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A B S T R A C T

Background: Systemic right ventricle (RV) is a rare and complex form of congenital heart disease (CHD) with a
prognosis related to RV dysfunction and impaired physical capacity. Routine follow-up relies on echocardiog-
raphy, however the prognostic value of echocardiography parameters remains under debate. Real-life patient
follow-up involves different ultrasound systems. We aimed to evaluate echocardiography parameters’ reliability
in systemic RV, in terms of reproducibility, using vendor-independent software, and in terms prediction of
physical capacity impairment.
Methods: Adult patients with D-transposition of the great artery (d-TGA) who underwent atrial switch or with
congenitally corrected TGA (cc-TGA) were included in this multicentre prospective study. Current echocardiog-
raphy parameters were analysed using TomTec-Arena™ software. Intraclass correlation coefficients (ICC)
assessed inter- and intraobserver reliability. Associations between the most reproducible echocardiography pa-
rameters and exercise capacity (peak VO2, VE/VCO2 slope) were explored.
Results: A total of 47 patients were included in the study (87% d-TGA, median age 36.4� 8 years). Conventional
and 2D strain echocardiography parameters indicated the existence of a RV dysfunction (TAPSE¼ 12.8� 3.1 mm;
RV free wall longitudinal 2D strain¼ -13.6� 3.9%). Good reproducibility (ICC>0.75) for both intra and inter-
observer variability was observed in 8 RV echocardiography parameters. Only the TAPSE was significantly
associated with peak VO2 (r¼ 0.4, P¼ 0.02).
Conclusions: In this prospective study mimicking real-life echocardiography follow-up of systemic RV, TAPSE, RV
free wall longitudinal 2D strain and peak systolic S wave, were the most reproducible echocardiography pa-
rameters. However, only the TAPSE was associated with peak VO2.
1. Introduction

Among all types of congenital heart diseases (CHD), the systemic right
ventricle (RV) represents a rare and complex form, accounting for
approximately 10% of all CHD [1]. In patients with two ventricles, the
systemic RV may be observed in two situations: dextro-looped
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transposition of the great arteries (d-TGA) after atrial switch procedure
(Mustard, Senning) and congenitally corrected TGA (cc-TGA) [1–4]. In a
normal heart, the RV is a compliant pump providing the low-pressure
pulmonary output, whereas the systemic RV provides, by definition,
the high-pressure systemic output. However, the RV is not intrinsically
adapted to pump against the high-pressure level developed by the
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systemic circulation, as its fibro-muscular architecture, shape and func-
tion, are far different from those of a left ventricle [5–7]. Therefore, most
patients with a systemic RV are prone to present with late complications
such as heart failure, significant tricuspid regurgitation, or sudden death
due to ventricular arrhythmia [1,8–11]. Moreover, patients with a sys-
temic RV will experience a gradual and inexorable decline in their
physical capacity, and both maximum oxygen uptake (VO2) and venti-
latory efficiency (VE/VCO2 slope), measured during a cardio-pulmonary
exercise test (CPET), are associated with disease severity [12–14].
Indeed, these two CPET parameters correlate with prognosis and
health-related quality of life in chronic heart failure, including in patients
with CHD [14–16], and we recently reported the relevance of CPET for
clinical severity assessment in adult patients with a systemic RV [12].

In the routine follow-up, assessment of systemic RV function pre-
dominantly relies on transthoracic echocardiography. Cardiac magnetic
resonance (CMR) imaging has been considered as the reference method
for RV function assessment in such patients [17]. However, compared to
echocardiography, CMR is less available, more costly, and more difficult
to perform in patients with pacemaker or implantable defibrillator.
Moreover, results of studies comparing CMR and echocardiography in
systemic RV remain controversial [18–20], and there is currently still a
debate on which echocardiography parameter best predicts the patient
outcome, especially in terms of physical capacity [21,22]. Furthermore,
as opposed to most research studies on cardiac imaging, real-life patient
follow-up usually involves examinations performed by different sonog-
raphers, on different ultrasound systems.

