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Abstract. The overall dependability of an interactive system is the one of its weakest 

component which is usually its user interface. The presented approach integrates 

techniques from the dependable computing field and elements of user-centred design to 

provide a wider coverage of possible faults. Risk analysis and fault tolerance techniques 

are used in combination with task analysis and modelling to describe and analyse the 

impact of system faults on human activities and the impact of human deviation or errors 

on system performance and overall mission performance. A technique for systematic 

analysis of human errors, effects and criticality is proposed (HEECA). It is inspired and 

adapted from the Failure Mode, Effects and Criticality Analysis (FMECA) technique. The 

key points of the approach are: a) the HEECA technique combining a systematic analysis 

of the effects of system faults and of human errors, b) a task modelling notation to 

describe and to assess the impact of system faults and human errors on operators’ 

activities and system performance. These key points are illustrated on an example 

extracted from a case study of the space domain. It demonstrates the feasibility of this 

approach as well as its benefits in terms of identifying opportunities for re-designing the 

system, re-designing the operations and for modifying operators’ training. Lastly, a 

discussion presents the main challenges for also taking into account organisational faults 

in an integrated way with the proposed approach. 

1 Introduction 

The overall dependability of an interactive system is the one of its weakest 

component and there are many components in such systems ranging from the 

operator processing information and physically exploiting the hardware (input and 

output devices), interaction techniques, to the interactive application and possibly 

the underlying non interactive system being controlled. This paper proposes an 

approach integrating these aspects in order to address system and human 

dependability altogether. These two aspects of dependability are usually dealt with 

separately as the research contributions come from different and usually unrelated 

scientific communities. In the dependable computing community, techniques have 

been proposed to cope with the impact of system failures and to assess it in a 

precise manner but operators’ behaviour remains outside of the techniques. In the 
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human reliability and in the human computer interaction communities, approaches 

have been proposed demonstrating the suitability of task modelling techniques to 

address system and human dependability analysis. This paper presents an 

integrated approach taking into account both system failures and human errors 

while designing interactive systems. This approach aims at leveraging existing 

techniques in the fields of: dependable computing, human reliability assessment 

and human computer interaction. The proposed technique also aims at providing 

complete and unambiguous task descriptions which support fine-grain analysis of 

both human and system aspects. Finally, this paper proposes to extend this 

approach in order to take into account organisational faults. 

The article is structured as follows. Section II provides a brief review of types 

of system faults and human errors. Section III presents a task model-based 

stepwise process to describe and analyse the impact of system faults and human 

errors in an integrated manner. A case study from the space domain is then 

presented in section IV providing concrete application of the process presented in 

section III. Section V is dedicated to the identification of ways of integrating 

organisational faults inside the approach while section VI concludes the paper. 

2 System faults and human errors 

This section presents a review of types of system faults and human errors it 

provides the underlying information that is used in the process described in 

section III. 

2.1 Considering system faults 

2.1.1 Development faults  

When considering the faults that can impair interactive computing systems, the 

first kind of faults that come in mind are the software development faults. These 

faults are introduced by a human (the developer) during the system development. 

They can be, for instance, bad designs or programming errors and they result in 

software defects [5] that can lead to software failures. In the area of software 

engineering, methods and techniques have been introduced to prevent such faults 

and include (formal methods, structured programming, OO programing…). In the 

HCI community, a lot of work has been carried out for the prevention and removal 

of development software faults including software architectures (e.g. [2]), formal 

description techniques and verification (e.g. [17]), testing (e.g. [3]) or the use of 

debugging tools to remove human made faults.  
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2.1.2 Natural faults 

In the domain of fault-tolerant systems, empirical studies have demonstrated 

(e.g. [18]) that software crashes may occur even though the development of the 

system has been extremely rigorous. One of the many sources of such crashes is 

called natural faults [1] triggered by alpha-particles from radioactive contaminants 

in the chips or neutron from cosmic radiation. A higher probability of occurrence 

of faults [27] concerns systems deployed in the high atmosphere (e.g. aircrafts) or 

in space (e.g. manned spacecraft [8]). Furthermore the evolution of modern IC 

components may lead in the next future to a higher probability of physical faults 

in operation. For instance, the recommendation for avionics systems is 100 FITs 

over 25 years lifetime, however, the current Deep Sub-Micron (DSP) technology 

may lead to a failure rate up to 1000 FITs, only during 5 years operational life 

time [25]. This is major worry in the avionics industry since this tendency has two 

bad sided effects, i) the reduction of the life time of the systems and ii) the increase 

of the failure rate due to hardware faults. Such natural faults demonstrate the need 

to go beyond classical fault avoidance at development time (usually brought by 

formal description techniques and properties verification) and to identify all the 

threats that can impair interactive systems. 

