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Abstract— Over the last few years multi-touch interfaces have
made their ways in most environments including mobile
technologies, flight entertainment systems, consumer electronics
... Such interfaces and associated interaction techniques have
demonstrated benefits partly due to the fact that the output
device integrates input management thus bridging the (classical)
gap between input and output in user interfaces. They have also
demonstrated benefits in terms of performance for triggering
commands by exploiting multi-fingers interactions thus reducing
the number of unnecessary modes. Together with these benefits,
multi-touch interfaces bring a set of issues that are still to be
solved prior to make them “acceptable” for command and
control of (safety) critical interactive systems. Such issues include
usability and reliability in a way that is even more salient than in
“classical” Windows, Icons, Menus, Pointing device (WIMP)
interfaces that have been around for more than 30 years. This
paper proposes a notation and its associated tool for describing in
a complete and unambiguous way multi-touch interactions thus
mainly targeting at reliability. We present from a case study (in
the application domain of interactive cockpits of aircrafts) how
the notation makes it possible to describe such interactions from
the hardware level and how this notation can be integrated into
an industrial development process.

Keywords—multi-touch interaction, cockpits, aeronautics

1. INTRODUCTION

Over the years, the evolution of cockpits in large civil aircrafts

has taken place following two different paths:

e Small increments/evolutions targeting at solving
identified problems or integrating new equipment into an
existing cockpit,

e Significant steps/evolutions ending up with a complete re-
design of the cockpits including controls and displays.
Examples of such evolutions include glass cockpit (where
large display units were included in the flight deck) and
more recently interactive cockpits compliant with
Acronautical Radio, Incorporated (ARINC) 661
specifications [3] where interaction takes place through
mouse-like input devices and keyboards.

In parallel of these evolutions in the cockpit, multi-touch
interfaces have made their ways in most environments
including mobile technologies, flight entertainment systems,

consumer electronics ... Such interfaces have demonstrated
benefits related to the fact that the output device integrates
input management thus bridging the (usual) gap between input
and output in user interfaces. They have also demonstrated
benefits in terms of performance for triggering commands by
exploiting multi-fingers interactions thus reducing the number
of un-necessary modes.

Providing multi-touch interactions for the command and
control of civil aircraft would consists in another significant
evolutionary step as far as the evolution of cockpits is
concerned. However, together with the benefits presented
above, multi-touch interfaces bring a set of issues that are still
to be solved prior making them “acceptable” for command
and control of (safety) critical interactive systems. These
issues touch many properties such as reliability, and more
globally resilience.

These sets of issues are not new and appeared already when
interactions in the cockpit evolved from “physical
interactions” (by manipulating physical knobs and reading
information on dials) to software controls mainly based on the
ARINC 661 specification [3]. Often considered more reliable
means to trigger commands from the cockpit equipment’s,
pushbuttons, rotators and safe-guarded physical buttons have
populated the flight decks’ space. However these devices
generate significant weight load and bring modifiability
(upgradability) issues. Indeed, these physical components are
directly linked to the systems they command resulting in the
fact that evolutions made to the aforementioned systems are
likely to require modifications to the components. This
requires adaptation of the cockpit itself (which is a distributed
cognitive system [20]) and ultimately the adaptation of
procedures and training. Finally, due to their physical nature,
the more complex the aircraft systems, the more numerous
physical components will appear in the cockpits. The
development of the ARINC 661 specification [3], described in
the related work paragraph, was mainly driven by these issues
i.e. reducing cockpit size and increasing its modifiability.

The remainder of this paper is organized as follows: first it
addresses the rationale for the use of multi-touch applications
in avionic applications as well as the related issues from a
specification perspective. It then presents why multi-touch
interactions have the potential for going beyond the numerous



benefits brought by interactive cockpits compliant with
ARINC 661 specification but also the new problems they raise
in terms of engineering. The paper then proposes a
contribution targeting at these issues and finally demonstrates
on a case study how the approach can be applied, integrated in
an industrial development process and how it solves the
identified issues.

