Revisiting the Properties of Edge-Bridged Bromide TantalumClusters in the Solid-State and in Solution and vice-versa: AnIntertwined Experimental and Modelling Approach

Maxence Wilmet, Clément Lebastard, Flavien Sciortino, Clothilde Comby-Zerbino, Luke

MacAleese, Fabien Chirot, Philippe Dugourd, Fabien Grasset, Yoshitaka Matsushita, Tetsuo

Uchikoshi, Katsuhiko Ariga, Pierric Lemoine, Adèle Renaud, Karine Costuas, Stéphane

Cordier

SUPPORTING INFORMATION

I. Experimental Section

Experimental procedures S2
Figure S1. XRPD Le Bail refinement of $\mathbf{1}$ S6
Figure S2. XRPD Rietveld refinement of $\mathbf{2}_{\gamma} \quad$ S6
Table S1. Refined atomic coordinates of $\mathbf{2}_{\gamma}$. S6
Table S2. Interatomic distances deduced from Rietveld refinement of XRD data S7
Figure S3. XRPD Rietveld refinement of $\boldsymbol{2}_{\beta} \quad$ S8
Figure S4. Thermal gravimetric analysis (TGA) of $\mathbf{2}_{\alpha}$ and $\mathbf{2}_{\beta} \quad$ S8
Figure S5. Comparison of XRPD patterns of $\mathbf{2}_{\alpha}$ and $\mathbf{2}_{\beta}$ at $25^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C} \quad$ S9
Figure S6. Evolution of the XRPD patterns of $\mathbf{2}_{\alpha}$ and $\mathbf{2}_{\beta}$ between $25^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C} \quad \mathrm{S} 10$
Figure S7. Normalized Raman spectra of $\mathbf{2}_{\delta}$ compared with those of $\mathbf{2}_{\alpha}, \mathbf{2}_{\beta} \quad$ S11
Figure S8. Normalized UV-visible spectra of $\mathbf{1}$ in different solvents S11
Figure S9. Normalized UV-visible spectra of $\mathbf{1}$ in water $+\mathrm{SnBr}_{2}$ and $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \quad \mathrm{~S} 11$

II. Computational study

Computational details S13
Tables S3. Cartesian coordinates of the optimized geometries and S14
Figure S10. Simulated Raman spectra of $\left[\left\{\mathrm{Ta}_{6} \mathrm{Br}^{\mathrm{i}}{ }_{12}\right\} \mathrm{Br}^{\mathrm{a}}{ }_{6}\right]^{4-} \quad \mathrm{S} 17$
Table S4. TD-DFT vertical electronic singlet-singlet excitations S17
References S21

Experimental procedures

Synthesis of crude $K_{4}\left[\left\{\mathrm{Ta}_{6} \mathrm{Br}^{i}{ }_{12}\right\} \mathrm{Br}^{a}{ }_{6}\right]$ (1). $\mathbf{1}$ was prepared following a procedure recently described on the basis of early work of the group of McCarley. ${ }^{1} \mathrm{~K}_{4}\left[\left\{\mathrm{Ta}_{6} \operatorname{Br}^{\mathrm{i}}{ }_{12}\right\} \mathrm{Br}^{\mathrm{a}}{ }_{6}\right]$ is obtained by the reduction of tantalum pentabromide $\left(\mathrm{TaBr}_{5}\right)$ powder by tantalum powder in an alkaline medium (KBr) at high temperature under an inert atmosphere. The relative proportion $\mathrm{KBr}: \mathrm{TaBr}_{5}: \mathrm{Ta}$ in this synthesis is 4:14/5:4. Thus, 1.720 g of $\mathrm{TaBr}_{5}(2.97 \mathrm{mmol}$, Alfa Aesar, 99.9% (metals basis)), 0.769 g of Ta (4.25 mmol , Alfa Aesar-325 mesh, Puratronics, 99.97% (metals basis)) and 0.498 g of $\mathrm{KBr}(4.25 \mathrm{mmol}$, Acros Organics, $>99 \%$ (ACS reagent)) were mixed together in a glovebox (Ar atmosphere), put into a silica tube and sealed under vacuum. The $\mathrm{K}_{4}\left[\left\{\mathrm{Ta}_{6} \mathrm{Br}^{\mathrm{i}}{ }_{12}\right\} \mathrm{Br}^{\mathrm{a}}{ }_{6}\right]$ phase was obtained after a heating treatment at $650^{\circ} \mathrm{C}$ for 24 hours in a rocking furnace. X-Ray powder diffraction analysis of the resulting powder (Fig. S1) revealed the presence of $\mathrm{K}_{4}\left[\left\{\mathrm{Ta}_{6} \mathrm{Br}^{\mathrm{i}}{ }_{12}\right\} \mathrm{Br}^{\mathrm{a}}{ }_{6}\right]$ along with an excess of tantalum powder and KBr . This asprepared powder sample is named $\mathbf{1}$ thereafter in the text. Dissolution of $\mathbf{1}$ in solvents deserves to measure the amount of by-products (in particular unreacted KBr and Ta) thanks to the difference in solubility between those by-products and $\mathrm{K}_{4}\left[\left\{\mathrm{Ta}_{6} \mathrm{Br}^{\mathrm{i}}{ }_{12}\right\} \mathrm{Br}^{\mathrm{a}}{ }_{6}\right]$. To do so, 1 g of $\mathbf{1}$ was dissolved under argon atmosphere in dried acetone, in which, Ta (metallic form), KBr , and traces of amorphous inorganic species are hardly soluble. This remaining solid product was recovered, dried and weighted. It corresponds to $33.7 \pm 0.5 \%$ by weight of $\mathbf{1}$ and consequently 1 contains $66.3 \% \pm 0.5 \%$ of $\mathrm{K}_{4}\left[\left\{\mathrm{Ta}_{6} \mathrm{Br}^{\mathrm{i}}{ }_{12}\right\} \mathrm{Br}^{\mathrm{a}}{ }_{6}\right]$. This acetone insoluble powder was recovered and then poured in water in order to estimate the percentage of water-soluble by-products $(\mathrm{KBr}$ and amorphous). The remaining undissolved compound was recovered, dried, weighted and analysed. It corresponds to tantalum powder and represents $12.7 \pm 0.5 \%$ by weight of $\mathbf{1}$. Therefore, the soluble impurities in water correspond to $21.0 \pm 0.5 \%$ of $\mathbf{1}$. These experiments were made several times for different batches of $\mathbf{1}$ prepared in the same experimental conditions and they are reproducible. To conclude, 1 contains in weight $\%: 66.3 \% \pm 0.5 \%$ of
$\mathrm{K}_{4}\left[\left\{\mathrm{Ta}_{6} \mathrm{Br}^{\mathrm{i}}{ }_{12}\right\} \mathrm{Br}^{\mathrm{a}}{ }_{6}\right], 12.7 \pm 0.5 \%$ of Ta and $21.0 \pm 0.5 \%$ of KBr and amorphous water-soluble by-products. It has to be noted that the error bar of 0.5% considers the error on the weight measurements as well as partial dissolution of KBr in acetone in minor amount.

Synthesis of $\mathbf{2}_{\alpha}-\operatorname{Ta}_{6} \mathrm{Br}_{14}-14 \mathrm{H}_{2} \mathrm{O}$. The compound $\mathbf{2}_{\boldsymbol{\alpha}}$ was obtained by the simple dissolution of $\mathbf{1}$ in water, filtration and recrystallization by evaporation in ambient conditions. 100 mg of $\mathbf{1}$ were added in 5 ml of water. Then, after filtration, the solution was let to evaporate in air. Contrarily to the preparation of $\mathbf{2}_{\boldsymbol{\beta}}$ described just below on the basis of a synthesis initially reported by Koknat, ${ }^{35}$ this experimental protocol does not involve any acid. The obtain powder contains KBr impurities ($21.0 \pm 0.5 \%$).

