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Abstract—The participation of renewable generators in elec-
tricity markets involves employing a number of forecasting
and decision-making tools. The standard approach consists
in forecasting power output and market quantities, and then
inputting the results into an optimization problem to derive
optimal decisions. Typically, forecasting models are trained to
optimize accuracy without considering the subsequent decision-
making process. In this paper, we consider training forecasting
models with a value-oriented approach that aims to minimize the
suboptimality of decisions induced by a set of predicted inputs.
We consider a risk-aware renewable generator participating
in a day-ahead market subject to imbalance costs, and train
ensembles of decision trees to forecast the imbalance penalty by
directly minimizing trading costs for the provided strategy. The
results indicate that our innovative approach leads to improved
trading performance, compared to the standard method in which
forecasting models are trained to minimize prediction errors.

Index Terms—Decision trees, electricity markets, energy trad-
ing, value-oriented forecasting, alternative loss functions.

I. INTRODUCTION

A plethora of problems related to power systems require
making decisions under various forms of uncertainty [1]. The
design of optimal participation strategies for renewable gener-
ators in competitive electricity markets is a prevalent example
[2], since it usually requires solving some form of stochastic
optimization problem, typically in a “Predict-then-Optimize”
framework [3]. This involves first estimating an uncertain
parameter at a future time interval, in a form that can range
from deterministic (point) forecasts, to predictive densities,
simulation trajectories and uncertainty sets. In a second step,
these forecasts are used as input in an optimization problem.

When trading renewable energy on short-term markets,
stochastic generation and market prices constitute typical
sources of uncertainty. A significant body of work exists in this
area, both for renewable energy [4] and electricity price [5]
forecasting. Regarding price forecasting, most relevant work
focuses on day-ahead (DA) prices. However, participation in
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multiple markets requires forecasting additional quantities,
such as the imbalance penalty, defined as the difference
between the DA price and the clearing price of the balancing
market. A standard practice when forecasting the imbalance
penalty is to split the problem into three components, namely
direction and upward and downward regulation costs, and then
model each one separately. In [6] an exponential smoothing
approach is applied to capture the long-term trend and sea-
sonality. A combination of a Seasonal ARIMA model with
Markov Process is implemented in [7] to generate scenarios.
In [8] a logistic regression model is employed to predict
the imbalance direction, combined with ARIMA models for
regulation costs.

A typical trading application would be a wind power plant
(WPP) offering energy on the DA market subject to imbal-
ance costs. In [9] the optimal risk-neutral offer is derived
analytically as a quantile of the predictive density for wind
generation, which also requires an estimation of the regulation
costs. Extensions of this result include analytical expressions
for the case of correlated DA and imbalance prices [10], con-
sidering adjustment markets [11], and jointly offering energy
and primary [12] or secondary [13] reserve. The design of the
balancing market is also an important factor, and particularly
whether it features a single or dual price balancing mechanism
[14]. Under a single price mechanism, any deviations from the
submitted schedule that help restore system frequency result
in additional revenue. For such cases, several risk-constrained
trading strategies are proposed in [8].

In many cases, however, it is not clear how to move from
a prediction to an optimal decision, as increased forecast
accuracy does not always correspond to increased economic
value [15]. It is therefore important to also assess forecast
value [16], i.e., the impact of a forecast on decision costs, in
addition to statistical accuracy. In this work, we aim to take
this approach one step further by directly training a forecasting
model to maximize value under a provided trading strategy.

Decision-making can be improved by jointly considering the
forecasting and the optimization problem, and recent works
combine elements from the fields of machine learning and
operations research towards this goal. In [17] two data-driven
approaches are proposed for directly solving the newsvendor
problem, a form of direct policy selection. In [18], a general978-1-6654-3597-0/21/$31.00 ©2021 IEEE



framework is proposed for using predictive machine learning
algorithms to prescribe optimal decisions in the presence
of explanatory data by solving a weighted Sample Average
Approximation (SAA) of the original problem. The same work
also introduces the coefficient of prescriptiveness, a unitless
metric analogous to the R2 coefficient in regression, which is
used to assess the relative performance of prescribed decisions.
From an applications standpoint, [19] proposes a data-driven
approach to increase forecast accuracy and trading value in
the presence of deterministic forecasts of wind power.

