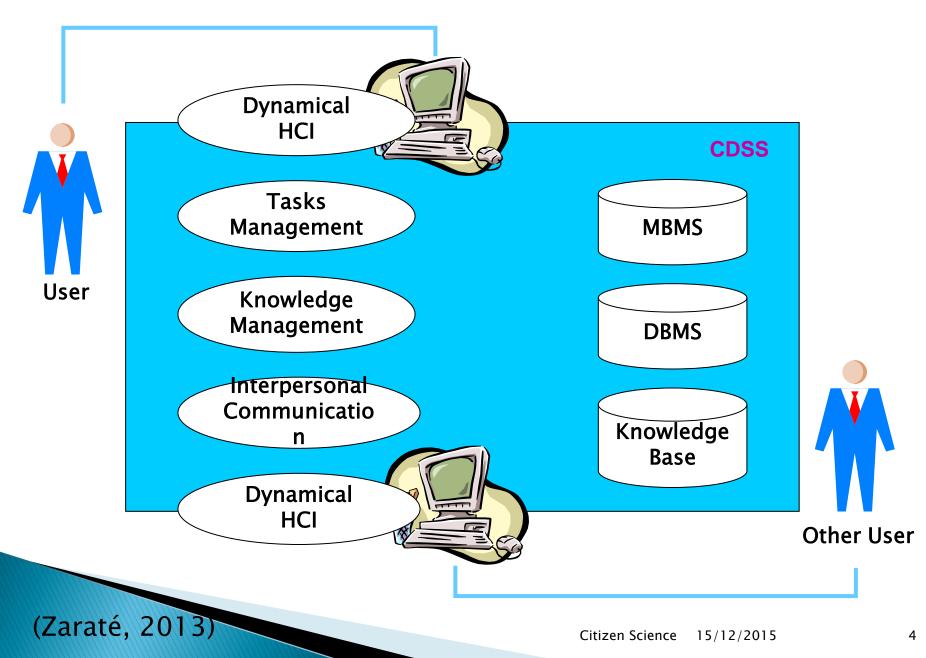


Collaborative Decision Making Process: A flexible, preferences based, methodology

Pascale Zaraté, Christophe Sibertin-Blanc IRIT – Toulouse Capitole University {zarate,sibertin}@irit.fr

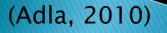

Content

- Collaborative Decision
- Tools for Collaborative Decision
- Group Support Systems & Facilitation Process
- MCDM Group Decision Making
- Methodology to support Co–Decision Processes
- GRUS System
- Conclusion

ICT Introduction in Organizations

- ICT : Decision Making processes modification
 - Organizational : Multi-actors
 - Cognitive : Sorting Step reinforcement
- Collaborative Decision
 - Process orientation
 - Electronic Teams
 - Asynchronous / Distributed Processes
- Needs to design new tools : Collaborative Decision Support Systems

Cooperative DSS


Group Support Systems

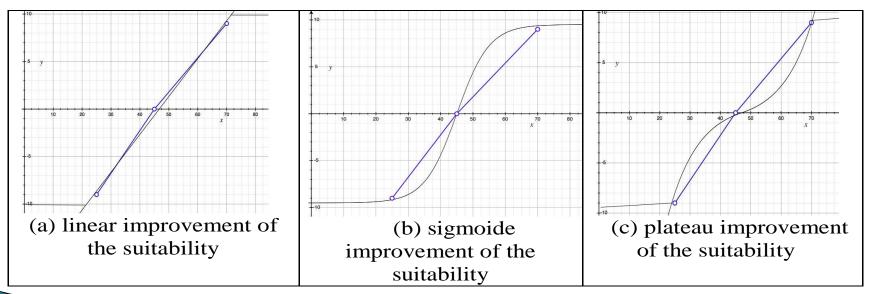
- Improve quality of Decision Processes
- Facilitation is needed particularly in Asynchronous / Distributed situations
- Facilitation Process (Adla, 2010)
 - Difficulties to agree on common criteria of Decision Making