Synthesis of $\boldsymbol{2}_{\boldsymbol{\beta}}-\operatorname{Ta}_{6} B r_{14}-8 \mathrm{H}_{2} \mathrm{O}$. - A protocol derived from that of Messerle and coworkers and McCarley and coworkers was developed. ${ }^{1 \mathrm{c}, 2} 1.5 \mathrm{~g}$ of $\mathbf{1}$ were introduced in 10 ml of degassed water under argon. After 10 hours of stirring, the solution was decanted and filtered under a flux of argon. Then, 225 mg of SnBr_{2} were dissolved in air in 5 ml of concentrated HBr (ACROS Organics ${ }^{\mathrm{TM}}, 48 \mathrm{wt} . \%$ solution in water). After full dissolution, the latter solution was added to the solution of $\mathbf{1}$. Afterwards, this solution was slowly heated to $80^{\circ} \mathrm{C}$ in air under stirring. Heating was stopped after 45 min . A second acidic solution was added and the solution was let to cool down. When the temperature of $30^{\circ} \mathrm{C}$ was reached, a third acidic solution was added and the beaker was put in ice. Microcrystalline powder was recovered after filtration on a glass frit. The powder was then washed with HBr and ether and dried over $\mathrm{P}_{2} \mathrm{O}_{5} ; \mathrm{yield} 0.75 \mathrm{~g}$, 86% subtracting 1 impurities. EDS analysis of heavy elements i.e. Br and Ta for selected crystals from the preparation revealed an average atomic composition of 70% for bromine and 30% for Ta in full agreement with the theoretical one for $\mathrm{Ta}_{6} \mathrm{Br}_{14}(30: 70)$.

Synthesis of $\mathbf{2}_{\gamma}-\mathrm{Ta}_{6} \mathrm{Br}_{14}-7 \mathrm{H}_{2} \mathrm{O} .100 \mathrm{mg}$ of $\mathbf{1}$ were dissolved in 15 mL of acetone and stirred for 24 hours. Then, the solution was centrifuged and supernatant was collected. $200 \mu \mathrm{~L}$ of this solution was poured in a vial. Then, $800 \mu \mathrm{~L}$ of a $1 \mu \mathrm{M}$ solution of cetyltrimethylammonium
chloride was added and the mixture vigorously vortexed. The suspension was let to rest and crystalline sediment powder were obtained within 10 h .

Synthesis of $(T B A)_{2}\left[\left\{T_{6} B r_{12}{ }^{i}\right\} B r^{a}{ }_{6}\right] \mathbf{3}-100 \mathrm{mg}$ of $\mathbf{1}$ were put in 5 mL of acetone and stirred 24 hours under air. The resulting brown solution was filtered. $0.009 \mathrm{~g}\left(2.7210^{-5} \mathrm{~mol}\right)$ of $(\mathrm{TBA}) \mathrm{Br}\left(\mathrm{TBA}^{+}=\left[\mathrm{N}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]^{+}\right)$were added to 2 mL of this solution. The solution was stirred 24 hours under air. The solvent was then evaporated. $(T B A)_{2}\left[\left\{\mathrm{Ta}_{6} \mathrm{Br}^{\mathrm{i}}{ }_{12}\right\} \mathrm{Br}^{\mathrm{a}}{ }_{6}\right]$ was extracted using 3 ml of dichloromethane (the solid precipitate (KBr) was filtered). 7.7 mg of single crystals were obtained by slow diffusion of pentane; yield 19% taking into account $\mathbf{1}$ impurities. Single-crystal X-ray diffraction analysis revealed that $\mathbf{3}$ is strongly structurally correlated to the structure reported by Sokolov et al. and denoted $5 \mathrm{c} .{ }^{3}$

Preparation method of solutions of $\mathbf{1}$ for spectroscopic investigations. They were prepared by dissolution of 20 mg of $\mathbf{1}$ per milliliter of solution. After stirring at $350 \mathrm{tr} / \mathrm{min}$ overnight, the solutions were filtered out to get rid of non-dissolved impurities. In the case of acetone, the dissolution was carried out in dried acetone under argon using Schlenk techniques. After 24 hours, stirring was stopped. After decantation, a green solution is obtained. The green solution turned instantaneously brown when opening the Schlenk tube. When solubilizing 1 in acetone in atmospheric condition using the same protocol, a brown solution is obtained since the early stage of dissolution. The solutions obtained from 1 after filtration in water and acetone will be denoted $\mathbf{1}_{\text {water }}$ and $\mathbf{1}_{\text {acetone }}$ respectively.

Raman solid-state measurements. Raman scattering spectra from $1100 \mathrm{~cm}^{-1}$ to $100 \mathrm{~cm}^{-1}$ were acquired for $\mathbf{1}, \mathbf{2}_{\alpha, \beta, \gamma}$ and $\mathbf{3}$ compounds as powders at room temperature using a LabRamHigh resolution spectrometer coupled with a confocal microscope (Horiba Jobin Yvon), $600 \mathrm{~g} / \mathrm{mm}$ gratings and $10 \times$ objective. A He-Ne 633 nm laser was used for scattering excitation. Raman spectra were recorded at room temperature with 100 s exposition and 2 accumulations. The calibration of the Raman spectrometer was performed using the main Raman band of silicon
wafer ($520 \mathrm{~cm}^{-1}$). A soda-lime glass sample holder was used in all cases except for $\mathbf{2}_{\gamma}$. Indeed, the smaller quantity of $\mathbf{2}_{\gamma}$ synthesized prevent us to use the same sample holder. A silicon monocrystalline sample holder usually used for XRPD data collection was thus utilized. The signal-to-noise ratio obtained is importantly reduced compare to the other recordings.

UV-vis spectrometry. Absorption spectra of the solutions were measured by a highperformance UV-Vis-NIR spectrophotometer Perkin Elmer Cary 5000 in a range $200 \mathrm{~nm}-$ 2000 nm . Internal diffuse reflectance spectra measurements on sample powder were also measured by a UV-Vis-NIR spectrophotometer Varian Cary 5000 in a range $200 \mathrm{~nm}-2000$ nm by means of an integrating sphere. Solutions of $8.5 \times 10^{-8} \mathrm{~mol} . \mathrm{L}^{-1}$ in $\left\{\mathrm{Ta}_{6} \mathrm{Br}^{\mathrm{i}}{ }_{12}\right\}$-containing species.

Mass Spectrometry. Mass spectrometry (ESI-MS) measurements with ionization by electrospray or nanospray source were recorded on a quadrupole time-of-flight mass spectrometer (microtof-Q, Bruker-Daltonics, Bremen, Germany). The samples $\mathbf{1}, \mathbf{2}_{\beta}$, and $\mathbf{3}$ were analyzed both in negative and positive ion mode. Each solution sample was prepared to approximately $50 \mu \mathrm{~mol} . \mathrm{L}^{-1}$ (residual impurities preventing to attain a completely quantitative concentration) in the following different solvents: water, dichloromethane, and acetone. The water solutions were infused directly in an electrospray source using a syringe pump (flow rate $180 \mu \mathrm{~L} . \mathrm{h}^{-1}$) and the ESI process was assisted with a dry gas at $80^{\circ} \mathrm{C}$. The acetone and dichloromethane solutions were infused directly in a nanospray source with dry gas temperature set at $55^{\circ} \mathrm{C}$.

Thermogravimetric analyses (TGA). TGA were performed in air on a Netzsch STA 449 F3 Jupiter thermobalance. The powder samples of 35 mg were loaded in an alumina crucible and heated in N_{2} gas flow at a rate of $1{ }^{\circ} \mathrm{C} \cdot \mathrm{min}^{-1}$ up to $400^{\circ} \mathrm{C}$.

Chemical analyses. Chemical analyses were evaluated on a FlashEA1112Series device from ThermoFinnigan. It is composed of a combustion tube, a chromatographic column and a TCD
detector. Samples were weight with high precision and placed on a tin crucible before being oxidized in a combustion furnace. The generate vapors are then sorted by chromatography. Carbon, hydrogen, nitrogen and suffer proportion are determined thanks to its dedicated calibration curve.