In this prospective multicentre study, we aimed to evaluate the reli-
ability of echocardiography parameters in a cohort of patients with a
systemic RV, in terms of reproducibility, using a vendor-independent
software, as well as in terms of prediction of physical capacity
impairment.

2. Methods

2.1. Study design and population

This multicentre cross-sectional study was carried out from June
2017 to April 2019 in three tertiary care CHD centres in France and
Belgium (centre 1: Bordeaux University Hospital, France; centre 2:
Montpellier University Hospital, France; centre 3: Cliniques Uni-
versitaires Saint-Luc, Brussels, Belgium).

Adult patients (�18 years) with a systemic RV were screened during
their routine follow-up. Patients with a single ventricle physiology were
not eligible (double inlet right ventricle with previous Fontan palliation,
and hypoplastic left heart syndrome palliated with the Norwood-Fontan
protocol). Therefore, two groups of patients with systemic RV were
eligible for the study: d-TGA after atrial switch procedure (Mustard,
Senning) and cc-TGA. Patients willing to participate in the study were
required to undergo the following examinations in one of the three
participating CHD centres: physical examination, electrocardiogram
(ECG), transthoracic echocardiography, laboratory testing, and CPET.

2.2. Clinical and paraclinical parameters

The following clinical variables were collected: gender, age, weight,
height, body mass index (BMI), NYHA functional class, and the type of
systemic RV (d-TGA or cc-TGA). The electrocardiographic status (pace-
maker, implantable defibrillator), and laboratory parameters (N-terminal
pro-brain natriuretic peptide (NT-proBNP)) were collected.

2.3. CPET parameters

The main prognosis outcome selected in this study was the exercise
capacity evaluated by a CPET, and represented by two major parameters:
the peak VO2 and the VE/VCO2 slope.

As in our previous studies using CPET procedures, all centres used a
2

similar cycle ergometer triangular protocol to obtain a homogeneous
incremental overall duration between 10 and 15min: a 1-min rest; a 3-
min warm-up (10–20 Watts) in increments of 10, 15, or 20W each
minute; a pedalling rate of 60–80 revolutions per minute; a 3-min active
recovery (20W); and a 2-min rest [12,23,24]. The exercise test was
considered as maximal when 3 out of the 4 following criteria were
reached: respiratory exchange ratio (RER¼VCO2/VO2)� 1.1,
maximum heart rate >85% of maximal age-predicted heart rate, limit of
the patient's tolerance despite verbal encouragement, plateau of VO2
(VO2max) despite the increasing exercise intensity. When the oxygen
uptake did not reach a plateau, which is very common in adult patients
with a systemic RV, the peak VO2 was reported. Peak VO2 values were
normalized in a percentage of the predicted VO2max using reference
values for cycle ergometer test in the general adult population (named as
percent-predicted peak VO2) [25,26]. The ventilatory efficiency, e.g. the
VE/VCO2 slope, was determined using linear regression of minute
ventilation (VE) and CO2 production (VCO2) [14,27].

2.4. Echocardiography parameters

In order to reproduce real-life practice, all eligible patients were
consecutively enrolled, regardless echogenicity. We did not use any
contrast agents. Echocardiography recordings were prospectively stored
in DICOM format and offline analyses were performed by an investigator
(C.B., senior congenital cardiologist) who was blinded to clinical and
CPET data. A second analysis was performed on all recordings, by the
same investigator (C.B.) to assess intraobserver reproducibility, and by a
second investigator (V.P., fellow) to assess interobserver reproducibility,
with no access to the results of first analysis. Echocardiography analyses
for 2D strain parameters were performed using TomTec Arena™ version
40 (TomTec Imaging Systems GmbH, Unterschleissheim, Germany)
software, a vendor-independent program that can measure all echocar-
diographic images stored in DICOM format.

