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The minimal excludant or "mex" function for an integer partition π of a positive integer n, mex(π), is the smallest positive integer that is not a part of π. Andrews and Newman introduced σmex(n) to be the sum of mex(π) taken over all partitions π of n. Ballantine and Merca generalized this combinatorial interpretation to σrmex(n), as the sum of least r-gaps in all partitions of n. In this article, we study the arithmetic density of σ 2 mex(n) and σ 3 mex(n) modulo 2 k for any positive integer k.

Introduction and statement of results

In 2015, Fraenkel and Peled [START_REF] Fraenkel | Harnessing the unwieldy MEX function, Games of no chance 4[END_REF] defined the minimal excludant or "mex" function on a set S of positive integers as the least positive integer not in S. Perhaps the notion of the mex function was introduced in the 1930s, and best known for the applications in combinatorics and game theory [START_REF] Grundy | Mathematics and games[END_REF][START_REF] Sprague | Über mathematische Kampfspiele[END_REF].

A partition of a non-negative integer n is a non-increasing sequence of positive integers whose sum is n. Let π be a partition of n and P(n) be the set of all partitions of n. Recently, Andrews and Newman [START_REF] Andrews | Partitions and the minimal excludant[END_REF] considered the minimal excludant function applied to integer partitions. The minimal excludant of π, denoted mex(π), is the smallest positive integer which is not a part of π. Thus if π is 6 + 4 + 3 + 2 + 1, a partition of 16, then mex(π) = 5. For each positive integer n, we have σmex(n) := π∈P(n) mex(π).

For example, σmex(4) = 9 with the relevant mex partitions being: mex(4) = 1, mex(3 + 1) = 2, mex(2 + 2) = 1, mex(2 + 1 + 1) = 3, and mex(1

+ 1 + 1 + 1) = 2. The generating function for σmex(n) is given by ∞ n=0 σmex(n)q n = (-q; q) 2 ∞ ,
where the q-shifted factorial (a; q) ∞ := ∞ n=1 (1 -aq n-1 ), |q| < 1. Let D 2 (n) be the set of partitions of n into distinct parts using two colors and let D 2 (n) = |D 2 (n)|. In [START_REF] Andrews | Partitions and the minimal excludant[END_REF], the authors give two proofs of the following theorem.

Theorem 1.1. Given an integer n > 0, we have

σmex(n) = D 2 (n).
They also studied the parity of σmex function and proved that σmex(n) is almost always even and is odd exactly when n is of the form j(3j ± 1), where j is a non-negative integer.
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In some literature, the minimal excludant of a partition π is referred to as the least gap or smallest gap of π. The r-gap of a partition π is the least positive integer that does not appear at least r times as a part of π. Let s r (π) be the smallest part of the partition π appearing less than r times and S r (n) = π∈P(n) s r (π). For example, all the 3-gaps in the partitions of 5 are: s 3 (5) = 1, s 3 (4 + 1) = 1, s 3 (3 + 2) = 1, s 3 (3 + 1 + 1) = 1, s 3 (2 + 2 + 1) = 1, s 3 (2 + 1 + 1 + 1) = 2, s 3 (1 + 1 + 1 + 1 + 1) = 2. Therefore S 3 (5) = π∈P(5) s 3 (π) = 9. Ballantine and Merca [START_REF] Ballantine | Combinatorial Proof of the Minimal Excludant Theorem[END_REF][START_REF] Ballantine | Bisected theta series, least r-gaps in partitions, and polygonal numbers[END_REF] generalized Theorem 1.1 to the sum S r (n) of r-gaps in all partitions of n. To keep notation uniform, in this article we use σ r mex(n) for S r (n). The generating function for σ r mex(n) is given by ∞ n=0 σ r mex(n)q n = (q 2r ; q 2r ) ∞ (q; q) ∞ (q r ; q 2r ) ∞ .

(1.1)

In [START_REF] Ballantine | Bisected theta series, least r-gaps in partitions, and polygonal numbers[END_REF], Ballantine and Merca proved the following identity.

Theorem 1.2. For n ≥ 0 and r ≥ 1 we have

∞ k=0 p(n -rT k ) = σ r mex(n),
where p(n) counts the number of partition of n and T k is the k-th triangular number.

Recently, Ray and Barman [RaBa20, Theorem 1.6], studied the divisibility of Uncu's partition function EO u (n). After some elementary calculations we observe that the generating function of EO u (2n) and σmex(n) (or σ 1 mex(n)) are the same. So using the result mentioned above, σmex(n) is almost always divisible by 2 k for any positive integer k.