Powder X-Ray diffraction experiments. X-Ray powder diffraction (XRPD) data were collected at room temperature using a Bruker D8 Advance two-circle diffractometer ($\theta-2 \theta$ Bragg-Brentano mode) using $\mathrm{Cu} \mathrm{K} \alpha$ radiation ($\lambda=1.54056 \AA$) equipped with a $\mathrm{Ge}(111)$ monochromator and a Lynx Eye detector. The analyses of the diffraction patterns were performed by profile refinement using the FullProf and WinPlotr software packages. ${ }^{4}$

Temperature dependent X-Ray powder diffraction experiments. XRPD versus temperature were recorded using a Rigaku SmartLab diffractometer using $\mathrm{Cu} \mathrm{K} \alpha_{1}$ radiation ($\lambda=1.54056 \AA$) equipped with a diffracted beam monochromator (Johansson-type X-ray mirror) and a D/teX Ultra 250 detector. XRD profiles were recorded under N_{2} atmosphere. The initial temperature was of $25^{\circ} \mathrm{C}$ and was increased up to $400^{\circ} \mathrm{C}$ by steps of $25^{\circ} \mathrm{C}$, with $3^{\circ} \mathrm{C} / \mathrm{min}$ as a heating rate. At each $25^{\circ} \mathrm{C}$ step, an X-ray powder pattern was recorded between 7° and $100^{\circ}(2 \theta)$ with a scan speed of $4 \% \mathrm{~min}$ and a step of 0.02 deg . The analyses of the diffraction patterns were performed by profile refinement using the FullProf and WinPlotr software packages. ${ }^{4}$

Electrochemical solution measurements. The electrochemical characterization by cyclic voltammetry was performed at room temperature using a conventional three-electrode cell in the Ta_{6}-containing electrolytic solution. This solution consists of 1 mM of $\mathbf{3}$ in a solution of 0.1 M of tetrabutylammonium hexafluorophosphate (TBA)[$\left.\mathrm{PF}_{6}\right]$ in dichloromethane (column chromatography purification). A glassy carbon electrode was used as working electrode, a platinum wire as counter-electrode, and an $\mathrm{Ag} / \mathrm{AgCl}$ electrode as reference electrode. The solution was degassed by N_{2} before performing the electrochemical measurements. It has to be noticed that, even if limited, some solvent evaporation occurs during the measurements leading
to slight changes in the solution concentration. The cyclic voltammetry scans were recorded in a potential window of -0.45 V to 0.45 V versus $\mathrm{Ag} / \mathrm{AgCl}$ at $0.1 \mathrm{~V} . \mathrm{s}^{-1}$ using a Metrohm Autolab PGSTAT30. Negative potentials were applied from the initial equilibrium potential (around 0.25 V vs Ag/ AgCl) leading to anodic currents.

Determination of $\mathbf{2}_{\alpha}$ and $\mathbf{2}_{\beta}$ number of water molecules based on temperature-dependent XRPD and TGA measurements. The determination of water content in $\mathbf{2}_{\alpha}$ and $\mathbf{2}_{\beta}$ was done by combining temperature dependent and thermogravimetric analyses (TGA) (Fig. S5, S6, S7). For both $\mathbf{2}_{\alpha}$ and $\mathbf{2}_{\beta}$, a structural transition towards a same phase $\mathbf{2}_{\delta}$ is observed. A closer look to the temperature-dependent XRPD patterns shows that this phase transition is completed at different temperatures, starting at $175^{\circ} \mathrm{C}$ and $125^{\circ} \mathrm{C}$ for $\mathbf{2}_{\alpha}$ and $\mathbf{2}_{\beta}$ respectively. The two main diffraction peaks of $\mathbf{2}_{\delta}$ are shifted to higher angles compared to the two main peaks of $\mathbf{2}_{\alpha}$ and $\mathbf{2}_{\beta}$. Such a shift indicates a contraction of the unit cell concomitant with the loss of water molecules. Above $275^{\circ} \mathrm{C}$, the two main diffraction peaks of $\mathbf{2}_{\delta}$ disappear, indicating decomposition to amorphous phases. TGA experiments under N_{2} for $\mathbf{2}_{\alpha}$ and $\mathbf{2}_{\beta}$ are shown in Figure S5. In order to facilitate the comparison, the results of $\mathbf{2}_{\alpha}$ are corrected by removing the impurities from the global mass of the sample. The resulting plots reveal that the structural transitions $\mathbf{2}_{\alpha} / \mathbf{2}_{\delta}$ and $\mathbf{2}_{\beta} / \mathbf{2}_{\delta}$ are associated with a weight loss of roughly 6.9% and 3.5%, respectively, attributed to the loss of different amounts of water molecules.

In the following demonstration, we will consider the general formula $\left[\left\{\mathrm{Ta}_{6} \mathrm{Br}_{12}\right\} \mathrm{Br}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot \mathrm{xH}_{2} \mathrm{O}$ for both systems. $\mathbf{2}_{\alpha}$ and $\mathbf{2}_{\beta}$ contain $\mathrm{x}_{2 \alpha}$ and $\mathrm{x}_{2 \beta}$ crystallization water molecules, respectively. Contrarily to $\mathbf{2}_{\beta}, \mathbf{2}_{\alpha}$ samples contain KBr and water-soluble amorphous phases. These differences of initial sample compositions were taken into account in our calculations of $\mathrm{x}_{2 \alpha}$ and $\mathrm{x}_{2 \beta}$. The total weight loss for $\left[\left\{\mathrm{Ta}_{6} \mathrm{Br}_{12}\right\} \mathrm{Br}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot \mathrm{xH}_{2} \mathrm{O}$ could correspond either to the loss of the x crystallization water molecules or to the loss of both the x crystallization water molecules and the 4 apical water molecules directly coordinated to the
cluster units. Considering the TGA of $\mathbf{2}_{\beta}$, values of $\mathbf{x}_{2 \beta}$ up to 8 were tested considering these two schemes of water loss. The best fit allows to conclude that the decrease of weight of 3.5% corresponds to the loss of $4 \mathrm{H}_{2} \mathrm{O}$ crystallization molecules for the formula $\left[\left\{\mathrm{Ta}_{6} \mathrm{Br}_{12}\right\} \mathrm{Br}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$. Considering the TGA analyses of $\boldsymbol{2}_{\alpha}$, values of $\mathrm{x}_{2 \alpha}$ up to 12 were tested considering the two schemes of water loss. The best fit allows to conclude that the decrease of weight of 6.9% occurs to the loss of $10 \mathrm{H}_{2} \mathrm{O}$ crystallization molecules for the formula $\left[\left\{\mathrm{Ta}_{6} \mathrm{Br}_{12}\right\} \mathrm{Br}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 10 \mathrm{H}_{2} \mathrm{O}$. In those models, the loss of all the crystallization water molecules (10 for $\mathbf{2}_{\alpha}$ and 4 for $\mathbf{2}_{\beta}$) leads to the same $\left[\left\{\mathrm{Ta}_{6} \mathrm{Br}_{12}\right\} \mathrm{Br}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$ formula for the compound which is labelled $\mathbf{2}_{\delta}$. Considering that the evaporation of a different number of crystallization water molecules requests different amounts of energy, the different $\mathbf{2}_{\alpha} / \mathbf{2}_{\delta}$ and $\mathbf{2}_{\beta} / \mathbf{2}_{\delta}$ transition temperatures detected by high temperature XRPD analyses can be explained by a kinetic effect.

Figure S1. Le Bail refinement of the XRPD pattern of 1 recorded at room temperature.

Figure S2. Rietveld refinement of the XRPD pattern of the $\mathbf{2}_{\gamma}$ sample recorded at room temperature.
Table S1. Refined atomic coordinates of the $\mathbf{2}_{\gamma}$ compound obtained from Rietveld refinement of the room temperature XRPD pattern.

Atom	Site	X	y	z	SOF
Ta1A	$6 k$	$0.222(3)$	0	$0.192(3)$	0.33
Ta1B	$6 k$	$0.164(2)$	0	$0.103(2)$	0.67
Br1A	$6 k$	$0.120(5)$	0	$0.812(5)$	0.33
Br1B	$6 k$	$0.211(2)$	0	$0.662(3)$	0.67
Br 2	$6 i$	$0.211(1)$	$0.789(1)$	0	1.00
Br 3	$6 k$	$0.414(5)$	0	$0.314(5)$	0.33
O 1	$6 k$	$0.368(10)$	0	$0.417(12)$	0.67
O 2	$6 j$	$0.156(6)$	$0.844(6)$	$1 / 2$	0.50

Table S2. Interatomic distances (\AA) in the motif $\left[\left\{\mathrm{Ta}_{6} \mathrm{Br}_{12}\right\} \mathrm{Br}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$ deduced from Rietveld refinement of the room temperature XRD data of $\mathbf{2}_{\gamma}$.

