
HAL Id: hal-03209327
https://hal.science/hal-03209327v1

Submitted on 16 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Accounting for Organisational faults in Task Model
Based Systematic Analysis of System Failures and

Human Errors
Camille Fayollas, Célia Martinie, Philippe Palanque, Racim Fahssi

To cite this version:
Camille Fayollas, Célia Martinie, Philippe Palanque, Racim Fahssi. Accounting for Organisational
faults in Task Model Based Systematic Analysis of System Failures and Human Errors. IFIP WG
13.5 Workshop on Resilience, Reliability, Safety and Human Error in System Development @ INTER-
ACT 2015, IFIP : International Federation for Information Processing, Sep 2015, Bamberg, Germany.
pp.101–116. �hal-03209327�

https://hal.science/hal-03209327v1
https://hal.archives-ouvertes.fr

Accounting for Organisational faults in
Task Model Based Systematic Analysis
of System Failures and Human Errors

Camille Fayollas, Célia Martinie, Philippe Palanque, Racim Fahssi
ICS-IRIT, University of Toulouse,

118 Route de Narbonne,

F-31062, Toulouse, France
name@irit.fr

Abstract. The overall dependability of an interactive system is the one of its weakest

component which is usually its user interface. The presented approach integrates

techniques from the dependable computing field and elements of user-centred design to

provide a wider coverage of possible faults. Risk analysis and fault tolerance techniques

are used in combination with task analysis and modelling to describe and analyse the

impact of system faults on human activities and the impact of human deviation or errors

on system performance and overall mission performance. A technique for systematic

analysis of human errors, effects and criticality is proposed (HEECA). It is inspired and

adapted from the Failure Mode, Effects and Criticality Analysis (FMECA) technique. The

key points of the approach are: a) the HEECA technique combining a systematic analysis

of the effects of system faults and of human errors, b) a task modelling notation to

describe and to assess the impact of system faults and human errors on operators’

activities and system performance. These key points are illustrated on an example

extracted from a case study of the space domain. It demonstrates the feasibility of this

approach as well as its benefits in terms of identifying opportunities for re-designing the

system, re-designing the operations and for modifying operators’ training. Lastly, a

discussion presents the main challenges for also taking into account organisational faults

in an integrated way with the proposed approach.

1 Introduction

The overall dependability of an interactive system is the one of its weakest

component and there are many components in such systems ranging from the

operator processing information and physically exploiting the hardware (input and

output devices), interaction techniques, to the interactive application and possibly

the underlying non interactive system being controlled. This paper proposes an

approach integrating these aspects in order to address system and human

dependability altogether. These two aspects of dependability are usually dealt with

separately as the research contributions come from different and usually unrelated

scientific communities. In the dependable computing community, techniques have

been proposed to cope with the impact of system failures and to assess it in a

precise manner but operators’ behaviour remains outside of the techniques. In the

INTERACT 2015, Bamberg, 14-18 Sept. 2015 2

human reliability and in the human computer interaction communities, approaches

have been proposed demonstrating the suitability of task modelling techniques to

address system and human dependability analysis. This paper presents an

integrated approach taking into account both system failures and human errors

while designing interactive systems. This approach aims at leveraging existing

techniques in the fields of: dependable computing, human reliability assessment

and human computer interaction. The proposed technique also aims at providing

complete and unambiguous task descriptions which support fine-grain analysis of

both human and system aspects. Finally, this paper proposes to extend this

approach in order to take into account organisational faults.

The article is structured as follows. Section II provides a brief review of types

of system faults and human errors. Section III presents a task model-based

stepwise process to describe and analyse the impact of system faults and human

errors in an integrated manner. A case study from the space domain is then

presented in section IV providing concrete application of the process presented in

section III. Section V is dedicated to the identification of ways of integrating

organisational faults inside the approach while section VI concludes the paper.

2 System faults and human errors

This section presents a review of types of system faults and human errors it

provides the underlying information that is used in the process described in

section III.

2.1 Considering system faults

2.1.1 Development faults

When considering the faults that can impair interactive computing systems, the

first kind of faults that come in mind are the software development faults. These

faults are introduced by a human (the developer) during the system development.