II. RATIONALE FOR INVESTIGATING MULTI-TOUCH
INTERACTIONS IN COCKPITS

The evolutions brought by user interfaces compliant with
ARINC 661 specification [3] have not been able to solve all the
issues raised by interactions in the cockpit:

. Despite the potential use of Display Units (DUs i.e.
computer screens) combined with Keyboard and Cursor
Control Units (KCCUs), the cockpit space remains confined
and a bottleneck for the ever growing complexity of aircrafts;

. Input and output are still disjoints (e.g. KCCUs and
DUs) which introduces articulatory distance for pilots to
control the avionic systems;

. Even though some cockpits offer touch interactions
they remain limited to mono-touch techniques over WIMP
interfaces.

Since the observations made in [18] several studies and
research project have studied the potential benefits of multi-
touch interactions in cockpits. For instance, the Federal
Aviation Administration (FAA) has appointed Honeywell to
study the human factors aspects of pilots’ activity supported by
touchscreens [31]. From a manufacturer point, the Airbus R&T
cockpit division [4] studied the introduction of multi-touch
displays in cockpits, following a human centred approach
where a classification of multi-touch tasks according to their
ergonomic criteria is proposed. That study demonstrates the
benefits of using multi-touch interfaces in cockpits and the
large impact the context of use has on the interaction.

Multi-user interactions extend the interaction space
compared to mono-user ones. Having two users implies, for
instance, that there are now four hands which can interact with
the system at the same time and/or location. Following this
policy it is possible to design specific interactions for a critical
operation which would require actions to be performed by two
operators simultaneously. For instance, a double check action
with four hands in a delimited range of time [10] where both
members of the crew have to touch the screen with their
thumbs. The interaction techniques could also be different for
the two users, e.g. the captain has to touch with both thumbs
while the first officer has to make two circles at the same
moment to avoid spurious and human error.

III. ENGINEERING ISSUES FOR MULTI-TOUCH
INTERACTIONS

This section introduces the main issues for adding multi-touch
interactions in cockpits from an engineering point of view.
Since multi-touch interactions are multi-modal, next
paragraph addresses the generic issues for engineering multi-
modal interactions while the second one details specific multi-

touch issues. The second paragraph addresses the issues
related to engineering such interaction techniques in the
specific context of interactive cockpits.

A. Multi-modal interactions

As the engineering of multimodal interfaces has been studied
for many years, we focus here on issues related to having
more than one user involved in the interaction. We have
identified two main issues related to multi-users interactions.
First, for the same input device and the same input action, two
users can have different interaction techniques e.g. swipe
versus simple press on a touch-screen.

Second, the devices used by the various users may be of
different types, not co-located and installed on different
partitions running on an IMA (Integrated Modular Avionics)
with different window managements. All these issues require
the careful definition of multi-modal multi-user interactions
making explicit the user, the input device and the interaction
technique used.

Currently, our work focuses on identical interaction
techniques per type of device, each person of the crew having
his/her own touch-screen and a shared one (as this proposes a
good combination of the issues above).

B. Multi-touch interactions

Multi-touch interaction techniques are, by definition, multi-
modals and therefore inherit the issues we presented in the
previous paragraphs. However, they present additional
specific issues and the following paragraph describes them
with an emphasis on multi-touch interaction specification:
interactivity continuity, dynamic instantiation, complex time
relationships and finger clustering. Most of them were
mentioned in [19] but interaction continuity and
anthropomorphic characteristics have been recently identified.

1) Interaction continuity (issue 1)
One major evolution from the use of ARINC 661 WIMP
interactions consists in describing continuous interactions (as
identified in direct manipulation [36] or post-WIMP
interactions [40]) the users’ interactions with the system are
no longer discrete (one event triggers one command) and
become continuous (a flow of event is produced before
triggering a command) and continuous feedback has to be
produced. Consequently, the notations to describe these
techniques shall support the description of event streams as
well as the description of the related immediate feedbacks.
Commands such as pinch to zoom belong to this category.