Ta1A-Ta1B	$3.392(30)(\times 4)$
	$3.307(33)(\times 4)$
Ta1B-Ta1B	$2.793(22)(\times 2)$
	$2.463(24)(\times 2)$
$\overline{d_{T a-T a}}$	3.11
Ta1A-Br1B	$2.501(3)(\times 4)$
Ta1A-Br2	$2.664(9)(\times 4)$
Ta1B-Br1A	$1.636(13)(\times 4)$
Ta1B-Br1B	$2.837(10)(\times 4)$
Ta1B-Br2	$2.516(7)(\times 8)$
$\overline{d_{T a-B r^{l}}}$	2.45
Ta1A-Br3	$2.18(8)$
Ta1A-O1	$2.49(17)$
Ta1B-Br3	$3.11(7)$
Ta1B-O1	$3.47(16)$
$\overline{d_{T a-X^{a}}}$	3.00

Figure S3. Le Bail refinement of the room temperature XRPD pattern of the large batch of $\mathbf{2}_{\beta}$ powder.

Figure S4. Thermal gravimetric analysis (TGA) of $\mathbf{2}_{\alpha}$ (top) and $\mathbf{2}_{\beta}$ (bottom). For sake of comparison between the two systems, the TGA results $\mathbf{2}_{\alpha}$ were corrected to take into account the presence of impurities in the sample: [Weight loss $(\mathrm{T})]=[$ Measured weight $\operatorname{loss}(\mathrm{T})]+1324 \cdot[$ Measured weight $\operatorname{loss}(\mathrm{T})] / \mathrm{M}\left(\mathbf{2}_{\boldsymbol{a}}\right)$

Figure
Figure S5. Top: XRPD pattern recorded at $25^{\circ} \mathrm{C}$ on alumina holders of powders of $\boldsymbol{2}_{\alpha}$ in black and $\boldsymbol{2}_{\beta}$ in red. Bottom: XRPD pattern recorded at $400^{\circ} \mathrm{C}$ on alumina holders of $\mathbf{2}_{\alpha}$ in black and $\mathbf{2}_{\beta}$ in red (following the temperature increase procedure described in the main text). Blue dots: $\mathrm{Al}_{2} \mathrm{O}_{3}$. Black square: KBr .

Figure S6. XRPD patterns recorded under N_{2} atmosphere from $25^{\circ} \mathrm{C}$ to $400^{\circ} \mathrm{C}$ on alumina holders of $\boldsymbol{2}_{\alpha}$ (top left) and $\boldsymbol{2}_{\beta}$ (bottom left). Comparison of XRPD patterns in the 2θ domain $7-23^{\circ}$ of $\boldsymbol{2}_{\alpha}$ (blue) and $\mathbf{2}_{\beta}$ (red) recorded at temperatures ranging from $25^{\circ} \mathrm{C}$ to $225^{\circ} \mathrm{C}$ (right).

Figure S7. Left: normalized Raman spectra of $\mathbf{2}_{\delta}$ obtained by heating of $\mathbf{2}_{\alpha}$ at $175^{\circ} \mathrm{C}$. Right: comparison between of $\boldsymbol{2}_{\alpha}, \boldsymbol{2}_{\beta}$ and $\boldsymbol{2}_{\delta}$ obtained by heating i) $\boldsymbol{2}_{\alpha}$ at $175^{\circ} \mathrm{C}$ and ii) two different batches of $\boldsymbol{2}_{\beta}$ at 125° C.

Figure S8. Normalized UV-visible absorption spectra of solution 1 at RT in water (blue spectrum), methanol (orange spectrum), ethanol (green spectrum), acetone (red spectrum).

Figure S9. Normalized UV-visible absorption spectra of solution 1 at RT in water (blue spectrum). Left: addition of SnBr_{2} in excess. Right: addition of 0.5 to 4 equivalent of $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$.

Computational details.

Molecular density functional (DFT) calculations were carried out using the Amsterdam Density Functional (ADF 2019) suite of programs developed by Baerends and co-workers. ${ }^{5}$ The revPBE exchange and correlation nonlocal gradient corrections ${ }^{6}$ were added to the local density approximation description. ${ }^{7}$ Relativistic effects were treated at the first-order of perturbation theory using a ZORA Hamiltonian. ${ }^{8}$ The all-electron ADF QZ4P Slater-type atomic basis set was used, i.e. a quadruple- ζ STO basis set completed with four polarization functions. This procedure was successfully employed to study the ground state and optical properties of $\left[\left\{\mathrm{Mo}_{6} \mathrm{Br}^{\mathrm{i}}{ }_{8}\right\} \mathrm{Br}^{\mathrm{a}}{ }_{6}\right]^{2-}$ and $\left[\left\{\mathrm{Mo}_{6} \mathrm{Br}^{\mathrm{i}}{ }_{8}\right\}(\mathrm{NCS})^{\mathrm{a}}{ }_{6}\right]^{2-}$ metal cluster in good agreement with experimental results. ${ }^{9}$ Geometry optimizations of the cluster units were performed without symmetry constraint. If the final geometries were presenting symmetry elements (variation of distances $<$ $0.001 \AA$), the symmetry was later imposed (validation by checking of total energy). For the oxidized compounds (valence electron concentration $(\mathrm{VEC})=14$), the triplet spin state configurations were calculated. They are less stable in energy in all cases and thus they were not investigated further. Vibrational frequency calculations were performed to check the local minimum character of all systems. Raman (laser frequency $1.958 \mathrm{eV} / 633 \mathrm{~nm}$), IR, and UVvisible spectroscopic properties were simulated using the modules provided in ADF Modeling suite. Dispersion correction developed by Grimme and collaborators was added to the total bonding energy and gradients when "Grimme" is stipulated in the text. ${ }^{10}$ Conductor-like screening model of solvation (COSMO, water or acetone solvent effect) was used when specified for geometry optimizations and TD-DFT calculations. ${ }^{11}$ The Cartesian coordinates of all optimized structures are given in Table S3.

Table S3. Cartesian coordinates of the optimized geometries [$\left.\left\{\mathrm{Ta}_{6} \mathrm{Br}^{\mathrm{i}}{ }_{12}\right\} \mathrm{Br}^{\mathrm{a}}{ }_{6}\right]^{4-}(\mathrm{n}=2-4)\left(O_{h}\right.$ symmetry), $\left[\left\{\mathrm{Ta}_{6} \mathrm{Br}^{\mathrm{i}}{ }_{12}\right\}\left(\mathrm{H}_{2} \mathrm{O}\right)^{\mathrm{a}}{ }_{4}\right]^{2+}$, $\left[\left\{\mathrm{Ta}_{6} \mathrm{Br}^{\mathrm{i}}{ }_{12}\right\}(\mathrm{OH})^{\mathrm{a}}{ }_{6}\right]^{4-}$, $\left[\left\{\mathrm{Ta}_{6} \mathrm{Br}^{\mathrm{i}}{ }_{12}\right\}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{\mathrm{a}}\right]^{2+}$, $\left[\left\{\mathrm{Ta}_{6} \mathrm{Br}^{\mathrm{i}}{ }_{12}\right\}\right.$ trans $\left.(\mathrm{OH})^{\mathrm{a}}{ }_{2}\left(\mathrm{OH}_{2}\right)^{\mathrm{a}}{ }_{4}\right]$, $\left[\left\{\mathrm{Ta}_{6} \mathrm{Br}^{\mathrm{i}}{ }_{12}\right\}\right.$ trans $\left.-\mathrm{Br}^{\mathrm{a}}{ }_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)^{\mathrm{a}}{ }_{4}\right],\left[\left\{\mathrm{Ta}_{6} \mathrm{Br}^{\mathrm{i}}{ }_{12}\right\}\right.$ trans $\left.-\mathrm{Br}^{\mathrm{a}}{ }_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)^{\mathrm{a}}{ }_{4}\right] .4 \mathrm{H}_{2} \mathrm{O}$ (Grimme)

$\left[\left\{\mathrm{Ta}_{6} \mathrm{Br}^{\mathrm{i}}{ }_{12}\right\} \mathrm{Br}^{\mathrm{a}}{ }_{6}\right]^{4-}$			
Ta	0.0000000	-2.094874	0.000000
Ta	-2.094874	0.000000	0.000000
Ta	0.000000	2.094874	0.000000
Ta	0.000000	0.000000	2.094874
Ta	2.094784	0.000000	0.000000
Ta	0.000000	0.000000	-2.094874
Br	-2.597091	0.000000	2.597091
Br	2.597001	2.597091	0.0000000
Br	0.000000	-2.597091	2.597091
Br	2.597091	0.000000	2.597091
Br	2.597091	0.000000	-2.597091
Br	0.000000	2.597091	2.597091
Br	0.000000	5.800565	0.000000
Br	0.000000	0.000000	5.080565
Br	0.000000	0.000000	-5.080565
Br	-2.597091	-2.597091	0.000000
Br	2.597091	2.597091	0.000000
Br	-2.597091	-2.597091	0.000000
Br	0.000000	2.597091	-2.597091
Br	5.080565	0.000000	0.000000
Br	-2.597091	0.000000	-2.597091
Br	0.000000	-2.597091	-2.597091
Br	-5.080565	0.000000	0.000000
Br	0.000000	-5.080565	0.000000

