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Abstract. We prove that quadrangulations with a simple boundary converge to the Brownian disk. More precisely, we fix a se-
quence (pn) of even positive integers with pn ∼ 2α

√
2n for some α ∈ (0,∞). Then, for the Gromov–Hausdorff topology, a quadran-

gulation with a simple boundary uniformly sampled among those with n inner faces and boundary length pn weakly converges, in the
usual scaling n−1/4, toward the Brownian disk of perimeter 3α.

Our method consists in seeing a uniform quadrangulation with a simple boundary as a conditioned version of a model of maps for
which the Gromov–Hausdorff scaling limit is known. We then explain how classical techniques of unconditionning can be used in this
setting of random maps.

Résumé. Nous prouvons que les quadrangulations à bord simple convergent vers le disque brownien. Plus précisément, nous fixons une
suite (pn) d’entiers pairs strictement positifs tels que pn ∼ 2α

√
2n pour un certain α ∈ (0,∞). Alors, pour la topologie de Gromov–

Hausdorff, une quadrangulation à bord simple, choisie uniformément au hasard parmi celles ayant n faces internes et périmètre pn,
converge faiblement, dans l’échelle usuelle n−1/4, vers le disque brownien de périmètre 3α.

Notre méthode consiste à considérer une quadrangulation à bord simple uniforme comme une version conditionnée d’un modèle
de cartes pour lequel la limite d’échelle au sens de Gromov–Hausdorff est déjà connue. Nous expliquons ensuite comment utiliser les
techniques classiques de déconditionnement dans ce contexte de cartes aléatoires.

MSC2020 subject classifications: primary 60F99, 60D05; secondary 05C80
Keywords: plane maps, Brownian disk, quadrangulation, scaling limit, simple boundary

1. Introduction

In probability theory, proving conditional limit theorems is usually much harder than obtaining the corresponding uncon-
ditional versions; for instance, one may think of conditional versions of Donsker’s theorem (e.g. [Kai76]). In the present
work, we describe a method enabling to transfer the convergence of some model of random maps to a similar model with
extra constrains (here obtained by imposing simplicity conditions on the boundary). This is inspired from well-known
techniques used for random processes or random trees, see e.g. [LG10, Kor13, DIM77].

Plane maps

A plane map is an embedding of a finite connected graph (possibly with loops and multiple edges) into the two-
dimensional sphere, considered up to direct homeomorphisms of the sphere. The faces of the map are the connected
components of the complement of the union of the edge set. We will particularly focus on quadrangulations with a
boundary, which are particular instances of plane maps whose faces are all quadrangles, that is, of degree 4, with the
exception of one face of arbitrary even degree. The latter face will be referred to as the external face, whereas all others
will be called inner faces; the number of inner faces is the area of the map. We say that an oriented edge, that is, an edge
given with one of its two possible orientations, is incident to a face if it lies on boundary of the face, with the face on
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its right1. The oriented edges incident to the external face will constitute the boundary of the map and the degree of the
external face is called the length of the boundary or the perimeter of the map. In general, we do not require the boundary
to be a simple curve; when it is, we speak of quadrangulations with a simple boundary. Unless explicitly stated, we
will always consider our maps to be rooted, which means that one of the oriented edges, called the root of the map, is
distinguished. In the case of quadrangulations with a boundary, the root will always be incident to the external face, that
is, lie on the boundary, with the external face to its right. See Figure 1 for an example of quadrangulations with either a
general or a simple boundary. For n ∈ N and p ∈ 2N, we denote by Qn,p the set of quadrangulations with a boundary2

having n inner faces and perimeter p, as well as Q̃n,p ⊆ Qn,p the subset of quadrangulations with a simple boundary.
By convention, we see the map with one edge and two vertices as the only element of Q̃0,2 =Q0,2. For q ∈ Qn,p, we
respectively denote its area and perimeter by

∥q∥ := n and |∂q| := p .

Fig 1: Quadrangulation with a boundary on the left; quadrangulation with a simple boundary on the right. The boundary
is represented in red. These maps are pointed in the sense that a vertex, in red, is distinguished. The map on the right is in
fact the so-called core of the pointed map on the left, defined in Section 2.1.

For technical reasons due to bijective encodings, we will often consider pointed maps: we say that a map m is pointed
if it is given with a distinguished element of its vertex-set V (m). We introduce the sets of quadrangulations with a simple
boundary and that of pointed quadrangulations with a simple boundary:

Q̃ := Q̃0,2 ∪
⋃

n∈N, p∈2N
Q̃n,p and Q̃• :=

{
(q, ρ) : q ∈ Q̃, ρ ∈ V (q)

}
.

Proving convergence toward the Brownian sphere

The Brownian sphere [LG13, Mie13] is a random fractal metric space almost surely homeomorphic to the sphere that
appears as a universal scaling limit of many models or random plane maps. In his breakthrough work [LG13], Le Gall
gave a robust path to prove the convergence of a family of random maps toward the Brownian sphere; it has since
been used in many works [BLG13, ABA17, BJM14, Abr16, AHS20, ABA21]. One downside of this method is that
it requires to find a bijective encoding “à la Schaeffer” of the family of plane maps in question by a suitable class of
labeled trees. A different approach has been taken in [CLG19] where it is shown that “local modifications” of distances
in uniform triangulations only change the large scale metric by a multiplicative factor (which is unknown in most cases).
This has later been extended to the case of Eulerian triangulations [Car21] and quadrangulations [Leh22]. Another direct
method is to transfer results to classes of maps that are “contained within” another class, for instance by taking the core

1In the literature, it is also common to use the convention that the face lies to the left. The present convention will make the encoding of Section 4
easier.

2Beware that, in the present work, the second index is always even and represents the perimeter of the map. In the literature, it is common to use
half the perimeter instead. As the boundary of maps considered here will be broken into pieces of arbitrary parity, we found this convention more
appropriate.
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decomposition, by pruning the boundary, etc. This usually yields a family of random maps MN(n), which converges in
the scaling limit but for which the “size” N(n) (which may be the number of faces, the length of the boundary, etc.)
is random and satisfies a weak law of large number N(n)/n→ c for some c > 0. Examples of such constructions can
be found in [BFSS01, CM15, ABW17, GM19]. It then remains to deduce from such results the convergence of Mn as
n→∞ by unconditioning methods. We will use in this work such a method: the idea is to consider restrictions of our
map model obtained by “exploring” all but a tiny proportion of the map. The law of these restrictions are then controlled
in total variation distance using a “local limit theorem” (here exact counting of maps). The remaining of the argument
consists in establishing that those restrictions are close to the whole map.

Setting and notation.

For each n ∈ N and p ∈ 2N, we let Qn,p be uniformly distributed over the set Qn,p of quadrangulations with n inner
quadrangles and a general boundary of length p, as well as Q̃n,p be uniformly distributed over the set Q̃n,p of quad-
rangulations with n inner quadrangles and a simple boundary of length p. We also denote by Q•

n,p and Q̃•
n,p uniform

quadrangulations respectively of Qn,p and Q̃n,p that are pointed uniformly at random on one of their vertices.
When m is a map, we equip its vertex-set V (m) with the graph metric dm defined as the minimal number of

edges in a path linking vertices. Furthermore, for a positive number c > 0, we denote by cm the (finite) metric space
(V (m), cdm(·, ·)); a map or a pointed map may thus be seen as a metric space.

From now on, we fix α ∈ (0,∞) and a sequence (pn)n∈N with

pn ∼ 2α
√
2n as n→∞ .

Scaling limit of quadrangulations with a boundary.

In the present work, we show the convergence of quadrangulations with a simple boundary toward the Brownian disk.
This particular choice of random maps model is motivated by the study of gluing operations on maps [CC19, GM21,
GP21, FS20]. The Brownian disk [BM17] is the counterpart to the Brownian sphere with the topology of the disk. It
arises as the scaling limit of many models of random plane maps with a boundary (that is, plane maps with only one large
face in the scale

√
n, where n is the number of faces). In particular, the following convergence is established ([BM17,

Theorem 1]):

(1.1)
(

9

8n

)1/4

Qn,pn

(d)−−−−→
n→∞

BDα,

in distribution for the Gromov–Hausdorff topology3, where BDα is the Brownian disk with perimeter α and unit area.
Using the conveniences of [BM17], as well as the peeling process, Gwynne & Miller [GM19] later proved that properly
rescaled quadrangulations with a simple boundary but with random area (under the critical Boltzmann distribution) con-
verge toward a free area version of the Brownian disk called the free Brownian disk [BM17, Section 1.5]. We prove the
following conditional version of this convergence.

Theorem 1.1. It holds that (
9

8n

)1/4

Q̃n,pn

(d)−−−−→
n→∞

BD3α,

in distribution for the Gromov–Hausdorff topology.

