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Internal Model Controller to Attenuate Periodic Disturbance of a
First-Order Time-Delay System*

Can Kutlu Yuksel, Jaroslav Busek, Silviu-Iulian Niculescu, Tomas Vyhlidal#

Abstract— A controller design based on the internal model
control principle is introduced as an alternative to the repetitive
control structure to attenuate the periodic disturbance. Such
a disturbance phenomenon is observed for example in hot
rolling mills due to roll eccentricity and is considered here as a
motivation example. The emphasis is on the analytic design of
the filter and on the time-delay parameter within the controller.
By these two components, the controller action is tuned to
achieve a zero gain and synchronized time shift to compensate
completely the periodic disturbance. The overall procedure is
validated by simulations on a model identified from real process
data.

I. INTRODUCTION

The paper focuses on an alternative design procedure to
a repetitive control, the standard method applied to com-
pensation of periodic disturbance of a system. The study is
motivated by an application in hot rolling mills, which holds
an essential part of the steel production. Their production
quality directly affects the subsequent steps of the overall
production and there exist many physical phenomena that
compromise its end-product quality. A prominent one of
them is the inherent roll eccentricity that causes periodic
surface defects in the end-product. These defects can be
suppressed dynamically by controlling the hydraulic asso-
ciated with the roller to set its vertical position according
to the surface variation. By regarding the periodic surface
defects as periodic disturbance acting on the mill’s output,
the specific problem described here can be covered under
the more general problem of systems working under periodic
signals.

A. Problem motivation and statement

The overall scheme of the hot rolling process is in Fig. 1.
As a rule, it consists of working rolls that are in contact
with the rolled plate and the back-up rolls are actuated by
the hydraulic system. Since the rolled plate thickness is mea-
sured at distance L from the roll working point, the process
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CentraleSupélec, Inria, Laboratoire des Signaux et Systèmes, 91192 Gif-sur-
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inherits a time delay τ = v
L , where v is the plate velocity,

considered constant here. The transfer function between the
rolling gap H(t) and the measured plate thickness h(t) is
considered as

G(s) =
h(s)

H(s)
=

K

Ts+ 1
e−τs (1)

where T is a time constant and K is a static gain representing
the dynamics of the hydraulic control system. The periodic
disturbance to be pre-compensated is predominantly caused
by the eccentricity of the back-up roll with the angular veloc-
ity ωB [1]. Neglecting the higher harmonics, the disturbance
force is assumed in the form

dF (t) = Fa sin(ωdt+ φ) (2)

where Fa is the force amplitude and ωd = ωB is the
excitation frequency. Note that the disturbance periodic force
brought by the eccentricity of the work roll with angular
velocity ωW is neglected in this study. Note also that the
disturbance force dF is projected to the ωd-periodic output
disturbance d at the measured plate thickness.

B. Repetitive control

Like hot rolling mills, many engineering applications may
require a system to generate prescribed periodic signals or
to keep its functionality under periodic output disturbances
for reasons stemming from optimization and precision. A
system’s capability to reject periodic disturbances is closely
related to its ability to generate periodic signals due to
the fact the disturbance can be canceled by generating

Fig. 1. Scheme of the rolling mill with work and back-up rolls.



the opposite of it at the output. For this reason, special
attention has been paid to design and improve controllers that
allow various systems to generate periodic signals. Repetitive
control, among all, has been the widely accepted solution to
attain desired periodic behaviors.

Repetitive control is based on the Internal Model Principle
(IMP), first stated by Francis and Wonham [2]. The principle
states that an asymptotic tracking/rejection of a given signal
can be obtained by including a model of that signal in the
closed-loop control structure provided that the control system
is stable. Backed by this, the implementation of the model
that generates all the periodic signals (PSG) with a specific
period Td into the controller structure laid the foundation of
repetitive controllers [3].