$\left[\left\{\mathrm{Ta}_{6} \mathrm{Br}^{\mathrm{i}}{ }_{12}\right\} \mathrm{Br}^{\mathrm{a}}{ }_{6}\right]^{3-}$			
Ta	0.000000	2.133188	0.000000
Ta	0.000000	0.000000	-2.133188
Ta	0.000000	0.000000	2.133188
Ta	2.133188	0.000000	0.000000
Ta	0.000000	-2.133188	0.000000
Ta	-2.133188	0.000000	0.000000
Br	2.587910	0.000000	2.587910
Br	2.587910	0.000000	-2.587910
Br	0.000000	0.000000	4.985836
Br	-2.587910	2.587910	0.000000
Br	2.587910	2.587910	0.000000
Br	0.000000	4.985836	0.000000
Br	0.000000	-2.587910	-2.587910
Br	-2.587910	0.000000	2.587910
Br	0.000000	2.587910	2.587910
Br	0.000000	2.587910	-2.587910
Br	0.000000	-2.587910	2.587910
Br	2.587910	-2.587910	0.000000
Br	4.985836	0.000000	0.000000
Br	0.000000	-4.985836	0.000000
Br	-2.587910	0.000000	-2.587910
Br	0.000000	0.000000	-4.985836
Br	-4.985836	0.000000	0.000000
Br	-2.587910	-2.587910	0.000000

$\left[\left\{\mathrm{Ta}_{6} \mathrm{Br}^{\mathrm{i}}{ }_{12}\right\} \mathrm{Br}^{\mathrm{a}}{ }_{6}\right]^{2-}$			
Ta	0.0000000	-2.169160	0.000000
Ta	-2.169160	0.000000	0.000000
Ta	0.000000	2.169160	0.000000
Ta	0.000000	0.000000	2.169160
Ta	2.169160	0.000000	0.000000
Ta	0.000000	0.000000	-2.169160
Br	2.578595	0.000000	2.578595
Br	2.588595	2.578595	0.00000
Br	0.000000	-2.578595	2.578595
Br	2.578595	0.000000	2.578595
Br	2.578595	0.000000	2.578555
Br	0.000000	2.578595	2.578595
Br	0.000000	4.934172	0.000000
Br	0.000000	0.000000	4.934172

Br	0.000000	0.000000	-4.934172
Br	2.578595	-2.578595	0.000000
Br	-2.578595	2.578595	0.000000
Br	-2.578595	-2.578595	0.000000
Br	0.000000	2.578595	-2.578595
Br	-4.934172	0.000000	0.000000
Br	-2.578595	0.000000	-2.578595
Br	0.000000	-2.578595	2.578595
Br	-4.934172	0.000000	0.000000
Br	0.000000	-4.934172	0.000000
$\left[\left\{\mathrm{Ta}_{6} \mathrm{Br}^{\mathrm{i}}{ }_{12}\right\}\left(\mathrm{H}_{2} \mathrm{O}\right)^{\mathrm{a}}{ }_{4}\right]^{2+}$			
Ta	-0.054398	-1.957554	0.166744
Ta	0.039736	0.068474	2.179264
Ta	-2.091675	0.046325	0.152964
Ta	-0.066335	-0.067177	-1.976182
Ta	0.027943	1.958771	0.036308
Ta	2.065091	-0.045241	0.050131
Br	-0.000406	-2.540746	2.732371
Br	0.110180	2.707707	2.557710
Br	-2.612834	-2.567761	0.254983
Br	2.475624	-2.679170	0.122638
Br	-2.530584	0.141431	2.751143
Br	-2.665740	-0.026718	-2.416811
Br	2.503991	-0.139885	-2.548198
Br	-2.502307	2.680504	0.080312
Br	-0.025929	2.542209	-2.529301
Br	-0.136390	-2.706206	-2.354682
Br	2.586707	2.568975	-0.051963
Br	2.638995	0.028428	2.620143
H	-0.165520	-0.613635	5.072733
H	-4.947028	0.869109	-0.087938
H	4.920000	-0.860739	0.314512
H	0.129316	0.616787	-4.870056
O	0.154615	0.145287	4.555852
H	-0.152454	0.940626	5.023535
O	4.441561	-0.103842	-0.064657
H	4.949977	0.688292	0.179730
H	-4.976812	-0.683324	-0.001459
O	-0.182189	-0.145212	-4.352384
H	0.131360	-0.937569	-4.820819
0	-4.468834	0.100866	0.268062
$\left[\left\{\mathrm{Ta}_{6} \mathrm{Br}^{\mathrm{i}}{ }_{12}\right\}(\mathrm{OH})^{\mathrm{a}}{ }_{6}\right]^{4-}$			
Ta	-0.007826	0.017273	2.131541
Ta	-2.131380	-0.011281	-0.019040
Ta	0.022467	-2.131411	0.005854
Ta	2.131425	0.011138	0.019158
Ta	-0.022560	2.131447	-0.005969
Ta	0.007943	-0.017187	-2.131398
Br	-0.000295	-2.645854	2.735962
Br	-0.012704	2.658356	2.658851
Br	-2.639163	-2.742744	0.001645
Br	-2.738447	-0.010976	2.643642
Br	2.639115	2.742636	-0.001954
Br	2.738619	0.010804	-2.643451
Br	-0.000093	2.646043	-2.736145
Br	-2.664760	2.652421	-0.005689
Br	-2.656596	-0.010485	-2.660359
Br	0.012886	-2.658073	-2.659129
Br	2.664669	-2.652492	0.006257
Br	2.656722	0.010157	2.660576
O	-0.046447	0.108729	4.246108
H	0.005653	-0.808752	4.555539
O	4.245767	0.052783	0.112622
H	4.556141	0.004132	-0.804725
O	0.119064	-4.245764	0.042117
H	-0.797773	-4.557317	-0.008511

