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Spatio-temporal dynamics of human behaviors
during disasters : a mathematical and
geographical approach

Valentina Lanza, Edwige Dubos-Paillard, Rodolphe Charrier, Nathalie Verdière,
Damienne Provitolo, Oscar Navarro, Cyrille Bertelle, Guillaume Cantin, Alexandre
Berred, M.A. Aziz-Alaoui

Abstract This chapter proposes to generalize to a geographical context an innovative
SIR-based model describing human collective behaviors in situations of disasters.
The novelty of this work is to adopt a complex network approach in order to model
the influence of the space on the transitions among one behavior and the others.
This network model will be applied on the specific case of a tsunami on the French
Riviera caused by a seismic event.

1 Introduction

The current major challenge in the field of populations safety and risk management
is to progress in the understanding and ability to anticipate human behavior in face of
complex threats and disasters of all origins. Several mathematical models of crowd
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dynamics, also in extreme scenarios as in a panic situation, have been proposed in
literature (see the survey paper [3]). However, rare are the works that take into account
several human behaviors at the same time and also transitions among these reactions
[26]. To meet this challenge, a consortium grouping searchers of di�erent disciplines
(mathematicians, geographers, psychologists, computer scientists) has been formed
in the framework of the ANR project Com2SiCa. The aim of this research program is
to understand and simulate human behaviors in areas a�ected by disasters whatever
their causes.The studied disasters are sudden, unexpected, without warning signs or
with signs that are di�cult to identify. A first work of this consortium proposed a
fine analysis of human behaviors and their transitions according to the concerned
brain areas [24, 25, 5].

The work presented in this chapter considers a psychologically-based model de-
scribing human collective behaviors and emotional contagion in situation of natural,
societal or technological disasters. Indeed, according to geographers, neuro-scientists
and psychologists [23, 7], during a catastrophe, people scarcely stay in the same cat-
egory of behavior during the all event. Moreover, imitation or social comparison is
an important factor in the processes of behaviors changes [11].

Furthermore, the role played by the spatial configuration and the constraints intro-
duced by the hazard (cutting of roads, destruction of buildings etc.) is not negligible
in the dynamics of human reactions during a catastrophe. Indeed, mathematical
models in literature [17, 18] focus mainly on the influence of the spatial configura-
tion (presence of obstacles or bottleneck formation, for instance) on the crowd flow
dynamics, rather than on the crowd emotional states.

The aim of this chapter is to present a mathematical framework in order to have
a spatial version of our model with a strong geographical meaning. In our approach,
the space environment is modeled by a network that is adapted to the geographical
area under study. The nodes represent a part of the geographical territory under
study, with some properties and are filled with a group of individuals subject to the
model behavior panel. The edges symbolize possible interactions between nodes.
Each term in the network model is justified by geographical and/or psychological
considerations. In particular, the coupling coe�cients are here calculated using a
physical and geographical approach and for each node of the network we introduce
a capacity constraint [20], that is the maximal number of individuals that each node
can host. We show how, depending on these parameters, the network dynamics can
change and di�erent e�ects, such as bottlenecks, can take place.

The chapter is organized as follows. Section 2 presents the a-spatial APC model.
In Section 3, taking into account the geographical constraints, the network model
is introduced. In Section 4 some numerical results for a network of three nodes are
shown.
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2 The aspatial behavioral model