The following RV function parameters were measured, following the
recommendations of the American Society of Echocardiography and the
European Association of Cardiovascular Imaging [28] and commonly
used in systemic RV [18](19): tricuspid annular plane systolic excursion
(TAPSE), tricuspid annular diameter, and fractional area change (FAC),
from the apical 4-chamber view. Severity of tricuspid regurgitation (TR)
was semi-quantitatively graded with colour Doppler method as none,
mild, moderate, or severe [29]. Doppler method was used to measure
dP/dt defined as the time required for the tricuspid valve regurgitation
jet to increase velocity from 1 to 3m/s, from the ascending limb of the TR
continuous-wave Doppler signal. Systemic subaortic velocity time inte-
gral (VTI) and the myocardial performance Tei index were obtained
using pulsed-wave Doppler. The Tei index was defined as the sum of the
isovolumic contraction and the isovolumic relaxation time divided by
ejection time [30]. Systolic excursion velocity (S) and isovolumic accel-
eration (IVA) were measured using pulsed Doppler Tissue Imaging, with
Doppler sample volume placed in the tricuspid annulus of the RV free
wall [19]. Aortic, mitral and pulmonary regurgitation were
semi-quantitatively graded. Inferior vena cava (IVC) diameters
(maximum and collapse index) were measured using M-mode
echocardiography.

Speckle tracking echocardiography was used to measure RV longi-
tudinal 2D strain, using two different methods from the two available
TomTec Arena™ version 40 software algorithms: one designed for the
left ventricle (LV) and the other one designed for the RV. The RV was
visualized from the apical 4-chamber view. Using the LV software algo-
rithm, the RV was divided into 3 free wall segments (basal, mid, apical)
and 3 interventricular septum segments (basal, mid, apical) (Fig. 2).
Using frame rates of 60–80 frames/sec to optimize myocardial defor-
mation analysis, 2D strain analyses were performed for each segment,
globally for the RV free wall, globally for the interventricular septum, and
globally for the entire RV. As the LV software algorithm is initially
dedicated to LV contouring, three markers were manually positioned at
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the RV extremities (apex, tricuspid annulus extremity towards the RV
free wall, and tricuspid annulus extremity towards the septum), in order
to “force” automatic RV contouring. Using the RV software algorithm, the
RV was only divided into 3 free wall segments (basal, mid, apical)
(Fig. 3). 2D strain analyses were performed for each segment, and
globally for the RV free wall. The RV peak systolic strain was calculated
by the software. After positioning 3 markers at the RV extremities (apex,
tricuspid annulus extremity towards RV free wall, and tricuspid annulus
extremity towards the septum), the RV software algorithm automatically
tracked the RV endocardial contour. End systole was defined by aortic
valve closure and was automatically recorded by the software. For each
software algorithm, tracking was verified and corrected if necessary, by
manually adjusting the contour to ensure optimal tracking.

To define altered RV function, we used cut-off values recommended
by the American Society of Echocardiography and the European Asso-
ciation of Cardiovascular Imaging: TAPSE <17mm, peak S wave
<9.5 cm/s, FAC <35%, RV free wall longitudinal 2D strain< -20%, and
Tei index >0.43 [28].

2.5. Formal aspects

The study was conducted in compliance with the Good Clinical
Practices protocol and Declaration of Helsinki principles. The Ethics
Committee Nord-Ouest II in France and the UCL Ethics Committee in
Belgium approved the study, which was registered on ClinicalTrials.gov
(NCT03379831). Informed consent to participate in the study was ob-
tained from all patients.

2.6. Statistics

The study population was described using means and standard de-
viations (SD) for quantitative variables. For qualitative variables, fre-
quencies and their associated percentage were used. The continuous
variable distributions were tested with the Shapiro-Wilk statistic.
Quantitative variables were compared using Student's t-test when the
distribution was Gaussian and using the Mann-Whitney test otherwise.
For qualitative variables, groups were compared using the chi-squared
test or Fisher's exact test.