2) Dynamic instantiation of input devices (issue 2)
When all input devices are not known when the user interface
is initialized, the input devices detected during the interaction
need to be dynamically instantiated in order to be registered
and listened to (i.e. their events are possibly used for
triggering commands). This is typically the case while
addressing multi-touch interaction techniques since users’
fingers are only detected as they touch (or approach) the
tactile surfaces. This is very different from WIMP interfaces
where the set of mice and keyboard is defined in a static way.

3) Temporal representations and fine tuning (issues 3, 4)



As illustrated in [19], specifying multi-touch interaction
techniques require both qualitative and quantitative time
descriptions. Such timing aspects (which have to be finely
tuned) are required to be explicitly and thoroughly defined for
describing multi-touch and multi-modal interactions as
presented in [35]. For example, to specify a double tap,
designers need a fine tuning on two non-consecutive events:
first finger’s touch and last finger’s release.

4) Finger clustering and anthropomorphic characteristics
(issues 5, 6)
In order to fully incorporate the expressive power of multi-
touch interactions there is a need to be able to detect (at
interaction time) group of fingers evolving jointly. This might
be the case for fingers belonging to the same hand (often
called finger clustering) but this usually require specific
algorithms as proposed in [8] that must be incorporable in the
user interface description language. More fine grain
interactions might need to analyse the fingertip shapes (to
determine orientation of the finger on the touch device as
proposed in [11]. Lastly, it is important to be able to describe
interaction  techniques  taking into  account  the
anthropomorphic characteristics of the hand [29]. For
instance, an interaction featuring two fingers from the same
hand will not have the same spatial and behavioural properties
as an interaction with fingers belonging different hands.

C. Multi-touch interactions in cockpits

The avionic software environment in cockpits of civil aircrafts
requires applying dedicated design processes to ensure the
reliability, safety and usability of these critical embedded
applications. Therefore, specifying multi-touch interaction
techniques for cockpits in a complete and unambiguous way is
a mandatory requirement.

1) Interaction accuracy versus usability (issue 7)
Due to the instability of the environment, it is important to be
able to avoid spurious interactions (i.e. a pilot triggering
inadvertently a command through a non-desired touch
sequence). This can be achieved by changing the design of
touch interactions by using more pressure gestures from pilots
which might have as a result a reduction of the usability. Other
engineering solutions might involve context information
detection and fusing this information with operators’ actions.

2) Interaction reliability and dependability (issue 8)
Finally, as for other avionic applications there is a need to
apply verification and validation (V&V) techniques to the
entire cockpit display system (from the input devices to the
interactive multi-touch applications). This requires the
engineering techniques used for the interactive multi-touch
cockpits to be amenable to formal verification.

IV. RELATED WORK

A. Cockpits’ interactivity

Current (or soon to be released) interactive cockpits
essentially feature both physical and WIMP interactions for
triggering avionic functions. Indeed, when critical commands
are considered, dependable interactions using physical
interactors are preferred to software ones. Multi-touch

applications on EFBs (Electronic Flight Bags) are already
available as demonstrated by the Airbus application on the
appStore [15]. Finally mono-touch interactions have already
appeared in light aircrafts’ cockpits and fighters [39] but multi-
touch applications for avionic application still remains at the
level of industrial research projects such as [38].

