
HAL Id: hal-03208794
https://hal.science/hal-03208794

Submitted on 26 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multidisciplinary Design Optimization of a Reusable
Lunar Vehicle

Beauregard Laurent, Annafederica Urbano, Darien Colbeck, Stéphanie
Lizy-Destrez, Joseph Morlier

To cite this version:
Beauregard Laurent, Annafederica Urbano, Darien Colbeck, Stéphanie Lizy-Destrez, Joseph Morlier.
Multidisciplinary Design Optimization of a Reusable Lunar Vehicle. 8th European Conference for
Aeronautics and Aerospace Sciences (EUCASS), Jul 2019, Madrid, Spain. �hal-03208794�

https://hal.science/hal-03208794
https://hal.archives-ouvertes.fr


�

���������	
���������������������	�	�������	���������	�������������
�	������������	��������

��������������	��	��������
�������	������

�
�����������������	���������������������������

������ �	� ��� �
��� ����		� ��
�	������ ����� �������	� ���� ��� � ��� 	���� ������	��

��	�������	������� �	����������������������������������������
�		�������

���	��	���������������������������	����
����	���������

�����������	�
��	��� ��

�

�

�

�

������������ ���

an author's https://oatao.univ-toulouse.fr/27695

 https://doi.org/10.13009/EUCASS2019-863

Laurent, Beauregard and Urbano, Annafederica and Colbeck, Darien and Lizy-Destrez, Stéphanie and Morlier,

Joseph Multidisciplinary Design Optimization of a Reusable Lunar Vehicle. (2019) In: 8th European Conference for

Aeronautics and Aerospace Sciences (EUCASS), 1 July 2019 - 4 July 2019 (Madrid, Spain).



8TH EUROPEAN CONFERENCE FOR AERONAUTICS AND AEROSPACE SCIENCES (EUCASS)

Multidisciplinary Design Optimization of a Reusable Lunar
Vehicle

L. Beauregard1, Dr. A. Urbano1, D. Colbeck2, Dr. S. Lizy-Destrez1, and Prof. Dr. J. Morlier1,3

1Institut Superieur de l’Aeronautique et de l’Espace (ISAE-SUPAERO), Toulouse, France
2Royal Melbourne Institute of Technology, Melbourne, Australia

3 Universite de Toulouse, ISAE-SUPAERO-INSA-Mines Albi-UPS, CNRS UMR5312, Institut Clement Ader, Toulouse, France
laurent.beauregard@isae-supaero.fr

Abstract

The Lunar Orbital Platform-Gateway will be the successor to the ISS and will be placed around the Moon.
To bring crew onto the lunar surface, a lunar lander must be designed and used. This work will present a
system design tool for lunar landers which utilizes OpenMDAO, a multidisciplinary design optimization
library. Moreover, different mission architectures will be compared independently. As a benchmark, a
design for a one-stage LH2/LOX will be produced and compared to an existing design.

1. Introduction

With its end of life approaching, the international community is looking for a replacement to the International Space
Station (ISS). The leading candidate is a space station, called the Lunar Orbital Platform-Gateway (LOP-G) or Gate-
way, placed in a L2 southern Near Rectilinear Halo Orbit (NRHO). The orbit would have a periapsis altitude of 1500
km, an apoapsis altitude of nearly 70,000 km and a period of roughly 6 days and 13 hours. This station would serve
as a hub for human exploration and scientific progress. The NRHO is strategically chosen to have constant Earth
communication, nearly no solar eclipses, low ∆v maintenance cost, high observability of the lunar south pole, relative
ease of access from the Earth and decent access to the lunar surface [20]. A dedicated vehicle will be required to bring
crew and payload on the surface. However no design for this "lunar shuttle" has been chosen yet by the international
community. Objectives for this vehicle are varied but often include the ability to bring 2 to 4 crew members unto the
lunar surface for a duration of 2 to 14 days. The vehicle should have some level of reusability and be refueled at the
LOP-G in between the missions.

