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Abstract. In the PAC-Bayesian literature, the C-Bound refers to an
insightful relation between the risk of a majority vote classifier (under
the zero-one loss) and the first two moments of its margin (i.e., the ex-
pected margin and the voters’ diversity). Until now, learning algorithms
developed in this framework minimize the empirical version of the C-
Bound, instead of explicit PAC-Bayesian generalization bounds. In this
paper, by directly optimizing PAC-Bayesian guarantees on the C-Bound,
we derive self-bounding majority vote learning algorithms. Moreover, our
algorithms based on gradient descent are scalable and lead to accurate
predictors paired with non-vacuous guarantees.

Keywords: Majority Vote · PAC-Bayesian · Self-Bounding Algorithm.

1 Introduction

In machine learning, ensemble methods [10] aim to combine hypotheses to make
predictive models more robust and accurate. A weighted majority vote learning
procedure is an ensemble method for classification where each voter/hypothesis
is assigned a weight (i.e., its influence in the final voting). Among the famous
majority vote methods, we can cite Boosting [13], Bagging [5], or Random For-
est [6]. Interestingly, most of the kernel-based classifiers, like Support Vector Ma-
chines [3, 7], can be seen as a majority vote of kernel functions. Understanding
when and why weighted majority votes perform better than a single hypothesis
is challenging. To study the generalization abilities of such majority votes, the
PAC-Bayesian framework [34, 25] offers powerful tools to obtain Probably Ap-
proximately Correct (PAC) generalization bounds. Motivated by the fact that
PAC-Bayesian analyses can lead to tight bounds (e.g., [28]), developing algo-
rithms to minimize such bounds is an important direction (e.g., [14, 15, 11, 24]).

We focus on a class of PAC-Bayesian algorithms minimizing an upper bound
on the majority vote’s risk called the C-Bound1 in the PAC-Bayesian litera-
ture [20]. This bound has the advantage of involving the majority vote’s margin

1 The C-Bound was introduced by Breiman in the context of Random Forest [6].
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and its second statistical moment, i.e., the diversity of the voters. Indeed, these
elements are important when one learns a combination [10, 19]: A good majority
vote is made up of voters that are “accurate enough” and “sufficiently diverse”.
Various algorithms have been proposed to minimize the C-Bound: MinCq [31],
P-MinCq [2], CqBoost [32], or CB-Boost [1]. Despite being empirically efficient,
and justified by theoretical analyses based on the C-Bound, all these methods
minimize only the empirical C-Bound and not directly a PAC-Bayesian general-
ization bound on the C-Bound. This can lead to vacuous generalization bound
values and thus to poor risk certificates.

In this paper, we cover three different PAC-Bayesian viewpoints on gener-
alization bounds for the C-Bound [26, 33, 20]. Starting from these three views,
we derive three algorithms to optimize generalization bounds on the C-Bound.
By doing so, we achieve self-bounding algorithms [12]: the predictor returned by
the learner comes with a statistically valid risk upper bound. Importantly, our
algorithms rely on fast gradient descent procedures. As far as we know, this is
the first work that proposes both efficient algorithms for C-Bound optimization
and non-trivial risk bound values.

The paper is organized as follows. Section 2 introduces the setting. Section 3
recalls the PAC-Bayes bounds on which we build our results. Our self-bounding
algorithms leading to non-vacuous PAC-Bayesian bounds are described in Sec-
tion 4. We provide experiments in Section 5, and conclude in Section 6.

2 Majority Vote Learning

2.1 Notations and Setting

We stand in the context of learning a weighted majority vote for binary classi-
fication. Let X ⊆ Rd be a d-dimensional input space, and Y={−1,+1} be the
label space. We assume an unknown data distribution D on X×Y, we denote
by DX the marginal distribution on X . A learning algorithm is provided with a
learning sample S={(xi, yi)}mi=1 where each example (xi, yi) is drawn i.i.d. from
D, we denote by S∼Dm the random draw of such a sample. Given H a hypothe-
sis set constituted by so-called voters h : X→Y, and S, the learner aims to find a
weighted combination of the voters from H; the weights are modeled by a distri-
bution on H. To learn such a combination in the PAC-Bayesian framework, we
assume a prior distribution P on H, and—after the observation of S—we learn a
posterior distribution Q on H. More precisely, we aim to learn a well-performing
classifier that is expressed as a Q-weighted majority vote MVQ defined as

∀x ∈ X , MVQ(x) , sign

(
E

h∼Q
h(x)

)
= sign

(∑
h∈H

Q(h)h(x)

)
.

We thus want to learn MVQ that commits as few errors as possible on unseen data
from D, i.e., that leads to a low true risk rMV

D (Q) under the 0-1-loss defined as

rMV
D (Q) , E

(x,y)∼D
I
[
MVQ(x) 6= y

]
, where I[a] =

{
1 if the assertion a is true,
0 otherwise.
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2.2 Gibbs Risk, Joint Error and C-Bound

Since D is unknown, a common way to try to minimize rMV
D (Q) is the minimiza-

tion of its empirical counterpart rMV
S (Q) = 1

m

∑m
i=1 I [MVQ(xi) 6=yi] computed

on the learning sample S through the Empirical Risk Minimization principle.
However, learning the weights by the direct minimization of rMV

S (Q) does not
necessarily lead to a low true risk. One solution consists then in looking for
precise estimators or generalization bounds of the true risk rMV

D (Q) to mini-
mize them. In the PAC-Bayesian theory, a well-known estimator of the true risk
rMV
D (Q) is the Gibbs risk defined as the Q-average risk of the voters as

rD(Q) = E
h∼Q

E
(x,y)∼D

I [h(x) 6= y] .