B. Notations for engineering multi-touch interactions

Many research works have contributed to allow developers
handling multi-modal interface design more easily including
[27]. The domain specific language presented in [25], for
instance, addresses some dimensions described in [19] as
dynamic instantiation of input devices but lacks parallel
behaviour description and interaction analysis. We observed
that most notations (identified in [19]) lack the expressive
power to encompass all the dimensions for multi-touch
interactions and are not able to specify in a complete and non-
ambiguous way multi-touch (and more generally multi-modal)
interactions. Proton++ [23] does not explain how to support
multi-users touch interactions with several fingers. In
conclusion, except the ICO notation (that is further described
in next section), currently available notations for engineering
multi-modal interactions, are not able to address all the
engineering issues presented above.

C. Development processes for interactive critical systems

The DO-178C [12] defines the development process
requirements for the development process of avionic software
but does not detail how to address the specific issues of
interactive software [28]. Only a few processes have targeted
the development of interactive critical systems. Among such
processes, [28] have defined the high level activities needed to
take into account the system usability without sacrificing its
reliability. Additionally, [18] proposed a refinement of the
activities leading to the multi-touch interaction specification
but lacks describing how to use the produced artefacts in the
remainder of the development process.

V. AN ARCHITECTURE

This section proposes a layered architecture (presented Fig.
1) that ensures the availability of “good” properties of software
systems mentioned in [25] (flexibility, separation of concerns,
extensibility and hardware independence) and supports
handling interactions with multiple fingers which corresponds
to the dynamic instantiation of input devices (issue 2).

Fig. 1 describes an example of this architecture where the
system is composed of two multi-touch sub-systems, one for
each pilot. The physical interaction layers are designed to
provide the system access to the users’ events: fingers’ touch
on the display. These events are sent to hardware independent
finger models which are registered to the interaction models.
The fusion engine ensures the creation and forwarding of
coherent interactions’ events towards the applications (used by
the pilots) as well as the communication between the two sub-
systems. To determine the coherence of the interactive events
send to the applications, the fusion engine needs to know the
characteristics of the widget on which the interaction takes
place.



This architecture is based on the work previously published
in [19] which was an extension of another layered approach
proposed in [13] but only dealing with multimodal interactions.
We improved that architecture by introducing an intermediate
level between the low-level transducer and the interaction
models: a model to describe each finger behaviour. These
dynamically instantiated models are independent from the
lower layers and therefore ensure a higher flexibility and
independence from the upper layers. In addition, we enriched
the fusion engine with the capability to communicate with
other systems. This communication capability via the Ivy bus
[9] will be described more precisely in the case study section.
The complete description of the other layers properties and
communications have been introduced in [19] and are not
repeated here due to space constraints. Finally, the JavaFx
layer can be substituted to any other multi-touch programming
language and the upper layers are notation independent.
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Fig. 1. Proposed layered architecture for multi-modal interaction

VI. A NOTATION FOR ENGINEERING MULTI-TOUCH
INTERACTIONS

A. ICO: Informal definition

The ICO notation (Interactive Cooperative Objects) is a
formal description technique devoted to specify interactive
systems. Using high-level Petri nets [16] for dynamic
behaviour description, the notation also relies on object-
oriented approach (dynamic instantiation, classification,
encapsulation, inheritance and client/server relationships) to
describe the structural or static aspects of systems.

ICO notation objects are composed of four components: a
cooperative object for the behaviour description, a
presentation part (i.e. Graphical Interface), and two functions
(activation and rendering) describing the links between the
cooperative object and the presentation part.

ICO addresses all the issues presented in the previous sections
including dynamic instantiation of input devices which is not
addressed elsewhere in a modelling technique. ICO uses the
capabilities of Petri nets to describe tokens’ creations which
are used in models to represent input devices such as fingers
on a touchscreen.

Lastly, it is important to note that ICOs have been used for
various types of multi-modal interfaces [26] and in particular

for multi-touch [19]. This notation is also currently applied to
formally specify interactive systems in the fields of Air Traffic
Management [30], satellite ground systems [33] and cockpits
of military [6] and civil [5] aircrafts.