The present work focuses on two objectives, first to establish a list of viable mission architectures and the second
is the development of a tool for the preliminary sizing of a lunar lander. To tackle the design of such complex sys-
tems, Multidisciplinary Design Optimization (MDO) has gained significant traction in the past decades and has had a
number of successes in the field of aerospace[12][8]. Application to the space sector has also seen a recent surge of
interest [2][11]. However few research has focused on applying MDO to the design of a reusable lunar lander. In this
work, a MDO software using the OpenMDAO library [9] is used as a preliminary design tool. In chapter 2, the con-
cepts, nomenclature and mathematical framework behind MDO are introduced. In section 3, the different disciplines
of propulsion, trajectory and structure are introduced along with the objective function. Chapter 4 will described the
results obtained: first optimal trajectories will be analyzed, then mission architectures will be optimized independently
and lastly a MDO will be performed for a one-stage LH2/LOx lunar lander and compared to an existing design.
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2. Multidisciplinary analysis and optimization

At the heart of a MDO is the solving of a nonlinear optimization problem, the formulation used in this article is

min
x,y,z

f (x, y, z)

Subject to g(x, y, z) = 0
h(x, y, z) ≥ 0
y = C(x, y, z)
R(x, y, z) = 0

(1)

where x ∈ RN are called the design variables, y ∈ RD are the coupling variables and z ∈ RS are the state variables
f : U f ⊆ R

N × RD × RS → R is the objective function to minimize
g : Ug ⊆ R

N × RD × RS → RMeq are the equality constraints
h : Uh ⊆ R

N × RD × RS → RMineq are the inequality constraints
C : UC ⊆ R

N × RD × RS → RD are the disciplines
R : UR ⊆ R

N × RD × RS → RS are the residuals

The design variables x are independent parameters that can be modified to optimize the system. The coupling variables,
y are outputs of the disciplines. The states variables z are internal parameters that are necessary in the computation of
the various models.

Considering the disciplines C(x, y, z) and residuals variables R(x, y, z), the process of solving for z and y given a choice
of design variables x is called a multidisciplinary analysis (MDA). Such system can be solved in a variety of ways; in
general, a Newton’s method or quasi-Newton’s method is employed to this effect. For the discipline equations C, fixed
point iteration schemes, such as Gauss-Seidel or Jacobi method can be used.

In this article, only monolithic architectures are considered, that is, only one system optimizer is present. Within
monolithic architectures, several methods to optimize the system are applicable. The distinctive feature between these
methods is how the variables y and z are handled by the optimizer, either solving for them explicitly at every step of the
optimization or letting the optimizer handle the variables. These choices separates the architecture into 4 categories,
see table 1

• Multidisciplinary Feasible - MDF

• Individual Discipline Feasible - IDF

• Simultaneous Analysis and Design - SAND

• All-At-Once - AAO

Table 1: Types of monolithic optimizer

y is solved y is free
z is solve MDF IDF
z is free SAND AAO

Whichever architecture is ultimately picked, an optimization algorithm must be chosen, those include BFGS, COBYLA,
CG, Powell, Nelder-Mead and SLSQP among others. The choice of the algorithm depends on the nature of the problem,
the constraints present and whether analytical derivatives are available. Refer to the documentation of the optimization
toolbox of Python for more information[6].

3. Models

To perform multidisciplinary analyses and optimization of the system, models of the subsystems must be chosen, along
with an objective function. For a lunar lander system, 3 main subsystems have been identified: propulsion, trajectory
and structure. These disciplines are coupled through inputs and outputs.

2
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3.1 Propulsion

The working principle of a chemical rocket engine is that reactants are combined in a chamber generating a vast amount
of energy in the form of heat which is then converted to mechanical work by a nozzle. In this work, only liquid-fuel
engines are considered. The objective of the propulsion discipline is to calculate the specific impulse Isp, rocket en-
gine mass MEngine and tank mass Mt from the type of reactants, mixture ratio Rm, combustion chamber pressure Pc,
expansion ratio ε and total propellant Mp. The propulsion module is separated into 3 subdisciplines, the combustion
analysis, the fluid expansion and the tank system.

The state of the art for combustion analysis is the NASA computer program Chemical Equilibrium with Applica-
tions (CEA). Given the fuel type, Rm and Pc, CEA computes the combustion temperature Tc, the adiabatic index γ
and the average molecular weight Mw of the combustion products. Given an expansion ratio, ε, one can solve for the
pressure at the exit, Pe

ε =

√
γ − 1
γ + 1

(
2

γ + 1

) 1
γ−1 1√(

Pe
Pc

) 2
γ
−

(
Pe
Pc

) γ+1
γ

(2)

Where R = 8.314 J
K mol is the ideal gas constant. From the variables above, the speed of the exhaust ve can be found to

be

ve =

√√√
2γ
γ − 1

RTc

Mw

1 − (
Pe

Pc

) γ−1
γ

 (3)

The (vaccum) specific impulse can be found to be

Isp =
1
g0

ve +
RTc

Mwve

(
Pe

Pc

) γ−1
γ

 (4)

In this work, the estimation of the mass of the rocket engines will be based on regression of existing engines. The
choice of the model has an impact on the optimization possibilities, for example, some models includes the effects of
the expansion ratio and some do not. Trying to optimize the expansion ratio with a model that does not accurately take
it into account will result in nonsensical results.