One might be surprised to obtain the same scaling limit (up to a constant) as for maps with a general boundary (1.1)
but, in fact, it was known that the boundary is “simple at the limit,” in the sense that the Brownian disk is homeomorphic
to a disk [Bet15]. In this regard, it was expected to obtain the same limit, only with a different boundary length. This
boundary factor will appear clearly in a moment.
Remark 1.2. In fact, the convergence of Theorem 1.1 can be strengthen to the more elaborate Gromov–Hausdorff–
Prohorov–Uniform topology [GM19, Section 1.2.3], which furthermore keeps track of the area and perimeter measures
on the map. We chose to use the present simpler framework as we believe the latter would make the paper harder to read
and longer, and lead us farther away from the method we chose to present here.

3See Appendix A.
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The remainder of the paper is organized as follows: in the next section, we prove the above theorem assuming technical
propositions. As we said above, the idea is to use a proxy for Q̃n,pn

for which we know the convergence to the Brownian
disk, and then to establish “local absolute continuity relations.” In our case, the proxy will be the so-called core of a
(general) random quadrangulation, and the local absolute continuity relations will be obtained by considering appropriate
restrictions of those maps. The proofs of the technical propositions are then derived in Sections 3 and 4 using exact
counting and the usual bijective construction for the proxy model.

2. Method of proof

In this section, we present the main lines of the proof of Theorem 1.1, deferring the technical estimates to the next
sections. This choice of presentation is motivated by the fact that the overall scheme is somehow disconnected from the
technical estimates and might be adapted to other similar situations, at the price of appropriate estimates.

2.1. Core decomposition and proxy map

Fix a pointed quadrangulation q• = (q, ρ) with a general boundary. Its core, denoted by Core(q•), is the pointed quad-
rangulation with a simple boundary defined as follows; see Figure 1. By “cutting” the pinch vertices along its boundary,
we may decompose q into smaller quadrangulations with a simple boundary, each rooted at the first oriented edge of its
boundary in contour order starting from the root of q. If there is a unique largest such component (in terms of number of
inner faces) and ρ belongs to this component, then the core is the latter component. Otherwise, we define Core(q•) as an
abstract cemetery point ℘ for which we set ∥℘∥= |∂℘| := 0. Let us first remind a few well-known properties of the core
of a random quadrangulation with a general boundary; see [CM15, Section 4] for more information.

Proposition 2.1 ([GM19, Proposition 2.6 & Lemma 2.7]). We have P
(
Core(Q•

n,3pn
) ̸= ℘

)
→ 1 as n→∞ and, further-

more, ∥∥Core (Q•
n,3pn

)∥∥
n

(P)−−−−→
n→∞

1 and

∣∣∂Core (Q•
n,3pn

)∣∣
pn

(P)−−−−→
n→∞

1 .

Furthermore, conditionally given the area Ãn := ∥Core(Q•
n,3pn

)∥ and perimeter P̃n := |∂Core(Q•
n,3pn

)|, provided
that Ãn > n/2 to avoid possible ties,

Core
(
Q•

n,3pn

)
is uniformly distributed over Q̃•

Ãn,P̃n
.

In particular, the core of Q•
n,3pn

contains most of the map and indeed (1.1) can be strengthened into

(2.1)

((
9

8n

)1/4

Q•
n,3pn

,

(
9

8n

)1/4

Core
(
Q•

n,3pn

)) (d)−−−−→
n→∞

(
BD3α,BD3α

)
.

The above joint convergence is obtained in [GM19, Theorem 1.3], together with the addition of a natural parameterization
of the boundary. Combining the above remarks, we might seem close to our goal since Q̃•

n,pn
≈ Q̃Ãn,P̃n

, which has the
same distribution as Core

(
Q•

n,3pn

)
; in particular this explains the boundary factor 3 in Theorem 1.1. It remains to lift

the previous convergence to a conditional convergence when the area and perimeter are fixed. To do this, we will prove
that the distributions of “large parts” of Core

(
Q•

n,3pn

)
and of Q̃•

n,pn
may be rendered arbitrarily close in total variation

distance. These large parts will be defined via what we call restrictions.

2.2. Restrictions

For each ε > 0 and n≥ 1, we will define restrictions of Q̃•
n,pn

and of Core
(
Q•

n,3pn

)
obtained by exploring the maps in

question up to an ε-small part. These unexplored parts will have a random number of inner faces and a random perimeter,
and we will see in the next section, using exact counting results, that the restrictions in both models are close in total
variation distance.

Given a pointed map (q, ρ) and ℓ ∈ N, we denote by Bℓ(q, ρ) its ball of radius ℓ, that is, the map obtained from q
by keeping only the faces that are incident to at least one vertex lying at graph distance ℓ− 1 or less from the marked
vertex ρ.

The notion of restriction we will use roughly consists in taking the (hull of the) smallest ball that hits the boundary of
the map within distance εpn from the vertex of the boundary located roughly at a third of the boundary length from the
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root. The choice of taking a third comes from the need to have two “well overlapping” restrictions to apply a resampling
argument in Section 4.4. In some cases, the construction will not work properly and the definition of the restriction in
such a case will not matter too much since these cases should happen with negligible probability in the end.

We fix n ∈ N and ε > 0, and we define the restriction Rε
n and its “complement” R̄ε

n as follows; see Figure 2. Let
(q, ρ) be a pointed quadrangulation with a simple boundary and denote by p its perimeter.4 We assume that p≥ pn/2 and
number the vertices of the boundary of q from 0 to p− 1 starting from the tail of the root and following the orientation
given by the root. We furthermore assume that ε < 1/3 and define I as the set of vertices of the boundary of q that are
numbered from

⌊
( 13 −ε)pn

⌋
to ⌊pn/3⌋, the latter vertex being denoted by t1/3 and thought of as “the target vertex located

at a third of the way around the boundary.”

ρ

v+

v−

t1/3

I

(1/3− ε)pn

q

0
1 2

3

4

5

6

7

8

5

t1/3

v+

r

v+

v−

ρ

R̄ε
n(q, ρ)

Rε
n(q, ρ)

r + 1

r + 1

r + 1

r

r

v−

Fig 2: Definition of the restriction. We consider the smallest ball that hits the boundary of the map at boundary length
between ( 13 − ε)pn and pn/3 from the root. On this example, p= 26,

⌊
( 13 − ε)pn

⌋
= 4, ⌊pn/3⌋= 8 and r = 3. The balls

of radius 1 to 3 are depicted with lighter and lighter shades of purple. The restriction Rε
n(q, ρ) is the map consisting of

this ball with the addition of the (light yellow) components that do not contain t1/3; the so-called complement5 R̄ε
n(q, ρ)

is the (orange) component that contains t1/3.

We let r be the smallest integer such that the ballBr(q, ρ) intersects I and denote by v− the last vertex of I∩Br(q, ρ),
that is, the vertex of this set whose number is the largest in the above numbering of the boundary vertices. We also assume
that Br(q, ρ) hits the “other side” of the boundary between t1/3 and the root (both excluded), and denote by v+ the vertex
ofBr(q, ρ) on the boundary of q with smallest number above ⌊pn/3⌋+1. Notice that, depending on how the ballBr(q, ρ)
“hits” the boundary of q, the vertex v− may be at distance r or r+ 1 from ρ and the same goes for v+.

When the above conditions are satisfied, we set Rε
n(q, ρ) to be the so-called hull of Br(q, ρ) with respect to t1/3,

roughly obtained by filling all the “holes” of q except the one containing t1/3. More precisely, it is defined as follows.

• If all the faces incident to the part of the boundary of q from v− to v+ belong to Br(q, ρ), then we set Rε
n(q, ρ) :

= (q, ρ) and R̄ε
n(q, ρ) as the map with one edge and two vertices.

• Otherwise, the inner faces of q that do not belong to Br(q, ρ) are gathered into subsets of adjacent6 faces and only
one of these subsets contains faces incident to the part of the boundary of q from v− to v+; we denote this subset
by C. We define Rε

n(q, ρ) as the map obtained from q by suppressing the faces of C, as well as all the edges and
vertices that are only incident to faces of C. We also let R̄ε

n(q, ρ) be the map obtained from q by keeping the faces
of C, as well as all the edges and vertices that are incident to those faces.

The map Rε
n(q, ρ) is a quadrangulation with a simple boundary that contains the root edge, the pointed vertex ρ and

with two additional distinguished points v− and v+ on its boundary. Observe that the part of its boundary between v−
and v+ is made of vertices whose distances to the vertex ρ alternate between r and r+1. The map R̄ε

n(q, ρ) is a nonrooted
quadrangulation with a simple boundary with two distinguished points v− and v+ on its boundary. In the case when the
above construction cannot be performed, Rε

n(q, ρ) and R̄ε
n(q, ρ) are set to the abstract cemetery point ℘.