Fig. 2. Repetitive Control Scheme

The fundamental idea of repetitive control can be derived
from the basic scheme in Fig. 2. The sensitivity function is
given by

S(s) =
y(s)

d(s)
=

1− F (s)e−sTd

1− F (s)e−sTd + C(s)G(s)
. (3)

For the ideal setting with F (s) = 1, the transfer function
S(s) has infinitely many zeros zk = j 2πkTd

, k ∈ Z, located
at the stability boundary. Consequently, if the closed loop
system is excited by any periodic disturbance d with a
period Td (e.g. of harmonic, square or saw nature), it is
fully compensated. It results from the fact that any periodic
function can be expanded into a Fourier series composed of
weighted harmonics with frequencies ωk = 2πk

Td
k = 1, 2, ....

Due to the distribution of zeros, none of these harmonics
passes through, as S(j 2πkTd

) = 0. However, this beneficial
nature can never be achieved in practice. Assuming the open
loop C(s)G(s) is a strictly proper transfer function, for
F (s) = 1, the closed loop system (3) is a neutral time delay
system with roots asymptotically approaching the imaginary
axis at the high frequency range [4]. As this feature is a
considerable stability risk, a strictly proper filter F (s) 6= 1
is included to the loop which turns the closed loop system
to a retarded time delay system. As a consequence, however,
the full compensation of the periodic signal is lost.

The first repetitive controller (RC) was designed for proper
SISO systems. Following the initial design, the repetitive
controller was modified with a low-pass filter to improve
its applicability to strictly proper systems. Hara et al. [5]
extended the modified repetitive controller to MIMO systems
and gave the stability conditions for the controlled system
based on small-gain theorem and theorems concerning the
stability of time-delay systems. Tomizuka et al. [6] initially

studied the discrete-time version of the repetitive controller.
After addressing the stability problem of repetitive con-
trollers under certain periodic input, the development of
repetitive controller branched into three main topics: i) im-
proving periodic/non-periodic tracking/rejection performance
[7], ii) increasing the robustness of the controller for signals
with uncertain/varying period [8], and iii) extending the
application of RC to complicated plants such as nonlinear,
MIMO, and time-delayed systems.

Despite its benefit for periodic inputs, inclusion of a PSG
into the closed-loop negatively affects the control perfor-
mance for non-periodic inputs. To address this issue, Inoue
[9] introduced the high-order periodic signal generator in
which the time-delay component e−Tds is replaced by a
polynomial W (s) =

∑m
i=1 wie

−msTd where wi denotes
the weight of the ith term. The repetitive controller that
consists of a high-order PSG is referred to as the high-
order repetitive controller and is the key component to most
advances in modern repetitive control designs. In [7], Chang
et al. proposed an alternative method to Inoue’s to determine
the weights of the high-order repetitive controller which
results in an enhanced non-periodic response performance.

For some cases, the period of a periodic signal acting
on the system can slowly vary or can be uncertain. For
these particular cases, the robustness of repetitive control
holds great importance for a successful control. Tsao et al.
[10] and Hillerstrom et al. [11] proposed an adaptive control
scheme to asymptotically track signals with unknown period.
Steinbuch improved the applicability and robustness of the
high-order repetitive control for such cases by introducing
memory loops in [8] and later on described a unifying
framework in [12] to design a high-order repetitive controller
that encompasses the results from their previous works.
Further on, by using a semi-definite programming method,
Pipeleers et al. revealed the optimal trade-off between ro-
bustness for uncertain-period and sensitivity for non-periodic
signals and unified the problem of designing a high-order
repetitive control for non-periodic signals and uncertain-
periodic signals [13].

The extension of repetitive control to other types of
systems such as nonlinear, time-delay and MIMO systems
and to systems with strict constraints gained attention as
more and more applications start to be represented by such
models effectively. Weiss et al. [14] presented a general
repetitive control design procedure for MIMO linear plants
in continuous time. For systems suffering from limited
control input a solution was proposed in [15]. In [16]–[18]
the stability conditions discussed in [3] were extended to
nonlinear systems and in [19] Ghosh et al. described a finite-
dimensional SISO repetitive controller which does not posses
a time-delay component for two different classes of nonlinear
plants. For systems with input time-delay, Omura et al.
introduced an additional time-delay in which the delay is set
to be the difference between the period of the disturbance and
the transport delay present in the system [1]. Their study was
also motivated by the control of hot rolling mills. In [20],
Guvenc et al. proposed a mapping-based repetitive control



design method suitable for time-delay systems.
The main objective of this paper is to propose a straightfor-

ward procedure for compensation of a periodic disturbance,
which is based on an internal model control scheme. At this
stage, we aim at a single harmonic disturbance signal of
the form (2), respectively to its projection to the measured
system output. The extension to cover a more complex
periodic signal will be addressed in the subsequent work.