O	0.046414	-0.108311	-4.245907	Br	0.17443222	2.64744479	2.64597790
H	-0.005132	0.809253	-4.555162	Br	-2.68595695	-2.51063251	0.32464715
O	-4.245722	-0.053089	-0.112468	Br	2.56849694	-2.61353330	0.04411002
H	-4.555915	-0.004589	0.804955	Br	-2.47360343	0.13449256	2.84115126
O	-0.119442	4.245744	-0.042727	Ta	-2.04131721	0.04192293	0.21369634
H	0.797371	4.557404	0.007807	Ta	-0.12709619	-0.06082474	-1.92574532
				Br	-2.75579391	-0.02834304	-2.35943448
$\left[\left\{\mathrm{Ta}_{6} \mathrm{Br}^{\mathrm{i}}{ }_{12}\right\}(\mathrm{OH})^{\mathrm{a}}\right]^{2-}$				Br	2.44641504	-0.13186136	-2.63848513
Ta	0.094955	-2.180399	0.211295	Br	-2.59464360	2.61700307	0.15897790
Ta	-0.379249	0.163968	2.117666	H	-0.25858050	-0.60159770	4.94016483
Br	0.282919	-2.394085	2.840800	H	-4.81447882	0.84972490	-0.14199314
Br	-0.642712	2.818004	2.325144	H	4.78605519	-0.85961119	0.31366063
Br	-2.454992	-2.836717	-0.150018	Ta	0.02452553	2.14026060	0.03254717
Br	2.717949	-2.402937	0.588729	Br	-0.10932834	2.48385165	-2.60564475
H	0.388861	-4.709530	-0.304383	Br	-0.20134819	-2.64412518	-2.44338695
Br	-3.075714	-0.049393	2.169659	Br	2.65820988	2.51413575	-0.12169116
Ta	-2.231018	-0.201077	-0.337983	H	0.24639107	0.59983663	-4.73567288
Ta	0.277245	-0.192694	-2.109766	Br	2.72858887	0.03125405	2.56236655
Br	-2.235276	-0.413226	-2.960733	Ta	2.01422457	-0.03788435	-0.01084230
Br	2.973754	0.020723	-2.161749	O	0.26149670	0.13679208	4.57794157
Br	-2.819914	2.374253	-0.580772	H	-0.18306101	0.94536247	4.88726866
H	-4.788834	-0.380160	0.055334	O	4.46311830	-0.08031479	-0.17169183
Ta	-0.196906	2.151687	-0.203427	H	4.81333585	0.68996008	0.30888800
Br	0.181009	2.365358	-2.832920	Br	0.07263875	4.82720489	-0.05314323
Br	0.540738	-2.846699	-2.317276	O	-0.28744806	-0.12911395	-4.37440581
Br	2.353021	2.808001	0.157944	H	0.14313210	-0.94551955	-4.68318487
Br	2.133283	0.384560	2.968648	O	-4.49088681	0.09049710	0.37360251
Ta	2.129048	0.172370	0.345895	H	-4.84040728	-0.69840320	-0.07641058
O-	0.735562	0.446274	4.143074	Br	-0.09925333	-4.82313501	0.25613416
H	0.584495	-0.362733	4.653863	[$\left\{\mathrm{Ta}_{6} \mathrm{Br}^{\text {i }}{ }_{12}\right\}$ trans $\left.-\mathrm{Br}^{\mathrm{a}} 2^{(} \mathrm{H}_{2} \mathrm{O}\right)^{\mathrm{a}}{ }_{4}$] $\cdot 4 \mathrm{H}_{2} \mathrm{O}$ Grimme			
O	4.151591	0.349472	0.760069				
H	4.686863	0.351488	-0.047413	Ta	-0.008606	-2.142842	0.025656
O-	0.322813	4.199714	-0.511423	Ta	0.230854	-0.072407	2.052081
H	0.490966	4.680802	0.312206	Br	0.213920	-2.640996	2.607556
O	0.633544	-0.475051	-4.135172	Br	0.342176	2.485448	2.619117
H	0.483348	0.334176	-4.645868	Br	-2.603323	-2.568235	0.251080
O	-4.253564	-0.378182	-0.752148	Br	2.564953	-2.666345	-0.241139
0	0.220875	-4.228429	0.519274	Br	-2.281408	-0.026964	2.855399
				Ta	-1.993885	-0.022782	0.232860
$\left[\left\{\mathrm{Ta}_{6} \mathrm{Br}^{\mathrm{i}}{ }_{12}\right\}\left(\mathrm{OH}_{2}\right)^{\mathrm{a}}\right]^{2+}$				Ta	-0.174861	-0.049189	-1.991900
				Br	-2.795684	-0.000908	-2.280940
Ta	0.039490	0.069295	2.179465	Br	2.337640	-0.096970	-2.794317
Br	-0.000706	-2.540395	2.733599	BrH	-2.516045	2.547660	0.307078
Br	0.110061	2.708769	2.557797		0.094899	-0.863093	4.817999
Br	-2.613707	-2.567877	0.255564	H H	-4.758915	0.789733	0.087830
Br	2.475448	-2.679706	0.123063	H Ta	4.811525	-0.912815	-0.029817
Br	-2.531257	0.141418	2.751515		0.056315	2.025045	0.034593
Ta	-2.092079	0.046718	0.152977	Ta	-0.159277	2.517609	-2.549057
Ta	-0.066573	-0.067124	-1.976041	Br	-0.282265	-2.606317	-2.560350
Br	-2.666078	-0.026551	-2.417305	Br	2.651883	2.456381	-0.204606
Br	2.503977	-0.139856	-2.548341	H Br	-0.030870	0.739887	-4.758021
Br	-2.502899	2.681192	0.080620	Br	2.850773	-0.117939	2.340306
H	-0.138288	-0.616182	5.074262	Ta	2.047898	-0.096224	-0.172759
H	-4.947196	0.867609	-0.095840		0.510186	-0.086545	4.403773
H	4.918644	-0.865329	0.304543	O O H	0.097217	0.680701	4.836180
Ta	0.027694	1.959303	0.036339	O	4.399615	-0.138068	-0.450289
Br	-0.026367	2.542743	-2.529641	H	4.832577	0.630622	-0.040111
Br	-0.136992	-2.706620	-2.354544	H	-4.777504	-0.753989	0.107266
Br	2.586802	2.569388	-0.051868	O	-0.450328	-0.034313	-4.343863
H	0.130801	0.617535	-4.869020	H	-0.034878	-0.803712	-4.770341
Br	2.639285	0.029058	2.620289	O	-4.345632	0.018009	0.512533
Ta	2.064795	-0.045158	0.050229	Br	0.110522	4.835230	0.028492
O	0.155967	0.151894	4.555414		-0.068650	-4.958212	0.045317
H	-0.175206	0.937656	5.022866	Br	3.115676	6.405802	-0.577190
O	4.441155	-0.103426	-0.065721	O	3.343426	6.469177	-1.519082
H	4.949537	0.685235	0.189747	H	2.326579	5.822660	-0.570734
H	-4.976958	-0.684070	0.003516	H	-1.719911	5.087164	-1.643800
O	-0.181751	-0.144564	-4.352145	O	-2.426826	5.322715	-2.280348
H	0.132032	-0.936875	-4.820501	H	-2.467181	6.290730	-2.216867
O	-4.469073	0.102379	0.266628	H	-2.956196	-6.587002	1.885748
	-4.469073		0.266628	O	-3.035109	-5.636358	1.702777
[$\left.\mathrm{Ta}_{6} \mathrm{Br}^{\mathrm{i}}{ }_{12}\right\}$ trans $\left.-\mathrm{Br}^{\mathrm{a}}{ }_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)^{\mathrm{a}} 4\right]$				H	-2.202672	-5.429680	1.226759
				O	2.644902	-5.428914	2.201397
Ta	-0.05146202	-2.13619752	0.17041237	H	1.845540	-5.235751	1.671759
Ta	0.10005900	0.06458975	2.12874986	H	2.715592	-6.395884	2.143649
Br	0	-2				-6.395884	2.143640

$\left[\left\{\mathrm{Ta}_{6} \mathrm{Br}^{\mathrm{i}}{ }_{12}\right\}\left(\mathrm{OH}_{2}\right)^{\mathrm{a}}{ }_{5}(\mathrm{OH})^{\mathrm{a}}{ }_{1}\right]^{1+}$			
Ta	0.147395		
Ta	0.054248	0.124065	0.284080
Br	0.222021	-2.25830	2.106958
Br	-0.100970	2.859112	2.982105
Br	-2.455033	-2.722882	2.390533
Br	2.820936	-2.378047	0.405914
H	-0.346513	-4.711963	0.5466103
H	0.208987	4.943152	0.279289
Br	-2.524616	0.123112	2.731525
Ta	-2.026779	-0.129724	0.131101
Ta	-0.039104	-0.198192	-1.96010
Br	-2.643922	-0.402092	-2.441332
Br	2.540507	-0.085382	-2.597132
Br	-2.755432	2.413713	-0.107779
H	0.833813	1.043831	4.825492
H	-4.871922	0.547913	0.474652
H	4.883796	-0.527019	0.152679
Ta	-0.128324	2.033600	-0.129736
Br	-0.227480	2.342382	-2.766515
Br	0.097757	-2.797306	-2.333342
Br	2.429411	2.742771	-0.268832
H	-0.014084	-1.286211	-4.67651
Br	2.661920	0.441400	2.578779
Ta	2.044700	0.122853	0.009797
O	0.056325	0.545764	4.517717
H	0.097683	-0.309019	4.983432
O	4.468708	0.338114	-0.017310
H	4.803417	0.613648	-0.888862
O	-0.347418	4.45031	-0.34063
H	-0.115727	4.778436	-1.228305
O	-0.048548	-0.354186	-4.395449
H	-0.864960	0.002230	-4.787524
O	-4.453177	-0.266672	0.145824
H	-4.795716	-0.983442	0.707598
O	0.394440	-4.096010	0.478853

$\left[\left\{\mathrm{Ta}_{6} \mathrm{Br}^{\mathrm{i}}{ }_{12}\right\} \text { trans }-(\mathrm{OH})^{\mathrm{a}}{ }_{2}\left(\mathrm{OH}_{2}\right)^{\mathrm{a}}{ }_{4}\right]^{0}$			
Ta	-0.190684	-2.133522	0.007868
Ta	0.035662	-0.05567	2.100356
Br	-0.205944	-2.626805	2.658923
Br	0.296251	2.477797	2.80977
Br	-2.848731	-2.333013	0.046101
Br	2.419678	-2.818369	-0.064155
H	-1.107147	-4.596154	0.052158
Br	-2.564467	0.168533	2.721903
Ta	-2.013589	0.182606	0.101885
Ta	-0.023645	0.075022	-1.957051
Br	-2.641647	0.333394	-2.497186
Br	2.561211	-0.169735	-2.597803
Br	-2.422651	2.802999	0.186323

Figure S10. Simulated Raman spectra obtained using the geometry issued from the X-ray structure and the optimized geometries of $\left[\left\{\mathrm{Ta}_{6} \mathrm{Br}^{\mathrm{i}}{ }_{12}\right\} \mathrm{Br}^{\mathrm{a}}{ }_{6}\right]^{4-}\left(O_{h}\right.$ symmetry $)$.