In the context of statistical learning, forecasting models are
trained via loss minimization, with the objective of optimizing
predictive accuracy or probabilistic performance. Training is
performed without considering the subsequent optimization
problem, which arises later on the model chain. Two value-
oriented forecasting approaches are proposed in [20] for the
case of a photovoltaic (PV) generator participating in the DA
market. In the first, the individual energy and price forecasting
models are tuned based on the decision costs, whereas in the
second, a direct policy selection algorithm is applied, mapping
the input data to decisions. Both approaches are formulated
as non-linear optimization problems and approximated with
evolutionary algorithms. In this work, we employ a generic,
novel approach to training forecasting models in a supervised
learning setting, known as Smart Predict-then-Optimize (SPO)
[3]. A forecasting model is trained with the goal of generating
predictions that prescribe optimal decisions. An alternative
loss function, called SPO loss, is used to measure the subopti-
mality of decisions induced by a set of forecasted parameters.
The proposed method can accommodate general multivariate
and constrained optimization problems with a linear objective.
Decision trees [21], including ensemble methods such as
Random Forests, can be directly trained to minimize the SPO
loss.

We consider the case of a virtual power plant (VPP),
composed of wind and PV plants, participating in the DA mar-
ket with a single price balancing mechanism. Assuming that
the VPP generator has probabilistic forecasts for renewable
generation at its disposal, we prescribe a profit-maximization
strategy constrained in the probability space, which tunes the
degree of risk-aversion. Based on this strategy, we derive the
SPO loss function and train ensembles of decision trees to
forecast the imbalance penalty for the DA horizon. We focus
exclusively on imbalance penalties as they are very hard to
predict, but the proposed framework is generic and can also
accommodate energy forecasting models. We compare the effi-
cacy of decisions to the standard approach, where a forecasting
model is trained to minimize prediction error, and estimate a
modified version of the coefficient of prescriptiveness. The
results indicate that the proposed approach leads to improved
decisions and increased forecast value.

The contribution of this work is threefold. First, we propose
a novel approach for decision-making under uncertainty in
electricity markets. Second, we derive the SPO loss function
for a generic stochastic optimization problem, while previous
works consider deterministic problems. Third, we advocate

using the coefficient of prescriptiveness as an insightful mea-
sure of the relative efficacy compared to the base and perfect-
foresight solutions.

The remainder of the paper is organized as follows. Section
II presents the SPO framework, Section III formulates the
trading problem and Section IV presents the results. Finally,
Section V concludes and provides directions for further re-
search.

II. THE SPO FRAMEWORK

In this section, we provide a short description of the SPO
framework and the training methodology, following [21]. For
a nominal optimization problem with a linear objective, let
ω ∈ Rd denote the multivariate decision vector, S the feasible
set defined by convex constraints and c ∈ Rd the associ-
ated cost vector. Minimizing the objective function results in
z∗(c) = minω∈S c

Tω, with ω∗(c) = argminω∈S{cTω} being
the optimal decision. Since S is convex, ω∗(·) is readily solved
with off-the-shelf solvers.

In reality, the cost vector c can be unknown. Instead, a train-
ing set of n historical observations {(x1, c1), · · · , (xn, cn)} is
available, where x ∈ Rp is a vector of p explanatory features
used to forecast c. A forecasting model f(·) maps observations
of x to c and generates a predicted cost vector ĉ = f(x), which
is subsequently used as input in the optimization problem,
resulting in optimal decision ω∗(ĉ). During training, we search
for an approximation f̂(·) by minimizing the value of a loss
function `(ĉ, c) over the training data. For regression, the
most common loss function is the Mean Square Error (MSE),
defined as `MSE(ĉ, c) := ‖ĉ− c‖22.