MEngine[kg] = T [N]
(
7.81 × 10−4 + 3.37 × 10−5 √ε

)
+ 59 (5)

MEngine[t] = 0.0135 × N0.4118
eng × T [kN]0.471 × mpropellant[t]0.3574 (6)

MEngine[kg] = 0.00514 × T [N]0.92068 (7)

MEngine[kg] =
T [N]

107.4 ln(T [N]) − 792
(8)

where T is the thrust of the engine, Neng is the number of engines, mpropellant is the mass of propellant. With equations
5, 6, 7 and 8 coming from [1][16][21] and [18] respectively. Other regressions are considered in Castellini [4].

Given a propellant mass Mp and mixture ratio Rm, the mass of fuel MF and oxidizer MO are given by

MF =
1

1 + Rm
Mp (9)

MO =
Rm

1 + Rm
Mp (10)

Tank mass depends on the geometry of the vessel, usual shapes are spheres or cylinders (or shapes approximating
those). The approximate relation between the tank mass, Mt, the pressure of the fluid P, the volume V , the density of
the tank material ρt and the maximum allowable stress σ is given by

Mt = S FcPV
ρt

σ
(11)

where c is a constant that depends on the geometry of the vessel, c = 3/2 for a sphere, c = 2 for a cylinder and S f ∼ 2
is a safety factor. Since the volume of the fuel/oxidizer is given by the total mass of fluid ML divided by its density ρL

a near linear relationship exist between the tank mass and the fuel/oxidizer mass.

Mt =

(
S Fc

P
σ

ρt

ρL

)
ML = αML (12)

3
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This constant can be obtained from various existing tanks [1]

• Hydrogen, α = 0.128

• Liquid oxygen, α = 0.0107

• RP-1, α = 0.0148

• LCH4, α = 0.0287

Table 2: Propusion discipline Input/Output

Inputs Symbol Outputs Symbol
Type of fuel/oxidizer - Combustion temperature Tc

Mixture ratio Rm Product molecular weight Mw

Combustion chamber pressure Pc Adiabatic index γ
Expansion ratio ε Specific impulse Isp

Maximum thrust T Engine mass MEngine
Propellant mass Mp Propellant tank mass Mt

3.2 Trajectory

Efficient ascent and descent trajectories to and from the surface of Moon are primordial for mass saving. The in-
put/output of the trajectory discipline are summarized at the end of this section in table 3. The trajectory can be
modeled in two phases as shown in figure 1.

• Phase 1: Near Rectilinear Halo Orbit (NRHO) to Low Lunar Orbit (LLO).

• Phase 2: LLO to lunar surface

Figure 1: Schematic of the mission

Phase 1’s dynamics can be modeled by the circular restricted three body problem (CR3PB) whose dynamics is given
in a rotating frame by

~̈r = −
µE

|~r − ~rE |
3

(
~r − ~rE

)
−

µM

|~r − ~rM |
3

(
~r − ~rM

)
− ~ω ×

(
~ω × ~r

)
− 2 ~ω × ~̇r (13)

where ~r is the vectorial position of the spacecraft with respect to the Earth-Moon Barycenter, µE and µM are the stan-
dard gravitational constant of the Earth and Moon respectively and ~ω is the vectorial representation of the rotation of
the Earth-Moon system. The thrust to weight ratio (TWR) of the lander is assumed to be greater than one because

4

DOI: 10.13009/EUCASS2019-863



SHORT PAPER TITLE

it is necessary to lift-off from the lunar surface, this allows the maneuvers to be considered impulsive as a first order
estimate. The problem then becomes a boundary value problem. Values of ∆v from the NRHO to LLO varies between
730 m/s to 900 m/s depending on when during a lunar orbit the transfer is performed [20].

