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Abstract: 6 

Monitoring groundwater level (GWL) over long time periods is critical in understanding the 7 

variability of groundwater resources in the present context of global changes. However, in Normandy 8 

(France) for example, GWLs have only been systematically monitored for ~20 to 50 years. This study 9 

evaluates Long Short-Term Memory (LSTM) neural network modeling to reconstruct GWLs, fill gaps 10 

and extend existing time-series. The approach is illustrated by using available monitoring fluctuations 11 

in piezometers implanted in the chalk aquifer in the Normandy region, Northern France. Here GWL 12 

data recorded over 50 years at 31 piezometers in northwestern Normandy is employed to perform 13 

GWL prediction. To optimize the network performance, the most influential factors that impact the 14 

accuracy of prediction are first determined, such as the network architecture, data quantity and 15 

quality. The resulting network is adopted to reconstruct measurements in the piezometers step by step 16 

with an increment of missing observation time. The approach requires no calibration for the time-lag 17 

in data processing and the implementation relies only on the groundwater level fluctuations to retrieve 18 

missing data in the targeted piezometers. 19 
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Introduction 23 

Monitoring of groundwater level fluctuations over time is considered the main source of 24 

information for hydrologists to improve understanding of the evolution of aquifers and water 25 

resources across time under global change, and eventually to establish water resource management 26 

strategies. Indeed, the analysis of the groundwater level collected in a set of piezometers allows to 27 

understand the hydrodynamic behavior of the aquifer with respect to the hydrological cycle, to longer-28 

term climate variability, anthropogenic impacts (water abstractions) and to apprehend the recharge 29 

process (Bekesi et al., 2009, Valdes et al. 2014). Interpretation of water level variations also offers the 30 

possibility of identifying preferential flow paths with high transmissivities and detecting zones, which 31 

constitute the best suited areas to be exploited, and thus protecting them against any form of 32 

contamination (Almasri and Kaluarachchi, 2007). Therefore, management plans adopted are strongly 33 

conditioned by the number of piezometers used in monitoring and their capacity both to cover the 34 

spatial heterogeneity of the aquifer and to capture the impact of climate mutations on water storage in 35 

the long and short terms. In general, these management plans are drawn up on incomplete and 36 

fragmented hydraulic databases that provide only a partial understanding of the hydrosystem due to 37 

the very high cost of installing piezometers and maintaining the acquisition of hydraulic parameters 38 

over time.  39 

Facing the threats of climate change and the urge for establishing long-term strategies for the 40 

management and preservation of the environment, public authorities and the scientific community 41 

have been engaged in recent years in the construction of environmental databases (Anderson et al., 42 

2008; Guo and Lin, 2016). This has led to the emergence of observatories on water resources in the 43 

world, where a large number of multi-parameter sensors are installed in the different compartments of 44 

the critical zone to monitor hydro-physical-geochemical-microbiological parameters in order to study 45 

the impact of climate change (Hipsey et al., 2015; Characklis et al, 2007; Zacharias et al, 2011; Jourde 46 

et al, 2018, Gaillardet et al., 2018). However, investigating the impact of environmental and climate 47 



changes on hydrology requires long-term multidecadal time-series be available. This has led to a 48 

number of initiatives devoted to reconstructing long-term hydrological or hydrometeorological time-49 

series, that are often based on the derivation of hydrological variations from long-term large-scale 50 

climate reanalyzes (e.g. Caillouet et al., 2019; Bonnet et al., 2020, Devers et al., 2020). This is also 51 

encouraged by the emergence of data science. Such research fields are driven by the progress in 52 

computer technologies, which have created a favorable environment for the development of Machine 53 

Learning techniques (Rajaee, et al., 2019). These approaches have resurfaced in recent years thanks to 54 

their ability to generate predictive models by analyzing massive data in less time. Machine learning 55 

applications in the geosciences are gaining popularity, particularly in the prediction of groundwater 56 

fluctuations, including extreme events (Mosavi et al., 2018). Indeed, deep-learning algorithms, such 57 

as neural networks, have the ability to reconstruct missing piezometric data and thus build a database 58 

that can be used as calibration data for climate projections (Sarhadi, et al, 2016). The deep learning 59 

algorithms are designed as black box models in which the input and output data are linked by a large 60 

number of weight and bias matrices defined in the neurons constituting the hidden layers (Rajaee et 61 

al., 2019). Weights and biases in deep learning models are determined in the training process through 62 

their ability to match the network response to the output of training data by using an optimization 63 

algorithm. Once the training process is complete, the validation test is performed on another subset of 64 

data not used in the training stage to check the generalization of the network, which depends on the 65 

quality and quantity of the training data as well as the architecture of the networks.  66 

In the realm of groundwater level reconstruction, various algorithms and architectures have been 67 

tested in recent years. Lallahem et al, 2005 applied the Multilayer-Perceptron architecture (MLP) to 68 

predict groundwater fluctuations in the fractured aquifer in Northern France using precipitation, 69 

evapotranspiration and piezometric data as training data.  The same approach was used by Trichakis 70 

et al. 2011 in predicting the level of the Edwards karst aquifer based on the precipitation, temperature, 71 

pumping and groundwater level data. 72 

Ghose et al. 2018 opted for the prediction of the groundwater level with a Recursive Neural 73 