Behaviors that can be observed during major disasters are non traditional. They are
caused by hostile environmental pressure that imposes new ways of acting in a state
of high or even extreme level of stress. They are conditioned by di�erent parameters
such as :
- The types of hazards and anticipation of the beginning of the disaster: some disasters
can be anticipated and announced by di�erent information channels (newspapers,
radio, televisions...). It is often the case of hurricanes, floods, volcanic eruption.
However, other disasters as earthquakes and nuclear explosions are sudden. In the
first case, we mainly observe controlled behaviors [2, 10] since the authorities’
actions allow the population to face the danger (organized evacuation, consideration
of the potential e�ects of the disaster). In the second case, the reactions of the
population are more instinctive [15] and individualistic (freeze response or panic
flight for example), at least during the first moments of the disaster [24].
- The location of individuals in relation to the disaster [7]. The a�ected area is usually
divided in four types of zones: the impact zone, where the material destructions, the
number of casualties and the social and territorial disorganization are maximal;
the destruction zone, where the material damages are very important, the social
organization is very perturbed but the number of victims is less; and finally the
marginal and external zones which are generally less impacted by the disaster.
- The temporality of the event which is at the origin of the disaster and the time of
the day when it occurs. Many authors have proposed di�erent stages to describe the
course of a disaster. For example, W. Powell [21] distinguishes eight phases (pre-
disaster, warming, threat, impact, inventory, rescue, remedy, recovery) as Henry W.
Fischer [9] proposes fives phases (pre-impact, impact, post-impact, recovery and
reconstruction).
- The characteristics of the impacted zone: the human behaviors and associated
displacements are generally constrained by the specificities of the territory. For
example, the presence of open spaces or buildings permitting to ensure the security
of populations, the number and the position of exits in buildings [12, 13] or the
morphology of the network and its degree of deterioration [19] have an influence on
people’s reactions.
- The characteristics of individuals and the density of population: the behaviors
vary with the physical characteristics of individuals (age, agility), their education
and experiences (culture of risk). The local knowledge and the perception of the
environment [28] are also important, as the familiarity with those present or the
density of population. This density, which increases when the crowd is being formed,
makes the situation more dangerous (i.e. reduction of the choices for the individual
displacements, increasing of interactions between individuals and their neighbors)
and can lead, for example, to extreme situations of trampling and su�ocation.

These parameters highlight that for a same kind of disaster people’s responses
can be di�erent. Moreover, during a disaster, individuals scarcely maintain the same
behavior. We often observe a sequence of several behaviors (for example, freeze
response followed by flight and containment). Nevertheless, we have few information
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on the evolution of population response. Indeed, it is unthinkable to continuously
monitor each individual expecting a catastrophic event, or in the hope of avoiding
one [24]. It is also impossible, from an ethical point of view, to voluntarily trigger a
catastrophe to study the real observed behavior of populations in the face of danger.
That’s why the first step of approach consisted in building a first model to analyze
the question of behavioral change.

This model, called APC (Alert-Panic-Control), relies on the point of view of psy-
chologists. It is an extension of the PCR (Panic-Controlled-Reflex) model proposed
in [25, 24] and studied in [6]. At our knowledge PCR model is the first SIR-based
model in literature that aims to describe the dynamics of the multiple human collec-
tive behaviors in the scenario of a catastrophe. In the new model we are presenting
here, human behavior are governed by two elements: the emotional charge that can
be more or less strong according to the level of stress, and the emotional regulation,
i.e. the ability of people to control emotional charge.

Taking into account the respective influence of these two elements, three main
classes of behaviors are considered in the APC model:

i) The state of alert: people are on alert and in a situation of uncertainty. They
are in search of information and try to identify the threat. They have often a
low emotional charge and a strong emotional regulation. At the beginning of the
catastrophe, all the people adopt an alert behavior that can last from few seconds
to several minutes.

ii) The state of panic: it corresponds to behaviors whose reasoning capacities are af-
fected by a high level of stress. It gathers all automatic and uncontrolled behavior
as freeze response, panic flight, automate behavior. In this state, the emotional
charge is strong and is hardly regulated. This can lead to dangerous situations.
That’s why they must be quickly identified, not only they can disrupt the organi-
zation of relief, but also because they can endanger the lives of populations by
pushing and running over people for example. These kinds of behaviors require a
huge surge of nervous energy. So it often lasts at most one hour.

iii)The state of control: the emotional charge is more or less intense but it can be
regulated. As opposed to panic, people in a controlled behavior keep their self-
control and their cognitive functions (sense of reality, emotional control, danger
assessment, ability to choose a solution). It gathers for example search for help,
mutual aid, evacuation, looting, etc.

It is worth noting that in the description and analysis of these behaviors we do not
judge the behaviors with respect to the event. A control behavior can be inappropriate
while a panic one can be e�cient. Here we are interested in understanding the
behaviors themselves and the transitions from a behavior to another.

Let us consider a population a�ected by a catastrophic event. We will note C0 the
time at which the catastrophe takes place and for C � C0, 0(C), ?(C), and 2(C) the
number of individuals in a state of alert, panic and control, respectively. In addition,
we note @(C) the number of individuals in the daily behaviors before the catastrophic
event. In the same way we designate with 1(C) all the people that exit the impact
zone. Furthermore, with respect to the previous model [24, 6], deaths are taken into
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account in order to obtain a more realistic model. Thus, we note 3 (C) the individuals
who lost their lives during the disaster.