The SPO loss function [3] is used to directly train a fore-
casting model to minimize decision costs in the downstream
optimization problem. For a predicted cost vector ĉ and an
actual realization c, the SPO loss measures the difference in
terms of cost as a result of taking decision ω∗(ĉ) instead of
ω∗(c). For an optimization problem with a unique solution,
the SPO loss function is defined as follows:

`SPO(ĉ, c) := cTω∗(ĉ)− z∗(c). (1)

A value-oriented forecasting model thus uses (1) to approxi-
mate f(·). By applying the empirical risk minimization (ERM)
principle, the following optimization problem is prescribed for
training a forecasting model:

f∗ = argmin
1

N

N∑
i=1

`SPO(f(xi, ci), ci). (2)

The SPO loss function can be non-convex and discontinuous,
which poses challenges for training a machine learning algo-
rithm. One approach proposed is to derive a surrogate loss
function that provides an upper bound. A tractable methodol-
ogy for directly training decision trees under the SPO loss is
presented in [21].

Decision tree learning is a popular machine learning algo-
rithm used both for regression and classification [22], as it
offers intuitive and interpretable results. Decision trees work



by recursively partitioning the feature space Rp at different
components of x using binary splits. Each split creates an
internal node, with the final partitions being referred to as
leaves of the tree. The predicted output for a new observation
of x that falls within a leaf equals the within-leaf mean
or mode, for regression and classification respectively. The
objective is to partition the feature space into L leaves,
R1, ..., RL, by minimizing:

min
R1:L∈T

1

N

L∑
l=1

min
ĉl

∑
i∈Rl

`(ĉl, ci), (3)

where T denotes the internal structure of the tree. The popular
CART algorithm [23] is used to grow decision trees by “greed-
ily” selecting locally optimal binary splits. Trees are typically
grown large enough to capture non-linear dependencies among
training data, and are then pruned back into a simpler version,
to reduce overfitting.

The SPO Trees methodology suggests growing a decision
tree following a CART-like approach that selects the split that
leads to the greatest minimization of the SPO loss. The average
cost vector c̄l of all observations that fall within a leaf is the
unique minimizer of the SPO loss within leaf l, as shown in
[21]. This simplifies the task of training under the SPO loss
and sets the basis for a tractable methodology of performing
binary splits. The objective is:

min
R1:L∈T

1

N

L∑
l=1

min
ĉl

∑
i∈Rl

(cTi ω
∗(c̄l)− z∗(ci)). (4)

The recursive partitioning approach of CART is applied with
respect to (4) by evaluating the objective value at each candi-
date split and selecting the one that leads to lowest cost. For
continuous features in x, a heuristic search is performed that
only considers certain quantiles of the empirical distribution
as candidate splits, in order to reduce the computational cost.

Decision trees are prone to overfitting, i.e., they are subject
to high variance, which diminishes their predictive perfor-
mance. Bootstrap aggregating (bagging) is a general methodol-
ogy for reducing variance in estimators. First, B new training
sets are created by sampling with replacement (bootstrapping)
from the original training set. Next, B models are trained
and individual predictions are aggregated via averaging or
majority vote. The Random Forest algorithm [24] further
expands on the bagging algorithm by training on de-correlated
samples, using only a subset of the feature vector x at each
bootstrap iteration. The Random Forest algorithm significantly
improves the predictive performance of decision trees. This
methodology can be readily applied to SPO Trees to train
ensembles of decision trees, which are called SPO Forests.

III. RENEWABLE TRADING

We proceed by formulating the problem of a renewable
generator participating in the DA market under a single price
balancing mechanism, focusing on the impact of imbalance
penalty forecasts. Throughout, we assume that the generator is
a price-taker, hence energy offers do not affect market prices,

and probabilistic predictions for the renewable generation are
available.

A. Problem Formulation

For a given delivery period t, let λD denote the DA price
and λB the single clearing price of the balancing market.
The imbalance penalty is defined as ψ = λD − λB . When
the system is short, i.e., in need of upward regulation, it
generally holds that λB ≥ λD, therefore ψ ≤ 0. The opposite
is generally true when downward regulation is required, i.e.,
the system is long. However, these assumptions are regularly
violated in practice, so we avoid imposing them moving
forward.