4Note that the area of q is not specified; in practice, this construction will be applied when the area is roughly n.
5Beware that it is a complement in term of faces, not in term of edges and vertices because of the boundaries.
6Two faces are adjacent if they are incident to the same edge. Note that two faces “only touching by a vertex” are not adjacent.



6

Remark 2.2. At this point, the reader might wonder why we do not use the root as basepoint for balls instead of a randomly
chosen vertex ρ. This is only to ease the proof of the forthcoming technical propositions because the bijective encoding
of maps are easier to deal with when measuring distances from a random chosen vertex rather than from the root edge;
see [LG22].

Observe that Rε
n(q, ρ) is “decreasing” with ε in the sense that, for 0 < η < ε, the map Rε

n(q, ρ) is “contained”
in Rη

n(q, ρ). We leave this notion of submap at an intuitive level as we will not really need it in this work. We will only
use the fact that,

(2.2) for 0< η < ε, Rη
n(q, ρ) =Rη

n(q
′, ρ′) =⇒ Rε

n(q, ρ) =Rε
n(q

′, ρ′) .

Another important feature of this construction is that Rε
n(q, ρ) and R̄ε

n(q, ρ) are independent in the sense that
any map q′ obtained by completing the map r = Rε

n(q, ρ) on the part of its boundary between v− and v+ satisfies
Rε

n(q
′, ρ) = r. This is the reason why we defined the set I from “within” Rε

n(q, ρ). We will come back to this in Sec-
tion 3.1.

2.3. Proof of Theorem 1.1 provided two technical estimates

We now present the main lines of the proof of Theorem 1.1. Let us set

(2.3) Xn := Q̃•
n,pn︸ ︷︷ ︸

model under study

, Yn := Core
(
Q•

n,3pn

)︸ ︷︷ ︸
reference model

, and an :=

(
9

8n

)1/4

.

The classical bijective encodings often lack flexibility: for instance, tracking through the usual Schaeffer-like bijection7

the condition that the boundary is simple is very intricate. In this paper, these bijective encodings will only be used in
order to obtain (rough) estimates on the reference model. For the model under study, our method only requires counting
results.

First, the convergence of the second coordinate of (2.1) ensures that

(2.4) anYn
(d)−−−−→

n→∞
BD3α ,

in distribution for the Gromov–Hausdorff topology. Our goal is to obtain a similar statement with Xn in place of Yn. This
will follow from the facts that the distributions of Rε

n(Xn) and of Rε
n(Yn) are close and the leftover parts anR̄ε

n(Xn)
and anR̄ε

n(Yn) are not too large (when ε gets small). These conditions are gathered into the following propositions, whose
proofs are postponed to the subsequent sections. In the following, we write dTV(A,B) for the total variation distance
between the distributions of two random variables A and B. The following proposition will be proved in Section 3.

Proposition 2.3 (Restrictions are close). For all ε > 0,

lim
n→∞

dTV

(
Rε

n(Xn),Rε
n(Yn)

)
= 0 .

We denote by dGH the Gromov–Hausdorff metric on isometry classes of metric spaces. The following proposition will
be proved in Section 4.

Proposition 2.4 (Leftover is small). The following holds.

(i) For every δ > 0, lim
ε→0

limsup
n→∞

P
(
dGH(anYn, anRε

n(Yn))> δ
)
= 0 .

(ii) For every δ > 0, lim
ε→0

limsup
n→∞

P
(
dGH(anXn, anRε

n(Xn))> δ
)
= 0 .

Proof of Theorem 1.1. The result follows from a coupling argument. Thanks to Skorohod’s embedding theorem, we
may assume that we work on a probability space where the convergence (2.4) holds almost surely: let us denote by Y
the limit. Let f be a bounded uniformly continuous real-valued function on the set of isometry classes of compact metric
spaces and η > 0. There exists δ > 0 such that

dGH(X ,Y)< 3δ =⇒ |f(X )− f(Y)|< η .

7See Section 4.
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Then∣∣∣E[f(anXn)− f(Y )
]∣∣∣≤ E

[
|f(anXn)− f(Y )|1{dGH(Y,anXn)<3δ}

]
+E

[
|f(anXn)− f(Y )|1{dGH(Y,anXn)≥3δ}

]
≤ η+ 2sup(|f |)P

(
dGH(Y,anXn)≥ 3δ

)
.(2.5)

We then write

P
(
dGH(Y,anXn)≥ 3δ

)
≤ P

(
dGH(Y,anYn)≥ δ

)
+ P

(
dGH(anYn, anXn)≥ 2δ

)
.

Due to the convergence anYn→ Y , the first term in the right-hand side tends to 0 as n→∞. The second term is bounded
from above by

P
(
dGH(anYn, anRε

n(Yn))≥ δ) + P
(
Rε

n(Xn) ̸=Rε
n(Yn)

)
+ P

(
dGH(anXn, anRε

n(Xn))≥ δ)

for any ε > 0. Proposition 2.4 entails that the first and last terms in the above display may be made arbitrarily small
for large n when ε is small enough. For such an ε > 0 fixed, using Proposition 2.3, we may furthermore assume by the
maximal coupling theorem that (Xn)n∈N is constructed on the same probability space as (Yn)n∈N and satisfies

lim
n→∞

P
(
Rε

n(Xn) =Rε
n(Yn)

)
= 1 ,

so that the middle term may also be made arbitrarily small for large n. Summing up, we can fix an ε > 0 such that, for
large n, the right-hand side of (2.5) is smaller than 2η; the result follows.

Remark 2.5. Alternatively, one could also prove Theorem 1.1 by first obtaining convergence of the finite dimensional
distributions from Propositions 2.3 and 2.4, where the latter yields that the restriction contains almost all points and does
not distort the distances too much. And then, by proving tightness from that of {anYn : n ∈ N}, Proposition 2.3 and
Proposition 2.4.(ii).

We insist on the fact that the above method of proof works in a fairly general sense. More precisely, we inferred
the convergence anXn→ Y from anYn→ Y and the two propositions involving restriction functions. Provided these
estimates with adequate restriction functions and the convergence of a reference model of maps, we can conduct the same
reasoning. It might also be adaptable to other metrics and objects, not necessarily involving maps.

3. Comparison of restrictions

In this section, we prove Proposition 2.3. From the classical bijective construction of Q•
n,p, we will prove in Section 4 that

the restrictions are “good” with high probability (Lemma 3.2). Assuming this fact, we obtain Proposition 2.3 by showing
that the law of good restrictions in Xn and in Yn are close in total variation distance (Lemma 3.3). The latter fact is
obtained from exact counting of quadrangulations.

3.1. Law of the restrictions

Fix ε > 0 and n≥ 1. Let us come back to the definition of the restriction Rε
n of a pointed quadrangulation (q, ρ) with a

simple boundary and its complement. When the procedure works, Rε
n(q, ρ) is a rooted quadrangulation r with a simple

boundary given along with three distinguished points ρ, v− and v+, the last two being on the boundary as in Figure 3.
If r is such a map, we say that r is an (n, ε)-restriction map; we denote by pright the number of boundary edges between
the origin of the root and v− in counterclockwise direction and pleft the number of boundary edges between the origin
of the root and v+ in clockwise direction. Finally, let pin be the number of boundary edges in between v− and v+ in
counterclockwise direction. Since r is obtained as a restriction, it is equal to the hull of some ball of some quadrangulation
with a simple boundary. The construction of r as an (n, ε)-restriction map in particular forces the inequalities⌊

( 13 − ε)pn
⌋
≤ pright ≤ ⌊pn/3⌋ , pin ≥ 1, pleft ≥ 1 .

If, furthermore, r=Rε
n(q, ρ) for some q ∈ Q̃n′,p′ , this imposes the additional constraints

(3.1) n′ ≥ ∥r∥ , p′ − pleft ≥ ⌊pn/3⌋+ 1 .
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v+

v−

pleft

pright

pin

r
ρ

Fig 3: Notation for a restriction map. If the (n, ε)-restriction map r appears as the restriction of a quadrangulation with
area n′ and perimeter p′, then the constraints (3.1) must be fulfilled.

The first is a basic area constraint, while the second translates the fact that v+ comes strictly after t1/3. Since pright ≤
⌊pn/3⌋, the latter implies that the red part of the boundary in Figure 3 has length p′ − pright − pleft ≥ 1.

We denote by

q̃n,p := #Q̃n,p for n ∈N, p ∈ 2N ,

set q̃0,2 := 1, and set q̃n,p := 0 otherwise.

