA, 2001, 412 pages.

[22] W. B. Gordon A minimizing property of Keplerian orbits, AMS, 99 (1977), no 5, pp. 962-971

[23] V. Grines, E. Gurevich, O. Pochinka, D. Malyshev, On topological classification of Morse-Smale diffeo-
morphisms on the sphere Sn, (n > 3), Nonlinearity 33 (2020), no. 12, pp. 7088–7113.

[24] R. Hama, J. Kasemsuwan & S. V. Sabau, The cut locus of a Randers rotational 2-sphere of revolution,
Publ. Math. Debrecen, 93 (2018), no 3-4, pp. 387–412.

[25] R. Hama, S. V. Sabau, The Geometry of a Randers Rotational Surface with an Arbitrary Direction Wind,
Mathematics, 8 (2020), no. 11, pp. 2047, https://doi.org/10.3390/math8112047.

[26] J. Itoh and K. Kiyohara, The cut loci and the conjugate loci on ellipsoids, Manuscripta math., 114
(2004), no. 2, pp. 247–264.

[27] L. D. Landau and E. M. Lifshitz, Mechanics, Course of Theoretical Physics, 1 (1976), 3rd ed, Pergamon,
Oxford, 1976.

[28] R.K. Meyer, G.R. Hall, Introduction to Hamiltonian dynamical systems and the N-body problem Applied
Mathematical Sciences, Springer-Verlag, New York, 90 (1992), xii+292, pp. 101–120.

[29] S.B. Myers, Connections between differential geometry and topology. I. Simply connected surfaces, Duke
Math. J. 1, 3 (1935), pp. 376–391. doi:10.1215/S0012-7094-35-00126-0.

[30] S.B. Myers, Connections between Differential Geometry and Topology, Proceedings of the National
Academy of Sciences of the United States of America, 21 (1935), no. 4, pp. 225–227.

[31] J.Jr. Palis, de Melo, Welington Geometric theory of dynamical systems, An introduction, Translated
from the Portuguese by A. K. Manning. Springer-Verlag, New York-Berlin, (1982), xii+198 pp. ISBN:
0-387-90668-1

[32] M.M. Peixoto, Structural stability on two-dimensional manifolds, Topology 1 (1962), pp. 101–120.

[33] M.M. Peixoto, On the classification of flows on 2-manifolds, Dynamical systems (Proc. Sympos., Univ.
Bahia, Salvador, 1971), (1973), pp. 389–419. Academic Press, New York.

[34] H. Poincaré, Sur les lignes géodésiques des surfaces convexes. (French) [On the geodesic lines of convex
surfaces] Trans. Amer. Math. Soc. 6 (1905), no. 3, pp. 237–274.

31
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