Facilitation Process

Fig. 1: Group facilitation process

MCDM Group Decision Making

- Macharis et al. (1998)
 - GDSS: Promethee
 - Decision Makers
 - Individual Preferences → One performance matrix by Decision Maker
 - Same or Different Weight for each criteria
 - Global aggregation for the group \rightarrow Weighted Sum
- Advantage: Sensitive Analysis among Stakeholders
- Limit: No Collaboration, No Co-Decision


Proposed Methodology

- Sharing information for Co-decision Processes
- > 2 levels of preferences
 - Common Criteria discussed among the stakeholders
 - Individual Criteria

Criteria

Suitability Function

- Scoring Scale
- Indifference Score
- Reject Score
- Shape of Interpolation

Step 1: Collective Evaluation

Agreement on

- Collective Criteria Definition
- Scoring scale
- Score of each alternatives for these common criteria
- Weight of each participant
- Which level of sharing information
- How many iterations

- Step 2: Individual evaluation
 - Individual Criteria → private no shown
 - Personnal Weights for all criteria
 - Personnal Suitability Functions for all determinant criteria
 - Dependences of all criteria

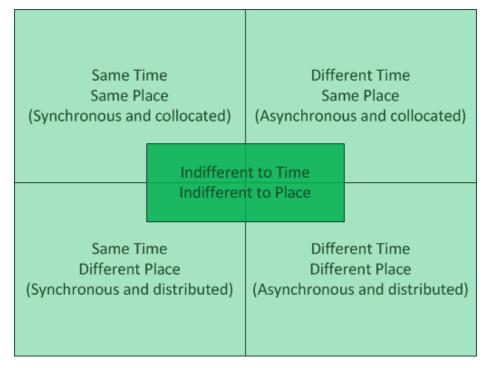
Step 3: Aggregation and Analysis

System computes

- Global Weight → Sum of all weights (individual and collective)
- Statistics: Average and Standard deviation of weight of collective criteria
- Statistics of Suitability Function for Collective
 Criteria → Average, Standard Deviation, Min, Max
- Collective Assessment of each alternatives (median, standard deviation and extremum values)
- Sensitivity Analysis

- Step 4: Discussion
 - Allow participants to see all data
 - Discussion fed by the results computed by the system
 - Justification of some preferences
 - Come back to step 2 if necessary

GRoUp System (GRUS)


» Web Application : ToolBox

- » Based on Grails web application framework
 - > Open Source Framework

» GRUS is a fully open source system : available upon request

GRUS Features 1/2 » Can be used in several situations

» In GDSS, 2 roles of user

- > One facilitator (meeting manager)
- > Several Participants (meeting contributors)

GRUS Features 2/2

- » 2 kinds of meetings are available
 - > Public meetings
 - + All registered users in GRUS system can participate
 - > Private meetings
 - + Only invited users can participate to a private meeting
- » Some collaborative tools are available
 - > Electronic Brainstorming
 - > Categorizer
 - > Vote
 - > Agenda
 - > Report...
- » User with the role of facilitator can for her/his meeting
 - > Define the meeting type
 - + Group process (sequence of collaborative tools)
 - > Invite users
 - Manage the group process (stop, add, delete,...) tools

GRUS Objectives

- » Open System for
 - > Sharing collaborative tools
 - > Sharing group processes

