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Abstract

In this paper, we study a problem of passive suppression of helicopter Ground Resonance (GR) using
a single degree freedom Nonlinear Energy Sink (NES). GR is a dynamic instability involving the cou-
pling of the blades motion in the rotational plane (i.e. the lag motion) and the helicopter fuselage motion.
A reduced linear system reproducing GR instability is used. It is obtained using successively Coleman
transformation and binormal transformation. The analysis of the steady-state responses of this model is
performed when a NES is attached on the helicopter fuselage. The NES includes linear damping and
essential cubic restoring force. The analysis is achieved applying complexification-averaging method
and slow-fast partition of the motion. The resulting slow-flow model is finally analyzed using multiple
scale approach. Four steady-state responses are highlighted and explained theoretically: complete sup-
pression, partial suppression through strongly modulated response, partial suppression through periodic
response and no suppression of the GR. An algorithm based on simple criterions is developed to predict
these steady-state response regimes. Numerical simulations of the complete system confirm this analysis
of the slow-flow dynamics. A parametric analysis of the influence of the NES damping coefficient and
the rotor speed on the response regime is finally proposed.

1 Introcuction

Ground Resonance (GR) is a potential destructive mechanical instability that occurs in helicopters, gen-
erally when the aircraft is on the ground. The phenomenon of GR involves a coupling between the airframe
motion on its landing gear and the blades motion in the rotational plane (i.e. the lag motion). It can be in-
vestigated without taking into account the aerodynamical effects. The standard reference of the GR analysis
is the paper by Coleman and Feingold [4] where it is established, considering an isotropic rotor, that GR is
due to a frequency coalescence between a lag mode and the fuselage mode. The range of rotors speeds 2 for
which this frequency coalescence occurs is predicted analytically. More references can be found in [2, 10],
a recent analysis of helicopter GR with asymmetric blades is proposed in [18]. Traditionally, GR instability
is prevented by two passive methods: increasing the damping [5] or modify the stiffness of the rotor blade
lag mode or the fuselage mode. Active control of GR has been also studied [10].

Targeted Energy Transfer (TET) is a concept based on an additional essentially nonlinear attachment
also named Nonlinear Energy Sink (NES) to an existing primary linear system. TET has been extensively
studied numerically, theoretically and expermentally, the results prove that the NES is very efficient for
vibration mitigation [22] and noise reduction [1]. Impulsive loading was theoretically analyzed for example
in [21] where TET is investigated in terms of resonance capture. In [20], harmonic forcing was considered
where response regimes are characterized in terms of periodic and strongly modulated responses using
an asymptotic analysis (multi scale approach) of the averaged flow obtained using the complexification-
averaging method [16].
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Figure 1: Descriptive diagram of the used helicopter system. (a) Overview of the system. (b) View from the
top.

NESs are also used to control dynamic instabilities. The possible suppression of the limit cycle oscilla-
tions of a Van der Pol oscillator utilizing a NES is demonstrated numerically in [11] and studied theoretically
in [6]. A series of papers [12, 13, 7] demonstrated that a NES coupled to a rigid wing in subsonic flow can
partially or even completely suppress aeroelastic instability. In [12], the suppression mechanisms are in-
vestigated numerically. Several aspects of the suppression mechanisms are validated expermentally in [13].
Finally an asymptotic analysis is reported in [7] demonstrating the existence of the three passive suppres-
sion mechanisms based on TET. Suppression of aeroelastic instability of a general nonlinear multi degree
of freedom system has also be considered in [15].

In this context, the use of a NES appears to be an interesting alternative way to control GR instability.
Indeed, the only possible effect of using linear dampers is to suppress completely (or not at all) the instability
and the adding damping needed for the suppression may be very large. For its part, a NES attachment with
a relatively small linear damping and a pure nonlinear stiffness, is able to prevent destructive amplitude
of oscillations even if GR instability persists. This situations are hereafter referred as partial suppression
mechanisms. The goal of the paper is therefore to study the effect of attaching a NES on the fuselage, in
ungrounded configuration, on the helicopter GR instability. We focus on the characterization of the steady-
state response regimes of a helicopter ground resonance model including a ungrounded NES attachment.

The paper is organized as follows. In Sect. 2, firstly, the simplest helicopter model reproducing GR
phenomenon is presented. It involves only lag motion of the four blades and one direction of the fuselage
motion. Then, a NES is attached to the fuselage in an ungrounded configuration leading to the Simplest
Helicopter Model including a NES (hereafter referred as SHM+NES). The Sect. 3 first presents some the
steady-state response regimes which result from the NES attachment. We count four regimes classified into
two categories depending on the fact that the trivial solution of the SHM+NES is stable or not. Then, an an-
alytical procedure based on complexification-averaging method together with multiple scale approach [17]
is developed to analyze situations for which trivial solution of the SHM+NES is unstable. Moreover, a
systematic procedure for the prediction of the steady-state response regimes is presented. In Sect. 4, the
procedure is used to analyze the influence of the damping of the NES and the rotor speed on the response
regimes. Finally numerical validation of the method is performed.

2 The Simplest Helicopter Model including a Non Linear Energy Sink (SHM+NES)

2.1 Simplest Helicopter Model (SHM) that can describe ground resonance

To carry out the analytical approach presented in this work (in Sect. 3) we need to obtain a helicopter
model with a smaller number of Degrees Of Freedom (DOF). For that, a reference helicopter model, with



10 DOF in state-space, is simplified using successively Coleman transformation [4] and binormal transfor-
mation [5] leading to the SHM which has 4 DOF in state-space.