Network in which the temporal dependence of the variables is included in the prediction using the 74 

previous output at time t-1 in the prediction of the variable at time t. This incorporation of long-term 75 
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dependencies significantly improves groundwater prediction compared to the MLP network according 76 

to a comparative study conducted by Coulibaly et al. 2001. As a more advanced type of RNN, LSTM 77 

has been applied to predict the water fluctuations of the Hetao irrigation district in China by using 78 

precipitation, temperature, evaporation, and monthly water diversion recorded over 14 years (Zhang et 79 

al., 2018). By comparisons between those two networks, Bowes et al. 2019 reported a better 80 

performance of LSTM over RNN in modeling and predicting the GWL response to storm evens at 81 

Norfolk city, Virginia. LSTM was also applied for predicting the water levels of Baltic River and 82 

Long Creek with precipitation, relative humidity, mean temperature, stream level, stream flow, 83 

evapotranspiration, heat degree as input data collected over 6 years (Afzaal et al, 2019).  84 

This manuscript discusses LSTM relevance for reconstruction of missing data from a network of 31 85 

piezometers installed to monitor water fluctuations in a highly heterogeneous porous, fractured and 86 

karstic regional aquifer of Upper Normandy (France).  These piezometric fluctuations describe a 87 

strong spatio-temporal heterogeneity of water dynamics in the aquifer over 50 years. Here, 88 

reconstruction is based exclusively on the use of GWLs collected over long periods on the same 89 

piezometers to fill the short (2 years) and long (47 years) gaps in the other piezometers. 90 

2. Study area and Data acquisition 91 

The efficiency of the LSTM algorithm in the historical reconstruction of groundwater fluctuation 92 

data will be studied from its application on a set of hydraulic data acquired on a part of the 93 

piezometric network used in the monitoring of the Normandy karstic basin. This basin is highly 94 

karstified and constitutes the main source of water supply in the region (Slimani et al, 2009). The 95 

study area is located in northwestern Normandy (France), where 31 piezometers were installed at 96 

different dates to monitor piezometric fluctuations in the Normandy karstic aquifer (Figure 1). This 97 

aquifer is unconfined and is covered by superficial geological layers of loess and clay with flints that 98 

are disturbed by the presence of sinkholes and crypto-sinkholes (Jardani et al., 2006; Valdes et al, 99 



2014). This geological cover controls the recharge processes of the karstic aquifer with rapid 100 

infiltration through sinkholes and slow infiltration through the superficial formation that forms a 101 

perched aquifer during rainy periods. These two dynamics can be observed in the records of 102 

groundwater level on piezometers and water flux on karst springs (El Janyani et al, 2013; Valdes et al, 103 

2014).  104 

 105 

Figure 1: Investigated zone on the left-wing of Seine River, Normandy, France. The white 106 

points represent 31 GWL observation piezometers. 107 

The hydraulic data analyzed in this study are composed of 31 time series of water levels recorded 108 

on a set of piezometers distributed over the area (Figure 2). However, the duration of the records is 109 

not uniform, some records are long and last almost 50 years, as in the case of 8 piezometers, and 110 

others are very short and cover only 3 to 5 years. In addition, some piezometers have been withdrawn 111 

from monitoring networks in recent years (i.e. piezometers No5, N°11b, N°15), but they provide 112 

valuable information on past groundwater fluctuations. Figure 3 provides details on the duration of 113 

each series. The sampling frequency is also not uniform, with weekly measurements for the first 35 114 

years (1970-2005) and daily measurements for the last 15 years.  115 

 116 
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Figure 2: Monitoring groundwater level in 31 piezometers in 50 years. 117 

 118 



Figure 3: Measurement time-window at 31 piezometers over 50 years from 1970 to 2020 (the 119 

same legend with Figure 2). 120 

The mean of GWL fluctuations observed in these piezometers can reach to 30 times of difference 121 

which proves the existence of a strong hydraulic gradient particularly between the upstream and 122 

downstream compartments. The amplitude of the fluctuations over time also varies significantly, from 123 

about 0.1 to 10 m. These contrasts in the fluctuations are due to the degree of karstification of the 124 

hydrosystem. Hydraulic measurements share and carry certain common characteristics linking to the 125 

regional climate conditions, which can allow the deep learning algorithm to establish links between 126 

the GWL data measured in various piezometers without requiring the incorporation of the 127 

precipitation signal in this process. 128 
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3. Methodology and Model design 129 

3.1 Long Short Term Memory 130 

Long short term memory (LSTM) is an enhanced architecture of the Recurrent Neural Network 131 

(RNN) that has been designed to process the time-dependent variables presented in time series 132 