To evaluated inter and intra-observer reliability, intraclass correla-
tion coefficients (ICC) were used. As defined by Koo et al., values less
than 0.5, between 0.5 and 0.75, between 0.75 and 0.9, and greater than
Fig. 1. Flow
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0.90 were indicative of poor, moderate, good, and excellent reliability,
respectively [31].

The association between echocardiography variables and the three
CPET parameters (peak VO2, the percent-predicted peak VO2 and the
VE/VCO2 slope) was explored by the Pearson correlation coefficient for
normal quantitative variables.

The statistical significance was set at 0.05 and analyses were per-
formed using Statistical Analysis Systems Enterprise Guide version 4.3
(SAS Institute, Cary, NC, USA).

3. Results

3.1. Patients

During the study period, 52 eligible patients were consecutively
screened in the three participating centres. Because of poor echocardio-
graphic image quality, five patients were not included (Fig. 1). A total of
47 subjects (mean age 36.4� 8 years; 66% male) with a systemic RV
were enrolled in the study, in Bordeaux University Hospital (n¼ 26),
Saint-Luc University Hospital (n¼ 14), and Montpellier University Hos-
pital (n¼ 7). More than two-thirds of the patients had undergone Sen-
ning atrial switch for d-TGA and only 13% of the patients had a cc-TGA.
Most patients were in NYHA functional class I or II, but had an impaired
exercise capacity with a reduced peak VO2 and elevated VE/VCO2 slope
(Table 1).

3.2. General echocardiography parameters

Echocardiography examinations were performed on two different
ultrasound systems, equally divided between EPIQ7 ultrasound (Philips
Healthcare) for 24 patients and Acuson SC2000 ultrasound (Siemens
Healthcare) for 23 patients.

Conventional and 2D strain echocardiography parameters indicated
the existence of a RV dysfunction with a mean TAPSE value of
12.8� 3.1mm and a mean RV free wall longitudinal 2D strain value of
-13.6� 3.9 %, derived from the RV algorithm. Severe forms of RV
dysfunction were not predominant, with severe TR observed in only 4
patients and baffle obstruction in only 2 patients. Overall, significant
additional anatomic lesions such as LV outflow tract obstruction, pul-
monary stenosis, and baffle leaks, were not observed. After atrial switch
repair, baffle stenosis was reported for only two out of 41 patients
chart.

http://ClinicalTrials.gov


Fig. 2. Longitudinal RV 2D strain measured with LV
software algorithm.
Legend: green frames, free wall segment (from top to
bottom): apical, mid, basal segments; red frames,
septal segment (from top to bottom): apical, mid,
basal. GLS_Endo_Peak_A4C, right ventricle global
longitudinal 2D strain using LV software algorithm.
(For interpretation of the references to colour in this
figure legend, the reader is referred to the Web
version of this article.)

Fig. 3. Longitudinal RV 2D strain measured with RV
software algorithm.
Legend: deep blue segment, basal free wall segment;
light blue segment, mid free wall segment; green
segment, apical free wall segment; RVFWSL, right
ventricle free wall strain lateral; RV4CSL, right
ventricle global longitudinal 2D strain using RV
software algorithm. (For interpretation of the refer-
ences to colour in this figure legend, the reader is
referred to the Web version of this article.)
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(Table 2).
3.3. Reproducibility of RV echocardiography parameters

Intraobserver reproducibility was good to excellent for nearly all RV
conventional and 2D strain echocardiography parameters (all ICCs
>0.75, P<0.001). Only the Tei index and the apical septal 2D strain using
RV strain software algorithm showed a moderate reproducibility (ICCs
were 0.60 and 0.70 respectively, P< 0.001).

Interobserver reproducibility was good to excellent (ICCs >0.75,
P<0.001) for three conventional parameters (TAPSE, peak systolic S
wave and dP/dt). Very poor reproducibility was observed for the Tei
index and the IVA (ICCs< 0.10). Interobserver reproducibility was
4

globally better for 2D strain parameters, especially with the RV speckle
tracking software algorithm. Interestingly, all free wall RV longitudinal
2D strain values using RV speckle tracking software algorithm presented
a good reproducibility (ICCs >0.75, P<0.001), whereas only one value
(global free wall) presented a good interobserver reproducibility with the
LV speckle tracking software algorithm (Table 3).