They can be, for instance, bad designs or programming errors and they result in

software defects [5] that can lead to software failures. In the area of software

engineering, methods and techniques have been introduced to prevent such faults

and include (formal methods, structured programming, OO programing…). In the

HCI community, a lot of work has been carried out for the prevention and removal

of development software faults including software architectures (e.g. [2]), formal

description techniques and verification (e.g. [17]), testing (e.g. [3]) or the use of

debugging tools to remove human made faults.

INTERACT 2015, Bamberg, 14-18 Sept. 2015 3

2.1.2 Natural faults

In the domain of fault-tolerant systems, empirical studies have demonstrated

(e.g. [18]) that software crashes may occur even though the development of the

system has been extremely rigorous. One of the many sources of such crashes is

called natural faults [1] triggered by alpha-particles from radioactive contaminants

in the chips or neutron from cosmic radiation. A higher probability of occurrence

of faults [27] concerns systems deployed in the high atmosphere (e.g. aircrafts) or

in space (e.g. manned spacecraft [8]). Furthermore the evolution of modern IC

components may lead in the next future to a higher probability of physical faults

in operation. For instance, the recommendation for avionics systems is 100 FITs

over 25 years lifetime, however, the current Deep Sub-Micron (DSP) technology

may lead to a failure rate up to 1000 FITs, only during 5 years operational life

time [25]. This is major worry in the avionics industry since this tendency has two

bad sided effects, i) the reduction of the life time of the systems and ii) the increase

of the failure rate due to hardware faults. Such natural faults demonstrate the need

to go beyond classical fault avoidance at development time (usually brought by

formal description techniques and properties verification) and to identify all the

threats that can impair interactive systems.

2.2 Considering human errors

Several contributions in the human factors domain deal with studying internal

human processes that may lead to actions that can be perceived as erroneous from

an external view point. In the 1970s, Norman, Rasmussen and Reason have

proposed theoretical frameworks to analyse human error. Norman, proposed a

predictive model for errors [20], where the concept of "slip" is highlighted and

causes of error are rooted in improper activation of patterns of action. Rasmussen

proposes a model of human performance which distinguishes three levels: skills,

rules and knowledge (SRK model) [21]. This model provides support for reasoning

about possible human errors and has been used to classify error types. Reason [22]

takes advantages of the contributions of Norman and Rasmussen, and distinguishes

three main categories of errors:

1. Skill-based errors are related to the skill level of performance in SRK.

These errors can be of one of the 2 following types: a) Slip, or routine error,

which is defined as a mismatch between an intention and an action [20]; b) Lapse

which is defined as a memory failure that prevents from executing an intended

action.

2. Rule-based mistakes are related to the rule level of performance in SRK

and are defined as the application of an inappropriate rule or procedure.

INTERACT 2015, Bamberg, 14-18 Sept. 2015 4

3. Knowledge-based errors are related to the knowledge level in SRK and are

defined as an inappropriate usage of knowledge, or a lack of knowledge or

corrupted knowledge preventing from correctly executing a task.

At the same time, Reason proposed a model of human performance called

GEMS [22] (Generic Error Modelling System), which is also based on the SRK

model and dedicated to the representation of human error mechanisms. GEMS is

a conceptual framework that embeds a detailed description of the potential causes

for each error types above. These causes are related to various models of human

performance. For example, a perceptual confusion error in GEMS is related to the

perceptual processor of the Human Processor model [4].

Causes of errors and their observation are different concepts that should be

separated when analysing user errors. To do so, Hollnagel [9] proposed a

terminology based on 2 main concepts: phenotype and genotype. The phenotype

of an error is defined as the erroneous action that can be observed. The genotype

of the error is defined as the characteristics of the operator that may contribute to

the occurrence of an erroneous action.

These concepts and the classifications above provide support for reasoning

about human errors and have been widely used to develop approaches to design

and evaluate interactive systems [26]. As pointed out in [20] investigating the

association between a phenotype and its potential genotypes is very difficult but is

an important step in order to assess the error-proneness of an interactive system.