The reference model is very similar to that described for example in [9, 2, 10]. Here, it describes an
idealized helicopter which consists of a fuselage on which a 4-blades rotor rotates at a constant speed (2.
Moreover, only lag motions are taken into account. To obtain the equations of motion a earth-fixed system
of coordinates (O, xg, yo, 20) is considered where the origin O coincides with the center of inertia G ¢ of the
fuselage at rest (see Fig. 1). At rest, the center of inertia of the rotor G, is also located on the axis (O, 2g).
The fuselage is a simple damped mass-spring system with only one translational DOF y(¢). Blades, which
are assumed to be a mass points G; (with i € [1,4]) placed at a distance L from the axis (O, zp), are
described by the lagging angles J;(¢). A lagging angle is the angle between the current position of the blade
and its equilibrium position §;(t) = Qt — 5 (i — 1) (see Fig. 1(b)). The equations of motion which govern
the time evolution of the five DOFs of the model (the fuselage displacement y(t) and the four lagging angles
0;(t)) are derived using Lagrange method. This leads to the reference model

(my + 4ms) § + ¢y + kyy +

4
" L\ 2
M(;Z{aj cos (¢ + o) = (2 +4;) sin(gj+5j)} =0 (1a)
j=1
I50; + c50; + ksdi + Myijcos (&4 6;) =0, i = 1,4 (1b)
where ” °” denotes the derivative with respect to time ¢, m, is the fuselage mass, m; is the mass

of a blade, M5 = msL and Is = msL? are the static moment and the moment of inertia of one blade
respectively, ¢y, cs are damping coefficients of the the fuselage and of a blade respectively and k, and ks
are linear stiffness coefficients.

After linearization of the reference model (1) around the trivial equilibrium point, a change of variables
which transforms individual motions of the blades (described by the lagging angles) into collective motions
described by the so-called Coleman coordinates [4] is applied. For a 4-blades rotor there are four Coleman
coordinates g, 01¢, 015 and d, defined by

1 4
:ZZ‘W)’ S1c(t) 25 cos(&;(1)), ()

ua(t) Za sin(&;(1)), Splt) = 1 S (155, 3)

=1

One can be shown that the variables dy and d., are uncoupled and can be discarded. The reason of the
decoupling is the fact that the collective motions dg and d,, leave the rotor center of inertia motionless. As
a result, a system of equations with three DOF, namely y, 61, and d15, is obtained.

Introducing the following notations

wy = ky/ (my +4ms),  wi = ks/Is;

)jy = ¢y/ (my + 4ms) 5:5 = cs5/1s 4)
Sa =2Ms/ (my +4ms), Se= Ms/ls=1/L.

where w,, and w;s are the natural frequency of the fuselage and of one blade respectively and S, and Sy are
the coupling coefficients, equations of motion are finally written in matrix form

MX +(C+G)X+KX =0, with X =][yddsl*. ©)

M, K, C and G, are mass matrix, stiffness matrix, damping matrix and gyroscopic matrix of the system
respectively, they are defined by



(1S3 0 w2 0 0

M= |S. 1 0}, K=|0 -0 X\Q |, (6)
0 0 1 L0 A0 w02
A\, 0 0 0 0 0

C=1[0 X 0], G=10 0 20f. (7
0 0 X 0 —20 0

Note that S; and S, characterize the fuselage/rotor coupling.

Helicopter ground resonance. The phenomenon is explained making a stability analysis of the previous
linear system (5). The set of eigenvalues «; (with ¢ € [1,6]) are easily computed from M, K, C and G.
Note that if the fuselage/rotor coupling is suppressed (i.e. stating S, = S; = 0), the eigenvalues of the
system correspond to the natural eigenvalues of the fuselage, denoted v ; (with i € [1,2]), and of the rotor,
denoted «,; (with ¢ € [1,4]). In Fig. 2(a), the typical behavior of the imaginary part of these eigenvalues
is reported with respect to the rotor speed (2 for w, < ws. We can notice that there are two values of €2 for
which an interaction between the fuselage mode and the regressive rotor mode is possible: Q ~ |w, — w;|
and ) ~ wy + ws'.

In Figs. 2(b) and 2(c), the comparison between eigenvalues of the uncoupled systems o ; and o, ; and
the eigenvalues «; of the coupled system shows that:

* For ) = |wy — ws|, a phenomenon of “curve veering” [14] appears, the real part of the eigenvalues o
stay negative and there is no instability.

* For 2 ~ wy, + ws, a phenomenon of frequency coalescence is observed, the real part of one of
the eigenvalues o becomes positive and a dynamic instability occurs; this is the helicopter ground

resonance.
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Figure 2: Eigenvalues of the uncoupled system and coupled system (5) for w, < ws. (a) Imaginary parts of
the natural eigenvalues oy of the fuselage (dashed blue line) and o, of the rotor (solid red line). Comparison
between the eigenvalues of the uncoupled systems (i.e. oy and «;) and the eigenvalues « of the coupled
system (black circles): (b) imaginary parts and (c) real parts. Parameters used: w, = 1, ws = 2, 5\y = 0.09,
;\5 = 0.03, S'C = 0.6 and S'd = 0.3. The parameters :\y, 5\5, S’C and §d are chosen to obtain readable figures,
no for their realism.

Fig. 2 shows also that the progressive rotor mode does not interact with the fuselage mode. For w, > ws,
similar observations can be made and consequently, in both situations (w, < ws and w, > ws), the progres-
sive rotor mode does not contribute to the creation of the GR instability. Therefore, the last step to obtain the

'Tf undamped system would be considered (i.e. if A, = As = 0), we would get exact equalities: Q = |w, — ws| and
Q = wy + ws, see [9] for more details.



simplest model for helicopter ground resonance is to eliminate the progressive rotor mode from the equa-
tions of motion. This is achieved in the remaining of the section applying bi-normal transformation [3, 5] to
the equations of motion of the rotor alone. In the state-space form we obtain

. Y
U, = ArUra with U, = [610 015 01c 015 - (8)
The following eigenvalue problems:
A.r = a,r and A';l = a,l )
where At denotes the transpose of A, are solved giving:

* two pairs of complex conjugates eigenvalues: a1, o ;, a2 and o 5 (the ” *  is the usual notation
for the complex conjugate),

* two pairs of complex conjugates eigenvectors of Ay, r;, called right eigenvectors of A,: ry, rj, ra
and r5.