Its empirical counterpart is defined as rS(Q)= 1
m

∑m
i=1 Eh∼Q I [h(xi) 6= yi]. How-

ever, in ensemble methods where one wants to combine voters efficiently, the
Gibbs risk appears to be an unfair estimator since it does not take into account
the fact that a combination of voters has to compensate for the individual er-
rors. This is highlighted by the decomposition of rD(Q) in Equation (1) (due
to Lacasse et al. [20]) into the expected disagreement and the expected joint
error, respectively defined by

dD(Q) = E
h1∼Q

E
h2∼Q

E
x∼DX

I
[
h1(x) 6= h2(x)

]
,

and eD(Q) = E
h1∼Q

E
h2∼Q

E
(x,y)∼D

I
[
h1(x) 6= y

]
I
[
h2(x) 6= y

]
.

Indeed, an increase of the voter’s diversity, captured by the disagreement dD(Q),
have a negative impact on the Gibbs risk, as

rD(Q) = eD(Q) + 1
2dD(Q). (1)

Despite this unfavorable behavior, many PAC-Bayesian results deal only with
the Gibbs risks, thanks to a straightforward upper bound of the majority vote’s
risk which consists in upper-bounding it by twice the Gibbs risk [21], i.e.,

rMV
D (Q) ≤ 2 rD(Q) = 2eD(Q) + dD(Q). (2)

This bound is tight only when the Gibbs risk is low (e.g., when voters with large
weights perform well individually [14, 21]). Recently, Masegosa et al. [24] propose
to deal directly with the joint error as

rMV
D (Q) ≤ 4eD(Q) = 2rD(Q) + 2eD(Q)− dD(Q). (3)

Equation (3) is tighter than Equation (2) if eD(Q)≤ 1
2dD(Q) ⇔ rD(Q)≤dD(Q);

This captures the fact that the voters need to be sufficiently diverse and commit
errors on different points. However, when the joint error eD(Q) exceeds 1

4 , the
bound exceeds 1 and is uninformative. Another bound—known as the C-Bound
in the PAC-Bayes literature [20]—has been introduced to capture this trade-off
between the Gibbs risk rD(Q) and the disagreement dD(Q), and is recalled in
the following theorem.
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Theorem 1 (C-Bound). For any distribution D on X×Y, for any voters set H,
for any distribution Q on H, if rD(Q)< 1

2 ⇐⇒ 2eD(Q)+dD(Q)<1, we have

rMV
D (Q) ≤ 1− (1− 2rD(Q))

2

1− 2dD(Q)
, CD(Q)

= 1−
(
1− [2eD(Q) + dD(Q)]

)2
1− 2dD(Q)

.

The empirical C-Bound is denoted by CS(Q) where the empirical disagreement
is defined by dS(Q)= 1

m

∑m
i=1 Eh1∼Q Eh2∼Q I[h1(xi)6=h2(xi)], and the empirical

joint error is defined by eS(Q)= 1
m

∑m
i=1 Eh1∼Q Eh2∼Q I[h1(xi)6=yi]I[h2(xi) 6=yi].

As Equation (3), the C-Bound is tighter than Equation (2) when rD(Q) ≤ dD(Q)
and looks for a good trade-off between individual risks and disagreement. The
main interest of the C-bound compared to Equation (3) is that when eD(Q)
is close to 1

4 , the C-Bound can be close to 0 depending on the value of the
disagreement dD(Q): the C-bound is then more precise. Moreover, it is important
to notice that the C-Bound is always tighter than Equation (3) and tighter than
Equation (2) when rD(Q) ≤ dD(Q). We summarize the relationships between
Equations (2), (3) and CD(Q) in the next theorem.

Theorem 2 (From Germain et al. [32] and Masegosa et al. [24]). For
any distribution D on X × Y, for any voters set H, for any distribution Q on
H, if rD(Q) < 1

2 , we have

(i) CD(Q) ≤ 4eD(Q) ≤ 2rD(Q), if rD(Q) ≤ dD(Q),
(ii) 2rD(Q) ≤ CD(Q) ≤ 4eD(Q), otherwise.

In this paper, we focus on the minimization of PAC-Bayesian generalization
bounds on the C-Bound to get a low-risk majority vote. In Section 3, we recall
such PAC-Bayesian bounds that have been introduced in the literature.

2.3 Related Works

Previous algorithms have been developed to minimize the empirical C-Bound
CS(Q). Roy et al. [31] first proposed MinCq where this minimization is expressed
as a quadratic problem. MinCq considers a specific voters’ set to regularize the
minimization process. One drawback of MinCq is that the optimization problem
is not scalable to large datasets. Lately, Bauvin et al. [1] proposed CB-Boost that
minimizes CS(Q) in a greedy procedure with the advantage to be more scalable
while obtaining sparser majority vote. However, since both MinCq and CB-

Boost minimize the empirical CS(Q), the PAC-Bayesian generalization bound
associated with their learned majority vote predictors can be vacuous. Note that
CB-Boost has been proposed to improve another algorithm called CqBoost [32].
When it comes to deriving a learning algorithm that directly minimizes a PAC-
Bayesian bound, it is mentioned in the literature that optimizing a PAC-Bayesian
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bound on the C-bound is not trivial [24, 22]. This underlines the need of other
majority vote learning algorithms based on the C-Bound, which motivates our
contributions of Section 4.

3 PAC-Bayesian C-Bounds

We recall now three PAC-Bayesian generalization bounds on the C-Bound re-
ferred hereafter as the PAC-Bayesian C-Bounds. Considering these three ap-
proaches has the interest to offer a large coverage of the PAC-Bayesian C-bound
literature. Our contribution, described in Section 4, consists in deriving a self-
bounding algorithm for each of these PAC-Bayesian C-Bounds. This shows that
the PAC-Bayesian C-Bound offers various ways to learn majority votes that
might have been overlooked until now.