It is well known that human beings rarely get stuck in a single type of reaction
during a catastrophic event [7]. First of all, each individual experiences a behavioral
evolution of his own. Typically, the behavior of the state of alert 0 is adopted as
soon as the event is triggered, then people evolve towards the state of panic ? or the
one of control 2, depending on their life experiences and risk education. The course
of events can induce sometimes a new analysis of the situation and a temporary
return to the alert state. Furthermore, imitation processes and social comparison are
important factors that can induce transitions from one behavior to another one [11].

The scheme of the APC model can be found in Figure 1. Finally, the APC model
equations are the following (C � C0):

daily

W

alert

⌫1⌫2

⌫3⌫4

�⌧

panic control

⇠1

⇠2

�

back to daily

i

⇡2⇡?

⇡0

Fig. 1 APC model scheme

§0(C) = W(C)@(C) � (⌫1 + ⌫2 + ⇡0)0(C) + ⌫32(C) + ⌫4?(C)
+ � (0(C), 2(C))0(C)2(C) + ⌧ (0(C), ?(C))0(C)?(C),

§2(C) = ⌫10(C) + ⇠1?(C) � (⌫3 + ⇠2 + ⇡2)2(C)
� � (0(C), 2(C))0(C)2(C) + � (2(C), ?(C))2(C)?(C) � i(C)2(C),

§?(C) = ⌫20(C) + ⇠22(C) � (⌫4 + ⇠1 + ⇡ ?)?(C)
� ⌧ (0(C), ?(C))0(C)?(C) � � (2(C), ?(C))2(C)?(C), (1)

§@(C) = �W(C)@(C),
§
1(C) = i(C)2(C)
§
3 (C) = ⇡00(C) + ⇡22(C) + ⇡ ??(C).

We note ⌫1 and ⌫2 the proportions of individuals who, at time C, naturally evolve
from the state of alert to a controlled behavior and to the state of panic, respectively.
The proportions corresponding to the comeback from the control behavior to the
alert, and from the panic to the alert are noted ⌫3 and ⌫4, respectively. The rates
of transition from panic to control, and control to panic, are noted ⇠1 and ⇠2,
respectively. Coe�cients ⇡0, ⇡ ? and ⇡2 are the death rates of the three populations.
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Since imitation processes can be similar to contagion ones, the imitation functions
have been built using a SIR model approach and taking into account that the behavior
of the majority influences the behavior of the minority. For example, for the imitation
between alerted and controls, we have:

� (0, 2)02 = �U1b

⇣
2

0 + Y

⌘
· 2

#

· 0 + U2b

⇣
0

2 + Y

⌘
0

#

· 2, (2)

where

b (B) = B
2

1 + B
2
,

# = # (C) = @(C) + A (C) + ?(C) + 2(C) + 1(C) is the total population at time C, and
Y << 1.

B

b (B)

Fig. 2 The graph of function b , which is involved in the modeling of the imitation terms.

In particular,

�U1b

⇣
2

0 + Y

⌘
· 0
#

· 2

represents the proportion of population in alert behavior that become controlled
by mimicking the controlled people around them. The term

2

#

is the classic "pro-

portional incidence rate" found in many epidemic models [1, 4] which models the
fact that each individual in the alert behavior does not meet all the people in the
controlled behavior (this is impossible especially in the case of a dense crowd), but

only a proportion of this sub-population. The term U1b

⇣
2

0 + Y

⌘
is the probability

that an individual in the alert behavior becomes controlled. The b function models
the fact that only if there is a majority of controlled people, alerted individuals adopt
a controlled behavior. Similarly

U2b

⇣
0

2 + Y

⌘
0

#

· 2

represents the fraction of individuals in a controlled behavior that mimics those in
an alert behavior.

Analogously, functions ⌧ and � are defined as



Spatio-temporal dynamics of human behaviors during disasters 211

8>>>>>><
>>>>>>:

⌧ (0, ?)0? = �V1b

⇣
?

0 + Y

⌘
?

#

· 0 + V2b

✓
0

? + Y

◆
0

#

· ?

� (2, ?)2? = �W1b

⇣
?

2 + Y

⌘
?