Assuming energy quantities are normalized by the nominal
capacity, the generator submits energy offers ED ∈ [0, 1] for
each delivery period t of the next day. Given the absence of
temporal constraints, optimization is conducted over each time
period separately, thus subscript t is dropped. The actual gen-
eration is a stochastic process denoted as Ẽ. The total revenue
is also a stochastic process comprising two components, DA
revenue and imbalance costs. Specifically:

ρ̃ = λDED + λB(Ẽ − ED) = λDẼ − ψ(Ẽ − ED). (5)

From (5), we observe that when ψ < 0, if the generator
overproduces, i.e., Ẽ > ED, the second term becomes positive
and additional revenue is received. A risk-neutral participant
maximizes revenue by solving the stochastic optimization
problem ED∗ = argmin(−ρ̃). Under perfect foresight of
ψ, the analytical solution to this problem prescribes offering
either the nominal capacity or zero MWh [2]. Under uncer-
tain market prices, the decision depends on the conditional
expectation ψ̂ as:

ED∗ =

{
1, if ψ̂ ≥ 0

0, if ψ̂ < 0
(6)

By examining (6) we observe that ED∗ depends only on
the sign of the predicted penalty ψ̂, with ψ̂ = 0 being a
trivial case. In reality, this strategy would expose participants
to great risk due to large imbalances. In addition, the price-
taker assumption could be violated in practice. Constraining
the optimal offer can lead to a better risk-return trade-off
[8]. Assuming knowledge of the predictive cumulative density
function (cdf) F̂E for the stochastic generation, we propose
the following analytical rule for constraining the offer in the
probability space:

ED∗ =


q̂1−a, if ψ̂ > 0,

q̂.50, if ψ̂ = 0,

q̂a, if ψ̂ < 0,

(7)

where q̂a is the a-quantile of F̂E , with a ∈ (0, 0.50] being
a design parameter that tunes the degree of risk-aversion. As
a → 0.50, the second term in (5), which corresponds to the
energy imbalance, becomes smaller and the trading strategy
becomes more risk-averse. The problem of identifying the



optimal offer thus boils down to estimating the sign of the ex-
pectation ψ̂, which can be cast either as a regression or binary
classification problem. Note that the cost of misclassification
is dynamic, since it depends upon the absolute value of the
realized penalties. Therefore, it is important to jointly consider
direction and price in the forecasting model, as a wrong sign
prediction in the presence of a large penalty would lead to
excessive losses.

B. Derivation of the SPO Loss Function

Let ximb ∈ Rp denote the historic explanatory data used
as input for predicting ψ. Given a prediction ψ̂ = f(ximb)
and an actual realization ψ of the imbalance penalty, we
derive the optimal decisions from the analytical solution (7) as
ED∗(ψ̂) and ED∗(ψ), respectively. The revenue (5) remains
a stochastic process, which depends on the realization of
uncertain generation. One way to describe the SPO loss
function is as the deviation from the expected revenue given
uncertain renewable generation, which can be done either via
sampling scenarios or by integrating over F̂E . Alternatively,
given the additional realization of actual generation Eobs, we
can define the SPO loss, in terms of costs, as follows:

`SPO(ψ̂, ψ) = −λDEobs +ψ(Eobs−ED∗(ψ̂)) +ρ∗(ψ), (8)

which finally results in:

`SPO(ψ̂, ψ) = ψ(ED∗(ψ)− ED∗(ψ̂)). (9)

From (9) we observe that if ψ, ψ̂ have the same sign, no
loss incurs. If the sign is different, then the loss equals the
difference between q̂a and q̂1−a, scaled by the imbalance
penalty ψ. This means that the loss also depends on the
dispersion of F̂E . Observations that correspond to higher
uncertainty in energy production, i.e., a larger dispersion in
F̂E , are thus weighted more heavily during training. This effect
can be tuned by the selection of a. Overall, we observe that
the training process is jointly affected by the sign and value of
penalty ψ, the predictive density F̂E , and the selected trading
strategy.

IV. EVALUATION AND RESULTS

A. Case Study Description

The proposed methodology is evaluated for the case of
a VPP located in France, comprising wind and PV plants
with a total capacity of 42.3 MW, and a 24% share of
PV. Probabilistic predictions are obtained from [13] using a
Quantile Regression Forest (QRF) model. Four months of
probabilistic predictions at a 15-min resolution are available,
with the first two used for training, and the rest for out-of-
sample validation.