2.2 Considering human errors 

Several contributions in the human factors domain deal with studying internal 

human processes that may lead to actions that can be perceived as erroneous from 

an external view point. In the 1970s, Norman, Rasmussen and Reason have 

proposed theoretical frameworks to analyse human error. Norman, proposed a 

predictive model for errors [20], where the concept of "slip" is highlighted and 

causes of error are rooted in improper activation of patterns of action. Rasmussen 

proposes a model of human performance which distinguishes three levels: skills, 

rules and knowledge (SRK model) [21]. This model provides support for reasoning 

about possible human errors and has been used to classify error types. Reason [22] 

takes advantages of the contributions of Norman and Rasmussen, and distinguishes 

three main categories of errors: 

1. Skill-based errors are related to the skill level of performance in SRK. 

These errors can be of one of the 2 following types: a) Slip, or routine error, 

which is defined as a mismatch between an intention and an action [20]; b) Lapse 

which is defined as a memory failure that prevents from executing an intended 

action. 

2. Rule-based mistakes are related to the rule level of performance in SRK 

and are defined as the application of an inappropriate rule or procedure. 
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3. Knowledge-based errors are related to the knowledge level in SRK and are 

defined as an inappropriate usage of knowledge, or a lack of knowledge or 

corrupted knowledge preventing from correctly executing a task. 

At the same time, Reason proposed a model of human performance called 

GEMS [22] (Generic Error Modelling System), which is also based on the SRK 

model and dedicated to the representation of human error mechanisms. GEMS is 

a conceptual framework that embeds a detailed description of the potential causes 

for each error types above. These causes are related to various models of human 

performance. For example, a perceptual confusion error in GEMS is related to the 

perceptual processor of the Human Processor model [4].  

Causes of errors and their observation are different concepts that should be 

separated when analysing user errors. To do so, Hollnagel [9] proposed a 

terminology based on 2 main concepts: phenotype and genotype. The phenotype 

of an error is defined as the erroneous action that can be observed. The genotype 

of the error is defined as the characteristics of the operator that may contribute to 

the occurrence of an erroneous action.  

These concepts and the classifications above provide support for reasoning 

about human errors and have been widely used to develop approaches to design 

and evaluate interactive systems [26]. As pointed out in [20] investigating the 

association between a phenotype and its potential genotypes is very difficult but is 

an important step in order to assess the error-proneness of an interactive system. 

3 An integrated approach to account for system faults 
and human errors 

This section presents the proposed approach to take into account for system 

failures and human errors at design and development time. It is composed of a 

stepwise process as well as modelling notation and tools [13]. 

3.1 A stepwise process to account for system faults and human 
error 

The process for taking into account both system faults and human errors at design 

and development time is illustrated in Figure 3. The proposed process is 

decomposed in 7 phases: 

1. Task analysis and modelling (similar to steps 1 and 2 of the FMECA analysis 

process). 

2. Filtering out tasks and actions depending on the type of analysis to be 

performed 



INTERACT 2015, Bamberg, 14-18 Sept. 2015 5 

3. Effects and criticality analysis for human errors and system failure modes 

(similar to steps 3-5 of the FMECA analysis process). 

4. Inventory of the couples {activity node, criticality} and inventory of the 

additional tasks that would be needed to recover from system failures and/or 

human errors (which matches step 6 of the FMECA analysis process). 

5. Construction of enriched task models (models integrating potential system 

failures and human errors as well as articulatory tasks to recover from them). 

6. Analysis of the impact of the system faults and human errors on the users’ 

performance and on the global mission (system and organization). 

7. Identification of design alternatives and proposals for modifying users’ tasks 

and/or system’s functions (which matches steps 6 of the FMECA analysis 

process). 