3.1 An Intuitive Bound—McAllester’s View

We recall the most intuitive and interpretable PAC-Bayesian C-Bound [32]. It
consists in upper-bounding separately the Gibbs risk rD(Q) and the disagree-
ment dD(Q) with the usual PAC-Bayesian bound of McAllester [26] that bounds
the deviation between true and empirical values with the Euclidean distance.

Theorem 3 (PAC-Bayesian C-Bound of Roy et al. [32]). For any distri-
bution D on X×Y, for any prior distribution P on H, for any δ>0, we have

Pr
S∼Dm

(
∀Q on H, CD(Q) ≤ 1−

(
1− 2 min

[
1
2 , rS(Q)+

√
1
2ψr(Q)

])2
1− 2 max

[
0, dS(Q)−

√
1
2ψd(Q)

]
︸ ︷︷ ︸

CM
S(Q)

)
≥ 1−2δ,

(4)

with ψr(Q) = 1
m

[
KL(Q‖P)+ ln2

√
m
δ

]
, and ψd(Q) = 1

m

[
2 KL(Q‖P)+ ln2

√
m
δ

]
,

and KL(Q‖P) = Eh∼Q ln Q(h)
P(h) is the KL-divergence between Q and P.

While there is no algorithm that directly minimizes Equation (4), this kind of
interpretable bound can be seen as a justification of the optimization of rS(Q)
and dS(Q) in the empirical C-Bound such as for MinCq [31] or CB-Boost [1].
In Section 4.1, we derive a first algorithm to directly minimize it.

However, this PAC-Bayesian C-Bound can have a severe disadvantage with a
small m and a Gibbs risk close to 1

2 : even for a KL(Q‖P) close to 0 and a low em-
pirical C-Bound, the value of the PAC-Bayesian C-Bound will be close to 1. To
overcome this drawback, one solution is to follow another PAC-Bayesian point of
view, the one proposed by Seeger [33] that compares the true and empirical values

through kl(a‖b)=a log
[
a
b

]
+(1−a) log

[
1−a
1−b
]
, knowing that |a−b| ≤

√
1
2kl(a‖b)

(Pinsker’s inequality).
In the next two subsections, we recall such bounds. The first one in Theo-

rem 4 involves the risk and the disagreement, while the second one in Theorem 5
simultaneously bounds the joint error and the disagreement.
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3.2 A Tighter Bound—Seeger’s view

The PAC-Bayesian generalization bounds based on the Seeger’s approach [33]
are known to produce tighter bounds [15]. As for Theorem 3, the result below
bounds independently the Gibbs risk rD(Q) and the disagreement dD(Q).

Theorem 4 (PAC-Bayesian C-Bound (PAC-Bound 1) of Germain et al. [15]). Under
the same assumptions and notations as Theorem 3, we have

Pr
S∼Dm

(
∀Q on H, CD(Q) ≤ 1−

(
1−2 min

[
1
2 , kl (rS(Q) | ψr(Q))

] )2
1−2 max [0, kl (dS(Q) | ψd(Q))]︸ ︷︷ ︸

CS
S(Q)

)
≥ 1−2δ,

(5)

with kl(q|ψ)= max{p∈(0,1)|kl(q‖p)≤ψ}, and kl(q|ψ)= min{p∈(0,1)|kl(q‖p)≤ψ}.

The form of this bound makes the optimization a challenging task: the functions
kl and kl do not benefit from closed-form solutions. However, we see in Section 3.2
that the optimization of kl and kl can be done by the bisection method [30],
leading to an easy-to-solve algorithm to optimize this PAC-Bayesian C-Bound.

3.3 Another Tighter Bound–Lacasse’s View

The last theorem on which we build our contributions is described below. Pro-
posed initially by Lacasse et al. [20], its interest is that it simultaneously bounds
the joint error and the disagreement (as explained by Germain et al. [15]). Here,
to compute the bound, we need to find the worst C-Bound value that can be ob-
tained with a couple of joint error and disagreement denoted by (e, d) belonging
to the set AS(Q) that is defined by

AS(Q) =
{

(e, d)
∣∣∣ kl (eS(Q), dS(Q)‖e, d) ≤ κ(Q)

}
,

where κ(Q) = 1
m

[
2KL(Q‖P) + ln 2

√
m+m
δ

]
,

and kl(q1,q2‖p1,p2) = q1 ln q1p1 + q2 ln q2p2 + (1−q1−q2) ln 1−q1−q2
1−p1−p2 .

The set AS(Q) can actually contain some pairs not achievable by any D, it can
then be restricted to the valid subset ÃS(Q) defined in the theorem below.

Theorem 5 (PAC-Bayesian C-Bound (PAC-Bound 2) of Germain et al. [15]). Under
the same assumptions as Theorem 3, we have

Pr
S∼Dm

(
∀Q on H, CD(Q) ≤ sup

(e,d)∈ÃS(Q)

[
1− (1− (2e+ d))

2

1− 2d

])
≥ 1−δ,

where ÃS(Q) =
{

(e, d)∈AS(Q)
∣∣∣ d ≤ 2

√
e−2e , 2e+d < 1

}
.

Optimizing this bound w.r.t.Q can be challenging, since it boils down to optimize
indirectly the set ÃS(Q). Hence, a direct optimization by gradient descent is not
possible. In Section 4.3 we derive an approximation easier to optimize.
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Algorithm 1 Minimization of Equation (4) by GD

Given: learning sample S, prior distribution P on H, the objective function GM
S(Q)

Update function2 update-Q
Hyperparameters: number of iterations T
function minimize-Q
Q ← P
for t← 1 to T do Q ←update-Q(GM

S(Q))
return Q

4 Self-Bounding Algorithms for PAC-Bayesian C-Bounds

In this section, we present our contribution that consists in proposing three
self-bounding algorithms to directly minimize the PAC-Bayesian C-Bounds.