(Hochreiter & Schmidhuber, 1997). This type of network has the advantage of incorporating past 133 

information into the prediction of the future state of the variable when the input data have certain 134 

dependencies. In the RNN, the memory effect is taken into account by using an unrolled loop cell 135 

which allows the previous information to flow into the prediction of the next step. However, the way 136 

it is structured does not allow an effective processing of long-term dependencies as its learning 137 

process leads to the vanishing gradients during the back-propagation. To overcome this obstacle, the 138 

LSTM networks have been developed with an efficient structure comprising three gates: input gates, 139 

output gates, and forget gates that ensures the preservation of previous information with a stable 140 

gradient calculation (see Figure 4). On these three gates within a cell state, the information is 141 

processed by a sequential computation using the following equations (Hochreiter & Schmidhuber, 142 

1997; Felix et al, 2000): 143 

���
�
���

�� = �	
��� + ��ℎ��� + ���         �� = ��
��� + ��ℎ��� + ���       �� = �	
��� + ��ℎ��� + ���       �� = ���ℎ	
��� + ��ℎ��� + ��� �� = �� ⨂ ���� + ��  ⨂ ��               ℎ� = ��  ⨂  ���ℎ	���                       
      ,                                        (1) 144 

where xt designates the input variable at the current time step, ht is the output of the previous cell, 145 

Ct-1 is the previous cell state which provides the past information. These parameters are used with a 146 

set of the weight matrices and bias vectors in the logistic sigmoid σ, and tanh functions at the input, 147 

forget and outputs gates. All these weights and bias vectors are estimated during the learning process 148 

in matching the training data by using ADAM optimizer.  149 



 150 

Figure 4: LSTM architecture with F, I, O denote the three gates as forget, input and output 151 

gates, respectively; x, h and c correspond to the input, output and update state of each cell 152 

(node), respectively (Sagheer & Kotb, 2019). A single hidden layer is adopted, which consists of 153 

nhid nodes.   154 

Regarding the choice of the optimal structure of LSTM networks to obtain accurate predictions, a 155 

single hidden layer is adopted in which number of nodes is determined according to the following rule 156 

(modified from Lallahem et al, 2005):  157 

	��! + 1� # �$�% + 	�$�% + 1� # ��&� ' �( ��)*�! ,   (2) 158 

where nin denotes the number of nodes in the input layer, nout is the number of nodes in output layer 159 

and nhid is number of nodes in the hidden layer, ntrain is number of training data, α is a coefficient, 160 

varies from 1 to over 10. In this study, to avoid overfitting, α is given a value higher than 2 as the 161 

training data doubles the degrees of freedom in the training process. In this study, the training applies 162 

ADAM algorithm with constant learning rate of 0.002 and a longest sequence option in the mini-163 

batch. The learning takes a half of minute in Matlab running in a Dell Precision T5810 with a single 164 

GPU NVIDIA Quadro K2200. 165 
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3.2 Data calibration 166 

Before the start of the training process, the dataset of groundwater level in the 31 piezometers from 167 

1970 to 2020 are resampled to a weekly time step and normalized with following formulation:  168 

ℎ+�, = $-.�$/.
012-34,67$-.�$/.7     ,                                                             (3) 169 

where ℎ�,, ℎ8, are the measurement i and the mean of the whole series of n measurements in the 170 

piezometer m, respectively. This normalization facilitates learning by re-scaling all data between plus 171 

and minus one as plotted in Figure 5. 172 

 173 



Figure 5: Normalized Groundwater level in 31 piezometers over 50 years from 1970 to 2020. 174 

The normalized fluctuations clearly share a similarity in low frequency features (the same 175 

legend with Figure 2).  176 

Even the original time series show a changing range of amplitudes; their normalized fluctuations 177 

show similar low-frequency behaviors. These similarities can be exploited to learn how to reconstruct 178 

missing piezometric data or extrapolate data. Indeed, to achieve a reliable prediction, the training data 179 

must contain sufficient information and characteristics that are representative of the variability of the 180 

hydraulic data in the piezometer to be predicted. For this reason, the choice of the data portion that 181 

will be used to feed the networks is a first step in the process, in terms of data availability and their 182 

concordance with the targeted piezometer data. 183 

Hence, in order to examine the impact of training data on the quality of predictions, different 184 

strategies will be discussed where various piezometers will be integrated into the predictions. 185 

The quality of these predictions is assessed and analyzed using three criteria: 186 

The root-mean-square error 187 

9:;< = =∑ �$?-�$-�@
!!�A�  ,     (4) 188 

where ℎB� and ℎ� are predicted and observation groundwater levels, n is number of testing values.  189 

The correlation coefficient: 190 

��CCDEF� =  ∑ 	$?-�$?/�	$-�$/�6-34
=∑ 	$?-�$?/�@6-34 =∑ 	$-�$/ �@6-34

  ,                           (5) 191 

where ℎB8 and ℎ8 are average predicted and observation groundwater levels of testing data. 192 