II. INTERNAL MODEL CONTROL BASED SCHEME

The Internal Model Control (IMC) arrangement was first
introduced and carefully studied by Garcia and Morari [21].
Its design and performance under periodic disturbances were
studied in [22] and its application to first order systems with
time-delay was studied by Vyhlidal and Zitek in [23], see
also [24]. Due to its structure, IMC clarifies the external
disturbance acting on the system and lets the controller
decide its control action directly with respect to the reference
and disturbance signal. This feature of IMC allows the
controller to be designed explicitly with the knowledge of
signals and robustness criteria. Since a transition between
IMC and the classical feedback exists, the controller formed
in IMC can be transformed and implemented in a classical
feedback system in a straightforward manner.

Fig. 3. Proposed internal model control scheme for periodic disturbance
compensation

The modification of the standard IMC scheme to handle
the periodic disturbance of a form (2) is depicted in Fig. 3.
The system model, considered in the form (1), can be
decomposed to the invertible part

Gi(s) =
K

Ts+ 1
(4)

and non-invertible part e−sτ . The transfer function Gm(s)
then denotes the model of the invertible part of the system
dynamics. The delay τ is assumed to be known exactly and
it is identical for the system and its model. The controller
transfer function C(s) is supplemented by an additional term
with a delay ϑ, which will be involved in the disturbance
compensation.

The sensitivity function of the scheme in Fig. 3 is given
by

S(s) =
y(s)

d(s)
=

1− C(s)Gm(s)e−s(τ+ϑ)

1 + C(s) (Gi(s)−Gm(s)) e−s(τ+ϑ)
. (5)

Following the design proposed in [23], the controller is given
by

C(s) =
1

Gm(s)
F (s), (6)

where F (s) is a strictly proper filter satisfying

lim
s→0

F (s) = 1, (7)

i.e. it has a unit static gain.
The IMC closed-loop structure can be transformed into

a classical feedback arrangement shown in Fig. 4, with the
controller

R(s) =
C(s)e−sϑ

1− C(s)Gm(s)e−s(τ+ϑ)
=

F (s)e−sϑ

Gm(1− F (s)e−s(τ+ϑ))
. (8)

Fig. 4. Classical Feedback Arrangement

A. Controller design

The objective is to find an IMC controller such that
it enables a time-delay system to asymptotically track the
reference r while an 2π

ωd
-periodic signal d acts on the plant’s

output as the external disturbance.
Assuming the model Gm(s) and system Gi(s) transfer

functions are identical and the controller C(s) is given by
(6), the closed-loop transfer function given in (5) can be
further simplified to

S(s) = 1− F (s)e−s(τ+ϑ). (9)

Thus, in order to cancel the periodic disturbance (2), the
following condition needs to be satisfied

1− F (jωd)e
−jωd(τ+ϑ) = 0. (10)

This equality can be split into

|F (jωd)| = 1 (11)

argF (jωd)− ωd(τ + ϑ) = 2kπ, (12)

where k ∈ Z. From (12), assuming that argF (jωd) < 0, the
smallest possible (positive) delay ϑ can be determined as

ϑ =
2lπ + argF (jωd)

ωd
− τ, (13)

where

l =

⌊
τωd − argF (jωd)

2π

⌋
+ 1. (14)

Taking into account the above derived conditions, the
overall controller can be designed in two steps. First, the



filter satisfying the condition (11) is designed. Second step
then consists of determining the delay (13).

In what follows, we propose and analyse two low-order
structure filters that satisfy the above derived conditions.
Taking into account the controller structure (6) and the
considered first order (4) plus dead time τ dynamics, the
denominator polynomial order n and the numerator polyno-
mial order m of the filter F (s) need to satisfy the inequality

n−m ≥ 1. (15)

Besides, the filter needs to satisfy the condition (7).