4.1 Algorithm Based on McAllester’s View

We derive in Algorithm 1 a method to directly minimize the PAC-Bayesian
C-Bound of Theorem 3 by Gradient Descent (GD). An important aspect of the

optimization is that if rS(Q)+
√

1
2
ψr(Q) ≥ 1

2 , the gradient of the numerator in

CM
S(Q) with respect to Q is 0 which makes the optimization impossible. Hence,

we aim at minimizing the following constraint optimization problem:

min
Q

1−

(
1− 2 min

[
1
2 ,rS(Q)+

√
1
2ψr(Q)

])2
1− 2 max

[
0, dS(Q)−

√
1
2ψd(Q)

]


︸ ︷︷ ︸
CM
S(Q)

s.t rS(Q)+
√

1
2ψr(Q) ≤ 1

2 .

From this formulation, we deduce a non-constrained optimization problem:

minQ

[
CM
S(Q) + B(rS(Q)+

√
1
2ψr(Q)− 1

2 )
]
, where B is the barrier function defined

as B(a)=0 if a≤0 and B(a)=+∞ otherwise. Due to the nature of B, this prob-
lem is not suitable for optimization: the objective function will be infinite when
a> 0. To tackle this drawback, we replace B by the approximation introduced
by Kervadec et al. [17] called the log-barrier extension and defined as

Bλ(a) =

{
− 1
λ ln(−a), if a ≤ − 1

λ2 ,

λa− 1
λ ln( 1

λ2 )+ 1
λ , otherwise.

In fact, Bλ tends to B when λ tends to +∞. Compared to the standard log-
barrier3, the function Bλ is differentiable even when the constraint is not satis-

fied, i.e., when a > 0. By taking into account the constraint rS(Q)+
√

1
2ψr(Q)≤ 1

2 ,

2 update-Q is a generic update function, i.e., it can be for example a standard update
of GD or the update of another algorithm like Adam [18] or COCOB [27].

3 The reader can refer to [4] for an introduction of interior-point methods.
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we solve by GD with Algorithm 1 the following problem:

min
Q

GM
S(Q) = min

Q
CM
S(Q) + Bλ

(
rS(Q)+

√
1
2ψr(Q)− 1

2

)
.

For a given λ, the optimizer will thus find a solution with a good trade-off
between minimizing CM

S(Q) and the log-barrier extension function Bλ. As we
show in the experiments, minimizing the McAllester-based bound does not lead
to the tightest bound. Indeed, as mentioned in Section 3, such bound is looser
than Seeger-based bounds, and leads to a looser PAC-Bayesian C-Bound.

4.2 Algorithm Based on Seeger’s View

In order to obtain better generalization guarantees, we should optimize the
Seeger-based C-bound of Theorem 4. In the same way as in the previous section,
we seek at minimizing the following optimization problem:

min
Q

[
1−
(
1−2 min

[
1
2 , kl (rS(Q) | ψr(Q))

] )2
1−2 max [0, kl (dS(Q) | ψd(Q))]

]
︸ ︷︷ ︸

CS
S(Q)

s.t kl (rS(Q) | ψr(Q)) ≤ 1
2 ,

with kl(q|ψ)= max{p∈(0,1)|kl(q‖p)≤ψ}, and kl(q|ψ)= min{p∈(0,1)|kl(q‖p)≤ψ}.
For the same reasons as for deriving Algorithm 1, we propose to solve by GD:

min
Q

GS
S(Q) = min

Q
CS
S(Q) + Bλ

(
kl (rS(Q) | ψr(Q))− 1

2

)
.

The main challenge to optimize it is to evaluate kl or kl and to compute their
derivatives. To do so, we follow the bisection method to calculate kl and kl pro-
posed by Reeb et al. [30]. This method is summarized in the functions compute-
kl(q|ψ) and compute-kl(q|ψ) of Algorithm 2, and consists in refining iteratively
an interval [pmin, pmax] with p ∈ [pmin, pmax] such that kl(q‖p)=ψ. For the sake
of completeness, we provide the derivatives of kl and kl with respect to q and ψ,
that are:

∂k(q|ψ)

∂q
=

ln 1−q
1−k(q|ψ) − ln q

k(q|ψ)
1−q

1−k(q|ψ) −
q

k(q|ψ)
, and

∂k(q|ψ)

∂ψ
=

1
1−q

1−k(q|ψ) −
q

k(q|ψ)
, (6)

with k is either kl or kl. To compute the derivatives with respect to the posterior
Q, we use the chain rule for differentiation with a deep learning framework (such
as PyTorch [29]). The global algorithm is summarized in Algorithm 2.

4.3 Algorithm Based on Lacasse’s View

Theorem 5 jointly upper-bounds the joint error eD(Q) and the disagreement
dD(Q); But as pointed out in Section 3.3 its optimization can be hard. To ease
its manipulation, we derive below a C-Bound resulting of a reformulation of the
constraints involved in the set ÃS(Q)={(e, d)∈AS(Q) | d≤2

√
e−2e, 2e+d<1}.
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Algorithm 2 Minimization of Equation (4) by GD

Given: learning sample S, prior distribution P on H, the objective function GM
S(Q)

Update function update-Q
Hyperparameters: number of iterations T
function minimize-Q
Q ← P
for t← 1 to T do

Compute GS
S(Q) using compute-kl(q|ψ) and compute-kl(q|ψ)

Q ←update-Q(GS
S(Q)) (thanks to the derivatives in Equation (6))

return Q

Hyperparameters: tolerance ε, maximal number of iterations Tmax

function compute-kl(q|ψ) (resp. compute-kl(q|ψ))
pmax←1 and pmin←q (resp. pmax←q and pmin←0)
for t← 1 to Tmax do

p = 1
2

[pmin+pmax]
if kl(q‖p) = ψ or (pmin−pmax) < ε then return p
if kl(q‖p) > ψ then pmax = p (resp. pmin = p)
if kl(q‖p) < ψ then pmin = p (resp. pmax = p)

return p

Theorem 6. Under the same assumptions as Theorem 3, we have

Pr
S∼Dm

(
CD(Q) ≤ sup

(e,d)∈ÂS(Q)