Overall, eight RV echocardiography parameters had a good repro-
ducibility, with ICCs >0.75 for both intra and interobserver variability:
TAPSE, free wall RV longitudinal 2D strain using RV speckle tracking
software algorithm (apical, basal, medial and global segments), free wall
global RV longitudinal 2D strain using LV speckle tracking software al-
gorithm, peak systolic S wave, and tricuspid dP/dt.



Table 1
Study population.

Variables

Age (years) 36.4� 8.0
Gender Male 31 (66)

Female 16 (34)
Height (cm) 171.4� 8.4
Weight (kg) 69.8� 17.3
Type of systemic RV d-TGA Senning 32 (68)

ccTGA Mustard 9 (19)
6 (13)

NYHA functional class I 31 (66)
II 14 (30)
III 2 (4)
IV 0 (0)

NT-pro-BNP (pg/mL) 86.3� 57.8
Peak VO2 (mL/Kg/min) 21.6� 7.3
Percent-predict VO2 (%) 56.5� 16.8
VE/VCO2 slope 33.9� 7.2

Legend: Values are mean� standard deviation (SD) or N (%). NYHA, New York
Heart Association; RV, right ventricle; VO2, oxygen uptake; VE/VCO2 slope,
ventilatory efficiency.

Table 2
Echocardiography parameters.

Echocardiography parameters

TAPSE (mm)
Tricuspid annulus diameter (mm)
RV fractional area change (%)
Tricuspid regurgitation

Tricuspid dP/dt (mmHg/s)
Systemic (subaortic) VTI (cm)
Tei index
Peak S wave (cm/sec)
IVA (m/s2)
IVC maximum expiration diameter (mm)
IVC collapse index
Aortic regurgitation

Mitral regurgitation

Pulmonary regurgitation

RV longitudinal 2D strain using RV software algorithm Free wall

RV global lo
RV longitudinal 2D strain using LV software algorithm Free wall

Septum

RV global lo
Baffle analysis

Legend: Values are mean� standard deviation (SD) or N (%). LV, left ventricle; RV, r
regurgitation; MPI, myocardial performance index; IVA, isovolumic acceleration; TDI
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3.4. Correlation between most reproducible echocardiography RV
parameters and physical capacity

When measuring the association between those eight most repro-
ducible RV echocardiography parameters and the CPET parameters, we
found that only the TAPSE presented a significant correlation with peak
VO2 (r¼ 0.40, P¼ 0.02). The association between RV longitudinal 2D
strain using RV speckle tracking software algorithm and peak VO2 was
moderate and did not reach statistical significance (r¼ 0.23, P¼ 0.14).
No association was found between any RV echocardiography parameter
and the VE/VCO2 slope (Table 4).

4. Discussion

In this prospective multicentre study, from a cohort of adult patients
with a systemic RV, good reproducibility was found in most conventional
and 2D strain RV echocardiography parameters. In order to best match
the reality of clinical follow-up, our study analysed echocardiography
examinations performed by different sonographers, on different ultra-
sound systems, and used, for the first time in this population, the Tom-
Tec-Arena™ vendor-independent software for 2D strain analysis.

Among all echocardiography parameters tested in this study, the
12.8� 3.1
38.6� 6.8
33.8� 7.8

None 5 (11)
Mild 29 (61)
Moderate 9 (19)
Severe 4 (9)