Phase 2’s dynamics can be modeled by the following system of differential equations

ṙ = vr (14)

θ̇ =
vt

r
(15)

v̇r =
T
m

sin(α) −
µM

r2 +
v2
θ

r
(16)

v̇t =
T
m

cos(α) −
vtvr

r
(17)

ṁ = −
T
w

(18)

where r is the distance from the craft to the center of the Moon, θ is the angle of the craft with respect to a reference
point on the surface (usually the starting point), vr is the radial component of the velocity, vθ is the tangential compo-
nent of the velocity, µM is the standard gravitational parameter of the Moon, m is the total mass of the system, T is the
thrust generated by the engines, w = Ispg0 is the effective exhaust velocity and α is the pitch angle. Since gravity losses

Figure 2: Geometry of the ascent/descent trajectory variables

are much more important in phase 2 than phase 1, the application of optimal control theory is of greater benefit.

The subject of optimal control is a vast and still is an ongoing area of research. The problem is usually formulated in
the following manner

min
u
{S } (19)

where

S = φ(t f , x f ) +

∫ t f

ti
L (t, x, u) dt (20)

subject to
ẋ = f (t, x, u) (21)
h(t, x(t), u(t)) ≥ 0 (22)
Φ(t f , x f ) ≥ 0 (23)

where S is composed of two costs: φ, the boundary cost and L, the running cost, x are the state variables, u are the
control variables, f (t, x, u) is the dynamics of the states, h(t, x, u) are path constraints and Φ are boundary constraints.
Software developed to solve such problems broadly fall into two main categories: indirect vs direct methods. In this
work, only direct methods will be considered. Direct methods discretizes the dynamics/variables/cost of the system.

5
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This discretized system is then fed into a nonlinear optimizer such as SNOPT or IPOPT. A broad class of algorithms
are called "Pseudospectral methods" where both the states and the control variables are discretized and approximated
by orthogonal polynomials [10].

For the trajectory discipline, the objective function of the optimal control problem only has a boundary term: the
amount of fuel necessary to achieve orbit S = Mp. The system dynamics is given by equations 14 to 18. The only
constraint a priori is r ≥ RMoon, that is, the craft’s trajectory must not intersect the Moon’s surface. The optimal control
was solved with the software "Dymos: Open Source Optimization of Dynamic Multidisciplinary Systems". Transcrip-
tion methods in Dymos include Gauss-Lobatto Collocation and Radau Pseudospectral Method [7]. Two cases will be
considered: without surface obstacles and with obstacles given by an inequality constraints on the trajectory. While
there are many options to take into consideration the obstacles from the terrain [14], one simple way to implement a
trajectory constraint is to set

r(θ) ≥ rconstr(θ) = R +
khmin(Rθ)

k(Rθ) + hmin
(24)

This function has two defining properties: the slope k and the minimum height, hmin

drconstr

d(Rθ)
|θ=0 = k (25)

lim
θ→∞

rconstr = R + hmin (26)

The geometry of the constraint is shown in figure 3.

Figure 3: Geometry of the ascent trajectory with constraints (Not to scale)

Table 3: Trajectory discipline Input/Output

Inputs Symbol Outputs Symbol
Thrust T Propellant mass Mp

Total mass MTotal
Specific impulse Isp

3.3 Structure

The purpose of this discipline is to evaluate the structural mass of the lander. Several models can be employed to model
structural mass, among the simplest one is a fixed proportionality between the structure mass and the total mass of the
system, usually called the structural efficiency σ. Typical values for structural efficiencies of Earth based launchers are

6
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σ ∼ 10% [17]. For lunar landers, different regression models are considered

MStructure[t] = 0.0684
(
mdry[t]1.7851F−0.0645

D + mpayload[t]0.9062
) (H

D

)0.6921

+ 0.4528 (27)

MStructure[t] = 0.1882
(
mdry[t] × FD

)0.2834
+ 0.1055

(H
D

)0.5179

+ 7.0574 × 10−4vH[m3]1.1652 + 0.057 (28)

MStructure[kg] = 0.04928MTotal[kg] + 390 (29)

where vH is the habitable volume, H/D is the height to diameter of the system, FD =
ρB

1150 kg/m3 and ρB is the bulk
density given by

ρB =
1 + Rm
1
ρF

+ Rm
ρO

(30)

where ρF and ρO are the density of the fuel and oxidizer respectively. The regressions in equations 27, 28 and 29 can
be found in [16], [16] and [19] respectively.