We used data from the German electricity market spanning
the period April-July 2020. Explanatory data ximb used for
predicting ψ comprise historical observations for imbalance
price, system imbalance volume, DA price, and DA forecasts
for system load, solar, wind and thermal generation. All market
data are published prior to market closure and are available
at [25]. In addition, one-hot encoded categorical variables are

included to model possible calendar effects, namely day of
the week, hour of the day and quarter of the hour. Since
the DA market closes at 9h00 UTC on the previous day, the
clearing price for the balancing market and the system im-
balance volume of that day are unavailable. Instead, historical
observations from two days prior to the delivery are used, as
well as the value last observed at the forecast origin.

B. Benchmarks

Two additional price forecasting models are trained un-
der the standard Predict-then-Optimize framework and eval-
uated based on trading results obtained by applying the risk-
constrained strategy described in (7). In order to better illus-
trate the added value of training under the SPO loss instead
of a traditional loss function, two variations of the Random
Forest algorithm are considered. Specifically, the benchmarks
are:
• Random Forest Regressor (RF-Reg): A Random Forest

model is trained in a typical regression fashion to predict
ψ by minimizing MSE loss during training.

• Random Forest Classifier (RF-Class): A Random Forest
classifier is trained to predict the probability φ of the
system being short. Here, splits are decided based on the
reduction of the Gini index, which measures the impurity
of each node [22]. Following (7), if φ̂ > 0.5, then the
optimal offer is q̂a, or else q̂1−a.

Note that the decision threshold for the RF-Class model
is set naively at 0.5, without considering any asymmetry
in imbalance penalties. However, tuning for this threshold
requires an ad hoc estimation of the value of imbalance
penalties, which itself is a regression problem. As our goal
is to showcase improved performance of a single model
that uses an alternative loss function, we avoid developing
a separate model to tune this parameter. Finally, in order
to present more comprehensive results, the Expected Value
(EV) offering strategy is also evaluated, with the offer being
ED∗ = E(F̂E). The EV strategy depends only on renewable
generation forecasts and provides a trading benchmark.

Preliminary analysis indicated that modeling each 15-min
interval separately does not offer added value, thus a single
model is trained for all time steps. All trees are fully grown
without pruning. Ensemble tree algorithms are considered
fairly robust against overfitting and immune to noisy inputs,
and thus do not require extensive feature selection. The
number of trees B to grow is set at 300 throughout, which
is adequate to capture non-linear dependencies and ensure
convergence of the ensemble effect. Two hyperparameters
require further tuning, namely the size m of the feature subset
selected at each bootstrap iteration and the minimum number
nmin of sample observations required to split an internal
node, which is conducted via grid-search with a 5-fold cross-
validation. For the SPO Forests in particular, hyperparameter
tuning is conducted using a custom scoring rule that evaluates
the expected revenue during cross-validation. Moreover, for
the SPO Forests a different model is trained for each value
of the risk-parameter a in (7) and continuous features of



TABLE I
TRADING RESULTS FOR THE TESTING PERIOD

Trading a = 0.05 a = 0.10 a = 0.20

Results EV SPO Forest RF-Reg RF-Class SPO Forest RF-Reg RF-Class SPO Forest RF-Reg RF-Class
Total revenue (EUR) 354 674 369 121 367 395 355 893 370 808 366 656 357 700 363 380 362 946 357 241
CV aR5% (EUR) -78.02 -141.50 -167.80 -178.51 -111.63 -129.75 -139.34 -88.11 -101.15 -107.01

Energy bid (MWh) 9 677 6 902 10 310 9 626 7 432 10 090 9 562 8 123 9 914 9 567
Absolute bid

deviation (MWh) 2 676 5 121 5 173 5 138 4 343 4 299 4 283 3 529 3 458 3 461

Revenue per
imbalance (EUR/MWh) 0.85 3.26 2.90 0.68 4.24 3.32 1.24 3.11 3.05 1.40

ximb are evaluated at quantiles {0.10, . . . , 0.90}. The SPO
Forests are trained using the implementation provided at
https://github.com/rtm2130/SPOTree.