Table S4. Main TD-DFT vertical electronic singlet-singlet excitation energies (eV) oscillator strength (f), wavelength (nm), and composition for $\left[\left\{\mathrm{Ta}_{6} \mathrm{Br}^{\mathrm{i}}{ }_{12}\right\} \mathrm{Br}^{\mathrm{a}}{ }_{6}\right]^{\mathrm{n}-}(\mathrm{n}=2-4)$, $\left[\left\{\mathrm{Ta}_{6} \mathrm{Br}^{\mathrm{i}}{ }_{12}\right\}\left(\mathrm{H}_{2} \mathrm{O}\right)^{\mathrm{a}}{ }_{6}\right]^{2+}$, $\left[\left\{\mathrm{Ta}_{6} \mathrm{Br}^{\mathrm{i}}{ }_{12}\right\}\left(\mathrm{H}_{2} \mathrm{O}\right)^{\mathrm{a}}{ }_{5}(\mathrm{OH})^{\mathrm{a}}\right]^{+}$, and $\left[\left\{\mathrm{Ta}_{6} \mathrm{Br}^{\mathrm{i}}{ }_{12}\right\}\left(\mathrm{H}_{2} \mathrm{O}\right)^{\mathrm{a}}{ }_{4}(\mathrm{OH})^{\mathrm{a}}{ }_{4}\right]$ in different geometries.

$\left[\left\{\mathrm{Ta}_{6} \mathbf{B r}^{\mathrm{i}}{ }_{12}\right\} \mathrm{Br}^{\mathrm{a}}{ }_{6}\right]^{2-}$				
Electronic excitation energy (eV)	$\lambda(\mathrm{nm})$	f	Composition	
1.006	1231	0.008	HOMO-5 \rightarrow LUMO	87\%
2.703	459	0.138	HOMO-1 \rightarrow LUMO+3	49\%
			HOMO-2 \rightarrow LUMO +3	7\%
4.049	306	0.075	HOMO-2 \rightarrow LUMO+6	20\%
			HOMO-9 \rightarrow LUMO+2	18\%
			HOMO-4 \rightarrow LUMO+4	17\%
			HOMO-9 \rightarrow LUMO+3	6\%
4.124	301	0.048	HOMO-9 \rightarrow LUMO+3	22\%
			HOMO-9 \rightarrow LUMO+2	13\%
			HOMO-4 \rightarrow LUMO+4	8\%
4.565	272	0.279	HOMO-1 \rightarrow LUMO+11	46\%
			HOMO \rightarrow LUMO+12	14\%
			HOMO-11 \rightarrow LUMO+1	15\%

$\left[\left\{\mathrm{Ta}_{6} \mathrm{Br}^{\mathrm{i}}{ }_{12}\right\} \mathrm{Br}_{6}{ }_{6}\right]^{3-}$				
Electronic excitation energy (eV)	$\lambda(\mathrm{nm})$	f	Composition	
1.476	839	0.012	HOSO $\alpha \rightarrow$ LUSO α	82\%
			HOSO β-1 \rightarrow LUSO β	8\%
2.794	444	0.023	HOSO α-13 \rightarrow LUSO α	35\%
			HOSO $\alpha-4 \rightarrow$ LUSO $\alpha+3$	15\%
			HOSO $\alpha-7 \rightarrow$ LUSO $\alpha+3$	10\%
			HOSO β-1 \rightarrow LUSO $\beta+4$	10\%

2.800	442	0.014	HOSO $\alpha-7 \rightarrow$ LUSO $\alpha+3$	32\%
			HOSO β-1 \rightarrow LUSO $\beta+4$	23\%
			HOSO $\alpha-10 \rightarrow$ LUSO α	18\%
			HOSO $\alpha-4 \rightarrow$ LUSO $\alpha+5$	9\%
3.996	310	0.018	HOSO β-10 \rightarrow LUSO $\beta+9$	26\%
			HOSO $\alpha-25 \rightarrow$ LUSO $\alpha+3$	23\%
			HOSO $\alpha-13 \rightarrow$ LUSO $\alpha+9$	16\%
4.020	308	0.010	HOSO β-1 \rightarrow LUSO $\beta+15$	40\%
			HOSO β-10 \rightarrow LUSO $\beta+11$	10\%
			HOSO β-22 \rightarrow LUSO $\beta+4$	15\%
			HOSO $\alpha-25 \rightarrow$ LUSO $\alpha+5$	11\%
4.069	305	0.021	HOSO $\alpha-4 \rightarrow$ LUSO $\alpha+14$	45\%
			HOSO $\alpha-25 \rightarrow$ LUSO $\alpha+1$	13\%
			HOSO $\alpha-1 \rightarrow$ LUSO $\alpha+22$	8\%

$\left[\left\{\mathrm{Ta}_{6} \mathrm{Br}^{\mathrm{i}}{ }_{12}\right\} \mathrm{Br}^{\mathrm{a}}{ }_{6}\right]^{4-}$				
Electronic excitation energy (eV)	$\lambda_{\text {max }}(\mathrm{nm})$	f	Composition	
1.856	668	0.075	HOMO \rightarrow LUMO	74\%
			HOMO \rightarrow LUMO+1	8\%
			HOMO \rightarrow LUMO+2	8\%
2.796	443	0.019	HOMO-1 \rightarrow LUMO+7	32\%
			HOMO-1 \rightarrow LUMO+6	28\%
			HOMO-4 \rightarrow LUMO+3	23\%
3.002	413	0.004	HOMO-11 \rightarrow LUMO+2	21\%
			HOMO-10 \rightarrow LUMO+2	16\%
			HOMO-11 \rightarrow LUMO+1	13\%
			HOMO-3 \rightarrow LUMO+7	9\%
			HOMO-10 \rightarrow LUMO+1	8\%
3.652	340	0.032	HOMO-4 \rightarrow LUMO+11	39\%
			HOMO-6 \rightarrow LUMO+12	32\%
			HOMO-6 \rightarrow LUMO+11	12\%

$\left[\mathrm{Ta}_{6} \mathrm{Br}_{12}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$				
Electronic excitation energy (eV)	$\lambda(\mathrm{nm})$	f	Nature	
1.982	626	0.024	HOMO \rightarrow LUMO+3	69\%
			HOMO \rightarrow LUMO+4	69\%
1.992	623	0.024	HOMO \rightarrow LUMO+4	63\%
			HOMO \rightarrow LUMO+3	19\%
			HOMO \rightarrow LUMO+5	9\%
2.003	619	0.024	HOMO \rightarrow LUMO+5	82\%
			HOMO \rightarrow LUMO+4	6\%
3.476	357	0.011	HOMO-4 \rightarrow LUMO+7	34\%
			HOMO-5 \rightarrow LUMO+6	13\%
			HOMO-1 \rightarrow LUMO+9	6\%