A well-known conjecture of Parkin and Shanks [START_REF] Parkin | On the distribution of parity in the partition function[END_REF], for integer partitions p(n), states that the even and odd values of p(n) are equally distributed, that is,

lim X→∞ # {0 ≤ n ≤ X : p(n) ≡ a (mod 2)} X = 1 2 ,
where a ∈ {0, 1}. Little is known regarding this conjecture. In the following theorem we prove that σ 2 mex(n) and σ 3 mex(n) are almost always even. More generally we prove the following result.

Theorem 1.3. (Main Theorem) Let k be a positive integer and r ∈ {2, 3}. Then

lim X→+∞ # 0 ≤ n < X : σ r mex(n) ≡ 0 (mod 2 k ) X = 1.
In other words for almost every non-negative integer n lying in an arithmetic progression, the integer σ r mex(n) is a multiple of 2 k where r ∈ {2, 3}.

Preliminaries

In this section, we recall some definitions and facts relating to the arithmetic of classical modular forms. For more details, one can consult [START_REF] Ono | The web of modularity: arithmetic of the coefficients of modular forms and q-series[END_REF][START_REF] Koblitz | Introduction to elliptic curves and modular forms[END_REF]. Let H denote the upper-half plane. The complex vector space of modular forms of weight (a positive integer) with respect to a congruence subgroup Γ will be denoted by M (Γ). 

f az + b cz + d = χ(d)(cz + d) f (z)
for all z ∈ H and all a b c d ∈ Γ 0 (N ). The space of such modular forms is denoted by M (Γ 0 (N ), χ).

Here Γ 0 (N ) will be as usual the Hecke congruence subgroup of level N .

Recall that Dedekind's eta-function is defined by

η(z) := q 1/24 (q; q) ∞ = q 1/24 ∞ n=1 (1 -q n ),
where q = e 2πiz and z ∈ H. A function f (z) is called an eta-quotient if it is of the form

f (z) = δ|N η(δz) r δ ,
where N is a positive integer and r δ is an integer. We now recall two theorems from [On04, p. 18], which help us check the modularity of eta-quotients that show up in our study. Then

f az + b cz + d = χ(d)(cz + d) f (z) for every a b c d ∈ Γ 0 (N ).
Here

χ(d) := (-1) δ|N δ r δ d .
Suppose that f is an eta-quotient satisfying the conditions of Theorem 2.2. If f is also holomorphic at all of the cusps of Γ 0 (N ), then f ∈ M (Γ 0 (N ), χ). To check the holomorphicity at cusps of f (z) it suffices to check that the orders at the cusps are non-negative. The necessary criterion for determining orders of an eta-quotient at cusps is the following. 

Proof of main results

In this section, we prove Theorem 1.3. We prove the following lemmas.

Lemma 3.1. Let k be a positive integer and r ∈ {2, 3}. Then

η(24rz) 2 k -1 η(24z)η(48rz) 2 k-1 -2 ≡ ∞ n=0 σ r mex(n)q 24n+3r-1 (mod 2 k ).
Proof. From (1.1), the generating function of σ r mex(n) is given by

∞ n=0 σ r mex(n)q n = (q 2r ; q 2r ) 2 ∞ (q; q) ∞ (q r ; q r ) ∞ . (3.2) Consider A(z) = ∞ n=1 (1 -q 24rn ) 2 (1 -q 48rn ) = η(24rz) 2 η(48rz) .
By the binomial theorem, for any positive integers r and k we have

(q r ; q r ) 2 k ∞ ≡ (q 2r ; q 2r ) 2 k-1 ∞ (mod 2 k ).
Therefore,

A 2 k-1 (z) = η(24rz) 2 k η(48rz) 2 k-1 ≡ 1 (mod 2 k ). Define B r,k (z) by B r,k (z) = η(48rz) 2 η(24z)η(24rz) A 2 k-1 (z).
Now, modulo 2 k , we have

B r,k (z) = η(48rz) 2 η(24z)η(24rz) η(24rz) 2 k η(48rz) 2 k-1 ≡ η(48rz) 2 η(24z)η(24rz) = q 3r-1 (q 48r ; q 48r ) 2 ∞ (q 24 ; q 24 ) ∞ (q 24r ; q 24r ) ∞ . (3.3) Since B r,k (z) = η(24rz) 2 k -1 η(24z)η(48rz) 2 k-1 -2 ,
combining (3.2) and (3.3), we obtain the required result. Lemma 3.2. Let k > 1 be a positive integer and r ∈ {2, 3}. Then

B r,k (z) = η(24rz) 2 k -1 η(24z)η(48rz) 2 k-1 -2 ∈ M 2 k-2 (Γ 0 (L), χ(•)) , where L = 1152 if r = 2, 576 if r = 3.
Proof. First, we use Theorem 2.2 and find the following:

1. The weight of the eta-quotient B r,k (z) is 2 k-2 .

2. Suppose the level of the eta-quotient B r,k (z) is 48ru, where u is the smallest positive integer satisfying the following identity.