* two pairs of complex conjugates eigenvectors of A, 1;, called left eigenvectors of Ay: 11, 15, 12 and
15.

The right and left eigenvectors satisfy the biorthogonality properties: L*R and L*A,R are diagonal
matrices where R = [ry rj r2 rj] and L = [13 1 12 I5]. It is convenient to normalize the two set of
eigenvectors r; and l; in order to obtain

L'R=1. (10)

In this case, we have:

a1 0 0 0
x| 0 ame 0 0|
L'AR= | o 75" 0§ | =D (11)

0 0 0 Qi 2%

The binormal transformation consists in introducing the binormal coordinates which are constituted of
two pairs of complex conjugates, (q1, ¢7) and (g2, ¢5), and defined by the following relation

U,=RQ & Q=L'U,, with Q=[qq¢ @al]. (12)

Introducing Eq. (12) in Eq. (8), the equations of motion of the rotor take the form of the following
diagonal system

Q =D.Q. (13)

One of the couples (¢i1,q]) and (g2,q3) is relative to the progressive rotor mode and the other the
regressive one. The couple (g2, ¢5) is arbitrary chosen to be relative to the progressive rotor mode and since
this mode does not destabilize the system, the variables g2 and g5 can be removed from the analysis.

Consequently, using the vector U, equations of motion of the whole coupled system, i.e. Egs (5),
become

i+ Ay + wiy + SqUrz =0 (14a)
0
: 0
U, =AU+ |5 .| (14b)
Seij
0
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Figure 3: Descriptive diagram of the used helicopter system coupled to an ungrounded NES. View from the
top.

Then using Eq. (13) (ignoring variables g2 and g5) and the following relations
Qr2 = gy, Rs3r = Rjy, L3 = L3y, (15)

Egs. (14) become finally

{y+5\yy+w§y+§d (R311 + R3,65) =0 (16a)
q1 — ar1q1 + ScLsii = 0. (16b)

Egs. (16) define the Simplest Helicopter Model (the SHM with 4 DOF in state-space) that can describe
GR phenomenon.

2.2 The Simplest Helicopter Model including a Non Linear Energy Sink (SHM+NES)

The simplified model (16) is used to study the effect of attaching a NES on the fuselage of the helicopter.
For that, a NES with a mass my,, a damping coefficient ¢;, and a cubic stiffness ks, is attached on the
fuselage in an ungrounded configuration (see Fig. 3). Taking into account the NES displacement h(t), the
equations of motion read

i+ Ayg + wiy + Sq (Rsrdy + R5,.67) + fi (y — h) +as(y—h)>=0 (17a)
ek+ﬁ(h—y)+d3(h—y)3:0 (17b)
q1 — ar1q1 + ScLsii = 0, (17¢)

where € = my,/ (my + 4ms) is the mass ratio, i = ¢,/ (my + 4ms) and &z = ksp/ (my, + 4ms).
System of Egs. (17) is the Simplest Helicopter Model including a Non Linear Energy Sink (SHM+NES).

2.2.1 Fixed points of the SHM+NES and their stability.

It is easy to show that the only fixed point of the SHM+NES (Eqs (17)) is the trivial solution y = h =
q1 = 0. To find its stability, the 6 eigenvalues of the Jacobian matrix of the state-space representation of the
system Eqs (17) have to be computed. The trivial solution is unstable is one of the eigenvalues have positive
real part.



3 Steady-state response regimes of the SHM+NES

3.1 Some steady-state response regimes

Using numerical integration of the SHM+NES, Egs. (17), four different types of response regimes which
may be highlighted (as illustrated in Sect. 4) when a NES is attached on the fuselage. They are classified
into two categories depending on the fact that the trivial solution of the SHM+NES is stable or not:

¢ The trivial solution of the SHM+NES is stable:

— Complete suppression. In this case, the additional damping due to the NES attachment stabilizes
the system and the GR instability is completely suppressed.

¢ The trivial solution of the SHM+NES is unstable:

— Partial suppression through Periodic Response (PR). In this case, the steady-state response

regime is periodic with frequency close to wyz.

— Partial suppression through Strongly Modulated Response (SMR). In this case, the steady-state
response regime is a quasiperiodic regime which exhibits a “fast” component with frequency
close to w, and a “slow” component corresponding to the envelope of the signal. The term
”Strongly modulated response” has been introduced by Starosvetsky and Gendelman [20] for
the study of a forced linear system coupled to a NES.

— No suppression of GR. The NES is not able to maintain stable steady-state regimes. We observe
exponential growth of the fuselage displacement.

These four responses are also observed by Lee et al. [12] and study theoretically by Gendelman et al. [7]
in the context of the control aeroelastic instabilities of a rigid wing in subsonic flow by means of a NES.

In the following sections an analytical procedure based on complexification-averaging method together
with geometric singular perturbation theory is developed to analyze situations for which trivial solution of
the SHM+NES is unstable.

3.2 The complexified-averaged model

The analytical study proposed is based on complexification-averaging method first introduced by Manevitch [16]
and discussed in detail by Vakakis et al. [22].