B. Generalization of ICO event handling capabilities

The models we present in this paper feature an extension of
ICO that was required to address the issues of multi-touch
interactions. In order to do so we proposed a new transition
allowing one cooperative object to receive events. In models
describing multi-touch interaction techniques, tokens may
represent pilots’ fingers “currently” on the device. These
transitions can be used to specifically retrieve the input that
emitted the event and to specify the event listened to as well as
its source. It also exposes the properties of the event and
allows specifying a condition on the event received in order to
fire the transition. As this extension supersedes the previous
event handler transitions in ICOs, the former transitions are no
longer used.

Fig. 2 represents a use of this new mechanism: the model’s
extract  presented is  composed of a  place
OperationallnputDevices that contains the input devices of the
system and their activation status. Such transition would
belong to the Low-level transducer layer of Fig. 1. The
disableInputDevice transition listens to “error” events emitted
by the input devices. When the place OperationallnputDevices
contains at least one active device, disablelnputDevice is
enabled. If so, when it receives an ‘error” event,
disableInputDevice is fired if the criticality field of the “error”
event is high (this is defined by the eventcondition
level==Level.Hight). When disableInputDevice is fired, the
action (in Fig. 2 “device.idle()”) is executed (setting the device
in its idle mode) and the source device is moved to place
NonOperationallnputDevices with the message received
within the error event.

3. OperationallnputDevices

<device,isActive>

disablelnputDevice |

isActive

error from device
eventParams: (level message)

eventCondition: level==Level Hight

device.idle()

y
<device,isActive, message>

NonOperationalinputDevices

‘| |

Fig. 2. New ICO event transition’s example
This ICO formalism extension enhances multi-modal
interactions specification by offering the possibility to
explicitly describe the events properties and their relationships
with dynamically instantiated input devices.

C. A tool to support the notation

In order to edit and execute ICO models, the notation is
supported by the CASE tool PetShop [18], [34]. The PetShop
framework also provides tools to support user evaluations [32]
and formal analysis of models [37] thus addressing issue 8.



In addition PetShop describes and simulates OS independent
multi-touch interfaces (by connecting dedicated APIs to its
kernel), which is not the case of most of the frameworks
presented in [21].

VII. CASE STUDY

The case study presented in this section focuses on
demonstrating the expressive power of the ICO notation for the
engineering of multi-modal and multi-touch applications. It
also illustrate how the presented approach can be embedded in
an industrial development process.

A. Presentation

This case study corresponds to a subset of a weather radar
system from a civil aircraft cockpit which provides
atmospheric data to the cockpit crew and is controlled by
different systems:

. The input system is composed of a pushbutton on the
glare shield panel: one on the Captain’s (CPT) Flight Control
Unit (FCU) and one on the First Officer’s (FO) FCU and
interactors on the pylon (duplicated for each pilot);

. The outputs of the weather radar are provided through
the Navigation Displays (NDs);

. The back-up system, supported by the FCU-backup
application is not part of the study. It provides pilots additional
access to the weather radar controls based on this ARINC 661
User Application (UA).

The scenarios we present are representative of the potential
use of multi-touch (modalities, users’ interactions...) for such
an application. However, we do not intend to address design
aspects nor to demonstrate their operational validity as it is out
of scope. Nevertheless, we intend to demonstrate that our
notation provides a detailed and exhaustive mean to specify
multi-touch critical systems and to cover all the issues
presented above.

Fig. 3. A350 cockpit overview

For the purpose of this study, we consider a cockpit
configuration in “T-shape” as of the Airbus A350 (Fig. 3). For
the case study we consider a set of three displays: one screen in
front of each pilot and one on the pylon, between them. These
displays support multi-touch inputs (at least 5 touch inputs
recognizable at the same time). The other technical features of
the hardware are not considered here (resolution, latency...).

To illustrate the main dimensions of multi-modality, multi-
touch and multi-user interactions, we propose three pilot tasks
belonging to different dimensions (see TABLE 1. ).