3 An integrated approach to account for system faults
and human errors

This section presents the proposed approach to take into account for system

failures and human errors at design and development time. It is composed of a

stepwise process as well as modelling notation and tools [13].

3.1 A stepwise process to account for system faults and human
error

The process for taking into account both system faults and human errors at design

and development time is illustrated in Figure 3. The proposed process is

decomposed in 7 phases:

1. Task analysis and modelling (similar to steps 1 and 2 of the FMECA analysis

process).

2. Filtering out tasks and actions depending on the type of analysis to be

performed

INTERACT 2015, Bamberg, 14-18 Sept. 2015 5

3. Effects and criticality analysis for human errors and system failure modes

(similar to steps 3-5 of the FMECA analysis process).

4. Inventory of the couples {activity node, criticality} and inventory of the

additional tasks that would be needed to recover from system failures and/or

human errors (which matches step 6 of the FMECA analysis process).

5. Construction of enriched task models (models integrating potential system

failures and human errors as well as articulatory tasks to recover from them).

6. Analysis of the impact of the system faults and human errors on the users’

performance and on the global mission (system and organization).

7. Identification of design alternatives and proposals for modifying users’ tasks

and/or system’s functions (which matches steps 6 of the FMECA analysis

process).

Figure 1. Process to account for system faults and human error during the design and development of an

interactive critical system

Preliminary task models

(process starts here)

HEECA

(Human Error Effects

and Criticality Analysis)

Check impact wrt. Design

and dev criteria

Towards user

testing, training

design and

operations OK

FMECA

(Failure Mode Effects

and Criticality Analysis)

Proposal for

modifying the

task models

Identification of

costs-benefits for

re-design Not OK

Analyze impact of

articulatory activities

Task model, i
th

iteration

Check models wrt.

desired properties
Analyze

Mending of

model

Not OK

List of

additionnal

tasks

Final task

model

List of couples

(task,

criticality)

HAZOPReports on
Human errors

Human error

classifications

Build enriched task models

Reports on
System failures

Filter out
human
tasks

Filter out
system
tasks

Enriched task

model

System faults

classification

Report

Proposal for

modifying the

system

OK

1

2

3

4

5

6
7

INTERACT 2015, Bamberg, 14-18 Sept. 2015 6

3.2 Task modelling with HAMSTERS

HAMSTERS (Human – centered Assessment and Modeling to Support Task

Engineering for Resilient Systems) is a tool-supported graphical task modelling

notation for representing human activities in a hierarchical and structured way.

3.2.1 HAMSTERS notation

At the higher abstraction level, goals can be decomposed into sub-goals, which

can in turn be decomposed into activities. Output of this decomposition is a

graphical tree of nodes that can be tasks or temporal operators. Tasks can be of

several types (cognitive, interactive, abstract…) and contain information such as a

name, information details, and criticality level. Only the single user high-level task

types are presented here but they can be further refined. For instance the cognitive

tasks can be refined in Analysis and Decision tasks [12] and collaborative activities

can be refined in several task types [10].

Temporal operators (based on LOTOS) are used to represent temporal

relationships between sub-goals and between activities.

Tasks can also be tagged by properties to indicate whether or not they are

iterative, optional or both. The HAMSTERS notation is supported by a CASE tool

for edition and simulation of models. This tool supported notation also provides

support for structuring a large number and complex set of tasks introducing the

mechanism of subroutines [11], sub-models and components [7]. Such structuring

mechanisms allow describing large and complex activities by means of task

models. These structuring mechanisms enables the breakdown of a task model in

several ones that can be reused in the same or different task models.

HAMSTERS expressive power goes beyond most other task modelling

notations particularly by providing detailed means for describing data that is

required and manipulated [15] in order to accomplish tasks.

3.2.2 Relationship between HAMSTERS notation elements and
genotypes

All of the above notation elements are required to be able to systematically identify

and represent human errors within task models. Indeed, some genotypes (i.e.

causes of human errors) can only occur with a specific type of task or with a

specific element in a task model described using HAMSTERS. This relationship

between classification of genotypes in human error models and task modelling

elements is not trivial. For this reason, Table 1 presents the correspondences

between HAMSTERS notation elements and error genotypes from the GEMS

classification [16]. Such a correspondence is very useful for identifying potential

genotypes on an extant task model.