First, to simplify the following calculations, it is convenient to introduce barycentric coordinates v(t)
and w(t)

v=y+eh and w=1y— h. (18)

Using Eqgs. (18), Eqgs. (17) are written as follow

.7 Utew QU+ ew ) . o
by cr1 Yo + Sa (Rs1q1 + R3,47) =0 (19a)
. x Ut ew QU+ ew g ) . o
W+ Ay cr1 YT + Sa (R31g1 + R3147) +

1 1 .

i g P = 0 (19b)
. ~ U+ ew
1 — ar1q1 + Sclisy = 0. (19¢)

e+1

Secondly, the complexification® consists in introducing the following change of variable

*This can be shown for example by computing the power spectrum of the steady part of the signal.
3This step is not necessary for the variable g; (t) because it is already a complex variable.



1 =0+ Jwyv and Yo =W + Jwyw, (20)

with j2 = —1.

Previous numerical and theoretical results (see Sect. 3.1) motive us to introduce the assumption that
the variable v, w and ¢; may be broken down into fast and slow components. For that, the following
representation is introduced

Y1 = predvt Py = Poedvt q = Pzl (21

where ¢; (with i € [1, 3]) is the complex slow modulated amplitude of the fast component e/*v?,
Substituting Egs. (20) into Egs. (19) an equivalent complex system of differential equations is obtained.

Substituting next Eq. (21) in this complex system and performing an averaging over one period of the

frequency w, yield to a system of equations describing the behavior of the slow complex amplitudes ¢;

¢+ j%ﬁbl + m (¢1 + €¢2) + SqRa1 (¢3 + jwy¢3) =0 (22a)
b+ L n + m (61 + ) + SRy (s + juoyds) +

R R (22b)
¢3 + (jwy — o) ¢3 + 15;:61131 [(@51 + 6@2) +j% (¢1+ 6¢2)} = 0. (22¢)

Egs. (22) define the complexified-averaged system.

3.3 Approximation of the periodic solutions of the SHM+NES and their stability

The fixed point of the complexified-averaged system (22) (defined as ngZ = 0 for: € [1, 3]) only charac-
terizes periodic solutions of Egs. (19) if the frequency of the periodic solutions is equal to w,, the frequency
used to defined the complex variables (20). However, using the polar coordinates n;(¢) and 6;(t) (with
i € [1,3]), defined by

di(t) = n(t)e?%®, (23)

and considering not the arguments 0;(¢) directly but the argument differences d;,; = 6;(t) — 01(t), the
periodic solutions of the system of Egs. (19) (and consequently of the SHM+NES (17)) may be defined from
the complexified-averaged system (22) as the fixed points of the system of differential equations describing
the dynamic of the variables n1, na, n3, d21 and d3;.

To obtain this system, Eqs. (22) are first re-written using matrix form

® = CP + ¢o|o’H, (24)

where the constant complex matrices C and H are not specified (and easy obtained from Egs. (22)).
Next introducing the polar coordinates (23) and separating real and imaginary parts of each equation,



Eq. (24) take the form

( n1 = ni1Re [C11] + n2Re [Clgej‘sm} + nsRe [Clgeﬁ“} + ngRe [Hlej‘sm} (25a)
161 = nyIm [C11] + nolm [Clgeﬂ“sﬂ + n3Im [Clgeﬂ'&ﬂ} + 7n3Im [Hleﬂ‘éﬂ (25b)
ng = n1Re |:C216_j621:| + noRe [CQQ] + n3Re [CQgej(63l_621)] + n%Re [Hz] (25¢)
n2bs = nylm [Cme*ﬁﬂ + nolm [Caa] + n3lm [023&(531*52”] + 73T [H] (25d)
hg = ane [Cgle_j&“} + TLQRG [ng€j<62l_63l)] + ngRe [033} + TL%RG [ngj(ém_%l)} (256)

| ngég =n1Im [Cglefjég’l} + nolm [03263'(6217531)] + n3Im [Cs3] + nglm [Hg@jwm*%l)} . (259

Note that the right hand sides of Egs. (25) do not depend on 6; but on d2; and d3;.

Finally, combining Eqgs. (25b) and (25d) as (n1(25d) — na(25b))/niny and Egs. (25b) and (25f) as
(n1(25f) — n3(25b))/nins and grouping with Egs. (25a), (25¢) and (25e), we obtained the close form
differential equations

A =F (A), with A = [n1 o N3 091 (531? . (26)

Fixed points A® = [n§ n§ n§ 65, 65,]" of Eqs. (26) are computed by solving F (A®) = 0 and associated
stability property are found by looking the sign of the real parts of the eigenvalues \; (with i € [1, 5]) of the
Jacobian matrix of F evaluated at A€.

This analysis permits to predict the existence of stable periodic response regimes which correspond to
the case where the real parts of all the eigenvalues are negative. In the following section, an asymptotic
analysis of the complexified-averaged model is developed to characterize response regimes when stable
property is not satisfied.

3.4 Asymptotic analysis of the complexified-averaged model

In this section we assume that ¢ < 1 (i.e the mass of the NES is small with respect to the total
mass of the fuselage and the blades) and that the parameters Ays As; Sd, Se, fi and a3 are of order € (i.e
Ay, A5, Sd, Se, i, &3 ~ O(€)). These parameters are rescaling as

; (27a)

As; = (27b)

with )\y, As, Sa, Se, o, g ~ 0(1)
Moreover, we focus the analysis for €2 around w, + ws introducing the detuning term a, defined as

Q= wy + ws + ae, (28)

with a ~ O(1).
Using the rescaled parameters, the terms Rg31, Lig1 and - 1 can be expanded in a first-order Taylor series
around € = 0 giving

Ryt = j+0 () 29)
s o wy + ae
L3 = —— 4 2
31 8w§e+j ( T > +0 (€) (30)
A
s = ety )+ 0 () o