In some tests, the observation is referred in a neighboring piezometer to validate the prediction in 193 

the targeted piezometer and the correlation between two series is defined as 194 

��CC,�G =  ∑ �$-.�$/.��$-H�$/H�6-34
=∑ 	$-.�$/.�@6-34 =∑ 	$-H�$/H�@6-34

  ,                (6) 195 

where ℎ�,, ℎ�G are measurement i in the piezometer m and piezometer k and their means are ℎ8, and 196 

ℎ8G. 197 
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3.3 Validation of the Network: 198 

The objective of this study is to use a statistical learning approach to effectively predict 199 

groundwater level fluctuation in a piezometer by analyzing hydraulic data acquired from a network of 200 

piezometers used in the learning process. This network of piezometers consists of 11 piezometers 201 

distributed over the study area with the longest observation time scale, as shown in Figure 6. This 202 

dataset is representative of the main hydrodynamic characteristics observed in all the piezometers 203 

studied, with mean water levels varying from 20 to 150 m and amplitudes ranging from 0.2 to 10 m. 204 

 205 

Figure 6: Observation GWL in the subset of 11 piezometers over 45 years from 1975 to 2020.  206 

Graphical analysis of these time series shows a certain similarity in the fluctuations, particularly 207 

during major events characterized by a significant rise or fall in water level (such as the maxima of 208 

years (1976, 1988, 1996 and 2002) and the other minima of years (1977, 1992 and 2006). This proves 209 

that the piezometers are located in the same hydrological compartment, although the amplitude and 210 

response time to these extreme events remain different and are strongly influenced by the local 211 

hydrological contexts, such as the degree of karstification around the piezometers, and the hydraulic 212 



connectivity of the piezometers with the surface karstic sinkholes. In general, the signatures of low-213 

frequency fluctuations are shared on the majority of piezometers, while high-frequency fluctuations 214 

show a behavior that is difficult and complex to identify over time. For more details, the analysis of 215 

correlations between data series over time is presented in Figure 7. The analysis is carried out over 216 

the first and last 15 years in order to clarify the relationship between piezometers in space and time. 217 

 218 

Figure 7: Correlation between groundwater level data observed at the piezometers in 1975-219 

1990 and 2005-2020. Red/thick lines correspond to the highest correlation equal to 1, Blue/thin 220 

lines represent a low correlation equal or under 0 (according to Eq.6). Correlations between the 221 

fluctuations in the studied piezometers are spatially heterogeneous and significantly change in 222 

time. 223 

The correlations established over the first 15 years of data (1975-1990) show the presence of a 224 

strong relationship between the data from neighboring piezometers located in the western part of the 225 

study area: piezometer 1-3-8-9-10-12-17, with a correlation coefficient varying between 0.8 and 1. 226 

However, the spatial proximity between piezometers does not always imply the presence of a 227 

correlation, as shown by the case of the 20-21 piezometers, which have a poor correlation despite 228 

their proximity. 229 

In general, the presence or lack of correlation is an element primarily associated with the 230 

hydrodynamic conditions of the environment in which the piezometers are installed, which in turn are 231 
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controlled by hydraulic conductivity. In this context where porosity conditions the dynamics of the 232 

flows, two transfer modalities can take place: the first one is fast and is focused on the karstic conduits 233 

which are more frequently connected with the sinkholes and the second one is slow and diffuse in the 234 

matrix and small cracks. Therefore, piezometers placed on karstic conduits are characterized by a high 235 

temporal variability, carrying information on short-term rainfall events in addition to the long-term 236 

climatic variations that may also appear in piezometric records with low transmissivity. The climatic 237 

information that is the origin of these fluctuations can be expressed on all the piezometers but in a 238 

different way in terms of amplitude and time response, therefore the use of the correlation criterion to 239 

select the piezometers to be served in learning is not a trustworthy criterion. As these correlations 240 

between piezometers have been altered over time due to the accentuation of the anthropogenic factors 241 

related to urbanization, agricultural practice and intensive exploitation of water resources. These 242 

factors can lead to significant changes in time and space in the recharge process and regional 243 

groundwater flows. 244 

All these considerations lead us to not rely on correlation as a selection criterion for training 245 

piezometers and to believe that all piezometers can be used in this process. In anyway, the impact of 246 

the initial correlation between the input and output data on the quality of the predictions will be 247 

explored as well as the impact of the number of hidden layer, on the prediction case of the GWL in 248 

piezometer N°10 using neighboring piezometers. 249 

 250 

a) Impact of correlation between input and output data: 251 

To understand the influence of the correlation between the input and output data on the accuracy of 252 

the prediction, the observation in a single piezometer is used to predict its neighbor, as shown in 253 

Figure 8. The input data come from the observations in piezometer No9, No3 and No12 successively. 254 

The training data are the 15-year (1975-1990) observations, with a correlation between input and 255 

output in these three piezometers of 0.54, 0.89 and 0.94, respectively. The corresponding testing data 256 

are longer which composes observations in 30 years (1990-2020). LSTM networks adopts a single 257 



hidden layer which consists of 25-65 nodes (α = 10) and their results are detailed in Table 1. The 258 

evaluation criteria for these predictions show their dependence on the initial quality of the correlation 259 

between input and output, with a clear improvement of the prediction when the data are well 260 

correlated (Figure 8a, b, c). However when the correlation is relatively low, the prediction only 261 

identifies the overall fluctuation trend of the target piezometer. Therefore, it is reasonable to use a 262 

piezometer with correlated data if the purpose of the prediction is to retrieve the details of the high-263 

frequency fluctuations. The results also highlight the influence of the changing correlation over time. 264 