838.4� 326.8
17.3� 4.5
0.31� 0.13
7.12� 1.84
1.89� 0.47
16.6� 2.8
0.58� 0.16

None 38 (81)
Mild 8 (17)
Moderate 0 (0)
Severe 1 (2)
None 42 (89)
Mild 4 (9)
Moderate 1 (2)
Severe 0 (0)
None 27 (57)
Mild 20 (20)
Moderate 0 (0)
Severe 0 (0)
Basal -14.56� 4.45
Mid -13.29� 3.90
Apical -12.60� 3.58
Global -13.58� 3.94

ngitudinal strain -11.64� 3.09
Basal -18.58� 7.31
Mid -13.63� 5.14
Apical -11.83� 5.73
Global -14.68� 4.37
Basal -9.09� 5.61
Mid -10.87� 4.73
Apical -10.85� 4.66
Global -10.27� 3.65

ngitudinal strain -12.41� 3.47
Obstruction 2 (5)
No obstruction 39 (95)

ight ventricle; TAPSE¼ tricuspid annular plane systolic excursion; TR, tricuspid
, tissue doppler imaging; VTI, velocity time integral.



Table 3
Reproducibility of RV echocardiography parameters.

RV echocardiography parameters Intraobserver variability Interobserver variability

ICC [95% CI] P-value ICC [95% CI] P-value

TAPSE 0.97 [0.93;0.98] <0.001 0.86 [0.75;0.93] <0.001
Tricuspid annulus diameter 0.96 [0.93;0.98] <0.001 0.67 [0.47 ;0.81] <0.001
RV fractional area change 0.93 [0.88;0.96] <0.001 0.17 [-0.14;0.45] 0.14
Tricuspid dP/dt 0.98 [0.95;0.99] <0.001 0.77 [0.49;0.91] <0.001
Systemic (subaortic) VTI 0.97 [0.92;0.98] <0.001 0.56 [0.24;0.78] <0.001
Tei index (Doppler) 0.60 [0.20;0.83] <0.01 0.09 [-0.47;0.61] 0.38
Peak S wave (TDI) 0.92 [0.85;0.96] <0.001 0.90 [0.79;0.95] <0.001
IVA (TDI) 0.81 [0.63;0.90] <0.001 0 [-0.39;0.37] 0.53
IVC maximum diameter (expiration) 0.85 [0.72;0.92] <0.001 0.65 [0.38;0.82] <0.001
IVC collapse index 0.71 [0.44;0.86] <0.001 0.35 [-0.07;0.67] 0.05

RV longitudinal 2D strain using RV speckle tracking software
algorithm

Free wall Basal 0.95 [0.91;0.97] <0.001 0.82 [0.69;0.90] <0.001
Mid 0.97 [0.94;0.98] <0.001 0.78 [0.64;0.87] <0.001
Apical 0.94 [0.90;0.97] <0.001 0.76 [0.60;0.86] <0.001
Global 0.98 [0.97;0.99] <0.001 0.79 [0.64;0.88] <0.001

RV global longitudinal
strain

0.91 [0.84;0.95] <0.001 0.70 [0.52;0.83] <0.001

RV longitudinal 2D strain using LV speckle tracking software
algorithm

Free wall Basal 0.92 [0.86;0.95] <0.001 0.73 [0.55;0.84] <0.001
Mid 0.80 [0.66;0.88] <0.001 0.49 [0.24;0.69] <0.001
Apical 0.88 [0.79;0.93] <0.001 0.59 [0.35;0.75] <0.001
Global 0.92 [0.85;0.95] <0.001 0.78 [0.63;0.87] <0.001

Septum Basal 0.79 [0.64;0.88] <0.001 0.50 [0.25;0.69] <0.001
Mid 0.92 [0.87;0.96] <0.001 0.70 [0.51;0.82] <0.001
Apical 0.70 [0.51;0.82] <0.001 0.58 [0.34;0.74] <0.001
Global 0.91 [0.83;0.95] <0.001 0.59 [0.36;0.75] <0.001

RV global longitudinal
strain

0.97 [0.95;0.98] <0.001 0.25 [-0.05;0.50] 0.05

Legend: ICC, intraclass correlation coefficient; CI, confidence interval; IVA, isovolumic acceleration; IVC, inferior vena cava; LV, left ventricle; RV, right ventricle;
TAPSE, tricuspid annular plane systolic excursion; TDI, tissue Doppler imaging; Tei index, myocardial performance index; VTI, velocity time integral.