Introducing Egs. (29), (30) and (31) (neglecting the O (62) terms) and the rescaled parameters (27),
Egs. (22) becomes

P+ € ()\yzjwyd)l — j%@ - dey¢3> =0 (32a)
bt Doy 1 (o~ 9) (1 - ) — +

cSuts + o1 +0) (5 -igg i) =0 G
¢3+ € ((Az - ja> SCL:Z 1) = 0. (32¢)

Egs. (32) define a simplified version of the complexified-averaged system which is called full slow-flow
system which is now be analyzed using the multiple scale approach [17] with respect to the small parameter
e by considering slow time tq = t and super-slow time* t; = et. To achieve this, multiple scale expansion
are introduced as

¢ = Gilto, t1) = ni(to, t1)e o) for i = 1,2, 3, (33)

reported in Egs. (32) with the derivative rule

d 0 0
— = — +e—. 34
a0ty o 4
and finally isolating expressions of order ¢’ and ¢! are deduced.
3.4.1 Slow time scale: ’-order of the system and Slow Invariant Manifold
The expressions of order ¥ correspond to the following differential equations:
(01
— =0 35
dto (5>3)
Opy  wy 3az 2
— - = 35b
ot s (1 — ¢2) ¢2 +ig 3¢2 |p2] (35b)
I¢3
— =0. 35

At the slow time scale, ¢3 is uncoupled with ¢; and ¢, and Egs. (35a) and (35c) can be solved giving:

gf; =0 = ¢1(to,t1) = P1(t1) (36a)
gﬁ)’ =0 = ¢3(to, t1) = P3(t1). (36b)

Introducing the polar coordinates
¢; = nj(to, t1)e 4 for j = 1,2 and 3, (37)

“We use the terminology introduced by Gendelman and Bar [6] whereby the term fast is reserved for the fast component e/*".
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Egs. (35) reduce to

ony

Tm _0 (38a)
Ing _ Y (n1sinda1 + naFr(na)) (38b)
Oty 2

ons

87750 _o (38¢)
0091 Wy (M

_ = i - F

oty 2 <n2 cos R(n2)> o
31

Tto o, (38e)

where (as in Section. (3.3)) the argument difference do; = 62 — 61 and d3; = 63 — 61 have been introduced
and the real scalar functions F'r and I are defined as

. 3o ,
F(n) = Fr(ng) + jFr(ng) =1 - jn —j L. (39)
Y Y

The fixed points of Eq. (38) (which characterize the periodic solutions of Egs. (19) at the slow time
scale) can be computed directly by solving:

. Ong . 001

Using Eq. (36a), Egs. (38d) and (38c) reduce to the following form:

D1 (t1) = Po(t1) F (|P2(t1)]), VP, (41)
where
lim @ (to, t1) = P2(t1). (42)
to—00
It is interesting to note that Eq. (41) corresponds to the fixed point of Eq. (35b) i.e
lim 002 =0.
to—00 ato

As discussed for example in [20] for forced linear system with NES and in [7, 6] for nonlinear self-
excitated system with NES, Eq. (41) defines the so-called Slow Invariant Manifold (SIM) but with respect
to the variable (@1, ®o, P3).

Considering the polar coordinates

d; = N;(t1)e"®t) for j = 1,2 and 3, (43)
it is convenient to characterize the SIM on the (N7, N2, N3)-space as
N? = H(Ny) (44)
where the real scalar function H is defined by
H(Np) = N3|F (N2) |* = N3 [Fr(N2)* + Fi(N2)?] . (45)

The SIM does not depend on the variable N3 and this structure can be analysed in the (N2, N7 )-plan. The
local extrema of the function H(x) are given by the positive roots of its derivative H’. An easy calculus
shows that the local extrema occur at

9 . /1-3L 24 ,/1— 3L
2 2 2 2
Noar 2 “ 2\ —F (46)

= —W _— N2 = —W
’ 3Y as me gty a3

if the following relation holds

(47)

=

A
Bl

£

and in this case No pr < No .
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0.0
0.0

Figure 4: Slow Invariant Manifold (SIM). Following parameters are used: w, = 1, 3 = 2 and px = 0.2. (a)
In the (N1, N2)-plan and (b) In the (N7, No, N3)-space.

Stability of the Slow Invariant Manifold. Stability range of the SIM is determined by examining the
sign of the eigenvalues real parts of the Jacobian matrix of differential system (38b-38d) on the SIM. It can
be shown that the condition of stability of the SIM is equivalent to:

H'(N3) >0 (48)

and the stability range of the CM is characterized by the points (N2, N1,,) and (N2 a7, N1 ) Where
Niv = /H (Nam), Nigm = /H (Nam), which are therefore called fold points [19]. A typical Slow
Invariant Manifold and it stability range are depicted (see Fig. 4(a)) in (N2, N1)-plan where No 4 and Na,,
are solutions of

02
H (No) = H (Nog) = Nyg = w? V “v (49)
3 Y a3
and,
02
H (Nyp) = H (Nay) = Now = = w2 Vag v (50)

respectively. In the (N1, No, N3)-space, each fold point defines a folded line (Lj; and L,,) co-linear to the
N3s-axis (see Fig. 4(b)).

The shape and the stability property of the SIM (i.e. the existence of folded lines on which the stability of
the SIM changes) shown in Fig. 4 allow to define three steady-state regimes of the full slow-flow system (32)
that can explain the three steady-state regimes of the SHM+NES described in Sect. 3.1.

A fixed point of the slow-flow is reached. These situations corresponds to a periodic solution of the SHM+NES
(see Sects. 3.1 and 3.3).