			HOMO-4 \rightarrow LUMO+2	6\%
			HOMO-2 \rightarrow LUMO +8	5\%
3.481	356	0.011	HOMO-6 \rightarrow LUMO+6	38\%
			HOMO-3 \rightarrow LUMO+8	10\%
			HOMO-6 \rightarrow LUMO+7	8\%
			HOMO-4 \rightarrow LUMO+7	6\%
3.485	356	0.010	HOMO-5 \rightarrow LUMO+7	30\%
			HOMO-2 \rightarrow LUMO+9	9\%
			HOMO-6 \rightarrow LUMO+6	8\%
			HOMO-4 \rightarrow LUMO+7	6\%
			HOMO-5 \rightarrow LUMO+2	5\%
			HOMO-2 \rightarrow LUMO+13	48\%
			HOMO-3 \rightarrow LUMO+13	21\%
3.839	323	0.010	HOMO-1 \rightarrow LUMO+13	63\%
			HOMO-12 \rightarrow LUMO +5	12\%
3.843	323	0.011	HOMO-13 \rightarrow LUMO+5	11\%
			HOMO-12 \rightarrow LUMO+3	11\%
4.373	284	0.045	HOMO-13 \rightarrow LUMO +3	7\%
			HOMO-13 \rightarrow LUMO+14	7\%
			HOMO-8 \rightarrow LUMO+7	6\%
			HOMO-13 \rightarrow LUMO+4	6\%
			HOMO-12 \rightarrow LUMO+4	15\%
			HOMO-14 \rightarrow LUMO+3	10\%
			HOMO-14 \rightarrow LUMO+5	9\%
4.376	283	0.042	HOMO-3 \rightarrow LUMO+14	9\%
			HOMO-12 \rightarrow LUMO+3	6\%
			HOMO-14 \rightarrow LUMO +4	6\%
			HOMO-2 \rightarrow LUMO+14	5\%
			HOMO-14 \rightarrow LUMO+5	17\%
			HOMO-14 \rightarrow LUMO+3	13\%
			HOMO-13 \rightarrow LUMO +3	12\%
4.384	283	0.049	HOMO-2 \rightarrow LUMO+15	8\%
			HOMO-1 \rightarrow LUMO+15	7\%
			HOMO-13 \rightarrow LUMO+3	6\%
			HOMO-9 \rightarrow LUMO+6	6\%

$\left[\mathrm{Ta}_{6} \mathrm{Br}_{12}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right]^{+}$				
Electronic excitation energy (eV)	$\lambda(\mathrm{nm})$	f	Nature	
1.880	659	0.018	HOMO \rightarrow LUMO	87\%
1.951	635	0.014	HOMO \rightarrow LUMO+4	72\%
			HOMO-1 \rightarrow LUMO	8\%
			HOMO-1 \rightarrow LUMO+3	7\%
2.000	619	0.017	HOMO \rightarrow LUMO+5	73\%
			HOMO-2 \rightarrow LUMO	11\%
2.145	578	0.011	HOMO-1 \rightarrow LUMO+1	73\%

			HOMO-2 \rightarrow LUMO+2	8\%
			HOMO-2 \rightarrow LUMO+1	6\%
2.936	422	0.016	HOMO-5 \rightarrow LUMO+5	35\%
			HOMO-1 \rightarrow LUMO+7	29\%
			HOMO-3 \rightarrow LUMO+7	7\%
			HOMO-5 \rightarrow LUMO+6	6\%
3.322	373	0.017	HOMO-2 \rightarrow LUMO+10	64\%
			HOMO-6 \rightarrow LUMO+6	8\%
			HOMO-4 \rightarrow LUMO+7	6\%
			HOMO-3 \rightarrow LUMO+8	5\%
3.393	365	0.017	HOMO-3 \rightarrow LUMO+9	73\%
			HOMO-6 \rightarrow LUMO+1	6\%
4.383	283	0.018	HOMO-15 \rightarrow LUMO+3	86\%

$\left[\mathrm{Ta}_{6} \mathrm{Br}_{12}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right.$ trans $\left.-(\mathrm{OH})_{2}\right]$				
Electronic excitation energy (eV)	$\lambda(\mathrm{nm})$	f	Nature	
1.821	681	0.016	HOMO \rightarrow LUMO	87\%
2.013	616	0.013	HOMO \rightarrow LUMO+4	72\%
			HOMO-1 \rightarrow LUMO	8\%
			HOMO-1 \rightarrow LUMO+3	7\%
2.020	614	0.015	HOMO \rightarrow LUMO+5	72\%
			HOMO-2 \rightarrow LUMO	11\%
2.254	550	0.007	HOMO-1 \rightarrow LUMO+3	76%
			HOMO-3 \rightarrow LUMO+3	6\%
2.681	462	0.034	HOMO-4 \rightarrow LUMO+1	28\%
			HOMO-5 \rightarrow LUMO+2	17\%
			HOMO-3 \rightarrow LUMO+2	7\%
			HOMO-6 \rightarrow LUMO+6	6\%
3.084	402	0.012	HOMO-6 \rightarrow LUMO+6	38\%
			$\text { HOMO-3 } \rightarrow \text { LUMO }+8$	10\%
			HOMO-6 \rightarrow LUMO +7	8\%
			$\text { HOMO-4 } \rightarrow \text { LUMO }+7$	6\%
3.113		0.019	HOMO-6 \rightarrow LUMO+2	19\%
			HOMO-4 \rightarrow LUMO+4	15\%
			HOMO-2 \rightarrow LUMO+10	14\%
			$\text { HOMO-2 } \rightarrow \text { LUMO+9 }$	10%
			HOMO-3 \rightarrow LUMO+8	10\%
3.151		0.011	HOMO-2 \rightarrow LUMO+10	63\%
			HOMO-6 \rightarrow LUMO+6	8\%
			HOMO-4 \rightarrow LUMO+7	6\%

3.208	0.022	$\begin{aligned} & \text { HOMO-3 } \rightarrow \text { LUMO+9 } \\ & \text { HOMO-6 } \rightarrow \text { LUMO+1 } \end{aligned}$	$\begin{aligned} & 73 \% \\ & 6 \% \end{aligned}$
3.510	0.012	HOMO-5 \rightarrow LUMO+10	61\%
		HOMO-8 \rightarrow LUMO+1	17\%
		HOMO-4 \rightarrow LUMO+11	9\%
3.685	0.001	HOMO-5 \rightarrow LUMO+10	61\%
		HOMO-8 \rightarrow LUMO+1	17\%
		HOMO-4 \rightarrow LUMO+11	9\%

References

1. a) A. Renaud, M. Wilmet, T. G. Truong, M. Seze, P. Lemoine, N. Dumait, W. Chen, N. Saito, T. Ohsawa, T. Uchikoshi, N. Ohashi, S. Cordier and F. Grasset, J. Mater. Chem. C, 2017, 5, 8160-8168. b) W. Koknat, J. A. Parsons and A. Vongvusharintra, Inorg. Chem., 1974, 13, 1699-1702. c) J. L. Meyer and R. E. McCarley, Inorg. Chem., 1978, 17, 1867-1872.
2. D. N. T. Hay and L. Messerle, J. Struct. Biology, 2002, 139, 147-151.
3. M. N. Sokolov, P. A. Abramov, M. A. Mikhailov, E. V. Peresypkina, A. V. Virovets and V. P. Fedin, Z. Anorg. Allg. Chem., 2010, 636, 1543-1548
4. a) J. Rodriguez-Carvajal, Physica B, 1993, 192, 55-69. b) T. Roisnel and J. Rodriguez-Carvajal, Epdic 7: European Powder Diffraction, Pts 1 and 2, 2001, 378-3, 118-123.
5. a) F. Fonseca Guerra, J. G. Snijders, G. te Velde and E. J. Baerends, Theo. Chem. Acc., 1998, 99, 391-403. b) G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders and T. Ziegler, J. Comput. Chem., 2001, 22, 931-967. c) Amsterdam Density Functional $(A D F)$, 2016.01; SCM, Theoretical Chemistry, Vrije Universiteit: Amsterdam, The Netherlands, 2016.
6. Y. K. Zhang and W. T. Yang, Physical Review Letters, 1998, 80, 890-890.
7. . H. Vosko, L. Wilk and M. Nusair, Can. J. Phys., 1980, 58, 1200-1211.
8. a) van Lenthe, A. Ehlers and E. J. Baerends, J. Chem. Phys., 1999, 110, 8943-8953. b) van Lenthe and E. J. Baerends, J. Comput. Chem., 2003, 24, 1142-1156.
9. a) K. Costuas, A. Garreau, A. Bulou, B. Fontaine, J. Cuny, R. Gautier, M. Mortier, Y. Molard, J. L. Duvail, E. Faulques and S. Cordier, Phys. Chem. Chem. Phys., 2015, 17, 28574-28585. b) M. Kepenekian, Y. Molard, K. Costuas, P. Lemoine, R. Gautier, A. G. Soraya, B. Fabre, P. Turban and S. Cordier, Mater. Horiz., 2019, 6, 1828-1833.
10. S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456-1465.
11. C. C. Pye and T. Ziegler, Theo. Chem. Acc., 1999, 101, 396-408.