INTERACT 2015, Bamberg, 14-18 Sept. 2015 7

It is important to note that strategic and situational knowledge elements are not

present in this table. Indeed, such constructs are similar to the M (Methods) in

GOMS and thus correspond to different ways of reaching a goal. As all the

methods allow users to reach the goal an error cannot be made at that level and is

thus not connected to a genotype.

Table 1. Correspondence between HAMSTERS elements and genotypes from GEMS [16]

Element of

notation in

HAMSTERS

Related genotype from GEMS 1616

Perceptive task

Perceptual confusion (Skill Based Error)

Interference error (Skill Based Error)

Input task

Motor task

Interference error (Skill Based Error)

Double capture slip (Skill Based Error)

Omissions following interruptions (Skill Based Error)

Cognitive task

Skill based errors Double capture slip
Omissions following interruptions

Reduced intentionality

Interference error
Over-attention errors

Rule based mistakes Misapplication of good rules
First exceptions

Countersigns and non-signs

Informational overload
Rule strength

General rules

Redundancy
Rigidity

Application of bad rules

Encoding deficiencies

Action deficiencies

Knowledge based

mistakes

Selectivity

Workspace limitations

Out of sight out of mind
Confirmation bias

Overconfidence

Biased reviewing
Illusory correlation

Halo effects

Problems with causality
Problems with complexity

Information

Double capture slip, Omissions following interruptions,

Interference error, all of the Rule Based Mistakes and Knowledge

Based Mistakes

Declarative knowledge

All of the Knowledge Based Mistakes

New notation elements, based on these correspondences, have been introduced

to provide support for identifying and describing human errors in HAMSTERS

task models [6].

Inf : Information

DK : Declarative

INTERACT 2015, Bamberg, 14-18 Sept. 2015 8

4 Illustrative example: extract from the Picard Satellite
Case Study

The Picard satellite dedicated to solar observation was launched by CNES in

June 2010. We use a subset of it for our case study. This section presents an extract

from a case study where the integrated approach has been applied to monitoring

and control tasks performed with the Picard ground segment applications.

4.1 PICARD satellite ground segment

Satellites and spacecraft are monitored and controlled via ground segment

applications in control centres with which satellite operators implement

operational procedures. A procedure contains instructions such as sending

telecommands (TC), checking telemetry (TM), waiting, providing required values

for parameters.

Amongst the various ground segment applications used to manage the satellite

platform, we focus on the ones that are used by controllers to ensure that the

platform is functional. The platform has to be functional so that the mission (for

which the satellite has been designed and developed) can be completed.

4.2 Controller’s tasks analysis and modelling

Controllers are in charge of two main activities: observing periodically (i.e.

monitoring) the vital parameters of the satellite and performing maintenance

operations when a failure occurs. Depending on the satellite between thousands

and tens of thousands parameters have to be monitored. The more frequent and

relevant monitoring activities include observing: satellite mode, telemetry

(measures coming from the satellite), sun array drivers statuses, error parameters

for the platform, error parameters for the mission, power voltage (energy for the

satellite), ground station communication status, and on board computer main

parameters.

The “Start procedure” subroutine is presented in Figure 2. Fine grain modelling

of users’ actions with an interactive system is bound to the interactive system

interface. The task models are highly dependent on the way the information is

presented and reachable in the user interface. In this case study, the software

application used by controllers is a procedure manager. The controller can select a

procedure from the list and then s/he can start the procedure by pressing the “Start

Procedure” button.

The procedure (“Search for procedure” iterative task). Once the controller has

decided to select the procedure, the search task will be disabled (operator “[>”)

and the next task will be to:

INTERACT 2015, Bamberg, 14-18 Sept. 2015 9

 Select the procedure (“Mouse selection [select procedure]” task, of subroutine

type, in Figure 2)

 Start the procedure (“Mouse selection [start procedure] task, of subroutine type,

in Figure 2)

Finally, the system will start executing the procedure (system task in Figure 2).