TABLE L PILOTS’ TASKS AND THEIR DIMENSIONS

Tasks
Basic weather-radar manipulations:
activate, change layer opacity
Cloud evasive route,
Modification of a “unique” weather
parameter by both pilots jointly

Dimensions

Single user, multi-touch

Multi-users, synergistic
Multi-touch, multi-user,
Exclusive

To support these three tasks we have set up a platform
composed of three PCs running PetShop and linked using the
Ivy Bus [9], one ND application on each pilot’s computer and a
validation application for both of them to interact on. Such
architecture is compliant with the work done in [14] where
each PetShop is running over an ARINC 653 operating system
to address dependability issues (not addressed here).

Fig. 4 presents the multi-touch interface displayed on each
pilot’s ND. The interface in composed of a multi-touch map
and various custom widgets emulating physical buttons and
interactors that command the display modes and the weather
radar controls.

1) Task 1: Advanced multi-touch manipulation

For this task, a pilot (either the CPT or the FO) interacts
with the weather radar through the multi-touch Navigation
Display to (de)activate its visualization or modify its intensity
(opacity of the layer displaying the weather information on top
of the ND’s map). In addition, the pilot is able to interact with
the map itself: modifying the range (zoom) level and translate
the map.

RANGE SLIDER

Fig. 4. Navigation Display's interface for this case study
These interactions have been designed and proposed in
various research papers as well as public SDKs (Software
Development kits) of multi-touch platforms. TABLE IL
summarizes theses interactions and their references. They
cover issues 1, 2, 3 and 4 described above and are covered by
models belonging to the logical interaction layer of Fig. 1.



TABLE II. A SAMPLE OF MULTI-TOUCH INTERACTIONS FOR WEATHER
RADAR MANIPULATION
Interaction Command Interaction
. . . Reference
technique description properties targeted
I finger Change Direct Manipulation Most SDKs
drag Heading
1 finger Select object Selection [25]
lasso on map
. Two fingers with same
2 fingers’ Trigger unitary interaction
. weather layer . ’ Most SDKs
flick S velocity and
visibility .
acceleration
Precise Tune weather Timine aspects. multi-
Tily/z- layer g aspects, [24], [17]
I, . . fingers (>2)
transition intensity
2 fingers Map rotation Direct Mgmpulatlon Most SDKs
rotate (continuous)
2 fingers Map range Direct Mjampulatlon Most SDKs
scale (continuous)

We modelled each interaction technique in TABLE II.
using the ICO notation and implemented them in our
application according to the architecture presented Fig. 2. In
this paragraph, we emphasize ICO’s expressive power by
describing an excerpt of the precise tilt interaction technique
(also referred as “Z-Translation” in [24]), and more precisely
the behaviour part regarding fingers movements on the
touchscreen. [24] describes this interaction technique as
follows: “z translation — a conjoined touch on the object,
together with a one-touch drag up and down”.

This designer-like description remains at a very high level
and when developers have wish to implement such interaction
techniques, several cases need further details as, for instance,
the description of the impact of each finger movement on the
screen.

1. lockFinger1_positian
§ ——<pointL1>

<pointL1>

<newPaintL 1> enawPointl2s <pointl_ 2>
[

|. lockFinger2_position
<point 2" /
Fa

moveLock1_

touchevent!_mave fram lockfingert

evertParams  (newPointl1)

evantCondiion true

{double ratio = sotDistance/{1=newPointl 1 distance(paintl 2}

moveLock2_

toucheventf_move  from lockFingsr2

sventParams  (newPointL2)

eventCondition: tue

{double ratio = sctDistance(1 +newPoinil 2 distancetpointl 1]}

<stdDistance>

<stdDistance>
1. StandartLockFingerDistance
<ratio> <ratio>

E— : -~
<cldRatio> 1. TitRatio oldRatio>

<tatio> 1. litFinger_Startposition
(4

moveTilt_

touchevent! move from tltFinger

eventParams.  (newTiltR) ja——<tiitFaint=
eventCondition: true

{double titValue = newTiltP distance{titPoint)ratio,
ngger(preciseTit" iitValue) }