Table 4
Correlation between most reproducible echocardiography RV parameters and physical capacity.

Peak VO2 Percent-predict peak VO2 VE/VCO2 slope

r P-value r P-value r P-value

TAPSE 0.40 0.02 0.16 0.37 -0.11 0.56
RV longitudinal 2D strain using RV software algorithm Free wall Apical 0.23 0.14 0.26 0.11 -0.08 0.63

Global 0.19 0.22 0.21 0.20 0.01 0.96
Basal 0.19 0.22 0.19 0.25 0.09 0.60
Medial 0.17 0.30 0.20 0.21 -0.05 0.75

RV longitudinal 2D strain using LV software algorithm Free Wall Global 0.13 0.40 0.13 0.41 -0.10 0.54
Peak S wave -0.07 0.73 0.23 0.24 -0.28 0.16
Tricuspid dP/dt -0.02 0.93 -0.06 0.80 -0.35 0.13

Legend: TAPSE, tricuspid annular plane systolic excursion; LV, left ventricle; RV, right ventricle; TDI, tissue Doppler imaging.
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TAPSE appeared to be the only predictor of physical capacity in systemic
RV, with very low intra and inter-observer variability (ICC of 0.97 and
0.86, respectively). Indeed, the TAPSE is easily measurable in M-mode
from the apical 4-chamber view, even if image quality is mediocre or
endocardial border recognition is difficult, as opposed to strain and FAC
measures [6,32]. Moreover, in our study, the TAPSE was significantly
correlated with peak oxygen uptake, which is considered as a major
prognosis parameter in systemic RV [13]. This is in line with the recent
study from Gavotto et al., showing an association between TAPSE and
percent-predict peak VO2 (r¼ 0.40; P<0.001) from a cohort of 111 pa-
tients with a systemic RV [12]. Similarly, Winter et al. reported that
TAPSE was significantly associated with peak VO2, NYHA functional
class and NT-proBNP in a cohort of 50 patients [33]. As in our study, the
TAPSE was the only echocardiography parameter correlating with
physical capacity. Moreover, Lissin, et al. found a correlation between
TAPSE and CMR assessments of systemic RV function (r¼ 0.66, P¼ 0.01)
[18]. More generally, in many pathologies affecting the RV, the TAPSE
has shown some interest in terms of RV function follow-up or even as a
prognosis biomarker, such as in pulmonary arterial hypertension [34], or
6

pulmonary embolism [35]. In the natural history of systemic RV, Pet-
tersen et al. have described the existing shift from longitudinal myocar-
dial fibres to circumferential myocardial fibres [7]. As the TAPSE reflects
the RV longitudinal contraction developed by longitudinal myocardial
fibres, it therefore correlates with systolic dysfunction in systemic RV.
The normal values for TAPSE in systemic RV are known to be lower than
in normal sub-pulmonary RV [36]. Therefore, decrease in longitudinal
function, which TAPSE reflects, could be to some degree an adaptive
process and not a real impairment of RV function.

Then, our study found that reproducibility of RV longitudinal 2D
strain was good, globally and for each segment. Moreover, using for the
first time both LV and RV TomTec-Arena™ software algorithms in sys-
temic RV, we observed the lowest variability for the RV free wall global
longitudinal 2D strain with the RV software algorithm (ICC of 0.98 and
0.79 for intra and inter-observer variability, respectively). The systemic
RV has a function similar to a LV, however its shape remains close to a
normal sub-pulmonary RV. Therefore, the RV software algorithm from
TomTec-Arena™ appeared to be well adapted to 2D strain analyses in
systemic RV. The recent study from Ladouceur et al. on a similar
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population found good interobserver reproducibility (ICC of 0.93) of RV
global longitudinal 2D strain using LV software algorithm [21]. However,
in this retrospective study, echocardiography examinations were per-
formed by a single examiner, on a single ultrasound system and off-line
analyses were performed on a vendor-dependant software (EchoPAC,
General Electric Healthcare).