Lemma 3.1. Let n′ ∈N, p′ ∈ 2N be such that p′ ≥ pn/2, and let r= (r, ρ, v−, v+) be an (n, ε)-restriction map. Then

P
(
Rε

n

(
Q̃•

n′,p′

)
= r
)
=
q̃n′−∥r∥, p′−|∂r|+2pin

(n′ + p′/2 + 1) q̃n′,p′
1{p′−pleft>pn/3}.

Proof. First of all, observe by Euler’s characteristic formula that any element of Qn′,p′ has n′ + p′/2 + 1 vertices so the
number of pointed quadrangulations with a simple boundary having perimeter p′ and area n′ is the above denominator.

The result will then follow if we show that the number of maps q ∈ Q̃n′,p′ such that Rε
n(q, ρ) = r is equal to the

numerator multiplied by the indicator, that is, the number of quadrangulations with a simple boundary having n′ − ∥r∥
inner faces and perimeter p′ − |∂r|+ 2pin, that furthermore satisfy (3.1). This fact is obtained from a bijection between
the set of maps q ∈ Q̃n′,p′ such that Rε

n(q, ρ) = r and the set of such quadrangulations with a simple boundary.
More precisely, recalling Figure 2, observe that a map q ∈ Q̃n′,p′ such thatRε

n(q, ρ) = r may be reconstructed from r
and R̄ε

n(q, ρ) by identifying the proper parts of the respective boundaries between the vertices v− and v+. Furthermore,
choosing as root for instance for R̄ε

n(q, ρ) the oriented edge directly following v− in the contour of the boundary and
dropping the two distinguished vertices on the boundary gives a quadrangulation with a simple boundary having ∥q∥ −
∥r∥= n′ − ∥r∥ inner faces and perimeter pin + |∂q| − (|∂r| − pin) = p′ − |∂r|+ 2pin, and that satisfies (3.1). The data
of this map together with r still allows to reconstruct q.

Reciprocally, gluing on the boundary of r from v− to v+ any quadrangulation with a simple boundary having area
n′−∥r∥ and perimeter p′−|∂r|+2pin where n′, p′ satisfy (3.1) gives a pointed quadrangulation with a simple boundary
whose restriction is r. This is because the balls are the same up to the radius where the set I is reached, and the latter set
only depends on r, not on the glued part. The result follows.

3.2. Good restrictions

For δ ∈ (0, ε), an (n, ε)-restriction map r is called (n, δ)-good if⌊(
1

3
− ε
)
pn

⌋
≤ pright ≤

(
1

3
− δ
)
pn ,(3.2)

pn
2
≤ pleft ≤

(
2

3
− δ
)
pn ,(3.3)

n

2
≤ ∥r∥ ≤ (1− δ)n ,(3.4)
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pin ≤
√
n

δ
.(3.5)

Note that the inequality involving ε always holds for (n, ε)-restriction maps. In words, a restriction is (n, δ)-good if its
parameters are in the proper scales: the perimeters pin, pright and pleft are of the same order as pn and the volume is of
order n. See Figure 4.

v+

v−
≥ pn

2

≥
⌊(

1
3 − ε

)
pn

⌋

≤
√
n

δ

≥ n

2

≥ δn

t1/3

≥ δpn

?

Fig 4: Inequalities defining (n, δ)-good (n, ε)-restriction maps. The length of the red part of the boundary depends on
the map of which the restriction map is the restriction. If this map has perimeter pn, then the length of this red part is
between δpn and pn.

The following lemma will be proved during the next section from classical bijective constructions. Note that such an
estimate is to be expected from usual random maps scaling results.

Lemma 3.2. For every η > 0, there exists an arbitrarily small ε > 0 and a δ ∈ (0, ε) such that

lim inf
n→∞

P
(
Rε

n

(
Core

(
Q•

n,3pn

))
is (n, δ)-good

)
≥ 1− η.

The key is then to notice that, if r is an (n, δ)-good restriction map, then it may appear as the (n, ε)-restriction of
quadrangulations q ∈ Q̃n′,p′ as soon as n′ ≈ n and p′ ≈ pn and that, for such n′, p′, the probabilities P

(
Rε

n

(
Q̃•

n′,p′

)
= r
)

are all very close.

Lemma 3.3. For any η > 0, ε > 0 and δ > 0, there exist n0 ∈ N and ζ > 0 such that the following holds. For any
n ≥ n0, any (n, δ)-good (n, ε)-restriction map r = (r, ρ, v−, v+) and any n′ ∈ N, p′ ∈ 2N such that

∣∣n′

n − 1
∣∣ ≤ ζ and∣∣ p′

pn
− 1
∣∣≤ ζ , we have ∣∣∣∣∣∣

P
(
Rε

n

(
Q̃•

n,pn

)
= r
)

P
(
Rε

n

(
Q̃•

n′,p′

)
= r
) − 1

∣∣∣∣∣∣≤ η .
Proof. This relies on Lemma 3.1 and the explicit formula for q̃m,2ℓ found in [BG09]:

q̃m,2ℓ = 3−ℓ (3ℓ)!

ℓ!(2ℓ− 1)!
3m

(2m+ ℓ− 1)!

(m− ℓ+ 1)!(m+ 2ℓ)!
m, ℓ≥ 1.(3.6)

Fix η, ε, δ > 0. First, notice that, when ζ is sufficiently small, then, for any (n, δ)-good (n, ε)-restriction map r and
every n′ ∈ N, p′ ∈ 2N satisfying

∣∣n′

n − 1
∣∣≤ ζ and

∣∣ p′

pn
− 1
∣∣≤ ζ , it holds that n′ − ∥r∥ ∈ N, p′ − |∂r|+ 2pin ∈ 2N and

p′ − pleft > pn/3. In this case, by Lemma 3.1,

(3.7)
P
(
Rε

n

(
Q̃•

n,pn

)
= r
)

P
(
Rε

n

(
Q̃•

n′,p′

)
= r
) =

q̃n−∥r∥, pn−|∂r|+2pin

(n+ pn/2 + 1) q̃n,pn

× (n′ + p′/2 + 1) q̃n′,p′

q̃n′−∥r∥, p′−|∂r|+2pin

.
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From (3.6) and the Stirling formula, we obtain that, for any fixed compact interval K ⊆ (0,∞), as m, ℓ tend to infinity
in such a way that ℓ2/m ∈K ,

q̃m,2ℓ ∼
√
3

2π
12m

(
9

2

)ℓ

m−5/2 ℓ1/2 exp

(
−9ℓ2

4m

)
.

Note that the 4 areas and 4 perimeters appearing in the right-hand side of (3.7) all tend to infinity from the assumptions
on n′, p′ and the fact that r is (n, δ)-good. Furthermore, for ζ small enough and n large enough, there exist a compact
interval K ⊆ (0,∞) such that each of the 4 corresponding ratios perimeter squared over area belong to K . Using the
above equivalent, we deduce that (3.7) can be made arbitrarily close to 1, provided that ζ is small enough and n large
enough.

We can now gather the above lemmas and Proposition 2.1 in order to prove Proposition 2.3.

Proof of Proposition 2.3. Recall the notation Xn = Q̃•
n,pn

and Yn = Core
(
Q•

n,3pn

)
. Fix η > 0 and find, from Lem-

mas 3.2 and 3.3, positive numbers ε, δ, ζ > 0 and n0 ∈N such that, for n≥ n0,Rε
n(Yn) is (n, δ)-good with probability at

least 1−η and the conclusion of Lemma 3.3 holds. If Ãn := ∥Yn∥ and P̃n := |∂Yn|, recall that, conditionally on (Ãn, P̃n)
and provided that Ãn > n/2, the core Yn is distributed as a uniform pointed quadrangulation with a simple boundary. We
denote by En the event where both

∣∣ Ãn

n − 1
∣∣≤ ζ and

∣∣ P̃n

pn
− 1
∣∣≤ ζ . From Lemma 3.3 with n′ = Ãn and p′ = P̃n, for any

n≥ n0 and any (n, δ)-good (n, ε)-restriction map r,

∣∣∣P(Rε
n(Xn) = r

)
− P

(
Rε

n(Yn) = r
∣∣ Ãn, P̃n

)∣∣∣≤ ηP(Rε
n(Yn) = r

∣∣ Ãn, P̃n

)
1En

+(
P
(
Rε

n(Xn) = r
)
+ P

(
Rε

n(Yn) = r
∣∣ Ãn, P̃n

))
1Ēn

.

As a result,

(3.8)
∑

r (n, δ)-good

∣∣P(Rε
n(Xn) = r

)
− P

(
Rε

n(Yn) = r
)∣∣≤ η+ 2P(Ēn) .