#

· 2 + W2b

✓
2

? + Y

◆
2

#

· ?,

(3)

Finally, the function W models the trigger of the catastrophe while the function i

describes exit from the impact zone, that we suppose can be achieved only being in
a controlled behavior. They are defined as

W(C) = Z (C, C0, C1) and i(C) = Z (C, C2, C3), C 2 R

where Z is defined as:

Z (C, g0, g1) =

8>>>><
>>>>:

0 if C < g0

1 if C > g1
1
2
� 1

2
cos

✓
C � g0

g1 � g0
c

◆
si g0  C  g1.

Table 1 sums up the notations of the APC model.

Remark 2.1 It is easy to notice that

8 C � C0, §0(C) + §2(C) + §?(C) + §@(C) + §
1(C) + §

3 (C) = 0.

The population under study is thus constant over time

8 C � C0, 0(C) + 2(C) + ?(C) + @(C) + 1(C) + 3 (C) = 2BC

and we have the following relation:

8 C � C0, §0(C) + §2(C) + §?(C) + §@(C) + §
3 (C) = �§

1(C).

This means that the 5th equation is a linear combination of the other equations of
the model, so we can reduce our system to 5 equations in terms of the state variables
D = [0, 2, ?, @, E]) . ⇤

In the following, we suppose all the population in a daily behavior before the
onset of the catastrophe, thus we consider as initial condition D0 = (0, 0, 0, # , 0)) .

3 A network of APC models

If the APC model makes it possible to reflect on the di�erent behaviors that can occur
depending on the characteristics of the disaster, risk culture and imitation phenom-
ena, it remains a-spatial. However, the dynamics and movements observed during
a disaster are also guided by territorial configurations (open/closed environment,
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Table 1 Variables, functions and parameters of the APC model

Variables Notation
Daily behavior before the catastrophe @ (C)
Alert behavior 0 (C)
Control behavior 2 (C)
Panic behavior ? (C)
Behavior outside the impact zone 1 (C)

Functions Notation
Beginning of the catastrophe W (C)
Leaving from the impact zone i (C)
Imitation functions � , ⌧, �

Parameters Notation
Evolution from alert to control ⌫1

Evolution from alert to panic ⌫2

Evolution from control to alert ⌫3

Evolution from panic to alert ⌫4

Evolution from panic to control ⇠1

Evolution from control to panic ⇠2

Mortality rates ⇡0 , ⇡? , ⇡2

Imitation from alert to control U1

Imitation from control to alert U2

Imitation from alert to panic V1

Imitation from panic to alert V2

Imitation from panic to control W1

Imitation from control to panic W2

network connectivity, street widths, presence of squares, etc.) and the alternatives
they o�er, particularly in terms of evacuation, flight and accessibility to refuge areas.

3.1 The network structure

In our modeling process we work at a mesoscopic scale and we adopt complex
networks and metapopulations frameworks. We suppose to split the environment
under study in several patches, that will become the nodes of our network. The
network edges symbolize interactions between nodes.They can be of two types.
They can depict population displacements. This paper is mainly focusing on the
methodological choices made to represent this kind of interaction. In the short term,
it will be completed by a second kind of relationships permitting the dissemination
of information between spatially non contiguous nodes to take into account the
exchange of information by mobile phone or SMS alert systems for example [8].
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Fig. 3 From the spatial partition of the territory (Nice seafront in France) to the studied network

3.2 The model equations

Here are our main assumptions:

i) we consider a network of = non-identical nodes;
ii) the population of the network is constant (each node having its own victims and

assuming that there are no individuals coming in or out of the network). On the
other hand, the population will not be constant on each node;

iii)each node : has a maximum carrying capacity, that is a maximum number of
individuals #<0G

:
that can be received;

iv)we consider only linear couplings, that is to say physical displacements. In addi-
tion, we suppose there is no behavioral transition during the transfer;

v) the dead people and people in a daily behavior do not move. People in a state of
alert hardly move.

In the following we note
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• #8 = #8 (C) = @8 (C) + 08 (C) + ?8 (C) + 28 (C) + 18 (C) the total population of the 8-th
node at time C;

• N+(8) the out-neighbors set of node 8 (that is the nodes that are adjacent to node
8 and whose edge starts from 8) [27];

• N� (8) the in-neighbors set of node 8 (that is the nodes that are adjacent to node 8
and whose edge comes into 8).