In Figure 8b, the prediction is badly reconstructed for the last 15 years 2005-2020, while the 265 

correlation between input and output (No 3 and No10) during this test period is much weaker than for 266 

training (1975-1990), as is the prediction for the case (N°1 and N°10) as shown in Table 1. This can 267 

be explained by the fact that not all the features of aquifer dynamics in recent decades have been 268 

captured in the model derived from earlier years' data. On the other hand, the correlation (N°12 and 269 

N°10) remains almost identical over the two periods (see Figure 7), so that the learning process is 270 

complete, which explains the good prediction of the fluctuations in Figure 8c. 271 
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 272 

Figure 8: Predictions of GWL fluctuation in piezometer No.10 from observation data in a 273 

single piezometer. The training data is for 15 years, from 1975 to 1990, to predict 30 years from 274 

1990 to 2020 (testing). Results are shown with increment of correlation between the targeted 275 

piezometer (output) and the feeding variable (input), the input are from: a. Piezometer No9, b. 276 

Piezometer No3, c. Piezometer No12. The accuracy is directly determined by the correlation 277 

between the input and output data over time. When the correlation is low, the result reproduces 278 

only the tendency, higher correlation data result in better predictions. Predictions from single 279 

series is of limited accuracy. 280 

 281 

b) Impact of amount of training data  282 



In this section, the effect of the number of piezometers used in the training process is examined in 283 

relationship with the reliability of predictions. In this case, the learning will include more GWL data 284 

from neighboring piezometers to predict the water fluctuations in the piezometer N°10. Thus, three 285 

predictions are performed corresponding to three distinct training data sizes consisting of 3, 6 and 10 286 

piezometers. The prediction results from these multiple time series are reported in the Figure 9 and 287 

the Table 1 show a clear improvement in the accuracy over those obtained from a single piezometer. 288 

This tendency is identifiable in Table 1 for following tests: 1st 2nd 3th 4th – 7th 8th 9th – 12th 13th – 15th. 289 

 290 

Figure 9: Prediction GWL in piezometer No10 from number of observation series in 291 

neighboring piezometers. More input variables seem to provide better prediction in the targeted 292 

piezometer when more information is considered in the learning process, but it may also import 293 

noises in the predictions. 294 

The use of multiple series provides a good generalization because they offer the possibility to learn 295 

from multiple features that could not be seen with a single piezometer. However, this proportionality 296 
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between the increase in the number of series involved in learning and the improvement in the quality 297 

of the predictions is not always respected. As shown in Table 1, particularly for predictions involving 298 

6 piezometers in Test 16, which are not as good as those of Test 12 obtained only using 3 299 

piezometers. The conclusion to be drawn from these analyses is that the quality of the prediction is 300 

not only conditioned by the volume of training data, in some cases the incorporation of unrelated data 301 

can negatively affect the accuracy because it will disturb the appropriate information. Therefore, data 302 

quality is also a crucial factor in prediction that should not be underestimated. In this case the 303 

combination of 10 piezometers in the training provides an accurate prediction (CorrTest = 0.98) of the 304 

water level in piezometer No10, so this strategy will be adopted to predict the other piezometers dealt 305 

in the following sections. 306 

Table 1: Comparison of RMSE (in m) for various data feeding and network configurations to 307 

predict GWL at the piezometer No10. 308 

Test 
Data feeding from piezometers No Network 

1 3 8 9 12 17 20 21 22 23 α = 3 α = 5 α = 10 α = 15 

1 x          4.15 4.13 4.09 4.06 

2  x         2.75 2.67 2.51 2.63 

3    x       2.69 2.48 2.73 3.36 

4     x      1.92 1.93 1.81 1.83 

5        x   3.34 3.37 3.29 3.50 

6         x  2.64 2.56 2.66 2.80 

7 x x         1.96 1.79 2.13 2.37 

8   x x       2.39 2.14 2.09 2.06 

9     x x     2.04 1.86 1.85 1.84 

10       x x   3.35 3.42 3.58 3.46 

11         x x 2.51 2.20 2.47 2.57 

12 x x x        1.71 1.66 1.64 1.60 

13    x x x     1.95 1.92 1.99 1.90 

14       x x x  2.89 2.84 3.09 3.07 

15 x x x x x x     1.14 1.08 1.12 1.25 

16     x x x x x x 2.10 1.96 1.94 1.97 

17 x x x x x x x x x x 1.52 1.28 1.26 1.39 

 309 



c) Impact of number of nodes in the hidden layer 310 

In this section, the effect of the number of nodes constituting the hidden layers on the quality of 311 

predictions is analyzed. In general, the choice of neural network properties is often made through 312 