Increasing n0 if necessary, from Proposition 2.1, the event En holds for any n≥ n0 with probability at least 1− η/2.
In particular, (3.8), together with the assumption thatRε

n(Yn) is (n, δ)-good with probability at least 1− η, yield that, for
n≥ n0,

P
(
Rε

n(Xn) is (n, δ)-good
)
≥ P

(
Rε

n(Yn) is (n, δ)-good
)
− 2η ≥ 1− 3η ,

and, finally,

dTV

(
Rε

n(Xn),Rε
n(Yn)

)
≤ 1

2

(
2η+ P

(
Rε

n(Xn) is not (n, δ)-good
)
+ P

(
Rε

n(Yn) is not (n, δ)-good
))
≤ 3η .

As a result,

lim inf
ε→0

limsup
n→∞

dTV

(
Rε

n(Xn),Rε
n(Yn)

)
= 0

and we conclude thanks to (2.2), which implies that, for each n, dTV

(
Rε

n(Xn),Rε
n(Yn)

)
is nonincreasing with ε.

4. Estimates from the bijective construction

In this section, we use the classical bijective construction of Q•
n,3pn

in order to prove the rough estimates of Lemma 3.2,
as well as Proposition 2.4. We start with deterministic observations.

4.1. Bijective encoding by labeled treed bridges

Let us now recall the classical encoding of quadrangulations with a boundary; this is a particular case of the Bouttier–
Di Francesco–Guitter bijection [BDG04], which generalizes the famous Cori–Vauquelin–Schaeffer bijection [CV81]
between plane quadrangulations and so-called well-labeled trees. An encoding object, which we will call a labeled treed
bridge, consists in:
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• a rooted cycle (ρ0, ρ1, . . . , ρp = ρ0) of length p for some even p ∈ 2N, labeled by an integer-valued function λ in
such a way that λ(ρ0) = 0 and |λ(ρi+1)− λ(ρi)|= 1 for 0≤ i < p ;

• and, for each i ∈ {0, . . . , p− 1} such that λ(ρi+1) = λ(ρi)− 1, a plane tree with root vertex ρi whose vertices are
labeled by λ in such a way that the labels of any two neighboring vertices differ by −1, 0, or 1.

The labels (λ(ρ0), λ(ρ1), . . . , λ(ρp)) of the cycle form a path with±1-steps going from 0 to 0, classically called a discrete
bridge, so that it has exactly p/2 upsteps and p/2 downsteps. Consequently, a labeled treed bridge built on a cycle of
length p is a forest of p/2 trees (some possibly reduced to the one-vertex tree), labeled by the function λ. The number of
edges in a labeled treed bridge is the sum of the number of edges in its trees.

Let m ∈ N and p ∈ 2N. The following construction is a bijection between the set of labeled treed bridges with p/2
trees and m edges and the set of pointed quadrangulations with a boundary having area m and perimeter p; see Figure 5.
We consider a labeled treed bridges with p/2 trees and m edges. We first embed, in counterclockwise order, the rooted
cycle in the plane, connecting with edges its subsequent elements. We then embed the plane trees inside the cycle, without
edge crossings. At this stage, we obtain a map with 2 faces, the bounded one of degree 2m+ p and the unbounded one of
degree p.

2

0

2

0
−10

1

−10

2

2

3

1

0

−1

1

1

1 1

0

−1

−1

0

ρ3

ρ4

ρ5

ρ6

ρ7

ρ8

ρ9

ρ10

ρ11

ρ0

ρ1

ρ2

2

0

2

0
−10

1

−10

2

2

3

1

0

−2

ρ0

ρ1

ρ2
ρ3

ρ4

ρ5

ρ6

ρ7
ρ8

ρ9

ρ10

ρ11

−1

1

1

1 1

0

−1

−1

0

ρ

Fig 5: The bijection, from a labeled treed bridge to a pointed quadrangulation with a boundary. On this example, p= 12,
m= 11, λ⋆ =−2; the tree with root vertex ρ4 is a one-vertex tree. The edges of the cycle are dashed; its root ρ0 has a
thicker outline. The red vertices precede upsteps in the discrete bridge; they are not vertices of the output map. The gray
arrows highlight the correspondence between the cycle and the boundary.

Let c0, c1, . . . , c2m+p/2−1 be the sequence of corners of the bounded face, incident to one of the trees, in contour
order, starting from an arbitrary corner. Beware that we ignore the p/2 corners incident to the vertices of the cycle that are
not the root of a tree. We extend this list by periodicity, setting c2m+p/2+i = ci for every i≥ 0, and adding one corner c∞
incident to an extra vertex ρ added inside the bounded face. We extend the definition of λ to corners by letting the label
of a corner be equal to the label of the incident vertex. We also set λ⋆ := mini≥0 λ(ci)− 1 and λ(c∞) = λ(ρ) := λ⋆. Note
here again that the minimum is taken over the labels of the tree vertices; the vertices of the cycle without trees are not
taken into account. We then define the successor of a corner ci as the corner succ(ci) := cj where

j := inf{k > i : λ(ck) = λ(ci)− 1} ∈ Z+ ∪ {∞} .

For each i ∈ {0, . . . ,2m+ p/2− 1}, we link by an arc the corner ci with its successor, in a non-crossing fashion. We
finally discard the original edges. The resulting embedded graph q is a quadrangulation with a boundary pointed at ρ
and rooted as follows. First of all, observe that the original edges of the cycle are in one-to-one correspondence with the
oriented edges that are incident to the external face of q. Indeed, let us suppose that there is a tree at ρi and the next one is
at ρi+k for some k ≥ 1. We denote by cs the last corner of the tree with root vertex ρi, so that cs+1 is the first corner of the
tree with root vertex ρi+k . Then the labels along the cycle in between those trees are λ(ρi), λ(ρi)− 1, λ(ρi), λ(ρi) + 1,
λ(ρi) + 2, . . . , λ(ρi)− 2 + k = λ(ρi+k) and the edges linking ρi to ρi+k in the cycle correspond to the sequence of k
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arcs cs→ succ(cs) = succk−1(cs+1)← succk−2(cs+1)← · · · ← succ(cs+1)← cs+1. The root is then the oriented edge
corresponding to the original edge linking ρ0 with ρ1. See Figure 5.

In this construction, the edges of the labeled treed bridge are in one-to-one correspondence with the inner faces of the
output map q and the vertices of the cycle are in one-to-one correspondence with the corners of the external face of q. In
the latter correspondence, the labels of corresponding elements are equal. Except from ρ, all the vertices of q are vertices
of the labeled treed bridge. Moreover, the labels on V (q) inherited from λ and the convention λ(ρ) = λ⋆ (which we still
denote by λ) are the relative distances to ρ in q:

(4.1) dq(v, ρ) = λ̂(v) := λ(v)− λ⋆ , v ∈ V (q).

In the following, the nonnegative integer λ̂(v) will be called the shifted label of v.

4.2. Reading off information about a restriction from the encoding object

As in the previous section, we fix m ∈N, p ∈ 2N and consider a labeled treed bridge with p/2 trees and m edges and the
corresponding pointed quadrangulation with a boundary q• = (q, ρ). Using the one-to-one correspondence between the
cycle and the boundary of q, we let ρ0, ρ1, . . . , ρp−1 be the corners of the external face of q, arranged in contour order,
starting from the origin of the root of q. For j ∈ {0,1, . . . , p− 1}, we let T (j) be the smallest k such that the corner ck is
incident to the same vertex as ρj . By convention, we also set T (p) := 2m+ p/2.

Remember that the boundary of q is not necessarily simple and that we are interested in its core. We assume that
Core(q•) ̸= ℘ and set p̃ := |∂Core(q•)|. In contour order, starting from the origin of the root of Core(q•), we denote
by ṽ0, ṽ1, . . . , ṽp̃−1 the vertices of the boundary of Core(q•). For i ∈ {0,1, . . . , p̃− 1}, we let J(i) be the smallest j such
that the corner ρj is incident to ṽi.

Beware that we are bound to use 3 timescales: that of the tree corners c0, . . . , c2m+p/2−1, that of the boundary of q•

(given by ρ0, . . . , ρp−1), and that of the boundary of Core(q•) (given by ṽ0, . . . , ṽp̃−1). We now fix ε > 0 and n≥ 1 and
focus on Rε

n(Core(q
•)); we furthermore assume that q• is such that this restriction differs from ℘. We use the notation

from Section 2.2.

Shifted labels of the distinguished vertices
For the quadrangulation Core(q•), the interval I from Section 2.2 is the set

{
ṽi , ⌊(1/3 − ε)pn⌋ ≤ i ≤ ⌊pn/3⌋

}
.