B. Second-order filter

The simplest form of a filter that can be employed to
satisfy the conditions (11), (15) and (7) is the second-order
filter of the form

F (s) =
Ω2

s2 + 2ξΩs+ Ω2
(16)

where ξ is the damping and Ω is the natural frequency of
the filter. The magnitude and the argument at the frequency
response of (16) are given by

|F (jω)| = Ω2√
(Ω2 − ω2)2 + 4ξ2Ω2ω2

, (17)

argF (jω) = atan
−2Ωξω

Ω2 − ω2
. (18)

The desired condition (11) imposes

(Ω2 − ωd2)2 + 4ξ2Ω2ωd
2 = Ω4, (19)

which can be simplified to

Ω2(2− 4ξ2) = ω2
d (20)

yielding the positive solution

Ω =
ωd√

2− 4ξ2
, (21)

assuming 0 < ξ < 1√
2

. Thus the filter (16) design stems from
the selection of ξ from the given range and determining the
natural frequency Ω from (21).

A drawback of the proposed second-order filter is its
limited flexibility to tune the control system for performance
and robustness. Besides, it has an oscillatory response with
the damping determined by ξ. Thus, the filter is not optimal
concerning H∞-norm, given by

||F (jω)||∞ =
1

2ξ
√

1− ξ2
(22)

as H∞ > 1, see Fig. 5.
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Fig. 5. Amplitude frequency response of F (s) with scaled frequency of
disturbance oscillations ωd = 1: i) second-order filter (16) with selected
ξ = 0.5 and Ω = 1 determined by (21); ii) third-order filter (23) composed
of (24) and (25) with selected Tf = 6π, α = 0.6 and ξ̄ = 0.317, Ω̄ =
1.119 determined by (32) and (29), respectively.

C. Third-order filter
In order to provide certain flexibility in the filer tuning, a

third-order filter is proposed

F (s) = F1(s)F2(s), (23)

composed of

F1(s) =
αTfs+ 1

Tfs+ 1
, (24)

where the time-constant Tf and 0 < α < 1 are tune-able
parameters, and the second-order filter

F2(s) =
Ω̄2

s2 + 2ξ̄Ω̄s+ Ω̄2
, (25)

where ξ̄ and Ω̄ are the damping and natural frequency,
respectively.

The magnitude of the filter (24) is given as

|F1(jω)| =

√
α2T 2

f ω
2 + 1

T 2
f ω

2 + 1
. (26)

Since α < 1, (26) is a decreasing function with a limit

lim
ω→∞

|F1(jω)| = α. (27)

Therefore, the condition (11) needs to be met by the filter
F2(s) given in (25). Placing the maximum magnitude of
F2(jω) at ωd, as indicated in Fig. 5, leads to

1

2ξ̄
√

1− ξ̄2
|F1(jωd)| = 1, (28)

Ω̄ =
ωd√

1− 2ξ̄2
. (29)

The equation (28) can be expressed in the form

4ξ̄4 − 4ξ̄2 + |F1(jωd)|2 = 0. (30)

which yields the solutions

ξ̄1..4 = ±

√√√√1±
√

1− |F1(jωd)|2

2
. (31)
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Taking into account the range ξ̄ ∈ [0, 1√
2
] and (26), the

damping of the filter part (25) is given by

ξ̄ =

√√√√1− Tfωd
√

1−α2

T 2
f ω

2
d+1

2
. (32)

The parameter α establishes a feature to set the optimum
trade-off between the level of oscillation and the overshoot
observed in the control system’s response. As can be seen
in Fig. 6 for scaled ωd = 1 and selected Tf = 2π, higher
values of α impose the fast control action, while smaller
values impose slower response which is more affected by
the oscillatory mode. Besides, the lower values of α result
in deeper delve of |F (jω)| to the left of ωd. As shown in
Fig. 7 drawn again for the scaled ωd = 1, the influence of ξ
on Tf tends to diminish for Tf ≤ 2π. Naturally, increasing
Tf leads to more robust, but slower setting. The robustness
is also enhanced by the selection of rather lower values of
α.