» Promote the use of GDSS in organizations

» Improve the efficiency of group work

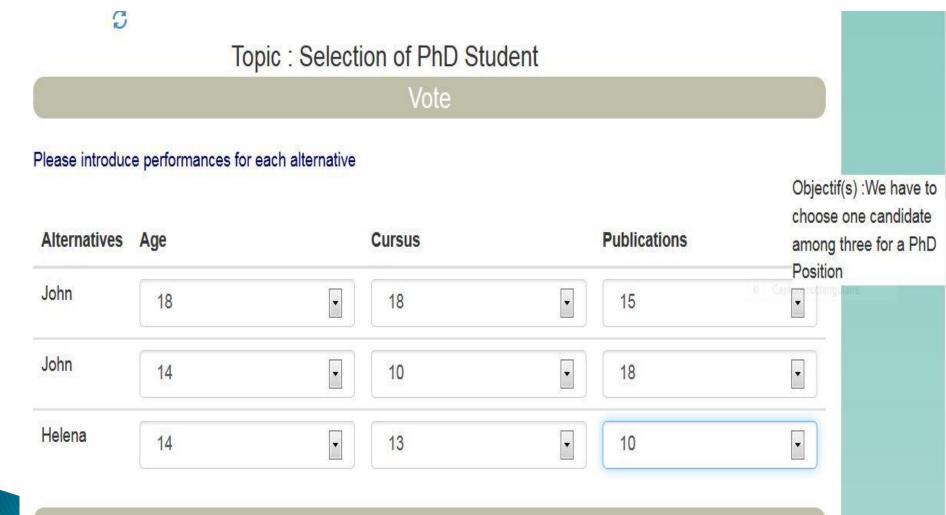
GRUS

- » MCDA aggregation tools :
 - > Weighted Sum / Choquet
 - > Other technics : to be implemented
- » MCDA aggregation tools use :
 - > Definition of alternatives (=ideas)
 - > Definition of criteria : public or private
 - > Definition of suitability functions
 - > Definition of performances
- » Weight of participants :
 - > Equi-weighted
 - > Could be parametrizable

GRUS : Creation of a New Process

and Project	Name			Op	otions - 👤 ra
Home	Open meeting	Support	Developer	Plugin	About
Meeting lis	t 📲 Process List 🕞	New Meeting			
Crea	ate Process	t process			
(Choose your tools	brainstormingWs clustering consensus vote	< brainstorming vote		

19

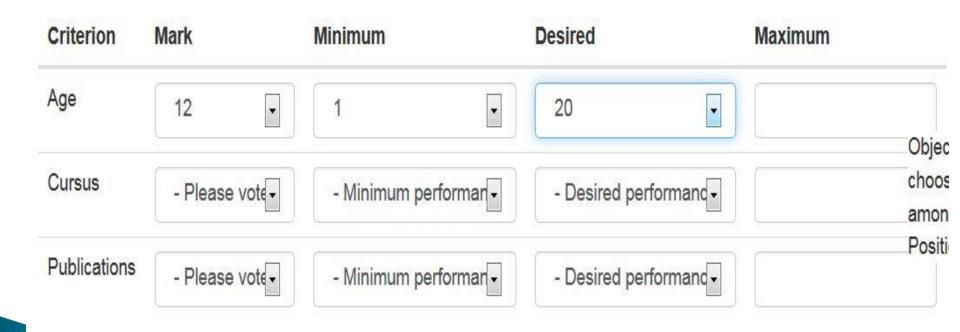

GRUS : Process Modification

Logo and Project Name Options - 1 rafik 🕞 Home **Open meeting** Support Developer Plugin About Ξ Q cluster r brainstorming consensus Click to update the current process C Topic : My topic to discuss

Edit your current process : My 1st process:My topic to discuss

<pre>brainstorming \$ vote \$ clustering \$ consensus</pre>	← Add tool	brainstorming brainstormingWs clustering consensus vote
Remove last tool	Save changes	

Collective Preferences



Example : PhD Student selection

Individual Preferences

Weight and preference function

Please introduce the weight and the parameters for the preference function for each criterion.