This task model also describes which information is required to reach the goal of

starting a procedure.

The information about procedure reference. This information is required to be

able to search for it in the list and to analyse that the targeted procedure has been

found in the list (Box “I: (user) procedure reference with incoming and outgoing

Figure 2. Task model of “Start procedure” task

Figure 3. Task model of “Mouse selection” task

INTERACT 2015, Bamberg, 14-18 Sept. 2015 10

arrows to “Search for procedure” user task, “Perceive procedure to select”

perceptive task and “Analyze that procedure is found” cognitive analysis task).

The information about the item (of the list) to be selected. Once the controller

has decided to select the procedure, s/he produces new information which is the

information about the item to be selected (Box “I: (user) item to be selected” with

incoming arrow from the “Decide to select procedure” cognitive decision task and

with an outgoing arrow to the “Mouse selection [select procedure]” subroutine

task). Figure 3 presents the “Mouse selection” task model. It describes the fine

grain actions that have to be performed for selecting a graphical object with a

mouse device and pointer. It also describes the required information to reach this

goal.

4.3 Human Errors, Effects and Criticality Analysis for the task
of procedure selection, triggering and monitoring

Filtering out human actions from task models enables picking out the tasks and

actions for which deviations and/or human errors may happen. The HEECA

technique is then applied on these identified tasks and actions in order to

systematically go through the potential issues and find out their criticality. Figure 5

contains an extract from the HEECA table for the controller’s task of driving the

execution of a procedure. For the rest of the example, we focus on the potential

error related in line 3 of this table (surrounded with a bold rectangle). In this line,

a critical issue is pointed out and would be caused by a perceptual confusion error

when selecting the procedure to be launched. This error is related to the declarative

information about the item to be selected that the controller has in mind (as

depicted in Figure 4). S/he may analyse that the good item in the list has been

selected whereas it is not. As described by the scenario, procedures can have names

that differ only by a few characters, which may cause perceptual confusion errors.

Figure 4. Focus on the action node where an error may occur

INTERACT 2015, Bamberg, 14-18 Sept. 2015 11

In this example, the task “Mouse selection: select procedure” may have several

Figure 5. Extract from the HEECA table

INTERACT 2015, Bamberg, 14-18 Sept. 2015 12

criticality levels depending on the identified scenarios and may reach the highest

criticality levels. An erroneous or deviated behaviour during the mouse selection

task may lead to delay in the mission and be tagged as critical. Figure 5 contains an

extract from the HEECA table for the controller’s task of driving.

5 Integrating the analysis of organisational faults

Organisational faults usually don’t produce immediate faults (i.e. faults that trigger

immediate failures and thus interruption of service) but introduce latent faults that

under certain conditions and in presence of other faults (either being from the

human or system side) [23] may cause failures. They belong to the main source of

upstream factors to system (in its broader sense) failures that are leading to

incidents and accidents.

STAMP (which stands for Systems Theory Accident Modelling and Process)

has been developed by Nancy Leveson [16] and aims at providing a generic

framework targeting (among other things) at identifying organisational faults.

One of the main aspects of STAMP is related to the notion of control

(see Figure 6) and more precisely in the fact that control is not only based on

human and system activities but also on the representations that are constructed by

these two actors. For instance the box called Model of Automation inside the

Human Supervisor bigger box represents the fact that the behaviour of the operator

will be based on the mental representation that he/she owns about the behaviour

of the automation currently deployed in the system he/she is supervising. This can

explain many sources of accidents/incidents if the constructed mental model is

different from the actual behaviour of the system. Such considerations are very

similar to the ones that have been driving the field of Human-Computer Interaction

over the last 30 years with the action theory from Donald Norman [19]. On the

design side of physical or virtual objects the absence (or limited) of discrepancy

between these models is named affordance.

Figure 6. Human and automation roles in control (from [16])

INTERACT 2015, Bamberg, 14-18 Sept. 2015 13

Figure 7 highlights another important aspect of STAMP which is the necessity

to take into account both design time and operation time when dealing with socio-

technical systems. The detailed process also identifies places where organizational

constraints appear and how they can impact system safety and reliability both at

design and operation time. STAMP is able to address at a high-level of abstraction

a Large Scale Socio Technical System including organization aspects.