trial-and-error analysis. For that the performance of networks is tested using several numbers of nodes 313 

by changing the coefficient α from 3 to 15 (see Eq.2) and the results are listed in Table 1. The number 314 

of nodes in the hidden layer is dependent on degrees of freedom in the training process. When the 315 

node in the layer is relatively small, this implies a low degree of freedoms that may prevent the 316 

networks to reach a convergence. However, in the opposite case with an important degree of freedoms 317 

can lead to overfitting issue. As this investigation is done with a number of input variables is 3 to 15 318 

times higher than the degrees of freedom, the accuracy of the predictions varies only slightly with α, 319 

with an optimal value around 5-10. 320 

4. Result and Discussion 321 

After the sensitivity analysis of the LSTM networks and the implementation of the best strategy for 322 

predicting groundwater levels, this section is devoted to the application of this strategy to the recovery 323 

of missing hydraulic data over 50 years in the piezometric network of the study area. In this network, 324 

some observations presenting a short discontinuity will be first completed from the available data and 325 

later all exploited to predict shorter observations in other piezometers. 326 

4.1. Test 1: Complete series with a short discontinuity 327 

Some series with minor gaps of 2 to 5 years is firstly filled, and then these completed series are 328 

used to predict other series with significant observation gaps. These predictions are based on learning 329 

complete data from seven piezometers. Some representative prediction results are shown in Figure 330 

10, and the test evaluations are detailed in Table 2. 331 



20 

 

 332 

Figure 10: Complete the observations with a short missing of 2-4 years. Results are for 333 

piezometers: a. Piezometer No 5, b. Piezometer No 21 and c. Piezometer No 20. Predictions 334 

employ LSTM network, feeding from full-range observations in 7 piezometers (including 335 

piezometer N° 5 to optimize the feeding data). The network composes a hidden layer of 80-290 336 

nodes (α = 3-10). The predictions can generally track the complexity of patterns in the 337 

piezometers. 338 

  339 



Table 2: Details of the calibrations in 7 piezometers. 340 

Target 

piezometer 

Data feeding from piezometers N° Network Result 

1 3 5 8 9 10 17 22 Training Testing nhid RMSETest 

(m) 

CorrTest 

No.5 x x  x x x x x 1990-2010 2010-2016 80 0.65 0.95 

No.12 x x x x x x x x 1980-2000 1971-1980 275 0.73 0.96 

No.20 x x x x x x x x 1981-1992 1972-1981 155 0.68 0.87 

No.21 x x x x x x x x 1977-1997 1972-1977 275 0.46 0.90 

No.23 x x x x x x x x 1979-2000 1973-1979 290 0.54 0.86 

 341 

The LSTM network is trained using all the hydraulic data acquired over 15-20 years, then   tested 342 

to complete the observations over 6-8 years before extending the prediction to complete the sequence. 343 

The network includes a hidden layer with 80-290 nodes (α about 3-10). To optimize use of data, the 344 

prediction is first made for piezometer N°5 from 7 available piezometers (N°1, 3, 8, 9, 10, 17, 22), the 345 

predictions of N°12, 20, 21, 23 will then include data of N°5 in the training (the training data do not 346 

covered the predicted data of N°5, see Table 2 for details). The predictions obtained are globally of 347 

satisfactory accuracy when the trained models arrive to identify the complexity of the hydrodynamic 348 

features in the predicted piezometers. The recovered time series are relatively short compared to the 349 

total length of the series; however, this reconstruction is crucial to provide more data to predict other 350 

series with significant gaps. In the next step, the data from these 12 piezometers are recalled 351 

extracting shorter observations from other piezometers. 352 
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 353 

Figure 11: Complete the observations with a missing of 15 years. Results are for piezometers: 354 

a. Piezometer No 2, b. Piezometer No 24 and c. Piezometer No 25. Predictions employ LSTM 355 

network (α = 3-10), feeding from dataset in 12 piezometers. Accuracy of predictions do not 356 

expose to depend on the location of the piezometers when the learning process only bases on the 357 

relationship among feeding sequences. 358 

 359 

 360 

 361 

 362 

 363 



 364 

Table 3: Details of calibration to predict GWL from dataset in 12 piezometers. 365 

Target 

piezometer 

Network Result 

Training Testing nhid RMSETest (m) CorrTest 

No.2 1990-2002 1982-1990 50 0.51 0.91 

No.18 1995-2010 1985-1995 130 0.20 0.89 

No.24 1995-2015 1985-1995 295 0.12 0.96 

No.25 1995-2005 1985-1995 40 0.17 0.84 

 366 

In this test, missing measurements in 4 piezometers using 12 piezometers are predicted by applying 367 

the previous configuration. The LSTM network is trained by data of 10-20 years and its efficiency is 368 

tested over 8-10 years (see Figure 11), details of the quality of the predictions on the test data are 369 

presented in Table 3. The predictions are highly correlated with observed fluctuations with small 370 

errors (by RMSE). Despite the fact that the series studied have different characteristics and changing 371 

also over time, the training data contains a large amount of information to decrypt the complexities of 372 

each type of data and to provide a satisfactory reconstruction of missing data. 373 