C. Results

We assess the out-of-sample trading performance of the
forecasting models over the 2-month testing period. The 5%
Conditional Value at Risk (CV aR5%), defined as the expected
profit in the worst 5% of cases, is used to measure trading risk.
Table I presents analytical results for a = {0.05, 0.10, 0.20}.
Overall, the SPO Forest model outperforms the other bench-
marks in terms of revenue for a given value of a, reaching up
to a 4.5% increase compared to the EV strategy for a = 0.10.
In general, lower values of a lead to an increase in both
revenue and risk, as evidenced by a decrease in CV aR5%,
which is in accordance with our expectations for a risk-
aware trading strategy. This fact is highlighted in Fig. 1,
where aggregated revenue is plotted against CV aR5% for the
different levels of a. Fig. 1 shows the SPO Forest model leads
to improved overall performance, both in terms of generated
revenue and risk, with consistent results across the different
degrees of risk-aversion. Specifically, the line that corresponds
to the SPO Forests sets the efficient frontier, i.e., for a given
amount of risk the SPO Forests result in the largest revenue
across the different models (and vice versa). As a → 0.50,
all models converge to a similar performance. The RF-Class
model performs the worst overall, offering only a marginal
revenue increase compared to the EV strategy, accompanied
by a large increase in risk.

An interesting result observed from Table I is that the SPO
Forest model results in the VPP offering the least amount
of energy in the DA market across the different values of a.
This could be attributed to the SPO Forest model adapting to
the asymmetry between the upward and downward regulation
costs. Indeed, the in-sample absolute averages for upward
and downward penalties are approximately 40 EUR/MWh and
37 EUR/MWh, respectively, which probably causes the SPO
Forest model to favor offers below the expected generation.
We further observe that all models achieve a positive revenue
per imbalance. This is attributed to the single price balancing
mechanism, but is also highly dependent on the selected testing
set. For example, the fact that the EV strategy achieves a
positive revenue per imbalance is purely coincidental, since

Fig. 1. Risk vs Total Revenue for different values of a

in this case imbalances only depend on generation forecast
errors.

We further examine the relative efficacy of the prescribed
decisions by estimating a modified version of the coefficient
of prescriptiveness P [18]. For each model i and each value
of risk-parameter a, we estimate the respective coefficient P
as:

Pi,a = 1− ρ̂i,a − ρ∗a
ρ̂EV − ρ∗a

, (10)

where ρ∗a is the revenue obtained by the deterministic perfect-
foresight strategy, i.e., assuming perfect knowledge of ψ,
following the strategy prescribed in (7), and ρ̂EV , the revenue
obtained by the EV strategy. Coefficient P is bounded above
by 1 and can be interpreted as a measure of the relative
”distance”, defined strictly in terms of revenue, between the
benchmark EV strategy and the theoretical maximum. Fig. 2
shows the evolution of P for the different forecasting models
and different values of a (for a = 0.50, P = 1 in all
cases). As expected, the SPO Forest model shows improved
relative performance, followed by the RF-Reg model, with the
difference being more pronounced for a = 0.10. The RF-
Class model performs the worst overall. However, it should be
noted that the coefficient P is generally low in all cases, with
a maximum value of just over 0.10. This means that, even
in the best case, the prescribed decisions are still relatively
far from obtaining maximum revenue. This fact highlights the



Fig. 2. Estimated coefficient of prescriptiveness per risk level a

inherent difficulty in forecasting the imbalance penalty on the
DA horizon, which in turn imposes practical limitations to
exploiting the single price balancing mechanism for additional
revenue.

V. CONCLUSIONS

In this work, we proposed a value-oriented forecasting ap-
proach for prescribing optimal decisions for trading renewable
energy. This involved training a forecasting model taking into
consideration the subsequent optimization problem, using the
SPO loss function to measure excess cost due to erroneous
predictions.

We considered the case of a VPP generator offering energy
in a DA market under a single price balancing mechanism and
employed a profit maximization strategy constrained in the
probability space. Ensembles of decision trees were trained
to forecast the imbalance penalty by minimizing the SPO
loss function and applying the Random Forest algorithm.
In addition, we estimated the coefficient of prescriptiveness
for the different models and evaluated relative performance
against the benchmark and the perfect-foresight strategy. Over-
all, results indicate that for a given trading strategy, using
a forecasting model trained under the SPO loss function
leads to better decision-making and improved performance,
both in terms of revenue and risk. Moreover, the proposed
approach offers an attractive alternative to the benchmark
trading strategy. In future work, we aim at applying the
proposed methodology in more complex case studies, such
as jointly considering energy and market price forecasting,
and assessing the impact of explanatory variables in trading
performance.
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