 

Figure 1. Process to account for system faults and human error during the design and development of an 

interactive critical system 

Preliminary task models

(process starts here)

HEECA

(Human Error Effects 

and Criticality Analysis)

Check impact wrt. Design 

and dev criteria

Towards user 

testing, training 

design and 

operations OK

FMECA

(Failure Mode Effects 

and Criticality Analysis)

Proposal for 

modifying the 

task models

Identification of 

costs-benefits for  

re-design Not OK

Analyze impact of 

articulatory activities

Task model, i
th

 

iteration

Check models wrt. 

desired properties
Analyze

Mending of 

model

Not OK

List of 

additionnal 

tasks

Final task 

model

List of couples 

(task, 

criticality)

HAZOPReports on 
Human errors

Human error 

classifications

Build enriched task models

Reports on 
System failures

Filter out 
human 
tasks

Filter out 
system 
tasks

Enriched task 

model

System faults 

classification

Report

Proposal for 

modifying the 

system

OK

1

2

3

4

5

6
7



INTERACT 2015, Bamberg, 14-18 Sept. 2015 6 

3.2 Task modelling with HAMSTERS 

HAMSTERS (Human – centered Assessment and Modeling to Support Task 

Engineering for Resilient Systems) is a tool-supported graphical task modelling 

notation for representing human activities in a hierarchical and structured way. 

3.2.1 HAMSTERS notation 

At the higher abstraction level, goals can be decomposed into sub-goals, which 

can in turn be decomposed into activities. Output of this decomposition is a 

graphical tree of nodes that can be tasks or temporal operators. Tasks can be of 

several types (cognitive, interactive, abstract…) and contain information such as a 

name, information details, and criticality level. Only the single user high-level task 

types are presented here but they can be further refined. For instance the cognitive 

tasks can be refined in Analysis and Decision tasks [12] and collaborative activities 

can be refined in several task types [10].  

Temporal operators (based on LOTOS) are used to represent temporal 

relationships between sub-goals and between activities. 

Tasks can also be tagged by properties to indicate whether or not they are 

iterative, optional or both. The HAMSTERS notation is supported by a CASE tool 

for edition and simulation of models. This tool supported notation also provides 

support for structuring a large number and complex set of tasks introducing the 

mechanism of subroutines [11], sub-models and components [7]. Such structuring 

mechanisms allow describing large and complex activities by means of task 

models. These structuring mechanisms enables the breakdown of a task model in 

several ones that can be reused in the same or different task models. 

HAMSTERS expressive power goes beyond most other task modelling 

notations particularly by providing detailed means for describing data that is 

required and manipulated [15] in order to accomplish tasks.  

3.2.2 Relationship between HAMSTERS notation elements and 
genotypes 

All of the above notation elements are required to be able to systematically identify 

and represent human errors within task models. Indeed, some genotypes (i.e. 

causes of human errors) can only occur with a specific type of task or with a 

specific element in a task model described using HAMSTERS. This relationship 

between classification of genotypes in human error models and task modelling 

elements is not trivial. For this reason, Table 1 presents the correspondences 

between HAMSTERS notation elements and error genotypes from the GEMS 

classification [16]. Such a correspondence is very useful for identifying potential 

genotypes on an extant task model.  
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It is important to note that strategic and situational knowledge elements are not 

present in this table. Indeed, such constructs are similar to the M (Methods) in 

GOMS and thus correspond to different ways of reaching a goal. As all the 

methods allow users to reach the goal an error cannot be made at that level and is 

thus not connected to a genotype.  

Table 1. Correspondence between HAMSTERS elements and genotypes from GEMS [16] 

Element of 

notation in 

HAMSTERS 

Related genotype from GEMS 1616 

Perceptive task 

 

Perceptual confusion (Skill Based Error) 

Interference error (Skill Based Error) 

Input task 

 

Motor task 

 

Interference error (Skill Based Error) 

Double capture slip (Skill Based Error) 

Omissions following interruptions (Skill Based Error) 

Cognitive task 

 

Skill based errors Double capture slip 
Omissions following interruptions 

Reduced intentionality 

Interference error 
Over-attention errors 

Rule based mistakes Misapplication of good rules 
First exceptions 

Countersigns and non-signs 

Informational overload 
Rule strength 

General rules 

Redundancy 
Rigidity 

Application of bad rules 

Encoding deficiencies 

Action deficiencies 

Knowledge based 

mistakes 

Selectivity 

Workspace limitations 

Out of sight out of mind 
Confirmation bias 

Overconfidence 

Biased reviewing 
Illusory correlation 

Halo effects 

Problems with causality 
Problems with complexity 

Information 

 

Double capture slip, Omissions following interruptions, 

Interference error, all of the Rule Based Mistakes and Knowledge 

Based Mistakes 

Declarative knowledge 

 

All of the Knowledge Based Mistakes 

New notation elements, based on these correspondences, have been introduced 

to provide support for identifying and describing human errors in HAMSTERS 

task models [6]. 