4.2. Test 2: Predict long missing periods  374 

In this section, the series of eight piezometers are completed with a long void in records of nearly 375 

30 years using data from 16 piezometers that include both real and recovered data. The network is 376 

trained from the 10-year data and validated on the 10 years of data. In Figure 12, some representative 377 

time series for the 8 predicted piezometers is illustrated, and details of the prediction quality of the 378 

data tests are shown in Table 4. As noted above, neighboring piezometers are often well correlated 379 

and share the same hydrogeological characteristics. In this test, these neighboring piezometers is not 380 

included in the training, but use them for validating the prediction as shown in Figure 12b&c.  The 381 

predictions obtained are reliable according to the evaluation criteria and their comparisons with 382 

neighboring piezometers.  383 
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 384 

Figure 12: Complete the observations with a long missing of about 30 years. Results are for 385 

piezometers: a. Piezometer No 13, b. Piezometer No 16a and c.  Piezometer No 14. Predictions 386 

employ LSTM network (α = 3-10), feeding from dataset in 16 piezometers. The resulted 387 

predictions are accurate in term of RMSE, correlation coefficient and comparative to the 388 

neighbors. 389 

 390 

 391 

 392 

 393 

 394 

 395 



 396 

Table 4: Details of calibration to predict GWL in 8 piezometers from 16 dataset. 397 

Target  

piezometer 

Network Result 

Training Testing nhid RMSETest (m) CorrTest 

No.16a 1993-2003 1985-1993 45 0.11 0.90 

No.16b 2007-2017 2002-2007 75 0.07 0.75 

No.11a 2010-2020 2002-2010 75 1.32 0.99 

No.11b 1980-2000 1972-1980 150 1.22 0.90 

No.13 2010-2020 2002-2010 85 0.72 0.98 

No.14 2010-2020 2007-2010 75 0.22 0.97 

No.7 2010-2017 2002-2010 115 0.75 0.74 

No.15 1990-2005 1972-1990 135 1.08 0.91 

 398 

The prediction result from piezometer 16a reveals a good reconstitution of the observed data, but it 399 

is also affected by a sudden and unexplained increase in the water level in 1987. This local effect in 400 

the test data did not occur in the training data. It is therefore a limitation of the predictive model that 401 

can be remedied by using additional metrological data such as rainfall and temperature that are not 402 

available in this study. The comparison with its neighbor shows a concordance in low frequency 403 

fluctuations. On the other hand, it is difficult to establish a correlation between the high-frequency 404 

fluctuations that may be intrinsic characteristics of each piezometer. For this reason, the correlation 405 

coefficient between them is not relatively high (Corr16a-16b = 0.71). 406 

All of these results will be used to predict the fluctuations in the remaining 7 piezometers in the 407 

next section. 408 

 409 

4.3. Test 3: Long predictions from very short observation for training 410 

Previous reconstructions have allowed us to build a hydraulic database with 24 piezometers that are 411 

sufficient to attempt the recovery of the abandoned piezometers where recordings were made over a 412 

very short period of 3 years (2017-2020). In this sort of prediction with few data is so difficult to 413 

establish a generalization and validation of the networks. To avoid this issue, the lack of data in the 414 
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target piezometer will be counterbalanced by the use of observation in nearby piezometers. The 415 

validation of the approach is conducted on long series with only a short period of data used in the 416 

learning process.  Some results of this type of prediction on time series with few data are shown in 417 

Figure 13 and calibration details are shown in Table 5. 418 

The discussion begins with the predictions of piezometer No 4 where only three years of data are 419 

available and used in training and the validation is done by a comparison with data from neighboring 420 

piezometer No 5, which is excluded from training data. The result is shown in Figure 13a, where the 421 

reproduction of training data is excellent, but this does not mean that the generalization is also perfect. 422 

To verify the quality of these predictions, some of them are compared with the data from the nearest 423 

piezometer. This comparison shows a correlation coefficient Corr4-5 = 0.88, which means that the 424 

prediction is successful. The data from piezometer No 5 is not directly exploited in the training of this 425 

test, but it has been used in previous recoveries for other piezometers, so some of these features may 426 

be included indirectly in this training operation. 427 

The same strategy is adopted for the remaining piezometers No 26b and No 28c, which are located at 428 

different places in the study area. The network is established using 2.5 years of data, but in this case, 429 

the available data covers 17 years, allowing us to retain sufficient data for validation. Data from a 430 

nearby piezometer is also incorporated into the validation process and the results are shown in Figure 431 

13b&c. The prediction is encouraging even using only short data in the formation, the network was 432 

able to match the test period fluctuations with a correlation of 0.92 and 0.97 respectively. The 433 

prediction is also consistent with neighboring piezometers with Corr = 0.84 and 0.97, respectively. 434 