Figure 7. Integrated process dealing with System, Human and Organization views (from [16])

It is important to note that the STAMP analysis only remains at a very high level

of abstraction, abstracting away from the details where actual system or human

faults occur.

This high-level view will spread throughout the system design as guidelines or

choices at design time. For instance the organization might decide to go for quick

and cheap development processes that will end up with higher fault rates

(especially development faults). Training programs will also influence occurrence

of human errors and of operators’ capabilities to deal with unexpected infrequent

situations requiring a deep understanding of procedures and systems’ behaviours

that can only be acquired through experience and deep learning.

INTERACT 2015, Bamberg, 14-18 Sept. 2015 14

The control loop explained in the STAMP example provides another

perspective based on information flow in the organization that can be made explicit

through dedicated techniques such as workflow modelling and analysis [28].

Similar issues arise when modelling multiuser activities (even using HAMSTERS

notation). This is where analysis of models can take place to identify (possibly

following a high-level approach such as STAMP) the possible missing control and

feedback loops.

6 Conclusion

This position paper presented an approach integrating techniques from dependable

computing and user-centered design in order to improve the reliability of

interactive systems. Risk analysis and fault- tolerance techniques are used in

combination with task analysis and modeling to describe and analyze the impact

of system faults on human activities and the impact of human deviation or errors

on system performance and more generally on mission performance. A technique

for systematic analysis of human errors, effects, and criticality is proposed

(HEECA). It is inspired and adapted from the FMECA technique.

The key points of the proposed approach are: a) the HEECA technique

combining a systematic analysis of the effects of system faults and of human

errors, b) a task modelling notation to describe and to assess the impact of system

faults and human errors on operators’ activities and system performance. These

key points have been illustrated on an example extracted from a case study of the

space domain that has demonstrated the feasibility of this approach as well as its

benefits in terms of identifying opportunities for re-designing the system, re-

designing the operations and for modifying operators’ training.

Finally, this paper discussed about the main challenges for integrating the

analysis of organisation faults in the proposed approach.

References

[1]. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C. Basic concepts and

taxonomy of dependable and se-cure computing. In IEEE Trans. on

Dependable and Se-cure Computing, vol.1, no.1, pp. 11- 33, Jan.-March

2004.

[2]. Bass, L., et al. (1991). The arch model: Seeheim revisited. In User Interface

Developpers' Workshop.

[3]. Bowen, J., & Reeves, S. UI-driven test-first development of interactive

systems. In EICS 2011, ACM (2011), 165-174.

INTERACT 2015, Bamberg, 14-18 Sept. 2015 15

[4]. Card, S., Moran, T., Newell, A. The model human pro-cessor: An

engineering model of human performance. John Wiley & Sons, 1986.

[5]. Chillarege, R.; Bhandari, I.S.; Chaar, J.K.; Halliday, M.J.; Moebus, D.S.;

Ray, B.K.; Wong, M.-Y., "Orthogonal defect classification-a concept for in-

process measurements," Software Engineering, IEEE Transactions on ,

vol.18, no.11, pp.943,956, Nov 1992

[6]. Fahssi, R., Martinie, C., Palanque, P. Enhanced Task Modelling for

Systematic Identification and Explicit Representation of Human Errors. In

Proc. of IFIP TC 13 Intl. Conf. on HCI, INTERACT 2015, Bamberg.

[7]. Forbrig, P., Martinie, C., Palanque, P., Winckler, M., Fahssi,R. Rapid Task-

Models Development Using Sub-models, Sub-routines and Generic

Components. Proc.of HCSE 2014, pp. 144-163.

[8]. Hecht H. and Fiorentino E. Reliability assessment of spacecraft electronics.

In Annual Reliability and Maintainability Symp., pages 341–346. IEEE,

1987.

[9]. Hollnagel, E. Cognitive reliability and error analysis method (CREAM).

Elsevier, 1998.