The argument shift needed to asses the delay (13) is given

by

argF (jωd) = atan
−Tf (1− α)ωd
αT 2

f ω
2
d + 1

+ atan
−2Ω̄ξ̄ωd
Ω̄2 − ω2

d

. (33)

III. VALIDATION BY SIMULATIONS

At this preliminary stage, a simulation based validation
is performed on the transfer function (1) with parameters
T = 0.8 s, K = 0.5 and τ = 3.8 s identified from the
data, shown in Fig. 8, measured on a rolling mill with
configuration according to Fig. 11. As can be seen from the
comparison between the measured and simulated output (the
rolled plate thickness h(t)), the model fits the data fairly well.
The periodic system output disturbance with ωd = 5.32 s−1

(Td = 1.18 s) and the amplitude da = 0.011 mm has been
identified by the FFT analysis.

Two IMC controllers (6) are considered, the first with
the second-order filter (16) and the second with third-order
filter (23) composed of (24) and (25). For the second-
order filter, the damping ξ = 0.5 was selected providing
Ω = 5.324 s−1 by (21). For the third-order filter, the setting
Tf = 4 s and α = 0.3 were selected to gain an enhanced
level of robustness at the cost of slower time responses.
The two parameters of (25) evaluated as ξ̄ = 0.153 and
Ω̄ = 5.454 s−1 are determined by (32) and (29), respectively.
By (13) and (14), the controller delay values were determined
as ϑ = 0.625 s (l = 4) for the second-order filter and
ϑ = 0.634 s (l = 4) for the third-order filter.

The simulation results are shown in Fig. 9 for nominal
model parameters T = 0.8 s, K = 0.5 and in Fig. 10 for
perturbed parameters of Gi(s) to Tp = 0.64 s, Kp = 0.7.
The transient of the periodic disturbance compensation can
be seen at the beginning of the response. At time t = 20 s
the set-point r changes from 0 to 0.05. At the transients, it
is clearly seen that enhanced robustness by the third-order
filter was achieved.
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Fig. 8. Measured rolling process data and their fitting by the model (1)1

IV. CONCLUSION

Compared to the repetitive control strategy initiated by
Inoue et al., a different approach to form a controller has
been proposed and studied to fully attenuate the periodic
disturbance. The introduced technique provides a fully ana-
lytic controller design that is relatively easy to implement. At

1The authors acknowledge the help of PT Solution Worldwide company
for providing the data.
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Fig. 9. Compensation of the periodic disturbance by the IMC controller
(8) of system (1) with nominal parameters (Gi(s) = Gm(s))

0 10 20 30 40 50 60

0

0.05

0.1
System output

0 10 20 30 40 50 60

-0.1

0

0.1

0.2

Control input

Fig. 10. Compensation of the periodic disturbance by the IMC controller
(8) of system (1) with perturbed parameters (Gi(s) 6= Gm(s))

this stage, the proposed method has been tested on a model
identified from the data measured at the hot-rolling process.
The implementation of the algorithm on an industrial con-
troller and tests on the rolling mill application are the next
steps. From a theoretical point of view, a scheme that fully
compensates periodic signal that consists of several harmonic
modes is to be targeted.
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[20] B. A. Güvenç and L. Güvenç, “Robust repetitive controller design
in parameter space,” Journal of Dynamic Systems, Measurement and
Control, vol. 182, no. 2, pp. 406–413, 2006.

[21] C. E. Garcia and M. Morari, “Internal model control. a unifying review
and some new results,” Industrial & Engineering Chemistry Process
Design and Development, vol. 21, no. 2, pp. 308–323, 1982.

[22] Y.-S. Lu, “Internal model control of lightly damped systems subject to
periodic exogenous signals,” IEEE Transactions on Control Systems
Technology, vol. 18, no. 3, pp. 699–704, 2009.

[23] T. Vyhlı́dal and P. Zı́tek, “Control system design based on a universal
first order model with time delays,” Acta Polytechnica, vol. 41, no.
4-5, 2001.
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