Relaxation oscillations. The S-shape of the SIM suggests also the possible existence of relaxation oscilla-
tions [8]: starting at Sy € Ly, the system jumps to S, which is followed by a slow evolution of the

12



trajectory of the system (in the stable domain of the SIM) until it reaches L,,,. After another jump and
a slow evolution (in the stable domain of the SIM), the trajectory returns to Sy € Ljs. Such scenario
of relaxation oscillations for the slow-flow system can explain the existence of Strongly Modulated
Responses [7, 6, 20] for the SHM+NES. Note that if 1 > w,/ /3, the S-shape nature of the SIM is
lost and therefore relaxation oscillations are note possible.

Explosion. Until a first jump the slow-flow evolves the same way as for relaxation oscillations mecha-
nism. However, instead of moving toward a stable fixed point or the folded line L,,, the trajectory
of the system follows the SIM to the infinity. This scenario explains no suppression regime for the
SHM+NES.

The existence of one of the three steady-state regimes described above or an other depends of the position
and the stability of the fixed points of the full slow-flow system (32). Indeed, a stable fixed point of the full
slow flow placed on the stable part of the SIM is a necessary condition to obtain PRs of the SHM+NES (17).
On the other hand, the relaxation oscillations of the slow flow (or SRMs for the SHM+NES) can exist if both
folded lines L,; and L,, have attractive parts. Position and stability of the fixed points of the full slow-flow
system and attractivity (or repulsively) of the folded lines are determined in the next section through the
study of the super-slow time scale.

3.4.2 Super-slow time scale: ¢!-order of the system

The expressions of order ! correspond to the following differential equations:

0 A

O — D — 1 (91— 60) + Sy (51a)
1

0 /\ 3

8?12 5 2V 4, —j Y (¢1 — ¢2) + Sawy s — gcﬁz +j82j§¢2 |62 (51b)

s (N Sew?

atl—_<2_]a> ¢3 + 8w0; o1 (51c)

We investigate the behavior of ®5(¢1) and ®3(¢1) with the super-slow time ;. The behavior of ®;(¢1)
is related to that of ®o(¢;) through the SIM (41)).

For this sake, we consider only Eqgs. (51a) and (51c) in the limit ¢ — oo. Using Eqs (36a) and (42) and
the SIM Eq. (41), Egs. (51a) and (51c¢) are written as follow:

0[P F (|® A W
OURLURD] 2o (1ol — 120 (F(0]) — 1) + S, s (522
oty 2 2
003 A5 . Scwg
— === o: Dy F(|D2)). 52b
oty (2 ‘m) 31 5oy T2E (122 (52)
Introducing the polar coordinates
(I)Q = Ng(t1)6i®2(t1) and (1)3 = Ng(tl)eieg’(tl), (53)

and separating real and imaginary parts, Egs. (52) takes the following form:

( ON> 009 ONs A Wy
FR 8t1 N2 (‘9t F N2 8t F §N2FR + ?NQF] + deyNg COS (Agg) (54&)
892 8N2 8N2
N F —Fr + N- F; =
T T R T
A
—§N2F[ — ?yNQ (FR — 1) + deyNg sin (Agg) (54b)
N, A Sewy
aatlg = 5 8:}; (FR CcoSs (Agg) + Fsin (Agg) ) (54C)
Sew?
66(;)13 = CLN3—|— WQ?NQ(F]COS (Agz) —FRsin (Agg)), (54(1)
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involving the variable Agy = ©3 — O5. Combining Eqs (54a-54d), system of Eqgs. (54) can be finally
reduced (after some calculation steps) to the following form:

( ON-
H/(N2)W12 = fn, (N2, N3, Asp) (55a)
OA
H,(NQ) 8'[:?2 = fA32 (N27N37A32) (55b)
ON:
373 = fny (N2, N3, Asg), (55¢)
1
where
INo (N2, N3, Azg) = a1 cos Az + a2 sin Agp — ¢, (56)
fAgs (N2, N3, Agg) = agy cos Asg + age sin Agy — ca, (57)
g (N2, N3, Azg) = a3y cos Aga + azz sin Agp — c3. (58)

The coefficients a11, a12, a1, ase, as1, asz, 1, c2 and c3 are not specified here. Egs. (55) admit 0, 1 or
2 fixed points denoted { N5, NS, AS,} and defined by:

Iy (N3, N3, ASy) =0, (59a)
fag, (N3, N5, ASy) =0, (59b)
fns (N3, N5, A%y) =0 (59¢)

H'(N3) # 0. (59d)

If € <« 1, fixed points computed from Eqs. (59) corresponds to fixed points of the system (26) obtained
in Sect. 3.3. As usual, stability of the fixed points are found by looking the sign of the eigenvalues real parts
of the Jacobian matrix of the vector function F1 = (fn, /g, fas,/9, fn,) evaluated at { N5, NS, AS,}.

3.5 Prediction of the steady-state response regimes of the SHM+NES

The prediction of the steady-state response regimes of the SHM+NES (17) resulting from initial condi-
tions not too far from the trivial equilibrium position is obtained checking first the local stability property
of the trivial equilibrium point of Egs. (17) (see Sect. 2.2.1) and using the asymptotic analysis of the full
slow-flow system (32) to characterize the response regimes when the trivial equilibrium point of Eqs. (17)
is unstable. From the asymptotic analysis of slow-flow system (32) performed in Sect. 3.4, we characterize

e the SIM (41) and its the fold points N 5; and N, (see Egs. (46)) and the points N 4 and Na
defined in Eqs (49) and (50) respectively,

* the stable periodic regimes (PRs) of Egs. (17) as the stable fixed points of Egs. (55),

* the non periodic response regimes (SMRs or no suppression) of Egs. (17) from the unstable fixed
points of Egs. (55).