[10]. Martinie, C., Barboni, E., Navarre, D., Palanque, P., Fahssi, R., Poupart, E.,

Cubero-Castan, E. Multi-models-based engineering of collaborative

systems: application to collision avoidance operations for spacecraft. Proc.

of EICS 2014, pp. 85-94.

[11]. Martinie, C., Palanque, P., & Winckler, M. (2011). Structuring and

composition mechanisms to address scalability issues in task models. In

Human-Computer Interaction–INTERACT 2011 (pp. 589-609). Springer

Berlin Heidelberg.

[12]. Martinie, C., Palanque, P., Barboni, E., & Ragosta, M. (2011, October).

Task-model based assessment of automation levels: application to space

ground segments. In Systems, Man, and Cybernetics (SMC), 2011 IEEE

International Conference on (pp. 3267-3273). IEEE.

[13]. Martinie, C., Palanque, P., Fahssi, R., Blanquart, J.-P., Fayollas, C., Seguin,

C. Task Model-Based Systematic Analysis of Both System Failures and

Human Errors. IEEE Transactions on Human-Machine Systems, to appear in

2015.

[14]. Martinie, C., Palanque, P., Fahssi, R., Blanquart, J-P., Fayollas, C., Seguin,

C. Task Models Based Systematic Analysis of both System Failures and

Human Errors. IEEE Transactions on Human Machine Systems, special issue

on Systematic Approaches to Human-Machine Interface: Improving

Resilience, Robustness, and Stability, to appear.

[15]. Martinie, C., Palanque, P., Ragosta, M., & Fahssi, R. (2013, August).

Extending procedural task models by systematic explicit integration of

INTERACT 2015, Bamberg, 14-18 Sept. 2015 16

objects, knowledge and information. In Proceedings of the 31st European

Conference on Cognitive Ergonomics (p. 23). ACM.

[16]. Leveson N. A Systems-Theoretic Approach to Safety in Software-Intensive

Systems. IEEE Trans. Dependable Sec. Comput. 1(1): 66-86 (2004).

[17]. Navarre, D., Palanque, P., Ladry, J. F., & Barboni, E. (2009). ICOs: A model-

based user interface description technique dedicated to interactive systems

addressing usability, reliability and scalability. ACM TOCHI, 16(4), 18.

[18]. Nicolescu B., Peronnard P., Velazco R., and Savaria Y. Efficiency of

Transient Bit-Flips Detection by Software Means: A Complete Study. Proc.

of the 18th IEEE Int. Symp. on Defect and Fault Tolerance in VLSI Systems

(DFT '03). IEEE Computer Society, 377-384.

[19]. Norman, D. The Design of Everyday Things (Originally published: The

psychology of everyday things). New York: Basic Books, 1988.

[20]. Norman, D. A. (1981). Categorization of action slips. Psychological review,

88(1), 1.

[21]. Rasmussen, J. Skills, rules, knowledge: signals, signs and symbols and other

distinctions in human performance models, IEEE transactions: Systems, Man

&Cybernetics, 1983.

[22]. Reason J. Generic error modelling system: a cognitive framework for

locating common human error forms. New technology and human error, 63,

86. 1987.

[23]. Reason J. Managing the Risks of Organizational Accidents. Ashgate

Publishing Limited, 1997.

[24]. Reason, J. Human Error, Cambridge University Press. 1990

[25]. Regis, D.; Hubert, G.; Bayle, F.; Gatti, M., "IC components reliability

concerns for avionics end-users," Digital Avionics Systems Conference

IEEE/AIAA 32nd pp.2C2-1,2C2-9, 5-10 Oct. 2013.

[26]. Ruksenas R., Curzon P., Blandford A., Back J. Combining Human Error

Verification and Timing Analysis. EHCI/DS-VIS 2007: 18-35

[27]. Schroeder B., Pinheiro E., and Weber W.-D.. DRAM errors in the wild: a

large-scale field study. In ACM SIGMETRICS, pages 193–204, Seattle, WA,

June 2009.

[28]. van der Aalst W., ter Hofstede A. YAWL: yet another workflow language.

Inf. Syst. 30(4): 245-275 (2005)