[
1−

[
1− (2e+ d)

]2
1− 2d

]
︸ ︷︷ ︸

CL(e, d)

)
≥ 1−δ, (7)

where ÂS(Q) =

{
(e, d)∈AS(Q)

∣∣∣∣ d ≤ 2
√

min
(
e, 14
)
−2e, d < 1

2

}
,

and AS(Q)=
{
(e,d)

∣∣kl(eS(Q),dS(Q)‖e,d)≤κ(Q)
}
,with κ(Q)=

2KL(Q‖P)+ ln
2
√
m+m
δ

m .

Proof. Beforehand, we explain how we fixed the constraints involved in ÂS(Q).
We add to AS(Q) three constraints: d≤2

√
e−2e (from Prop. 9 of [15]), d≤1−2e,

and d< 1
2 . We remark that when e≤ 1

4 , we have 2
√
e−2e≤1−2e. Then, we merge

d≤2
√
e−2e and d≤1−2e into d≤2

√
min

(
e, 14
)
−2e. Indeed, we have

d ≤ 2
√

min(e, 14 )−2e ⇐⇒

{
d ≤ 2

√
e− 2e if e ≤ 1

4 ,

d < 1−2e if e ≥ 1
4 .

We prove now that under the constraints involved in ÂS(Q), we still have a valid
bound on CD(Q). To do so, we consider two cases.
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Case 1: If for all (e, d) ∈ ÂS(Q) we have 2e+d<1.

In this case (eD(Q), dD(Q))∈ÂS(Q), then we have 2eD(Q)+dD(Q)<1 and The-

orem 1 holds. We have CD(Q) = 1− [1−(2eD(Q)+dD(Q))]2

1−2dD(Q) ≤ sup(e,d)∈ÂS(Q) C
L(e, d).

Case 2: If there exists (e, d) ∈ ÂS(Q) such that 2e+d=1.
We have sup(e,d)∈ÂS(Q) C

L(e, d) = 1 that is a valid bound on CD(Q). ut

Theorem 6 suggests then the following constrained optimization problem:

min
Q

 sup
(e,d)∈

[
0, 12
]2
(

1−
[
1−(2e+d)

]2
1−2d

)
s.t. (e, d)∈ÂS(Q)

 s.t. 2eS(Q)+dS(Q)≤1,

with ÂS(Q)=
{

(e, d)
∣∣d ≤ 2

√
min

(
e, 14
)
−2e, d< 1

2 , kl(eS(Q),dS(Q)‖e,d)≤κ(Q)
}

.

Actually, we can rewrite this constrained optimization problem into an uncon-
strained one using the barrier function. We obtain

min
Q

{
max

(e,d)∈
[
0, 12
]2
(
CL(e, d)−B

[
d−2

√
min

(
e, 14
)
−2e

]
−B

[
d− 1

2

]
−B

[
kl (eS(Q), dS(Q)‖e, d)−κ(Q)

])
+ B

[
2eS(Q)+dS(Q)−1

]}
, (8)

where CL(e, d) = 1− (1−(2e+d))2
1−2d if d< 1

2 , and CL(e, d)=1 otherwise. However, this
problem cannot be optimized directly by GD. In this case, we have a min-max
optimization problem, i.e., for each descent step we need to find the couple (e, d)

that maximizes the CL(e, d) given the three constraints that define ÂS(Q) before
updating the posterior distribution Q.

First, to derive our optimization procedure, we focus on the inner maxi-
mization problem when eS(Q) and dS(Q) are fixed in order to find the optimal
(e, d). However, the function CL(e, d) we aim at maximizing is not concave for
all (e, d) ∈ R2, implying that the implementation of its maximization can be
hard4. Fortunately, CL(e, d) is quasi-concave [15] for (e, d) ∈ [0, 1]× [0, 12 ]. Then
by definition of quasi-concavity, we have:

∀α ∈ [0, 1],

{
(e, d)

∣∣∣∣∣ 1−
[
1− (2e+ d)

]2
1− 2d

≥ 1− α

}

⇐⇒ ∀α ∈ [0, 1],

{
(e, d)

∣∣∣∣ α(1−2d)−
[
1−(2e+d)

]2
≥ 0

}
.

Hence, for any fixed α ∈ [0, 1] we can look for (e, d) that maximizes CL(e, d)

and respects the constraints involved in ÂS(Q). This is equivalent to solve the

4 For example, when using CVXPY [9], that uses Disciplined Convex Programming
(DCP [16]), the maximization of a non-concave function is not possible.
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Algorithm 3 Minimization of Equation (7) by GD

Given: learning sample S, prior P on H, the objective function Ge∗,d∗

S (Q)
Update function update-Q

Hyperparameters: number of iterations T
function minimize-Q
Q ← P
for t← 1 to T do

(e∗, d∗)←maximize-e-d(eS(Q), dS(Q))

Q ← update-Q(Ge∗,d∗

S (Q))

return Q

Given: learning sample S, joint error eS(Q), disagreement dS(Q)
Hyperparameters: tolerance ε
function maximize-e-d(eS(Q), dS(Q))

αmin = 0 and αmax = 1
while αmax − αmin > ε do

α = 1
2
(αmin + αmax)

(e, d)← Solve Equation (9)
if CL(e, d) ≥ 1−α then αmax ← α else αmin ← α

return (e, d)

following problem for a given α ∈ [0, 1]:

max
(e,d)∈[0, 12 ]2

α(1−2d)−
[
1−(2e+d)

]2
(9)

s.t. d ≤ 2
√

min
(
e, 14
)
−2e and kl (eS(Q), dS(Q)‖e, d) ≤ κ(Q).