The steady-state response regimes are classified in five domains:
Domain 0 Complete suppression
Domain 1 Partial suppression through PR
Domain 2 Partial suppression through PR or SMR

Domain 3 Partial suppression through SMR

14



Example a " Ngmber of Fized IZt. 19 Fized 1:t. 29
Fixed Pt. {Nf, N5, N5} {Nf, N5, N5}

la -0.65 0.15 2 {0.312,0.406,0.211} S {0.448,0.978,0.412} U
1b 0.3 0.7 1 {0.608,0.859,0.723} S -

2a 0.2 0.45 2 {0.372,0.826,0.539} S {151,4.7,75.4} U
2b 0.2 0.37 1 {0.298,0.799,0.468} S {151,4.7,75.6} U
3a 0.4 0.2 1 {0.195,0.744,0.319} U -

3b -0.2 0.2 2 {0.239,0.692,0.307} U {1.22,1.16,0.77} U
4a 0.65 0.3 2 {0.287,0.870,0.458} U {0.331,0.593,0.340} U
4b 0.65 0.5 0 - -

Table 1: Values of a and j used in Examples 1a, 1b, 2a, 2b, 3a, 3b, 4a and 4b. Coordinates Ny, N5 and Ng
of the corresponding fixed points of (55) are also indicated. S = stable and U = unstable.

Example a I Na No.m, N3y Ns g
la -0.65 0.15 0.479 0.812 0.935 0.124
1b 0.3 0.7 1> wy/V/3 & 0.577
2a 0.2 0.45 0.552 0.764 0.850 0.407
2b 0.2 0.37 0.523 0.784 0.886 0.321
3a 0.4 0.2 0.486 0.808 0.928 0.166
3b -0.2 0.2 0.486 0.808 0.928 0.166
4a 0.65 0.3 0.505 0.796 0.908 0.254
4b 0.65 0.5 0.577 0.745 0.816 0.471

Table 2: Values of N2 ps, N2y, No,, and No g corresponding to Examples 1a, 1b, 2a, 2b, 3a, 3b, 4a and 4b.

Domain 4 No suppresion

The diagram of the Fig. 5 summarizes the algorithm used to, for a given set of parameters, the corre-
sponding domain for the associated response regime: Fig. 5(a) for p1 < wy,/ /3 and Fig. 5(b) 1 > wy/ V3.
The algorithm is detailed in the following section.

4 Parametric study and numerical validation of the prediction algorithm

The procedure presented in Sect. 3.5 is used to analyze the influence of the damping p of the NES and
the rotor speed €2, through the detuning parameter a, on the response regimes of the SHM+NES model. The
following set of numerical values of the parameters is used:

wy=1, ws=2, Ay =03, X =D0.15,

Sa=1, S.=2, az3=2, e =0.01, (60)

with o € [0,1] and a € [—1.2,1.2]. Results are plotted in Fig. 7 in which each domain is represented by an
area of the plane (u,a). Finally, for each domain (expect for Domain 0 which characterizes the Complete
suppression) two examples are selected and studied deeply (see Figs. 8 to 13). The values of a and p used
for these examples and the corresponded coordinates N, N5 and N3 of the fixed points of (55) are indicated
in Tab. 4. Tab. 2 shows the corresponded values of N2 ps, N2y, No, and No 4.

4.1 Domain 0: Complete suppression

Analytical prediction of the complete suppression is performed in Sect. 2.2.1. To obtain the Domain 0,
the values of a that annul one of the eigenvalues Egs. (17) are computed with respect to the parameter p.
For each value of p, two values of a annul the eigenvalue, defining the functions a™(u) and a™ (u) in the
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wy Stability of the trivial solution of
V3 the SHM+NES (Egs. (17))

Number of Fixed Points (FP)

of the (Egs. (55))

Periodic Solutions of Egs. (19)

/-ﬁ-\

Not For the For the larger
Stable FP

uncountered unstable FP

(a)

Wy Stability of the trivial solution of
=3 the SHM+NES (Egs. (17))

Number of Fixed Points (FP)

of Egs. (55)

Periodic Solutions of Egs. (19)

uncountered

(b)

Figure 5: Algorithm for the determination of the domain of existence of the steady-state regimes of the
SHM+NES (19). (a) p < wy/V/3 and (b) p > wy/V/3.
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Trivial solution stable: Domain 0

© 00! Trivial solution unstable

-0.5¢

Trivial solution stable: Domain 0O

0.0 0.2 0.4 0.6 0.8 1.0
u

Figure 6: Functions a™(u) and @™ (x) and Domain 0 which corresponds to the region of stability of the
trivial solution of Eqs. (17). Parameters used: see Eq. (60).

plan (u, a) (see Fig. 6). The area outside the curves a™ (u) and a™ () corresponds to stable trivial solution
and in the area inside the curves, the trivial solution in unstable. The values a™(0) and a~(0) reflect the
case without NES.

Remark. Following definitions correspond to situations for which 1 < w,/ V/3. Otherwise, if ;1 > wy/ V3,
relaxation oscillations cannot exist. Therefore, only Domains 1 and Domains 4 are defined: Domains 1 if
one of the fixed point of slow-flow system is stable, Domains 4 if not (see Fig. 5(b)).

4.2 Local stability of one of the fixed point of the slow-flow system: Domain 1 and 2

Fixed points of the slow-flow system correspond to periodic solutions of the SHM+NES. Therefore,
the domain of existence the Partial suppression through Periodic Response may correspond to the domain
of local stability of one of the fixed point. However, the two following situations must be considered:
N5 < Ny and NS > Ng,, where N3 is the Na-coordinate of a stable fixed point. The two situations
correspond to domain 1 and 2 respectively.