From (4.1), the shifted labels of these vertices are the distances to ρ, so that the minimum h of these shifted labels is
either r or r+ 1, where the radius r is the smallest integer such that Br(q, ρ) intersects I . Furthermore, the vertex v− is
a vertex in I with shifted label r or r+ 1; it is thus a vertex of I whose shifted label is h or h+ 1. As the labels between
neighboring vertices of the boundary differ by exactly 1, the vertex v+ is between the first boundary vertex after t1/3
with shifted label h+ 1 (included) and the first with shifted label h− 2 (excluded). We do not need more precision than
this; many of these points will become confounded in the scaling limit. For all 0 ≤ i ≤ p̃ − 1, all the vertices in the
noncore component of q attached to ṽi are farther away from ρ than ṽi, since any path from ρ to such a vertex must pass
through ṽi. In particular, if a vertex ρk belongs to the noncore component of q attached to ṽi for some i and k, it holds
that λ̂(ρk) ≥ λ̂(ṽi). Since I ⊆ {ρk : J(⌊(1/3− ε)pn⌋) ≤ k ≤ J(⌊pn/3⌋)} and any vertex ρk of the latter set is either
a ṽi or belongs to the noncore component of q attached to a ṽi, for some ⌊(1/3− ε)pn⌋ ≤ i≤ ⌊pn/3⌋, we have

h=min
{
λ̂(ρk) : J(⌊(1/3− ε)pn⌋)≤ k ≤ J(⌊pn/3⌋)

}
.

Volume estimates
We let i− and i+ be the indices such that v− = ṽi− and v+ = ṽi+ . Note that we thus have pright = i− − 1 and pleft =
p̃n − i+. We then define the set S of vertices of the trees of the labeled treed bridge whose root vertices belong to
{ρj : J(i−)≤ j < J(i+)} and refer the reader to Figure 6.

We claim that all the vertices of R̄ε
n(Core(q

•)) except at most two belong to S . To see this, we let γ± be the leftmost
geodesic to ρ issued from cT◦J(i±), that is, the path made of the edges linking cT◦J(i±) to its iterate successors. These
paths are geodesics thanks to (4.1). As they start from boundary vertices, they separate Core(q•) into two connected
components.

The component that contains t1/3 actually includes R̄ε
n(Core(q

•)). Indeed, first observe that the common boundary
between Rε

n(Core(q
•)) and R̄ε

n(Core(q
•)) is made of vertices having shifted labels r or r + 1. Since the geodesic γ±

visits vertices with decreasing labels, it visits this common boundary at v± and possibly after its first step only (in the
case where λ̂(v±) = r + 1). We see from the definition of the hull that, if this eventuality occurs, the first edge of γ± is
actually part of this common boundary.
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v+

v−

J(bpn/3c)

I

J(b(1/3− ε)pnc)
γ+

γ−

J(i−)
J(i+)

t1/3

Fig 6: Some notation on the map q•. The noncore components are grayed out. The geodesics γ± link v± to ρ; they
separate R̄ε

n(Core(q
•)) from ρ.

J(⌊(1/3− ε)pn⌋)J(i−)J(⌊pn/3⌋)

h = r

boundary time

shifted
labels

J(i+)

Fig 7: Shifted labels along the boundary. As in Figure 6, the time is that of the boundary of q• and goes from right to
left; and the red double-headed arrow corresponds to the set I . The dark red path represents the shifted labels along the
boundary of q•. Before each of its downsteps is a labeled tree; only its root is depicted, with a blue dot as in Figure 5. On
the part of map corresponding to

[
J(⌊(1/3− ε)pn⌋), J(⌊pn/3⌋)

]
in the boundary scale, the minimal shifted label along

the boundary is h. On this example, h= r and λ̂(v−) = λ̂(v+) = r+ 1.

Finally, the vertices of the component including R̄ε
n(Core(q

•)) all belong to S or γ+ and, except from possibly the
first two, the vertices of γ+ do not belong to R̄ε

n(Core(q
•)). The claim follows.

A quadrangulation with area n′ and perimeter p′ ≥ 2 has n′ + p′/2 + 1 vertices, so at least two more vertices than
faces; we thus obtain

∥R̄ε
n(Core(q

•))∥ ≤#V (R̄ε
n(Core(q

•)))− 2≤#S .

This upper bound on ∥R̄ε
n(Core(q

•))∥ yields a lower bound on ∥Rε
n(Core(q

•))∥. In order to obtain an upper bound on
∥Rε

n(Core(q
•))∥, we refer to Figures 7 and 8, and we set

S≥ :=
{
v ∈ S : min

w∈JRt(v),vK
λ̂(w)≥ r+ 3

}
,

where Rt(v) denotes the root vertex of the tree8 that contains v and JRt(v), vK is the set of vertices on the unique path
from Rt(v) to v in the tree (extremities included). We claim that S≥ does not intersect Rε

n(Core(q
•)). First, observe

8Recall that the vertices of q different from ρ are identified with vertices of the encoding labeled treed bridge.
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from the definitions of Core(q•) and of Rε
n(Core(q

•)) that the root vertex of a tree in S with shifted label greater than
or equal to r + 3 does not belong to Rε

n(Core(q
•)), since its label prevents it from being v±. Next, observe that two

neighboring vertices in a tree are either linked by an edge of the map if their labels differ or by a path of length two in the
map when they have same label. Consequently, any vertex v can be linked by edges of the map to Rt(v) in such a way that
the shifted labels on the linking path are all larger than or equal to minJRt(v),vK λ̂− 1. Such a linking path cannot cross
the common boundary between Rε

n(Core(q
•)) and R̄ε

n(Core(q
•)) when minJRt(v),vK λ̂≥ r+ 3. The claim follows.

J(⌊(1/3− ε)pn⌋)J(i−)J(⌊pn/3⌋)

γ−

h = r

boundary time

shifted
labels

J(i+)

M

M

γ+

to ρ

T ◦ J(i+) T ◦ J(i−)

Fig 8: Building on Figure 7, we now represented the two trees of the labeled treed cycle that are of most interest: they
are properly embedded, with vertices at heights corresponding to their shifted labels. The tree near the middle contains
the vertices attaining the maximum M over S of the shifted labels and the one to the right contains the vertices attaining
the minimum M among S of the shifted labels. The geodesic γ− starts in undisclosed trees until it reaches after three
steps the tree with minimal shifted label. The geodesic γ+ entirely lies in undisclosed trees. Highlighted in green are the
vertices of S≥ and the edges on their ancestral lines. Highlighted in red are the vertices of S= and the edges linking
vertices whose ancestral lines are labeled r or more and that are not highlighted in green.

Combining the above bounds, we have the following estimate for the volume of Rε
n(Core(q

•)):

(4.2) ∥Core(q•)∥ −#S ≤ ∥Rε
n(Core(q

•))∥ ≤#V (Rε
n(Core(q

•)))≤m+
p

2
+ 1−#S≥ .

Inner perimeter.
We will need an upper bound on pin. Let us introduce

S= :=
{
v ∈ S : λ̂(v) = r and min

w∈JRt(v),vK\{v}
λ̂(w)≥ r+ 1

}
.

In words, it is the set of first vertices with label r when exploring the trees of S from their roots; see Figure 8. We
claim that this set contains all the vertices with label r belonging to the common boundary between Rε

n(Core(q
•)) and

R̄ε
n(Core(q

•)), with the exception of at most one point. Recall that the vertices of R̄ε
n(Core(q

•)) all belong to S ∪ γ+ ;
in particular, the vertices with label r belonging to the common boundary all lie in S except possibly one (which belongs
to γ+), since only one vertex visited by γ+ may have label r. We then follow an argument from [CMM13, Proposition 18].
Let v ∈ S\S= be such that λ̂(v) = r. Since λ̂(Rt(v))≥ r and the successive labels along JRt(v), vK differ by at most 1,
we can find a vertex w ∈ JRt(v), vK\{v} with shifted label r. Considering the geodesics made of the iterate successors
of two corners incident to w, one before and one after v in contour order, we obtain a cycle that separates v from Rt(v).
As Rt(v) /∈Rε

n(Core(q
•)) and all the shifted labels along this cycle are smaller than or equal to r, we see that v cannot
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be on the common boundary between Rε
n(Core(q

•)) and R̄ε
n(Core(q

•)). Adding to this the fact that the shifted labels
along the common boundary alternate between r and r+ 1, we obtain

(4.3) pin ≤ 2 (1 +#S=) + 1 .

Distance to the restriction
Finally, we need a bound on the Gromov–Hausdorff distance9 between Core(q•) and Rε

n(Core(q
•)). Setting

M :=min
{
λ̂(v) : v ∈ S

}
and M :=max

{
λ̂(v) : v ∈ S

}
,

we claim that

(4.4) dGH

(
Core(q•),Rε

n(Core(q
•))
)
≤M−M+1.