Inf : Information

DK : Declarative
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4 Illustrative example: extract from the Picard Satellite 
Case Study 

The Picard satellite dedicated to solar observation was launched by CNES in 

June 2010. We use a subset of it for our case study. This section presents an extract 

from a case study where the integrated approach has been applied to monitoring 

and control tasks performed with the Picard ground segment applications. 

4.1 PICARD satellite ground segment 

Satellites and spacecraft are monitored and controlled via ground segment 

applications in control centres with which satellite operators implement 

operational procedures. A procedure contains instructions such as sending 

telecommands (TC), checking telemetry (TM), waiting, providing required values 

for parameters. 

Amongst the various ground segment applications used to manage the satellite 

platform, we focus on the ones that are used by controllers to ensure that the 

platform is functional. The platform has to be functional so that the mission (for 

which the satellite has been designed and developed) can be completed.  

4.2 Controller’s tasks analysis and modelling 

Controllers are in charge of two main activities: observing periodically (i.e. 

monitoring) the vital parameters of the satellite and performing maintenance 

operations when a failure occurs. Depending on the satellite between thousands 

and tens of thousands parameters have to be monitored. The more frequent and 

relevant monitoring activities include observing: satellite mode, telemetry 

(measures coming from the satellite), sun array drivers statuses, error parameters 

for the platform, error parameters for the mission, power voltage (energy for the 

satellite), ground station communication status, and on board computer main 

parameters.  

The “Start procedure” subroutine is presented in Figure 2. Fine grain modelling 

of users’ actions with an interactive system is bound to the interactive system 

interface. The task models are highly dependent on the way the information is 

presented and reachable in the user interface. In this case study, the software 

application used by controllers is a procedure manager. The controller can select a 

procedure from the list and then s/he can start the procedure by pressing the “Start 

Procedure” button. 

The procedure (“Search for procedure” iterative task). Once the controller has 

decided to select the procedure, the search task will be disabled (operator “[>”) 

and the next task will be to: 
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 Select the procedure (“Mouse selection [select procedure]” task, of subroutine 

type, in Figure 2) 

 Start the procedure (“Mouse selection [start procedure] task, of subroutine type, 

in Figure 2) 

Finally, the system will start executing the procedure (system task in Figure 2). 

This task model also describes which information is required to reach the goal of 

starting a procedure. 

The information about procedure reference. This information is required to be 

able to search for it in the list and to analyse that the targeted procedure has been 

found in the list (Box “I: (user) procedure reference with incoming and outgoing 

 

Figure 2. Task model of “Start procedure” task 

 

Figure 3. Task model of “Mouse selection” task 
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arrows to “Search for procedure” user task, “Perceive procedure to select” 

perceptive task and “Analyze that procedure is found” cognitive analysis task). 

The information about the item (of the list) to be selected. Once the controller 

has decided to select the procedure, s/he produces new information which is the 

information about the item to be selected (Box “I: (user) item to be selected” with 

incoming arrow from the “Decide to select procedure” cognitive decision task and 

with an outgoing arrow to the “Mouse selection [select procedure]” subroutine 

task). Figure 3 presents the “Mouse selection” task model. It describes the fine 

grain actions that have to be performed for selecting a graphical object with a 

mouse device and pointer. It also describes the required information to reach this 

goal. 

4.3 Human Errors, Effects and Criticality Analysis for the task 
of procedure selection, triggering and monitoring 

Filtering out human actions from task models enables picking out the tasks and 

actions for which deviations and/or human errors may happen. The HEECA 

technique is then applied on these identified tasks and actions in order to 

systematically go through the potential issues and find out their criticality. Figure 5 

contains an extract from the HEECA table for the controller’s task of driving the 

execution of a procedure. For the rest of the example, we focus on the potential 

error related in line 3 of this table (surrounded with a bold rectangle). In this line, 

a critical issue is pointed out and would be caused by a perceptual confusion error 

when selecting the procedure to be launched. This error is related to the declarative 

information about the item to be selected that the controller has in mind (as 

depicted in Figure 4). S/he may analyse that the good item in the list has been 

selected whereas it is not. As described by the scenario, procedures can have names 

that differ only by a few characters, which may cause perceptual confusion errors. 