48ru 24r (2 k -1) - 48ru 24 - 48ru 48r (2 k-1 -2) ≡ 0 (mod 24)
Equivalently, we have

u 3 • 2 k-1 -2r ≡ 0 (mod 24). Since k > 1, we have u = 12 if r = 2 and u = 4 if r = 3. Hence level of the eta-quotient B r,k (z) is 1152 if r = 2, 576 if r = 3.
3. The Nebentypus character is

χ(•) = (-1) 2 k-2 (24r) 2 k -1 (24) -1 (48r) -2 k-1 +2 • .
By Theorem 2.3, the cusps of Γ 0 (L) are given by c d where d | L and gcd(c, d) = 1. Now note that eta-quotient B r,k (z) is holomorphic at a cusp c d if and only if

(2 k -1) gcd(d, 24r) 2 24r - gcd(d, 24) 2 24 -(2 k-1 -2) gcd(d, 48r) 2 48r ≥ 0.
Equivalently, if and only if

2(2 k -1) gcd(d, 24r) 2 gcd(d, 48r) 2 -2r gcd(d, 24) 2 gcd(d, 48r) 2 -(2 k-1 -2) ≥ 0. (3.4)
Case (i). When r = 2 then the left side of (3.4) can be written as

2(2 k -1) gcd(d, 48) 2 gcd(d, 96) 2 -4 gcd(d, 24) 2 gcd(d, 96) 2 -(2 k-1 -2) ≥ 0. (3.5)
To check the positivity of (3.5), we have to find all the possible divisors of 1152. We define three sets as follows

H 1 = {2 α 3 β : 0 ≤ α ≤ 3, 0 ≤ β ≤ 2}, H 2 = {2 α 3 β : α = 4, 0 ≤ β ≤ 2}, H 3 = {2 α 3 β : 5 ≤ α ≤ 7, 0 ≤ β ≤ 2}.
Note that H 1 ∪ H 2 ∪ H 3 contains all positive divisors of 1152. In the following table we compute all necessary data to prove the positivity of (3.5).

Values Values of (3.5)

d ∈ H 1 1 1 2 k-1 3 -4 d ∈ H 2 1 1/4 2 k-1 3 -1 d ∈ H 3 1/4 1/16 5/4
Since k > 1, it is clear from the above table that the quantities in (3.5) are always greater than equal to 0 for any positive integer d | 1152.

Case (ii). When r = 3 then the left side of (3.4) can be written as

2(2 k -1) gcd(d, 72) 2 gcd(d, 144) 2 -6 gcd(d, 24) 2 gcd(d, 144) 2 -(2 k-1 -2) ≥ 0. (3.6)
To check the positivity of (3.6), we have to find all the possible divisors of 576. We define four sets as follows Values of (3.6)

G 1 = {2 α 3 β : 0 ≤ α ≤ 3, 0 ≤ β ≤ 1}, G 2 = {2 α 3 β : 0 ≤ α ≤ 3, β = 2}, G 3 = {2 α 3 β : 4 ≤ α ≤ 6, 0 ≤ β ≤ 1}, G 4 = {2 α 3 β : 4 ≤ α ≤ 6, β = 2}. Note that G 1 ∪ G 2 ∪ G 3 ∪ G 4 contains
d ∈ G 1 1 1 2 k-1 3 -6 d ∈ G 2 1 1/9 2 k-1 3 -2/3 d ∈ G 3 1/4 1/4 0 d ∈ G 4 1/4 1/36 4/3
Since k > 1, it is clear from the above table that the quantities in (3.6) are always greater than equal to 0 for any positive integer d | 576. Therefore, by Case (i) and Case (ii), the eta-quotient B r,k (z), where r ∈ {2, 3} and k > 1, are holomorphic at every cusp c d and hence it is a modular form on Γ 0 (L) with Nebentypus character χ(•). This completes the proof of Lemma 3.2.

We state the following result of Serre. Proof of Theorem 1.3. Suppose k > 1 is a positive integer and r ∈ {2, 3}. From Lemma 3.2, we have B r,k (z) = η(24rz) 2 k -1 η(24z)η(48rz) 2 k-1 -2 ∈ M 2 k-2 (Γ 0 (L), χ(•)) .

Also the Fourier coefficients of the eta-quotient B r,k (z) are integers. So, by Theorem 3.3 and Lemma 3.1, we can find a constant α > 0 such that # n ≤ X : σ r mex(n) ≡ 0 (mod 2 k ) = O X log α X .

Hence lim

X→+∞

# n ≤ X : σ r mex(n) ≡ 0 (mod 2 k ) X = 1.

This completes the proof of Theorem 1.3.
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