Unfortunately, despite this good reproducibility, the association be-
tween RV free wall global longitudinal 2D strain (using the RV software
algorithm) and peak VO2 in our study did not reach statistical signifi-
cance (r¼ 0.23; P¼ 0.14), probably because of a low sample size. Indeed,
previous studies found a significant association, in patients with systemic
RV, between RV free wall global longitudinal 2D strain and peak VO2
(r¼ 0.42; P¼ 0.007) [21], clinical events [37] or RV ejection fraction
[38, 39].

Both TAPSE and RV free wall longitudinal 2D strain reflect RV lon-
gitudinal function and both proved to be reproducible according to our
study results. Nevertheless, only the TAPSE correlated with peak VO2. In
various pathologies affecting the RV, such as pulmonary hypertension,
TAPSE has been the most popular measure used as a surrogate for RV
longitudinal systolic function, with a high proven prognostic significance
[40]. Despite being a load-dependent and angle-dependent parameter
reflecting mainly the lateral wall longitudinal motion, the TAPSE's
widespread use is also due to its simplicity of acquisition, and its high
reproducibility with low inter-operator variability [41]. Speckle tracking
echocardiography has more recently emerged and shown promising RV
contractility evaluation results. Although regional and global 2D strains
are load and angle-dependent measurements [42], several clinical studies
in pulmonary hypertension have shown their prognostic value with an
acceptable inter and intraobserver variability [43]. In systemic RV, the
prognostic value of 2D strain may be limited by the great heterogeneity in
terms of RV shape.

Finally, our study provided original data on the variability of all the
remaining RV echocardiography parameters. Three variables had a good
reproducibility (tricuspid dP/dt, peak systolic S wave, and IVC expiration
diameter), but were not correlated with any CPET data. In particular, the
peak systolic S wave was one of the most reproducible parameters in this
study, considering both inter and intra observer variability (ICCs of 0.92
and 0.90, respectively). This remains controversial in the literature.
Indeed, the peak systolic S wave has been correlated with RV dysfunction
[19] or percent-predict peak VO2 in systemic RV [12]. Conversely, three
variables (FAC, Tei index and IVA) have shown poor reproducibility in
our study. Yet, some previous studies have observed an association be-
tween those parameters and CPET or RV dysfunction, however none has
investigated their reproducibility. For instance, Kalogeropoulos et al.
reported a correlation between FAC and RV ejection fraction assessed by
CMR in systemic RV [37]. Guidelines from the American Society of
Echography (ASE) have commented on the interest of FAC in RV function
assessment [44], but one of the two provided references found only a
weak correlation between FAC and RV ejection fraction assessed by CMR
[45]. Measuring FAC may be challenging as the RV contouring beneath
the trabeculations is difficult and requires a good apical-4C view to see
the apex, unlike the TAPSE. Reports on the Tei index remain contro-
versial, some studies claiming its interest in pulmonary arterial hyper-
tension [30,46], and others showing the absence of any correlation with
clinical events [19,37]. The reliability of IVA analysis had not been
previously reported in systemic RV, to our knowledge. This parameter
has shown some interest for RV assessment before cardiac surgery [47],
however no association with clinical events has been established in
previous studies [37].

4.1. Study limitations

The low sample size may have resulted in the lack of statistical sig-
nificance in the association between some echocardiography parameters
and CPET parameters, especially for RV longitudinal 2D strain. More-
over, we plan to carry out a larger prospective study to identify TAPSE
7

cut-off values to predict RV dysfunction in systemic RV.

5. Conclusions

This prospective study attempted to reflect real-life follow-up of pa-
tients with systemic RV, involving different sonographers and different
ultrasound systems. We found that the TAPSE, the global RV free wall
longitudinal 2D strain, and the peak systolic S wave were the most
reproducible echocardiographic parameters. However, only the TAPSE
was associatedwith peak VO2. Further studies should determinewhether
the TAPSE could be used as a predictor of prognosis.
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