Then, the equations for the APC network model are the following (8 = 1, . . . , =):

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

308

3C

= W8@8 � (⌫8

1 + ⌫
8

2 + ⇡
8

0
)08 + ⌫

8

328 + ⌫
8

4?8 + �
8 (08 , 28)0828 + ⌧

8 (08 , ?8)08 ?8

+
’

:2N� (8)

✓
1 � #8

#
<0G

8

◆
[
0

:8
0: �

’
:2N+ (8)

✓
1 � #:

#
<0G

:

◆
[
0

8:
08 ,

328

3C

= ⌫
8

108 + ⇠
8

1?8 � (⌫8

3 + ⇠
8

2 + ⇡
8

2
)28 � �

8 (08 , 28)0828 + �
8 (28 , ?8)28 ?8

�i828 +
’

:2N� (8)

✓
1 � #8

#
<0G

8

◆
[
2

:8
2: �

’
:2N+ (8)

✓
1 � #:

#
<0G

:

◆
[
2

8:
28 ,

3?8

3C

= ⌫
8

208 + ⇠
8

228 � (⌫8

4 + ⇠
8

1 + ⇡
8

?
)?8 � ⌧

8 (08 , ?8)08 ?8 � �
8 (28 , ?8)28 ?8

+
’

:2N� (8)

✓
1 � #8

#
<0G

8

◆
[
?

:8
?: �

’
:2N+ (8)

✓
1 � #:

#
<0G

:

◆
[
?

8:
?8 ,

3@8

3C

= �W8@8 ,

318

3C

= i828 ,

3E8

3C

= ⇡
8

0
08 + ⇡

8

2
28 + ⇡

8

?
?8 ,

(4)
with the dependencies on C being omitted to lighten notation and where

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

�
8 (08 , 28) =

1
#8

✓
�U8

1b

✓
28

08 + Y

◆
+ U

8

2b

✓
08

28 + Y

◆◆

⌧
8 (08 , ?8) =

1
#8

✓
�V81b

✓
?8

08 + Y

◆
+ V

8

2b

✓
08

?8 + Y

◆◆

�
8 (28 , ?8) =

1
#8

✓
�W81b

✓
?8

28 + Y

◆
+ W

8

2b

✓
28

?8 + Y

◆◆
.

(5)

Remark 3.1 According to our assumptions, we have capacity constraints on each
node. This means that when the maximum capacity of one node is reached at time
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C, then this node cannot receive other population from the others nodes, so at time C

the incoming flux for this node must be zero.
This property is taken into account by the terms

✓
1 � #8

#
<0G

8

◆
8 = 1, . . . , =.

It is worth notice that if we suppose, for instance, that at time C the node 8 is full (i.e.
#8 (C) = #

<0G

8
), we will have

’
:2N� (8)

✓
1 � #8

#
<0G

8

◆
[
0

:8
=

’
:2N� (8)

✓
1 � #8

#
<0G

8

◆
[
?

:8
=

’
:2N� (8)

✓
1 � #8

#
<0G

8

◆
[
2

:8
= 0,

thus there is no incoming flux for node 8. ⇤

3.3 Coupling coe�cients

As we have said before, a link between two nodes of the network represents the
fact that the population in one node can move to the other. The proportion of the
population in a behavior state which moves from node 8 to node 9 is modeled by a
linear coupling coe�cient, [2

8 9
or [?

8 9
depending on the behavior under study, in the

network mathematical model (4). We recall that, according to our hypotheses, panic
and control behaviors are the only ones that can move.

One of the main issue is therefore to quantify this linear coupling between two
given nodes, that is between two spatial zones, according to the geographical config-
uration of these zones. Our study has led to a specific formulation for this coupling,
which depends on some quantities when one considers some population going from
one given node to another:

• the width ! of the exit from one node to another;
• the average speed hEi of the population leaving the node under study (it is note-

worthy that this quantity is computed here only with the horizontal components
of speed vectors);

• the global surface ( of the node under study from whom population is leaving.

Thus, coupling coe�cients can be viewed as the analogous of mass flow rates.
Figure 4 represents an example of two nodes. In this configuration we have

[12 =
hEi!
(1

.

To get this formula, we have to consider the following definition of this coupling
coe�cient, that is the proportion of people who leave the space per minute:

[12 =
1
#1

3#12

3C

.
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!

(1 (2

node 1 node 2

[12

Fig. 4 The coupling coe�cient value [12 depends on the global surface of node 1, on the width of
the exit from node 1 to node 2, and on the average speed hE i of the population leaving node 1.