4.2.1 Domain 1: partial suppression through PR

This domain is represented by gray dots ("e”) in Fig. 7. For N5 < N js, the stable fixed point is
reached before the folded line L. In this situation, relaxation oscillations or explosion of the slow-flow
system and therefore SMR or no suppression regimes for the SHM+NES are avoided. Therefore, domain
1 corresponds to Partial suppression through Periodic Response. Figs. 8 and 9 show two examples of this
situation with 11 < wy/v/3 and p1 > w, /\/3 respectively.

4.2.2 Domain 2: partial suppression through PR or SMR

This domain is represented by black crosses ("X ”) in Fig. 7. The case of one stable fixed point which
satisfies the condition N§ > N ,, highlights the limit of the local stability study. Indeed, in this case, at
least one jump from N3 5s to Na ,, is needed to reach the fixed point. After that, the fixed point can be really
reached or sustained relaxation oscillations of the the slow-flow system are observed. Examples of the two
possible situations are shown in Figs. 10 (PR, Example 2a) and 11 (SMR, Example 2b).
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of the domains of existence of the four steady-regimes. Domain 0:

’

Figure 7: Prediction, in the plane (a, )

Complete suppression (the gray area). Domain 1: Partial suppression through PR (e). Domain 2: Partial
suppression through PR or SMR (x). Domain 3: Partial suppression through SMR (’c”). Domain 4: no

suppression ("©”). Parameters used: see Eq. (60).

: partial suppression through SMR

4.3 Domain 3

This domain is represented by squares (”’0”) in Fig. 7 and corresponds to two situations. In the first
situation, it exists one fixed point and it is unstable. In the second situation, there are two unstable fixed

Example 3a and Example

u-

)

> Ny

3b illustrate these two situations respectively (see Figs. 12 and 13). One can see in Figs. 12(b) and 13(b)

that,

e
2

in these situations, the fold points are reached by the system giving rise to relaxation oscillations of the

points and the larger of them should satisfied the following condition:
slow-flow system which correspond to SMR for the SHM+NES.

: O suppression

4.4 Domain4

This domain is represented by dotted circles ("®”) in Fig. 7 and corresponds to two situations. The first
situation corresponds to the case of two unstable fixed points and for both fixed points we have: Ny s <
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N5 < Ni, (see Example 4a in Fig. 14). In the second situation, the slow-flow system has no fixed points.
Therefore, there exists only the trivial solution of the SHM+NES, and it is unstable (see Example 4b in
Fig. 15). In the case of no suppression, the GR instability is to strong to be suppressed by the NES attachment
through PRs or SMRs and after a transient regime an explosion of the slow-flow in finally observed.

5 Conclusion

We studied the steady-state response regimes of a helicopter model reproducing GR instability coupled
to ungrounded NES attached to the fuselage. A Simplest Helicopter Model (SHM) was defined as a linear
system involving blade and fuselage dynamics resulting from Coleman and binormal transformations. This
model reproduces the GR instability corresponding to frequency coalescence of the fuselage mode and the
regressive rotor mode. The SHM is coupled to an ungrounded cubic NES defining the SHM+NES (Simplest
Helicopter Model + Non Linear Energy Sink) model. To analyze the steady-state response regimes, the
system is partitioned in slow-fast dynamics using complexification-averaging approach. The presence a
small dimensionless parameter related to the mass of the NES in the slow-flow system implies that it involves
one “’slow” complex variable and two super-slow” complex variables. The “’super-slow/slow” nature of the
system allowed us to use multiple scale approach to analyze it. In particular, the Slow Invariant Manifold
of the slow flow was determined. Its shape involving two folded lines and the associated stability properties
provide an analytical tool to explain and predict the existence of three regimes: periodic response regimes,
strongly modulated response regimes and no suppression regimes that appear when the trivial solution is
unstable. A procedure that allows determining the domains of existence of these regimes was proposed.
This procedure was used to analyze the influence of the damping of the NES and the rotor speed on the
response regimes of the SHM+NES model for a set of nominal numerical values of the other parameters of
the model. In the unstable trivial solution area, four regimes were predicted: partial suppression through
periodic response, partial suppression through strongly modulated response, partial suppression through
periodic response or strongly modulated response and no suppression. All these regimes were validated
from direct numerical integration of the SHM+NES model.
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Figure 8: Example 1. Parameters used: see Eq. (60), a = —0.65 and ¢ = 0.15. (a) Comparison between
numerical simulation of the SHM+NES (19) (gray solid line)) and the full slow-flow system (32) (black
dashed line). (b) Comparison between the trajectory of the simulated slow-flow system (32) in the plane
(NQ, Nl) and the Slow Invariant Manifold (41). ”e”: position (.7\727]\/[7 leM), (Ng,m, Nl,m), (N27u, Nl,M)
and (N3 g, N1,m), o: stable fixed points,
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Figure 9: Example 1b. Parameters used: see Eq. (60), a = 0.3 and p = 0.7. Same caption as for Fig. 8.
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Figure 10: Example 2a. Parameters used: see Eq. (60), a = 0.2 and p = 0.45. Same caption as for Fig. 8.
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Figure 11: Example 2b. Parameters used: see Eq. (60), a = 0.2 and = 0.37. Same caption as for Fig. 8.
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Figure 12: Example 3a. Parameters used: see Eq. (60), a = 0.4 and p = 0.2. Same caption as for Fig. 8.
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Figure 13: Example 3b. Parameters used: see Eq. (60), a = 0.2 and i = —0.2. Same caption as for Fig. 8.
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Figure 14: Example 4a. Parameters used: see Eq. (60), a = —0.65 and p = 0.3. Same caption as for Fig. 8.
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Figure 15: Example 4b. Parameters used: see Eq. (60), a = —0.65 and p = 0.5. Same caption as for Fig. 8.
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