In fact, we aim at finding α ∈ [0, 1] such that the maximization of Equation (9)
leads to 1−α equal to the largest value of CL(e, d) under the constraints. To
do so, we make use of the “Bisection method for quasi-convex optimization” [4]
that is summarized in maximize-e-d in Algorithm 3. We denote by (e∗, d∗) the
solution of Equation (9). It remains then to solve the outer minimization problem
that becomes:

min
Q

{
B [2eS(Q)+dS(Q)−1]−B [kl (eS(Q), dS(Q)‖e∗, d∗)−κ(Q)]

}
.

Since the barrier function B is not suitable for optimization, we approximate
this problem by replacing B by the log-barrier extension Bλ, i.e., we have

min
Q

Ge
∗,d∗

S (Q) = min
Q

{
Bλ [2eS(Q)+dS(Q)−1]

−Bλ [kl (eS(Q), dS(Q)‖e∗, d∗)−κ(Q)]
}
.

The global method is summarized in Algorithm 3. As a side note, we mention
that the classic Danskin Theorem [8] used in min-max optimization theory is
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Table 1. Comparison of the true risks “rMV
T ” and bound values “Bnd” obtained for each

algorithm. “Bnd” is the value of the bound that is optimized, excepted for MinCq and
CB-Boost for which we report the bound obtained with Theorem 6 instantiated with
the majority vote learned. Results in bold are the couple (rMV

T ,Bnd) associated to the
lowest risk value. Italic and underlined results are the couple (rMV

T ,Bnd) associated
respectively to the lowest bound value and the second lowest bound values.

Alg.1 Alg.2 Alg.3 CB-Boost MinCq Masegosa 2r

rMV
T Bnd rMV

T Bnd rMV
T Bnd rMV

T Bnd rMV
T Bnd rMV

T Bnd rMV
T Bnd

letter:AvsB .009 .323 .018 .114 .000 .085 .000 .104 .009 .451 .004 .070 .018 .056
letter:DvsO .013 .469 .018 .298 .018 .205 .022 .224 .022 .999 .018 .185 .044 .174
letter:OvsQ .017 .489 .017 .332 .009 .229 .017 .249 .039 1 .013 .210 .030 .201

credit .141 .912 .141 .874 .129 .816 .144 .855 .126 .929 .132 .869 .150 .651
glass .047 .904 .047 .832 .056 .798 .037 .911 .056 .999 .056 .903 .047 .566
heart .250 .976 .264 .962 .250 .955 .270 .981 .270 1 .243 1.19 .250 .787

tictactoe .063 .815 .084 .750 .056 .610 .063 .649 .071 .782 .058 .580 .152 .511
usvotes .041 .741 .046 .584 .037 .508 .037 .590 .046 .985 .032 .490 .060 .342
wdbc .060 .725 .053 .603 .032 .523 .025 .591 .039 .992 .035 .513 .063 .362

mnist:1vs7 .006 .161 .005 .061 .005 .038 .005 .040 .015 .994 .006 .034 .006 .043
mnist:4vs9 .017 .238 .016 .167 .016 .110 .016 .113 .046 .960 .016 .106 .063 .148
mnist:5vs6 .011 .210 .011 .124 .011 .078 .011 .081 .035 .999 .011 .073 .036 .109

fash:COvsSH .108 .462 .109 .433 .110 .366 .110 .371 .185 .894 .111 .358 .146 .409
fash:SAvsBO .018 .217 .018 .134 .019 .094 .019 .097 .034 1 .018 .087 .020 .114
fash:TOvsPU .029 .245 .029 .165 .029 .133 .030 .136 .045 .809 .030 .125 .051 .123

adult .163 .532 .163 .514 .163 .492 .163 .495 .204 1 .163 .492 .200 .413

Mean .062 .526 .065 .434 .059 .378 .061 .405 .078 .925 .059 .393 .083 .313

not applicable in our case since our objective function is not differentiable for
all (e, d) ∈ [0, 12 ]2. We discuss this point in Supplemental.

5 Experimental Evaluation

5.1 Empirical Setting

Our experiments5 have a two-fold objective: (i) assessing the guarantees given
by the associated PAC-Bayesian bounds, and (ii) comparing the performance of
the different C-bound based algorithms in terms of risk optimization. To achieve
this objective, we compare the three algorithms proposed in this paper to the
following state-of-the-art PAC-Bayesian methods for majority vote learning:

• MinCq [31] and CB-Boost [1] that are based on the minimization of the
empirical C-Bound. For comparison purposes and since MinCq and CB-
Boost do not explicitly minimize a PAC-Bayesian bound, we report the
bound values of Theorem 6 instantiated with the models learned;

• The algorithm proposed by Masegosa et al. [24] that optimizes a PAC-
Bayesian bound on rMV

D (Q) ≤ 4eD(Q) (see Theorem 9 of [24]);

5 Experiments are done with PyTorch [29] and CVXPY [9]. The source code is
available at https://github.com/paulviallard/ECML21-PB-CBound.
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TEST RISKS COMPARISON
Alg.3 vs. 2r Alg.3 vs. Masegosa Alg.3 vs. CB-Boost Alg.3 vs. MinCq

BOUND VALUES COMPARISON

Alg.3 vs. 2r Alg.3 vs. Masegosa Alg.3 vs. CB-Boost Alg.3 vs. MinCq

Fig. 1. Pairwise comparisons of the test risks (first line) and the bounds (second line)
between Algorithm 3 and the baseline algorithms. Algorithm 3 is represented on the
x-axis, while the y-axis is used for the other approaches. Each dataset corresponds to
a point in the plot and a point above the diagonal indicates that Algorithm 3 is better.