We let v be the merging vertex of γ− with γ+; it has shifted label λ̂(v) =M− 1 and lies in Rε
n(Core(q

•)). Each vertex
v ∈ S can then be linked to v by following the edges linking the iterative successors of any corner incident to v; this results
in a path of length smaller than or equal to M−M+1. This easily implies that the distortion of the correspondence (see
Appendix A) {

(v, v) : v ∈Rε
n(Core(q

•))
}
∪
{
(v, v) : v ∈ R̄ε

n(Core(q
•))
}

between Core(q•) and Rε
n(Core(q

•)) is less than 2(M−M+1). The claim follows.

4.3. Scaling limits and proofs

We are interested in the label processes: we set, for s ∈ [0,1],

(4.5) B(s) := λ
(
ρ⌊ps⌋

)
and L(s) := λ

(
c⌊(2m+p/2−1)s⌋

)
.

We will also need the so-called contour process, defined as follows. For s ∈ [0,1], if the vertex v incident to the corner
c⌊(2m+p/2−1)s⌋ belongs to the k-th tree t of the labeled treed bridge, then

(4.6) C(s) := dt
(
v,Rt(v)

)
− k+ p/2 + 1 .

We now set m = n, p = 3pn and apply our observations to a random quadrangulation q• = Q•
n,3pn

. To keep track
of this, we add a subscript n in the notation and possibly an ε when the quantity depends on the restriction Rε

n (as i−n,ε
or Mn,ε for instance). As the encoding of Section 4.1 is bijective, the labeled treed bridge corresponding to Q•

n,3pn
is

uniformly distributed over those with 3pn/2 trees and n edges. We will need the scaling limit of the random processes
of (4.5) and (4.6), as well as of J and T , which we now denote by Bn, Ln, Cn, Jn and Tn in this probabilistic context.
By [Bet15, Propostion 7 & Corollary 8], the following joint convergence holds in distribution, for the uniform topology10

on the space of bounded functions on [0,1],

(4.7)

(
anBn(s),

Cn(s)√
2n

,
Tn
(
⌊3pns⌋

)
2n

,anLn(s)

)
0≤s≤1

(d)−−−−→
n→∞

(
Bs,Fs,T (s),Ls

)
0≤s≤1

,

where B is 3
√
2α times a Brownian bridge on [0,1], F is a first-passage Brownian bridge on [0,1] from α to 0, indepen-

dent of B, T is the hitting time process11 associated with F, and L is the head of a Brownian snake process built upon B
and F; we refer to [Bet15] for the details.

From [GM19, Proposition 2.6 & Lemma 2.7], on the event of asymptotically full probability where the core is well
defined (Proposition 2.1), the (simple) boundary of Core

(
Q•

n,3pn

)
is “uniformly spread” among that of Q•

n,3pn
in the

9We cannot use the Hausdorff distance between these sets in the natural embedding of Rε
n(Core(q•)) within Core(q•) because this embedding

is not isometric: the metric of Rε
n(Core(q•)) is not the restriction of the metric of Core(q•). Indeed, between two points of the common boundary,

there might exists paths within R̄ε
n(Core(q•)) that are shorter than a geodesic in Rε

n(Core(q•)), thus providing “shortcuts” in Core(q•).
10In [Bet15], the topology considered needs to take into account processes defined on intervals with varying length. It specifies to the uniform

topology when working on the fixed interval [0,1].
11Recall that this means that T (t) = inf{s≥ 0 : Fs = α− t}, for t ∈ [0, α].
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sense that

(4.8)

(
Jn
(
P̃n ∧ ⌊pns⌋

)
3pn

)
0≤s≤1

(d)−−−−→
n→∞

(
s
)
0≤s≤1

,

where P̃n = |∂Core
(
Q•

n,3pn

)
| as before.

Proof of Lemma 3.2. We fix η > 0. By Proposition 2.1, the event {P̃n ≥ pn/2} holds asymptotically in n with prob-
ability at least 1 − η/8. We work on the latter event; in particular, Core(Q•

n,3pn
) ̸= ℘. Since the minimum of B over

[1/3− ε,1/3] is almost surely unique and attained within the open interval (1/3− ε,1/3), it follows from (4.7) and (4.8)
that, for ε small enough, the event {Rε

n(Core(Q
•
n,3pn

)) ̸= ℘} holds asymptotically in n with probability at least 1− η/4
and, on the latter event, (4.8) holds together with

(4.9)
(
i−n,ε
pn

,
i+n,ε
pn

)
(d)−−−−→

n→∞

(
I−ε ,I+ε

)
:=
(
argmin(Bs)1/3−ε≤s≤1/3,min

{
s≥ 1/3 :Bs =BI−

ε

})
.

From this, we see that we may furthermore find δ ∈ (0, ε) so that the event where Rε
n

(
Core

(
Q•

n,3pn

))
satisfies

both (3.2) and (3.3) holds asymptotically in n with probability at least 1− 3η/8.
Recall that we now denote by Sn,ε the set previously denoted by S , in order to highlight the dependance in n and ε > 0.

From (4.7), for every ε > 0, the random variable #Sn,ε/n admits a limit in distribution Sε, distributed as FT (I+
ε ) −

FT (I−
ε ). From standard properties of Brownian motion, there exists ε̃ > 0 such that, for any ε ∈ (0, ε̃), it holds that

P(Sε ≤ 1/3)≥ 1− η/8. Now, taking any ε ∈ (0, ε̃), we claim that #S≥n,ε/n admits a limit in distribution without atom
at 0. Taking this claim for granted for a minute and adding Proposition 2.1, the volume estimate (4.2) yields that, up to
lowering δ, the event whereRε

n

(
Core

(
Q•

n,3pn

))
satisfies (3.2), (3.3) and (3.4) holds asymptotically in n with probability

at least 1 − η/2. The latter claim is obtained as follows. First, for each s ∈ [0,1], we can define a trajectory W (s) as
recording the labels along the ancestral lineage JRt(v), vK, where we denoted by v the vertex incident to the corner
c⌊(2m+p/2−1)s⌋, as above. The trajectory-valued process (W (s))0≤s≤1 is the so-called snake; in passing, observe that the
final value of W (s) is L(s), hence the name head of the snake. By [Bet10, Proposition 15], the process anWn actually
converges jointly with (4.7) toward the so-called Brownian snake (W(s))0≤s≤1 driven by the process F minus its past
infimum, with initial values given by B. Then #S≥

n,ε/n converges in distribution towards

(4.10)
∫ I+

ε

I−
ε

1{minW(s)≥minB}ds .

Now, for each t such that F(t) =min0≤s≤t F(s), the trajectory W(t) is actually the point trajectory 0 7→ Lt. Since W is a
continuous process and L is a.s. not identically equal to minB on (I−ε ,I+ε ), the above integral is almost surely positive.

Finally, for the remaining condition (3.5) on the inner perimeter, we see from the estimate (4.3) that it is sufficient to
prove that #S=

n,ε is not large in the scale
√
n. More precisely, in order to conclude that we can choose δ > 0 small enough

so thatRε
n

(
Core

(
Q•

n,3pn

))
is (n, δ)-good asymptotically in n with probability at least 1− η, it is sufficient to show that

there exists c such that limsupn P(#S=
n,ε ≥ c

√
n)≤ η/2. This does not follow from the scaling limit results of [Bet15];

we need to elaborate a bit more.
Recall that, for ε small enough, the event {Rε

n(Core(Q
•
n,3pn

)) ̸= ℘} holds asymptotically in n with probability at
least 1 − η/4 and, on the latter event, both (4.8) and (4.9) hold. Then the limiting distribution of I+ε ensures that, for
ε > 0 small enough and n sufficiently large, the event Eε

n whereRε
n(Core(Q

•
n,3pn

)) ̸= ℘ and Jn(i+n,ε)≤ 2pn occurs with
probability at least 1− 3η/8.