Fig. 5. Excerpt of the model of the behaviour of “tilt”

Fig. 5 describes a simple case where the third finger
(controlling the tilt value) is moving. When is does so, the
transition moveTilt is fired and executes its code, triggering a
“preciseTilt” event. The tilt value only takes into account the
distance between the initial touch of the tilt finger and its
current position. As a refinement, designers may need to
modify this behaviour by weighting this value with the distance
between the two fingers serving as anchors. The model
presented in Fig. 5 illustrates how events’ handling

mechanisms in ICO can describe that feature with a rather
simple and localized modification of the original model.

2) Task 2: Cooperative cloud-avoiding manoeuvers

This paragraph details a synergistic task between both
pilots consisting in avoiding clouds during flight. While the
captain is responsible for flying the aircraft from a short term
perspective using the weather radar at close range, the first
officer is studying the weather further away along the
predetermined flight path to avoid potentially uncomfortable
zones for the passengers. The first officer then proposes a new
route via his ND. Both pilots must then validate the flight plan
modification on the confirmation display, each one having to
press his validation button at the same time.

Fig. 6 describes the behaviour of the validation application
which is symmetrical for both pilots. When the FO proposed a
new flight plan, the newFlightPlanFromFO transition is fired
and a token containing a reference towards the FO’s ND and
the proposed flight plan is put in place NeedOfValidation.
When the FO (resp. CPT) presses his validation button, the
transition FOValidate (resp. CPTValidate) is fired and a new
token is put in FO_interacts (resp. CPT interacts). The CPT
(resp. FO) has to validate within 2.5s otherwise the validation
is not allowed. If the FO (resp. CPT) released the button before
the CPT (resp. FO) validates, he has to start over the validation.
If the proposal is not validated within ten seconds, it is
discarded, discardValidationRequest is fired and the FO’s ND
is notified accordingly.

newFlightPlanFromFO
newFlightPlanFromCPT <cptND> 9
flightPlanProposal  from foND
<faND><b
eventParams: (fightPlan)

eventCondition: true

flightPlanProposal  from  cpthD
eventParams:  (flightPlan)

eventCondition:  true

<flightPlan foND>

<fiightPlan cpthiD>

———<flightPlan ndSource> NeedOf ightPlan,ndSour
<fightPlan ndSource>
<flightPlan ndSaurce>
CPTvalidate <fightPlan ndSource> FOValidates
buttonPressed from  foValidationButton
buttonPressed from  cptvalidationButton
wvenFarams 0 eventParams: ()
eventCondition: true discardValidationRequest | eventCondition: _true
T ndSource flightPlanR efus ed(flightPlan) |
<flightPlan>
<lightPlan> T10000] '
CPT intoradts <flightPlan,ndSource> FO_interacts
<flightPlan> <flightPlan> <fms> <flightPlan>  <flightPlan>
<flightPlan>

FlightPlanValidation |

CPTtimeOut_

<flightPlan> | FOtimeOut,

l oo | = fms.updateFlightP lan fightPlan)

CPTValiationFailled
buttonReleased  from  cptValidationButton

[2500]

FOValidationRelease
buttonReleased  from  foValidationButton

eventParams: () eventParams: ()

eventCandition: true eventCondition: true

I

| —

Fig. 6. Flight Plan cooperative validation model
3) Task 3: Concurrent edition of a singleton parameter
This third task illustrates the interaction conflicts that may
occur as both pilots modify simultaneously the same system
parameter. For this task, both pilots try to modify the tilt angle
of the weather radar simultaneously.