The quantity 3#12 corresponds to the population quantity that goes through the exit
per time unit 3C, that is 3#12 = =1hEi! 3C, where =1 is the population density on
node 1. To finally get the result in terms of densities, we have to divide this number
of people by the global number of people on node 1 (having a surface (1), that is
#1 = =1 (1. Finally this gives the expression of the coupling.

Remark 3.2

• hEi is the average speed but each behavior has its own average speed, that is the
way why we have to consider [012, [

2

12, [
?

12,
• in case of multiple exits from node 8 to node 9 , we have multiple !8 , so we have

multiple contribution for the calculation of the coupling coe�cient. ⇤

4 Case study and numerical results

Here we are interested in the scenario of a tsunami on the French Riviera caused by
a seismic event. The arrival time of the first wave would vary from 15 to 30 minutes
[14]. This short time would make it di�cult to alert and organize the evacuation of
the population by public authorities. The impact zone under study is the seafront of
Nice (France) [22]. In the following, let us consider a network of three nodes such
as in Figure 5. We have selected three nodes that correspond to a small part of the
beach (Node 1), a staircase that allows someone in node 1 to leave the beach (Node
2) and a part of the Promenade des Anglais (Node 3). The goal for people who are
on the beach is to reach the Promenade des Anglais where they will be in security.
We consider this disaster to be unexpected due to a Ligurian fault rupture [16], thus
we use the following functions W8 and i8:

W8 (C) = W(C) = Z (C, 1, 3) and i8 (C) = i(C) = Z (C, 70, 100), C 2 R,

with Z defined as: for g0  C  g1, g0, C, g1 2 R,
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1 2 3
[12 [23

Fig. 5 The network under study.

Z (C, g0, g1) =

8>>>><
>>>>:

0 if C < g0

1 if C > g1
1
2
� 1

2
cos

✓
C � g0

g1 � g0
c

◆
if g0  C  g1

In the selected scenario, we have chosen the function W very sharp such that in
three minutes the majority of the population in the daily behavior becomes alert.
Furthermore, we suppose that people can exit from the impact zone only after 70
minutes from the beginning of the catastrophe.

Table 2 shows the parameters values for the numerical simulations we will show
in this paper. We remark that here the superscript denotes the node number, e.g. ⌫8

1
is the coe�cient ⌫1 of the node 8.

Table 2 Parameters values for the numerical simulations

Parameters Values Parameters Values Parameters Values
⌫

1
1 = ⌫

2
1 = ⌫

3
1 0.1 ⇠

1
1 = ⇠

2
1 = ⇠

3
1 0.1 ⇡

1
0 = ⇡

2
0 = ⇡

3
0 0.001

⌫
1
2 = ⌫

2
2 = ⌫

3
2 0.1 ⇠

1
2 = ⇠

2
2 = ⇠

3
2 0.1 ⇡

1
2 = ⇡

2
2 = ⇡

3
2 0.001

⌫
1
3 = ⌫

2
3 = ⌫

3
3 0.05 ⌫

1
4 = ⌫

2
4 = ⌫

3
4 0.05 ⇡

1
? = ⇡

2
? = ⇡

3
? 0.001

U
1
1 = U

2
1 = U

3
1 0.3 U

1
2 = U

2
2 = U

3
2 0.2 V

1
1 = V

2
1 = V

3
1 0.6

V
1
2 = V

2
2 0.1 V

3
2 0.2 W

1
1 = W

2
1 0.6

W
3
1 0.3 W

1
2 = W

2
2 0.1 W

3
2 0.3

@1 (0) 300 @2 (0) 5 @3 (0) 195

# 500 [
0
12 = [

?
12 = [

2
12 0.5 [

0
23 = [

?
23 = [

2
23 0.5

The parameters have been chosen in order to model a tendency to adopt a panic
behavior in nodes 1 and 2, since the first node is the one directly impacted by
the catastrophe while in the second one the narrowness of the staircase could play
an important role. As initial condition, we suppose all the population in the daily
behavior before the catastrophe, distributed in the three nodes as following: @1 (0) =
300, @2 (0) = 5 and @3 (0) = 195, thus in node 1 we have 60% of the total population,
in node 2 we have 1% and 39% in node 3, respectively. Finally, we have considered
the same coupling coe�cients for the di�erent populations. Of course this is just a
possible scenario and di�erent values of the parameters can be considered.
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(a) (d)

(b) (e)

(c) (f)

Fig. 6 Time course of the three most important populations 0 (solid line), ? (dashed line), 2
(dotted line), in node 1 (a)-(d), node 2 (b)-(e) and node 3 (c)-(f), for two di�erent values of #<0G

2 :
#

<0G
2 = # in (a)-(b)-(c) and #

<0G
2 = 0.1# = 50 in (d)-(e)-(f), respectively. We have chosen the

following color code: node 1 is in black, node 2 is in blue and node 3 is in green.