 

Figure 4. Focus on the action node where an error may occur 
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In this example, the task “Mouse selection: select procedure” may have several 

 

Figure 5. Extract from the HEECA table 
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criticality levels depending on the identified scenarios and may reach the highest 

criticality levels. An erroneous or deviated behaviour during the mouse selection 

task may lead to delay in the mission and be tagged as critical. Figure 5 contains an 

extract from the HEECA table for the controller’s task of driving. 

5 Integrating the analysis of organisational faults 

Organisational faults usually don’t produce immediate faults (i.e. faults that trigger 

immediate failures and thus interruption of service) but introduce latent faults that 

under certain conditions and in presence of other faults (either being from the 

human or system side) [23] may cause failures. They belong to the main source of 

upstream factors to system (in its broader sense) failures that are leading to 

incidents and accidents.  

STAMP (which stands for Systems Theory Accident Modelling and Process) 

has been developed by Nancy Leveson [16] and aims at providing a generic 

framework targeting (among other things) at identifying organisational faults.  

One of the main aspects of STAMP is related to the notion of control 

(see Figure 6) and more precisely in the fact that control is not only based on 

human and system activities but also on the representations that are constructed by 

these two actors. For instance the box called Model of Automation inside the 

Human Supervisor bigger box represents the fact that the behaviour of the operator 

will be based on the mental representation that he/she owns about the behaviour 

of the automation currently deployed in the system he/she is supervising. This can 

explain many sources of accidents/incidents if the constructed mental model is 

different from the actual behaviour of the system. Such considerations are very 

similar to the ones that have been driving the field of Human-Computer Interaction 

over the last 30 years with the action theory from Donald Norman [19]. On the 

design side of physical or virtual objects the absence (or limited) of discrepancy 

between these models is named affordance.  

 

Figure 6. Human and automation roles in control (from [16]) 
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Figure 7 highlights another important aspect of STAMP which is the necessity 

to take into account both design time and operation time when dealing with socio-

technical systems. The detailed process also identifies places where organizational 

constraints appear and how they can impact system safety and reliability both at 

design and operation time. STAMP is able to address at a high-level of abstraction 

a Large Scale Socio Technical System including organization aspects.  

 

Figure 7. Integrated process dealing with System, Human and Organization views (from [16]) 

It is important to note that the STAMP analysis only remains at a very high level 

of abstraction, abstracting away from the details where actual system or human 

faults occur.  

This high-level view will spread throughout the system design as guidelines or 

choices at design time. For instance the organization might decide to go for quick 

and cheap development processes that will end up with higher fault rates 

(especially development faults). Training programs will also influence occurrence 

of human errors and of operators’ capabilities to deal with unexpected infrequent 

situations requiring a deep understanding of procedures and systems’ behaviours 

that can only be acquired through experience and deep learning.  
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The control loop explained in the STAMP example provides another 

perspective based on information flow in the organization that can be made explicit 

through dedicated techniques such as workflow modelling and analysis [28]. 

Similar issues arise when modelling multiuser activities (even using HAMSTERS 

notation). This is where analysis of models can take place to identify (possibly 

following a high-level approach such as STAMP) the possible missing control and 

feedback loops.  

6 Conclusion 

This position paper presented an approach integrating techniques from dependable 

computing and user-centered design in order to improve the reliability of 

interactive systems. Risk analysis and fault- tolerance techniques are used in 

combination with task analysis and modeling to describe and analyze the impact 

of system faults on human activities and the impact of human deviation or errors 

on system performance and more generally on mission performance. A technique 

for systematic analysis of human errors, effects, and criticality is proposed 

(HEECA). It is inspired and adapted from the FMECA technique. 

The key points of the proposed approach are: a) the HEECA technique 

combining a systematic analysis of the effects of system faults and of human 

errors, b) a task modelling notation to describe and to assess the impact of system 

faults and human errors on operators’ activities and system performance. These 

key points have been illustrated on an example extracted from a case study of the 

space domain that has demonstrated the feasibility of this approach as well as its 

benefits in terms of identifying opportunities for re-designing the system, re-

designing the operations and for modifying operators’ training. 

Finally, this paper discussed about the main challenges for integrating the 

analysis of organisation faults in the proposed approach. 
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