Such conflicts are likely to appear as more and more
system parameters are controlled by User Applications which
are easily replicated on multiple displays. In the latest Airbus
cockpits, when a pilot is moving his KCCU’s cursor over a
system page, conflicts are avoided by denying the other pilot’s
cursor access to that DU area. This approach is fundamentally
opposed to the one proposed in [22] where conflicts are likely



to be solved by human rather than locking mechanisms.
Therefore they propose an optimistic algorithm for conflict
resolution favouring interactions as much as possible and
providing undo mechanisms when a seldom conflict occurs.

Our approach implements the main principle supported by
[22]: “User commands must be handled immediately without
waiting for either authorizations or acknowledgments”.

Let us consider the interactor commanding the tilt angle of
the weather radar on the captain side. Because denying both
pilots interacting over the same system page is very restrictive,
one might want to only prevent them from interacting on the
same widget. Fig. 7 presents an excerpt of the behavioural
model of such an interface. This model is identical for both
pilots. Since all DUs and their UAs are connected, the place
Peer contains a reference of the FO’s ND applications. When a
pilot starts interacting on the widget controlling the weather
radar’s tilt angle, this widget w (of which a reference is stored
in place TiltWidget) triggers an “interactionStarting” event. If
the tilt is not locked for this pilot, the event is received via the
canReserve transition. This transition locks the tilt on the other
pilot’s application using the service lockTilt() preventing the
other pilot to interact with his own tilt widget. At the end of the
interaction, the model updates the tilt on the other application
and allows the other pilot to interact with it.

il SOP_setTiltVal
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<peers newTiltValue |
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<peer—0

] Peer

TiltReserved

Fig. 7. Excerpt of the ND application model

The dashed arcs represent exception arcs formally
described in [7]. Such an exception can be thrown by the FO’s
ND application if the FO is interacting with the tilt widget. The
Captain model represents how this exception can be caught
making it possible to specify what behaviour follows its
occurrence: this could be denying captain’s interactivity or
notifying the conflict to him.

B. A notation embedded in an development process

In this section, we illustrate how the proposed notation can
be used within an industrial development process for
embedded critical systems. The development process described
in Fig. 8 is derived from the standard V development process
currently applied in the aeronautic and compliant with the DO-
178C [12] requirements and with the process presented in [28].

The particularity of this process lies in the use of the artefacts
produced during the interaction design and modelling phase.
The formal specification (ICO models) that have been created
for prototyping and operational concepts validation can be
reused all along the path down to the suppliers. The suppliers
can then base their implementation on the ICO models, serving
as specification artefacts. These models will then be used
during the validation phase of the produced software which
ensure the implementation behave as specified. By reducing
the numbers of artefacts in the development process, we reduce
the developing costs and possible loss of specification items
during the development.

Certification

High level requirements’

In-flight tests

Multi-touch interaction
modeling and specification

Aircrafts simulators

y;

SW simulators
Low level specification P

Suppliers’activities V

Fig. 8. Example of aeronautical development process

Functional analysis
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CONCLUSION

This paper has presented the extensions and the use of a
formal description technique [19] for the detailed specification
of multi-touch and multi-user interfaces. It has built upon
previous work done in the area of low-level interaction
modelling as proposed in [1] and [2]. It also extended the
layered architecture proposed in [26] to address the specific
issues of touch interactions. The paper has provided a
combination of an architecture and a notation which also
enables addressing the outputs of an interactive critical system
in a similar way as what was presented with input. Through a
set of representative tasks, we have demonstrated on a case
study how the ICO notation can tackle multi-modal and multi-
users issues providing a detailed and legible notation for
interactive critical system specification. All the models
presented in the paper run in PetShop environment and
(provided the paper is accepted) the presentation will
demonstrate their execution on a multi-touch platform. Finally
we illustrated how the notation can enhance an industrial
development process for interactive critical systems.

This work is part of a more ambitious work trying to
identify the modifications that would have to be added to
actual A661 specification standard to address multi-touch and
multi-users interactions.
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