Table 4: Structure discipline Input/Output

Inputs Symbol Outputs Symbol
Payload mass T Structure mass MS

Engine mass MEngine
Tank mass Mt

Propellant mass Mp

Mixture ratio Rm

Habitable volume vH

Geometric factors -

3.4 Objective function

In theory, the system should be optimized for the lowest possible cost while respecting the mission constraints. Al-
though cost models have been considered before for launch vehicles [13],they carry larger uncertainties than engineer-
ing models, this is why surrogate variables are usually preferred. For Earth launchers, a common optimization metric is
the total mass of the system MTotal also known as the gross liftoff weight (GLOW) for a fixed payload [3]. For reusable
lunar landers, there seems to be no universally agreed upon metric. To identify a relevant metric, two limiting cases are
considered: when the lunar lander is fully expendable, the metric should scale as the total mass of the system MTotal
and considering an idealized case where the lander is infinitely many times reusable, then the cost should scale as the
proprellant mass used MPropellant. In general, the metric is chosen to be the average mass used per mission, which is a
linear combination of MTotal and MPropellant

fObjective =
MTotal + NReuse × MPropellant

1 + NReuse
(31)

where NReuse is the number of times the lander can be reused.

4. Results

4.1 Trajectory

The two most important parameters that influences the performance of an ascent/descent trajectory are the thrust to
weight ratio (in lunar gravity) and the specific impulse of the vehicle. Without any constraints, the most efficient ascent
trajectory is the one that grazes the lunar surface up to orbital speed followed by a Hohmann transfer to the correct
height. While unreasonable trajectories in themselves, they still provide a lower bound for the ∆v or fuel necessary.
The fuel mass ratio as a function of initial thrust to weight ratio (TWR) and specific impulse is depicted in 4. When
physical obstacles are taken into considerations, the ∆v to reach orbit increases. The results of the optimal control
simulation in Dymos is summarized in figure 5

7
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Figure 4: Fuel fraction necessary to perform an ascent trajectory without constraints

Figure 5: Fuel fraction necessary to perform an ascent trajectory with constraints

4.2 Mission analysis

The primary goal of the vehicle is to bring a payload from the NRHO to the lunar surface and back in orbit, schemat-
ically this is represented by figure 1. Even more abstractly, this mission architecture can be represented by figure 6,
where "1" refers to the first (and only) vehicle. Up to now, only one-stage landers have been considered, however
mission architectures with multiple stages can reduce the total mass of propellant used. The inclusion of multiple
stages implies the non-trivial choice of the best mission architecture. An example of a two stages mission architecture
in shown in figure 7, where double (or triple) lines indicates that two (or three) stages are moving together with the
first number indicating which vehicle is providing the thrust. The number of possible mission architecture depends on
the number of allowed transfers, for example, 5 transfers mean each craft can do a maximum of 5 transfers during the
mission (including being ferried). A minimum of 4 transfers is necessary to perform the mission as one craft must at
least perform the following sequence of transfers:

1) NRHO→ LLO
2) LLO→ Surface
3) Surface→ LLO
4) LLO→ NRHO

The number of possible mission architectures grows very rapidly with the number of allowed transfers as shown in
table 5. However, the way the enumeration of valid mission architecture is done in this work leads to a large number
of equivalent architectures which only differs by rearrangements. The mission architectures should be ranked with
respect to an appropriate objective function (which will be described down below). However, the sheer size of the

8
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Figure 6: Representation of a one-
stage lander mission

Figure 7: Example of a mission ar-
chitecture with two stages

Table 5: Number of valid mission architectures

2 stages 3 stages
# of transfer: 4 419 240,168
# of transfer: 5 4,539 6,749,884
# of transfer: 6 47,110 271,575,898

most numerous case considered (5 transfers, 3 stages) imposes the use of a simple and fast model so as to limit the
computational time. A linear model is finally chosen as described here

M = P + T + F + S (32)
T = αF (33)

F = M
(
1 − e−∆v/w

)
(34)

S = βM (35)

Where P,T, F, S ,M are the payload mass, the fuel tank mass, the fuel mass, the structure mass and the total mass,
α, β,w are the tank mass to fuel mass ratio, the structural index and the effective exhaust velocity respectively. The
advantage of such a simple model is that the whole system can be solved for analytically, the total mass is

M =

(
1

(1 + α)e−∆v/w − α − β

)
P (36)

As mentioned previously, to rank different mission architectures, an objective function must be introduced. The one
chosen in this work is the mass necessary to bring a unit payload from the NRHO to the lunar surface and back. The
mass used depends on whether a given vehicle is reusable or non-reusable, examples are shown in figure 8 and 9. For
reusable vehicles, the mass penalty is given by the mass of propellant used for the mission, for non-reusable vehicles,
the metric is the total mass of the vehicle. While this method attributes the same "cost" to bringing any type of mass to
the NRHO and a more accurate model would give different weights to the type of material that is brought to orbit, it is
reasonable, at first order, to assume the cost of bringing something to the NRHO is dominated by the launch cost. For
this analysis, conservative values for α, β and a methalox value for the effective exhaust velocity w were chosen