• An algorithm6, denoted by 2r, to optimize a PAC-Bayesian bound based
only on the Gibbs risk [21]: rMV

D (Q) ≤ 2rD(Q) ≤ 2kl(rS(Q)|ψr(Q)).

We follow a general setting similar to the one of Masegosa et al. [24]. The prior
distribution P on H is set as the uniform distribution, and the voters in H are
decision trees: 100 trees are learned with 50% of the training data (the remaining
part serves to learn the posterior Q). More precisely, for each tree

√
d features

of the d-dimensional input space are selected, and the trees are learned by using
the Gini criterion until the leaves are pure.
In this experiment, we consider 16 classic datasets7 that we split into a train
set S and a test set T . We report for each algorithm in Table 1, the test risks
(on T ) and the bound values (on S, such that the bounds hold with prob. at
least 95%). The parameters of the algorithms are selected as follows. 1) For

Masegosa’s algorithm we kept the default parameters [24]. 2) For all the other
bounds minimization algorithms, we set T=2, 000 iterations for all the datasets
except for adult, fash and mnist where T=200. We fix the objective functions
with λ=100, and we use COCOB-Backprop optimizer [27] as update-Q (its
parameter remains the default one). For Algorithm 3, we fix the tolerance ε=.01,
resp. ε=10−9, to compute kl, resp. kl. Furthermore, the maximal number of
iterations Tmax in maximize-e-d is set to 1, 000. 3) For MinCq, we select the

6 The algorithm 2r is similar to Algorithm 2, but without the numerator of the C-
Bound (i.e., the disagreement). More details are given in the Supplemental.

7 An overview of the datasets is presented in the Supplemental.
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margin parameter among 20 values uniformly distributed in [0, 12 ] by 3-fold cross
validation. Since this algorithm is not scalable due to its high time complexity,
we reduce the training set size to m=400 when learning with MinCq on the
large datasets: adult, fash and mnist (MinCq is still competitive with less data
on this datasets). For CB-Bound which is based on a Boosting approach, we fix
the maximal number of boosting iterations to 200.

5.2 Analysis of the Results

Beforehand, we compare only our three self-bounding algorithms. From Table 1,
as expected we observe that Algorithm 1 based on the McAllester’s bound (that
is more interpretable but less tight) provides the worst bound. Algorithm 3 al-
ways provides tighter bounds than Algorithms 1 and 2, and except for letter:DvsO,
fash:COvsSH, and fash:SAvsBO Algorithm 3 leads to the lowest test risks. We be-
lieve that Algorithm 3 based on the Lacasse’s bound provides lower bounds than
Algorithm 2 based on the Seeger’s bound because the Lacasse’s approach bounds
simultaneously the joint error and the disagreement. Algorithm 3 appears then
to be the best algorithm among our three self-bounding algorithms that mini-
mize a PAC-Bayesian C-Bound.

In the following we focus then on comparing our best contribution repre-
sented by Algorithm 3 to the baselines; Figure 1 summarizes this comparison.

First, 2r gives the lowest bounds among all the algorithms, but at the price
of the largest risks. This clearly illustrates the limitation of considering only the
Gibbs risk as an estimator of the majority vote risk: As discussed in Section 2.2,
the Gibbs risk is an unfair estimator since an increase of the diversity between
the voters can have a negative impact on the Gibbs risk.

Second, compared to Masegosa’s approach, the results are comparable: Algo-
rithm 3 tends to provide tighter bounds, and similar performances that lie in the
same order of magnitude, as illustrated in Table 1. This behavior was expected
since minimizing the bound of Masegosa [24] or the PAC-Bayesian C-Bound
boils down to minimize a trade-off between the risk and the disagreement.

Third, compared to empirical C-bound minimization algorithms, we see that
Algorithm 3 outputs better results than CB-Boost and MinCq for which the
difference is significative and the bounds are close to 1 (i.e., non-informative).
Optimizing the risk bounds tend then to provide better guarantees that justify
that optimizing the empirical C-bound is often too optimistic.

Overall, from these experiments, our Algorithm 3 is the one that provides the
best trade-off between having good performances in terms of risk optimization
and ensuring good theoretical guarantees with informative bounds.

6 Conclusion and Future Work

In this paper, we present new learning algorithms driven by the minimization of
PAC-Bayesian generalization bounds based on the C-Bound. More precisely, we
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propose to solve three optimization problems, each one derived from an existing
PAC-Bayesian bound. Our methods belong to the class of self-bounding learning
algorithms: The learned predictor comes with a tight and statistically valid risk
upper bound. Our experimental evaluation has confirmed the quality of the
learned predictor and the tightness of the bounds with respect to state-of-the-
art methods minimizing the C-Bound.

As future work, we would like to study extensions of this work to provide
meaningful bounds for learning (deep) neural networks. In particular, an inter-
esting perspective would be to adapt the C-Bound to control the diversity and
the weights in a neural network.

Acknowledgements

This work was supported by the French Project apriori ANR-18-CE23-0015.
Moreover, Pascal Germain is supported by the NSERC Discovery grant RGPIN-
2020-07223 and the Canada CIFAR AI Chair Program. The authors thank Rémi
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SUPPLEMENTAL OF

Self-Bounding Majority Vote Learning Algorithms
by the Direct Minimization

of a Tight PAC-Bayesian C-Bound

A Section 5—Details on the Datasets

Table 2 presents an overview of the datasets we use in our experiments (the split
train/test, the dimensionality and the url to the dataset).