Throughout these simulations we have chosen the following color coding: the
variables of node 1 are represented in black, those of node 2 in blue and the ones of
node 3 are in green, respectively.

Furthermore, in the following we have considered two di�erent values of #<0G

2 ,
the maximum capacity of node 2, in order to investigate its e�ect on the global
dynamics of the network. In the first scenario we have taken #

<0G

2 = # = 500, the
extreme case where node 2 can hold all the population. In the second one, we have
supposed a capacity constraint on node 2 and put #<0G

2 = 10%# = 50.
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In Figure 6 the time dynamics for the three populations 0 (solid line), ? (dashed
line) and 2 (dotted line) of the three nodes are shown, for the two di�erent values of
#

<0G

2 . In (a)-(b)-(c) we have the time courses for #<0G

2 = # , while in in (d)-(e)-(f)
we have the results when we consider the capacity constraint on node 2 equal to
#

<0G

2 = 0.1# = 50.

Fig. 7 Evacuation time for node 1 as function of #<0G
2 .

We can see that the stair capacity constraint has a great influence on the course
of the event. While all the population has left the beach after 15 minutes in the first
scenario, more than 130 people remain in danger after this period in the second one
due to the inability to use the stairs that are overcrowded (#<0G

2 = 50). After 30
minutes about 50 people are still trapped on the beach. During these 15 minutes,
the percentage of population in panic increases from 75% to 77%. These data are
important because people who are still on the beach at these selected times will be
a�ected by the tsunami wave and could possibly loose their live. The e�ect of the
stair capacity on the evacuation dynamics of node 1 can be better observed if we
look at the evacuation time of node 1, defined as

)4E02 = inf {C 2 ]0;)] | 01 (C) + ?1 (C) + 21 (C) < 10% @1 (0)} .

In Figure 7, the evacuation time of node 1 as function of the maximum capacity of
the middle node #

<0G

2 is represented. According to the spatial configuration and the
scenarios under study, with a stair maximal capacity of 50 individuals, it appears
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that to evacuate about 300 people from the beach by one stair we should multiply
the stair capacity by two to evacuate in 30 minutes and by eight to evacuate in 15
minutes.

5 Conclusion

In this paper, we have adopted a complex network approach in order to take into
account the spatial variable in the modeling and analysis of the dynamics of human
behaviors during catastrophic events. As case study, we considered a scenario con-
sisting in a tsunami on the French Riviera caused by a seismic event. In this type of
events the population must quickly evacuate the beach because the estimated time
before the arrival of the first wave vary from 15 to 30 minutes. Nevertheless, this
evacuation depends on the capacity of the stairs that allow to leave the beach. To
analyze this aspect, we have considered an elementary network made up of three
nodes that correspond to a small part of the beach were 300 people are located at
the beginning of the event, a staircase that allows to leave the beach and a part of the
Promenade des Anglais, considered as safe. Two scenarios about the arrival time-
line of the first tsunami wave have been studied (15 and 30 minutes). We have also
distinguished a model without capacity constraint and another where the number
of individuals in the staircase can not be larger than 50. The numerical simulations
show that the capacity constraints on the nodes of the network influence the global
dynamics of the model. Without any constraint, people can evacuate in 15 minutes
whereas there is still more than one third of the population on the beach when we
add a capacity constraint in the stairs (50 persons). 74% of them are in panic. After
30 minutes one in six people is still trapped on the beach and the panic reaches 77%
of them. To allow a rapid evacuation (about 15 minutes) of about 300 people the
stair capacity should be multiplied by eight.
The next steps of this research is to take more into account the field reality, to analyze
the necessary time to evacuate di�erent number of people according to the number of
stairs and the possibility to go toward another stair when one of them is overcrowded.
We also want to introduce in the model a second kind of relationships between non
adjacent nodes to build scenarios permitting the dissemination of information by
mobile phone or SMS alert systems, since these kinds of exchange also have an
influence on people behaviors during a disaster.
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