Example : PhD Student selection

Citizen Science 15/12/2015

Individual Preferences

Dependency between criteria

Please introduce the dependency between the criteria

\ge		6	•	12	
57 57	d	1947 - 1946			Objectif(s) :We have to choose one candidate
Cursus	, di	2	j.	14	among three for a Phi Position
Publications		6	j.		j.
		Validate			

Example : PhD Student selection

Criteria Aggregation

Topic : Selection of PhD Student

Consensus

Criterion Age	Average	Standard deviation	<mark>Minimum</mark>	Desired	Maximum	Authorized minimal performance	Authorized maximal performance	e
	Summary of the weights attributed by the decision-makers		Global preference					Object
	12	0	1	20	20	1	20	choose among Positic

---> The importance of the criterion --Age-- in the model:1.198

Example : PhD Student selection

Citizen Science 15/12/2015

Final Ranking

Summary of the mark for the alternatives

Results of the alternative--John --

- ---> Global mark obtained by integral of Choquet: 1.44
- ---> Global mark obtained by balanced sum: 1.8
- Results of the alternative--John --
 - ---> Global mark obtained by integral of Choquet: 1.26
 - ---> Global mark obtained by balanced sum: 1.8
- Results of the alternative--Helena --
 - ---> Global mark obtained by integral of Choquet: 0.9
 - ---> Global mark obtained by balanced sum: 1.5

Example : PhD Student selection

Objectil choose among Positior

Citizen Science 15/12/2015

Conclusion

- Proposed methodology for Co–Decision
 - Co-construction of the Decisional Process
 - Process oriented
- GDSS Platform under development: to be improved
- Aggregation technic simple (weighted sum)
 Limit: to be improved

Perspectives

- Methodology allows a participatory decision making process including 2 levels of preferences
 - Individual: Citizen could be involved in the Individual preferences evaluation
 - Collective: Citizen could be involved in the decision making process and problem definition
- Remark: Finite set of stakeholders

References

- 1. Gorry G., Scott Morton M.: A framework for management information systems. Sloan Management Review, Vol 13, N° 1, pp. 50–70 (1971)
- 2. Smoliar S., Sprague R.: Communication and Understanding for Decision Support. Proceedings of the International Conference IFIP TC8/WG8.3, Cork, Ireland, pp. 107–119 (2002)
- 3. Zaraté P.: Tools for Collaborative Decision-Making. John Wiley (2013)
- Adla A., Zaraté P., Soubie J.L.: A Proposal of Toolkit for GDSS Facilitators. Group Decision and 4. Negotiation, Springer, Vol. 20, N° 1, pp. 57–77 (2011)
- 5. Schmidt K. and Bannon L.: Taking CSCW Seriously : Supporting Articulation Work. Computer Supported Cooperative Work (CSCW), Vol 1, N° 1 (1992)
- 6. de Terssac G., Maggi B.: Autonomie et Conception. In de Terssac G. et Friedberg E. (Eds) Coopération et Conception. Octaves Edition, ISBN : 2-906769-33-9 (1996)
- Nunamaker J., Briggs R.O., Mittleman D., Vogel D., Balthazard P.: Lessons from a dozen years of 7. group support systems research: a discussion of lab and field findings. Journal of Management Information Systems, Vol. 13, N° 3, pp. 163–207 (1997)
- 8. Macharis C., Brans J.P., Maréchal B.: The GDSS PROMETHEE Procedure. Journal of Decision Systems, Vol. 7 - SI, pp. 283-307 (1998)
- 9. Soner Kara, S., Cheikhrouhou, N.: A multi criteria group decisions making approach for collaborative selection problem. Journal of Intelligent and Fuzzy Systems 26 (1), IOS Press (2014)
- 10. Slovic P., Finucane M., Peters E., MacGregor D.G.: The affect heuristic, in: T. Gilovitch, D. Griffin, D. Kahneman (Eds.), Heuristics and Biases: The Psychology of Intuitive Judgment, Cambridge University Press, Cambridge, pp. 397-420 (2002)
- 11. Labreuche, C., Grabisch, M. : Generalized Choquet-like aggregation functions for handling bipolar scales, European Journal of Operational Research 172, pp. 931–955 (2006)
- 12. Sibertin-Blanc C., Zaraté P.: A flexible Multi-Criteria Methodology for Collective Decision Making Preferences. Group Decision and Negotiation Journal, to appear