Table 2. Datasets overview.

|S| |T | Dim. Link

letter:OvsQ 1303 233 16 https://archive.ics.uci.edu/ml/datasets/letter+recognition

letter:DvsO 1331 227 16 https://archive.ics.uci.edu/ml/datasets/letter+recognition

letter:AvsB 1327 228 16 https://archive.ics.uci.edu/ml/datasets/letter+recognition

credit 327 326 46 https://archive.ics.uci.edu/ml/datasets/Credit+Approval

heart 149 148 13 https://archive.ics.uci.edu/ml/datasets/heart+disease

glass 107 107 9 https://archive.ics.uci.edu/ml/datasets/glass+identification

tictactoe 479 479 9 https://archive.ics.uci.edu/ml/datasets/Tic-Tac-Toe+Endgame

usvotes 218 217 48 https://archive.ics.uci.edu/ml/datasets/congressional+voting+records

wdbc 285 284 30 https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

adult 30162 15060 104 https://archive.ics.uci.edu/ml/datasets/adult

mnist:1vs7 13007 2163 784 http://yann.lecun.com/exdb/mnist

mnist:4vs9 11791 1991 784 http://yann.lecun.com/exdb/mnist

mnist:5vs6 11339 1850 784 http://yann.lecun.com/exdb/mnist

fash:TOvsPU 12000 2000 784 https://github.com/zalandoresearch/fashion-mnist

fash:SAvsBO 12000 2000 784 https://github.com/zalandoresearch/fashion-mnist

fash:COvsSH 12000 2000 784 https://github.com/zalandoresearch/fashion-mnist

B Section 4.3—About Danskin’s Theorem

As mentioned in the main paper, in the context of the justification of the func-
tion maximize-e-d in Algorithm 3, we now discuss the possible application of
Danskin’s Theorem [8, Section I]. The statement of the theorem is as follows.

Theorem 7 (Danskin’s Theorem). Let A ⊂ Rm be a compact set and φ :
Rn×A → R s.t. for all a ∈ A, we have that φ is continuously differentiable, then
Φ(x) = maxa∈A φ(x,a) is directionally differentiable with directional derivatives

Φ′(x,d) = max
a∈A∗

〈d,∇xφ(x,a)〉 ,

where A∗ = {a∗ | φ(x,a∗) = maxa∈A φ(x,a)} and 〈·, ·〉 is the dot product.

To optimize a problem minx∈Rn Φ(x) with Φ(x) = maxa∈A φ(x,a), this theorem
tells us that under several assumptions, if we know a maximizer a ∈ A, then, we
have an analytical expression of the directional derivatives of Φ(x). Thus, from
this theorem, we also know a gradient to minimize the problem minx∈Rn Φ(x).
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Corollary 1 (Madry et al. [23]). Assuming that the conditions of Theorem 7
are fulfilled and let a∗ ∈ A∗ be a maximizer of φ. If d = ∇xφ(x,a∗) with

‖d‖22 > 0 then −d is a descent direction for Φ(x), i.e., Φ′(x,d) > 0.

Proof. By definition of the directional derivative Φ′(x,d) and the direction d,
we have:

Φ′(x,d) = max
a∈A∗

〈d,∇xφ(x,a)〉

= max
a∈A∗

〈∇xφ(x,a∗),∇xφ(x,a)〉 ≥ ‖∇xφ(x,a∗)‖22 > 0.

Then, for each iteration of the min/max problem optimization, we can (i) opti-
mize the inner maximization problem, (ii) fix the maximizer a∗ ∈ A and apply
a gradient descent step with the derivative ∇xφ(x,a∗). However, as we men-
tioned in the main paper, the assumptions are not fulfilled in our case to ap-
ply Theorem 7 since our inner objective in Equation (8) or its approximation

CL(e, d)−B
[
d−2

√
min

(
e, 14
)
−2e

]
−B

[
d− 1

2

]
−Bλ

[
kl (eS(Q), dS(Q)‖e, d)−κ(Q)

]
is not differentiable everywhere in the compact set [0, 12 ]2. However, we never
encounter problematic cases and this strategy is thus valid for optimizing our
proposed approximation. In practice, we have found that it is indeed an efficient
and sound strategy.

C Section 5—About Optimizing 2kl (rS(Q)|ψr(Q))

To minimize the bound 2(kl (rS(Q) | ψr(Q))), we adopt the algorithm (denoted
as 2r in the setting description of the experiments of Section 5) similar to Algo-
rithm 2. Indeed, we use instead the objective function:

min
Q

2(kl (rS(Q) | ψr(Q))). (10)

The algorithm is described in Algorithm 4 below.

Algorithm 4 Minimization of Equation (10) by GD

Given: learning sample S, prior distribution P on H, update function update-Q
Hyperparameters: number of iterations T
function minimize-Q
Q ← P
for t← 1 to T do

Compute kl (rS(Q) | ψr(Q)) using compute-kl(q|ψ).
Q ←update-Q(kl (rS(Q) | ψr(Q))) (thanks to Equation (6))

return Q



Majority Vote Learning by Direct Minimization of PAC-Bayesian C-Bound 19

D Section 5—Additional Experiments

We report in Figure 2 and Figure 3, the empirical joint error and disagreement
obtained on the different datasets. As for Table 1 and Figure 1, this illustrates
that the solutions found by Alg.3, Masegosa and CB-Boost are similar while
MinCq and 2r provide very different solutions.

CS(Q)

Fig. 2. Representation of all the possible values of the empirical C-Bound CS(Q) in
function of the disagreement dS(Q) (y-axis) and joint error eS(Q) (x-axis). We re-
port the values obtained on different datasets by Alg.3 (�), Masegosa (N), 2r (F),
CB-Boost (•), and MinCq (×).
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CS(Q)

Fig. 3. Representation of all the possible values of the empirical C-Bound CS(Q) in
function of the disagreement dS(Q) (y-axis) and joint error eS(Q) (x-axis). We re-
port the values obtained on different datasets by Alg.3 (�), Masegosa (N), 2r (F),
CB-Boost (•), and MinCq (×).