α = 0.05 (37)
β = 0.1 (38)
w = 3.6 km/s (39)

The ordering of the best mission architectures are shown in figure 10 and 11, with the best architecture for a 2-stages
and 3-stages architecture shown explicitely in figure 12 and 13. The lowest achievable mass fraction for different
vehicle numbers are given in table 6. While the ordering of mission architectures depends on the values of α, β and w,

9
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Figure 8: Non-reusable architecture Figure 9: Reusable architecture

Table 6: Best mission architectures

Normalized mass used per mission
1 stage 9.217
2 stages 5.096
3 stages 4.522
Theoretical minimum (α = β = 0) 3.482

it is expected that there is no dramatic change in the optimal ordering if these coefficients are changed. The analysis
can be performed again for a different set of constants α, β,w but only considering the N best scenarios found for
the original set of parameters. This process essentially allows the "weeding out" of millions of unreasonable mission
architecture. A more thorough study can then be done on the set of optimal mission architecture.

Figure 10: Best 180 mission profile
for 2 stage architecture

Figure 11: Best 630 mission profile
for 3 stage architecture

4.3 Sizing

Lockheed Martin (LMT) has recently released the design of a one stage LH2/LOX reusable lunar lander [5]. The
MDO tool developed in this work is used to size a one stage LH2/LOX lunar lander to compare to the LMT design.
Since the LMT lander is planned to be used approximately 10 times, the objective function of the MDO will consider
NReuse = 10. The payload of the lander is chosen to be similar to the mass of the Orion capsule plus one ton[15]. The
engine chamber pressure and expansion ratio is set to the RL-10 engines[4]. The optimization variables are the thrust
and mixture ratio. After convergence, a preliminary design is obtained. Table 7 summarizes the results and compares
them with the Lockheed Martin lander.

10
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Figure 12: Best 2 stage architecture
(cost: 5.096)

Figure 13: Best 3 stage architecture
(cost: 4.522)

Table 7: Single stage, LH2/LOX lunar lander

Type Parameter Symbol Value Units LMT Lander
Objective Average mass used fObjective 40.64 t 42

Fixed Payload MPayload 12.0 t -
Fixed Combustion pressure Pc 24.0 bar -
Fixed Expansion ratio ε 40.0 - -

Optimized Thrust T 230.2 kN 266.8
Optimized Mixture ratio Rm 5.17 - -

State Total mass MTotal 56.92 t 62
State Thrust to weight ratio TWR 2.27 - 2.66
State Propellant mass MP 39.01 t 40
State Structure mass MS 3.195 t -
State Tank mass Mt 1.570 t -
State Engine mass MEngine 1.148 t -
State Dry mass MDry 17.91 t 22
State Velocity increment ∆v 5148 m/s 5000
State Specific impulse Isp 453.9 s 450+

State Combustion temperature Tc 3235 K -

5. Conclusion

A tool to obtain preliminary designs of lunar landers was developed based on techniques of multidisciplinary design
optimization. The three disciplines of propulsion, trajectory and structure were discussed and several models were
presented. To compare with the existing Lockheed Martin design, an optimization with respect to the thrust T and
mixture ratio Rm was performed on a one stage LH2/LOX lunar lander, the comparison can be seen in table 7.

An exhaustive search for the best mission architecture was done in parallel to the MDO using a simpler model to
limit the computational time. Scenarios were ordered by the amount of mass necessary to perform the mission. Sce-
narios for 2 and 3 stages architecture using the least amount of mass were identified. While the optimality of the
scenario depends on the coefficient α, β and w of the model, a more thorough analysis can be done on the best mission
architecture obtained so far.

Future work will include higher fidelity models, the addition of more disciplines such as the reaction control system,
fuel feed system (turbopump, pressurization system), cooling system, three dimensional ascent/descent trajectories,
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more accurate gravity models and more accurate vehicle body dynamics, among others. In this work, the optimization
of the mission architecture and the vehicle itself were done independently, the most significant step forward will be the
combining of the mission architecture with the multidisciplinary design optimization. To this end, multi-stage systems
with a framework general enough to include any mission architecture will have to be implemented in OpenMDAO.
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