From now on, we work on the event Eε
n and restrict our attention to the trees on the bridge between 0 and 2pn

(which contain S=n,ε). First of all, at the price of a constant, we forget the conditioning on the labeled treed bridge. More
precisely, we consider that (ρ0, ρ1, ρ2, . . . ) is an infinite sequence labeled by a simple random walk λ(ρ0) = 0, λ(ρ1),
λ(ρ2), . . . , and carrying i.i.d. critical Geometric Galton–Watson trees with label differences along edges i.i.d. uniformly
in {−1,0,1} after descending steps. The labeled treed bridge we consider is thus distributed as the 3pn first steps of the
later process, conditioned on λ(ρ3pn

) = 0 and on having n edges in the trees. We denote by S=
n,ε the set constructed

as S=
n,ε but with the unconditioned process instead of the labeled treed bridge. Focusing merely on the 2pn first steps (as

we work on Eε
n), the Radon-Nikodym derivative of our model with respect to the unconditioned one is explicit ([BM22,

Lemma 36], applied with a = n, k = 2pn, l = 3pn, δ = 0) and uniformly bounded by some constant C (although its
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inverse is unbounded). This follows by an application of the local limit theorem ([BM22, Lemma 37]) and the fact that
the limit of the Radon-Nikodym derivative is bounded (its expression is given in [BM22, Equation (31)] where L= 3α
and L′ = 2α). Summarizing, it holds that

E
[
#S=

n,ε; E
ε
n

]
≤C E

[
#S=

n,ε; E
ε
n

]
Now, for any ℓ≥ r, the expected number of first vertices with label r when exploring from the root such a Galton–Watson
tree with root label ℓ is equal to 1. Indeed, the generating function fℓ,r for this number is given in [CM15, Equation (22)]:
for x ∈ [0,1]

fℓ,r(x) = 1− 2(
ℓ− r+ a(x)

)(
ℓ− r+ 1+ a(x)

) , where a(x) =
−1 +

√
1 + 8(1− x)−1

2
,

so that f ′ℓ,r(1) = 1. (To see that this expected number is smaller than or equal to 1, one can alternatively consider the first
vertices with label ℓ−1, then the first vertices with label ℓ−2, etc. This makes up a new Galton–Watson tree, whose vertex-
set is therefore a subset of the vertex-set of a critical Galton-Watson tree; hence it cannot be supercritical.) From this, by
first conditioning on the discrete bridge, we obtain that E

[
#S=

n,ε; E
ε
n

]
≤ 2pn. We conclude by Markov’s inequality that

P(#S=
n,ε ≥ c

√
n ; Eε

n)≤ (2Cpn)/(c
√
n), which is asymptotically smaller than η/8 for c large enough.

Proof of Proposition 2.4.(i). Recall that Yn =Core(Q•
n,3pn

). On the event {Rε
n(Yn) ̸= ℘}, we obtain from (4.4) that

dGH

(
anYn, anRε

n(Yn)
)
≤ an

(
Mn,ε −Mn,ε + 1

)
.

As Mn,ε and Mn,ε are respectively the minimum and maximum of{
λ̂n(ck) : Tn ◦ Jn(i−n,ε)≤ k < Tn ◦ Jn(i+n,ε)

}
,

by (4.7) and (4.8), for η > 0 fixed and ε small enough, the event {Rε
n(Yn) ̸= ℘} holds asymptotically in nwith probability

at least 1− η and, on the latter event, (4.9) holds jointly with

an
(
Mn,ε −Mn,ε + 1

) (d)−−−−→
n→∞

max
[T (I−

ε ),T (I+
ε )]

L− min
[T (I−

ε ),T (I+
ε )]

L ,

and the latter tends to 0 in probability as ε→ 0. The result follows.

4.4. Resampling argument

It remains to prove Proposition 2.4.(ii). First of all, note that, for a pointed quadrangulation with a boundary q•, we can
use the bijective encoding for q•, for Core(q•) and for Rε

n(Core(q
•)). The parts in common of the maps correspond

through the encoding bijection to parts in common of the encoding objects. In particular, the labeled treed bridge encoding
a map obtained from another by removing some faces can be obtained from the original labeled treed bridge by removing
some edges.

We aim at showing that Xn is close to Rε
n(Xn), already knowing that Yn is close to Rε

n(Yn) (Proposition 2.4.(i))
and that, after taking a restriction, Xn is close to Yn (Proposition 2.3). The idea is to apply Proposition 2.3 with another
restriction operation that removes a small part far away from t1/3, so that it does not interfere with the local surgery
around t1/3. More precisely, we define a second notion of restriction R′ε

n and complement R̄′ε
n exactly as in Section 2.2

except that we reverse the numbering of the boundary vertices, that is, we apply the mapping 0 7→ 0 and i ∈ {1, . . . , p−
1} 7→ p− i to the original numbering. See Figure 9.

Applying for instance a simple reflection, Proposition 2.3, which we have proved by now, also holds for this second
notion of restriction: for all ε > 0,

(4.11) lim
n→∞

dTV

(
R′ε

n (Xn),R′ε
n (Yn)

)
= 0 .

Proof of Proposition 2.4.(ii). We use (4.4) as before and highlight the dependence in q•, n and ε by denoting the right-
hand side bound by M(q•, n, ε). Let us start with deterministic considerations and recall how this bound is defined. First,
the restriction Rε

n(Core(q
•)) defines on the boundary of Core(q•) and thus on the boundary of q• the two vertices v+

and v−. Then, the part of the boundary of q• between v+ and v− contains the roots of some trees of the encoding labeled
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pn
3

pn
3

R̄ε
n(q

•)R̄′εn (q•)

Fig 9: Definition of a second notion of restriction R′ε
n , going “backwards” along the boundary. The ball used in the

definition of Rε
n(q

•) is depicted in purple with a blue outline. The (larger) ball involved in the definition of R′ε
n (q

•) is
in mauve. The difference between the map q• and its restriction Rε

n(q
•) is the same as the difference between R′ε

n (q
•)

and Rε
n(R′ε

n (q
•)), provided the complements R̄ε

n(q
•) and R̄′ε

n (q
•) are disjoint.

treed bridge of q•. The bound M(q•, n, ε) is finally equal to 1 plus the difference between the maximal and the minimal
label of the vertices that belong to those trees.

If q• has a simple boundary, then q• =Core(q•), and thus dGH

(
q•,Rε

n(q
•)
)
≤M(q•, n, ε). Furthermore, if R̄ε

n(q
•)

and R̄′ε
n (q

•) are disjoint, then the trees involved in the definitions of M(R′ε
n (q

•), n, ε) and of M(q•, n, ε) are the same,
so that M(R′ε

n (q
•), n, ε) = M(q•, n, ε). Finally, the vertices considered in the definition of M(Core(q•), n, ε) form a

subset of the vertices involved in the definition of M(q•, n, ε), so that M(Core(q•), n, ε)≤M(q•, n, ε).
We turn to random maps. Since Xn has a simple boundary, we have dGH

(
Xn,Rε

n(Xn)
)
≤M(Xn, n, ε). Now, on the

event where R′ε
n (Xn) =R′ε

n (Yn) and the complements R̄ε
n(Yn) and R̄′ε

n (Yn) are disjoint,

M(Xn, n, ε) =M
(
R′ε

n (Xn), n, ε
)
=M

(
R′ε

n (Yn), n, ε
)
=M(Yn, n, ε)≤M

(
Q•

n,3pn
, n, ε

)
,

the first equality coming from the fact that, on this event, it also holds that R̄ε
n(Xn) and R̄′ε

n (Xn) are disjoint. We already
showed in the proof of Proposition 2.4.(i) that the latter bound converges, after scaling by an, as n→∞ to a random
variable that tends to 0 as ε→ 0.

It thus remains to show that the latter event holds asymptotically with probability arbitrarily close to 1 for small ε. Let
η > 0. Reasoning as in the proof of Lemma 3.2, one can choose ε small enough so that R̄ε

n(Yn) and R̄′ε
n (Yn) are well

defined and disjoint with probability at least 1− η/2, asymptotically in n. For such an ε, by (4.11), for n large enough, it
holds that dTV

(
R′ε

n (Xn),R′ε
n (Yn)

)
< η/2. We conclude thanks to the maximal coupling theorem.

Appendix A: Gromov–Hausdorff topology

Recall that the Hausdorff distance between two closed subsets of a metric space (Z,dZ) is defined as dH(A,B) :
= inf{ε > 0 : A ⊆ Bε and B ⊆ Aε}, where Cε := {x ∈ Z : dZ(x,C) < ε} denotes the ε-neighborhood of C . The
Gromov–Hausdorff distance between two compact metric spaces (X ,dX ) and (Y,dY) is then defined by

dGH

(
(X ,dX ), (Y,dY)

)
:= inf

{
dH
(
φ(X ),ψ(Y)

)}
,

where the infimum is taken over all isometric embeddings φ : X →Z and ψ : Y →Z of X and Y into the same metric
space (Z,dZ). This defines a metric on the set of isometry classes of compact metric spaces ([BBI01, Theorem 7.3.30]),
making it a Polish space12.

The Gromov–Hausdorff distance may be expressed in terms of correspondences. A correspondence between two
metric spaces (X ,dX ) and (Y,dY) is a subset R⊆X ×Y such that, for all x ∈ X , there is at least one y ∈ Y for which
(x, y) ∈R and vice versa. The distortion of R is defined as

dis(R) := sup
{
|dX (x,x′)− dY(y, y

′)| : (x, y), (x′, y′) ∈R
}
.

12This is a simple consequence of Gromov’s compactness theorem [BBI01, Theorem 7.4.15].
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Then, by [BBI01, Theorem 7.3.25],

dGH

(
(X ,dX ), (Y,dY)

)
=

1

2
inf
R

dis(R),

where the infimum is taken over all correspondences between X and Y .
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