The tests prove that this approach can be applied to make long predictions from very short training 435 

data. 436 



 437 

Figure 13: Long predictions of 50 years from very short training of 3 years data. Results are 438 

for piezometers: a. Piezometer No 4, b. Piezometer No 26a and c. Piezometer No 28c. Predictions 439 

employ LSTM network (α = 2-3), feeding from dataset in 24 piezometers. The approach enables 440 

to perform long predictions with a favorable accuracy from a very short training dataset. 441 

  442 
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Table 5: Details of calibration to predict GWL in 7 piezometers from 24 dataset. 443 

Target  

piezometer 

Network Result 

Training Testing nhid RMSETest (m) CorrTest 

No.4 2017-2020 2016-2017 55 0.18 1.00 

No.26b 2017-2020 2002-2017 55 0.12 0.92 

No.28c 2017-2020 2002-2017 55 0.43 0.97 

No.26a 1992-2005 1985-1992 285 0.27 0.78 

No.28a 1993-2003 1985-1993 240 0.55 0.97 

No.28b 1986-1987 1985-1986 35 0.13 0.95 

No.19 1992-2005 1985-1992 200 0.11 0.64 

 444 

This section is closed by discussing the reconstruction of the data in piezometer No19, which 445 

represents a low correlation on the validation data (Corr = 0.64). As mentioned in section 4.1, using 446 

the combined hydraulic data from several piezometers in the learning process increases the risk of 447 

including impertinent data that will be a source of noise. Despite this, the prediction for No. 19 is 448 

made with a Corr = 0.64 which is slightly higher than the maximum correlation of the observed data 449 

with respect to the others (0.57). 450 

The measurements recorded on this piezometer No 19 are poorly correlated with the observations 451 

from the other piezometers (average correlation 0.41) may be related to the fact that piezometer No19 452 

is located in a hydrogeological context that is different from the rest of the piezometers used in the 453 

training. This can be explained by its proximity to the sea, which has a high tidal range of up to 8 m. 454 

In fact, this piezometer has the lowest piezometric mean compared to the rest of the 31 piezometers. 455 

In comparison with the neighboring piezometer N°17 which is closer to the sea (3 km from the coast), 456 

but its average of 49.7 m is seven times higher than that of  piezometer N°19. It can therefore be 457 

concluded that the piezometer N°19 has a different hydrodynamic behavior from the piezometers 458 

involved in the training and to reconstruct its fluctuations it is necessary to re-form a network with 459 

piezometers located on the downstream part at the interface with the sea. This driving influence of  460 



tidal regimes on GWL at coastal regions are also confirmed in other studies by Bowes et al. 2019 at 461 

Virginia US and Taormina et al. 2012 at Venice lagoon Italy. 462 

Conclusion 463 

In this paper, the approach adopts the LSTM which is one of the most efficient deep learning 464 

algorithms in time series processing to identify missing data in groundwater records. The approach 465 

was applied to a set of hydraulic data collected with part of the piezometer network installed to 466 

monitor groundwater fluctuations in the karstic aquifer in Upper Normandy. These piezometers have 467 

different recording durations: some have a long recording duration of 50 years, others have been 468 

abandoned so they only have a very short recording duration of 3 to 10 years. The implementation of 469 

the LSTM relies on the use of water level data in some piezometers to form and build the network to 470 

retrieve missing data from other piezometers. This tool does not require the use of meteorological data 471 

such as rainfall and temperature in training operation. The main points that emerge from the use of 472 

LSTM in this study are as follows: 473 

✓  This approach is relevant for reconstructing the GWL fluctuation with satisfactory 474 

accuracy over long periods of time from even very short observations with a correlation 475 

coefficient varied from 0.64 to 0.99 and RMSE from 0.07 m to 1.08 m. 476 

✓  The accuracy of the predictions depends on the quality of the training data, such as the 477 

initial correlation between input and output, as well as the duration and number of 478 

piezometric series used in the training. It is therefore crucial that the piezometers are in 479 

the same hydrogeological context and that they share certain hydrodynamic 480 

characteristics to facilitate reconstruction.  The use of unreliable data in the learning 481 

process with contrasting characteristics what are observed on the predicted piezometers 482 

will lead to a poor prediction. 483 
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✓  The properties of the network in terms of number of layers and number of neurons can 484 

also influence the predictions and the choice of these parameters can be obtained by 485 

analyzing the quality of the predictions of different configurations. 486 

The hydraulic head outcome of the model can be employed to enhance predictions of GWL itself in 487 

the future, associate the modelling of other processes in the subsurface, such as flow field or predict 488 

the transport of contaminant in the groundwater. In future works, the prediction can be extended to 489 

calibrate for every point in considering a hybrid model where a mathematic model probably joints 490 

with a physic-based approach including information of surface/subsurface conditions in the real field. 491 

Finally, considering the scarcity of long-term observational groundwater data and the complexity of 492 

generating simulations using classically used (physics-based or conceptual) modeling approaches, it 493 

will also be critical to explore the capabilities of deep learning techniques for long-term 494 

reconstruction of groundwater levels. This is mandatory to tackle the issue of understanding the 495 

impact of low-frequency climate variability and climate change on water resources availability. 496 

  497 
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