
HAL Id: hal-03208483
https://hal.science/hal-03208483v1

Preprint submitted on 28 Apr 2021 (v1), last revised 17 May 2021 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reflection on modern methods: a note on variance
estimation when using inverse probability weighting to

handle attrition in cohort studies
Marie-Astrid Metten, Nathalie Costet, J.-F. Viel, Guillaume Chauvet

To cite this version:
Marie-Astrid Metten, Nathalie Costet, J.-F. Viel, Guillaume Chauvet. Reflection on modern methods:
a note on variance estimation when using inverse probability weighting to handle attrition in cohort
studies. 2021. �hal-03208483v1�

https://hal.science/hal-03208483v1
https://hal.archives-ouvertes.fr


 

1 
 

Reflection on modern methods: a note on variance estimation when using inverse 

probability weighting to handle attrition in cohort studies 

 

Abstract 

The inverse probability weighting (IPW) method is used to handle attrition in association 

analyses derived from cohort studies. It consists in weighting the respondents at a given follow-

up by their inverse probability to participate. Weights are estimated first and then used in a 

weighted association model. When the IPW method is used, instead of using a so-called naïve 

variance estimator, the literature recommends using a robust variance estimator. However, the 

latter may overestimate the variance because the weights are considered known rather than 

estimated. In this note, we develop, by a linearization technique, an estimator accounting for the 

weight estimation phase and explain how it differs from naïve and robust variance estimators. 

We compare the three variance estimators through simulations under several MAR and MNAR 

scenarios. We found that both the robust and linearized variance estimators were approximately 

unbiased, even in MNAR scenarios. The naive variance estimator severely underestimated the 

variance. We encourage researchers to be careful with variance estimation when using the IPW 

method, avoiding naïve estimator and opting for a robust or linearized estimator. R and SAS 

codes are provided to implement them in their own studies. 

Keywords: cohort studies, attrition, inverse probability weighting, variance estimation  

 

Key messages 

 The inverse probability weighting (IPW) method is used to handle attrition in cohort 

studies. 

 The true probability of response is unknown and estimated from the data using a so-

called response model. 

 A robust variance estimator is recommended, but it may overestimate the variance 

as weights are considered known rather than estimated.  

 We propose a linearized variance estimator accounting for the weight estimation 

phase and show it is approximately unbiased in all MAR and MNAR scenarios tested. 
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Introduction 

Cohort studies are largely favored by the epidemiologists to investigate causal associations 

between exposure and health outcomes. However, due to their longitudinal design, these studies 

often suffer from increasing attrition (non-participation, withdrawal) of the participants along 

the successive follow-ups. Attrition results in missing data for all the variables collected at a 

follow-up (including the health outcome of interest) for a more or less large subgroup of the 

initial participants. 

The simplest and most widely used approach to handle attrition in cohort studies is complete-

case analysis (CCA). It consists in conducting the analysis within the subset of the respondents at 

the follow-up only. This method assumes a missing completely at random (MCAR) attrition 

mechanism1 where the probability of attrition data does not depend on either the values of 

previously observed variables or the values of the missing variables at the follow-up. However, 

in real life, other attrition mechanisms are more likely to happen, such as a missing at random 

(MAR) or missing not at random (MNAR) mechanisms. In the MAR situation, the probability of 

attrition data depends on the values of observed variables but not on the values of the missing 

variables at the follow-up. In MNAR situation, the probability of attrition data depends on the 

values of the missing variables at the follow-up.  

In the epidemiological literature, some methods have been proposed to handle attrition, among 

them the inverse probability weighting (IPW) method.2,3 The principle is to redress the sample 

of respondents with weights reflecting their probability to participate at the follow-up, in order 

to recreate the initial cohort. Weights are defined as the inverse of the probability to respond, so 

that respondents with a lower probability of response are given a higher weight in the analysis. 

The true probability of response is unknown and needs to be estimated from the data using a 

model (the response model) to obtain the weights that will be used in a second step for the 

modeling of the association of interest (the association model). 4–6 Particular care should be 

taken for the method of estimating variance when using the IPW method. The simplest option is 
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to use a naive variance estimator, which is often given by default in statistical softwares, without 

further specification. As an alternative, several methodological publications have recommended 

using a robust or "sandwich" variance estimator.7–9 However, robust estimators tend to be 

conservative because they assume that weights are known rather than estimated.7,10 Intuitively, 

the use of estimated weights leads to lower variance because the weights account for the 

observed response probability, rather than the expected response probability. In the applied 

literature, the use of a robust variance estimator is sometimes mentioned11,12 but, in most cases, 

the way in which the variance was estimated is not mentioned, suggesting the use of naive 

variance estimators.  

In this article, we develop a variance estimator that accounts for the fact that response 

probabilities are estimated rather than known with certainty using the linearization technique 

described by Deville13 (called in the rest of the paper linearized estimator). We explain how it 

differs from the more widely used naive and robust variance estimators, and we evaluate all 

three through a simulation study under several scenarios of attrition mechanisms.  

1. Estimating variance using inverse probability weighting  

We first introduce the response model used to obtain the estimated response probabilities in 

Section 1.1. In Section 1.2, we consider the case in which the association model can be described 

by a linear regression and we present the options for the estimation of the variance of 

coefficients from weighted association models. 

1.1 Estimation of the response probabilities 

We note Ri as a response indicator, equal to 1 if the individual i responds and 0 otherwise. Let    

be a vector of covariates fully observed in the sample. We note    
    Pr(Ri = 1 Xi). It is assumed 

that such probabilities are given by a logistic regression model: 
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Let    be the estimator of the coefficient   , obtained by solving the estimating equation of the 

logistic regression: 
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We let      denote the estimator of the response probability, obtained by replacing the coefficient 

   in (1) by its estimator  . After computation, we obtain the approximate expression for the 

individual weights: 
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1.2 Estimation of the coefficients and their variance in a weighted linear regression 

(association model) 

In this Section, it is assumed that the outcome of interest    is related to a vector    of covariates, 

according to the linear regression model (association model): 
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The coefficients    and    are not known but the variable    giving the individual variance 

structure is assumed to be known. 

Let    denote the estimator of the coefficient   , obtained by solving the weighted estimating 

equation of the linear regression: 

 
  
    

  
          

      

 

   

 (   

 

1.2.1 Naïve estimator 
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The variance is estimated as if the specified weights were the inverse of the individual variances 

   in the association model given in Eq 4. This leads to the naïve variance estimator: 
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The naïve estimator does not make use of the correct variance-covariance structure of the 

association model and may therefore be severely biased.  

1.2.2 Linearized estimator 

We can rewrite equation (5) as: 
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The second (approximate) equality comes from the fact that       is an       and thus the 

error by replacing      by    
  is negligible. 

By plugging in the approximate expression obtained in (3) into the first member of (7), we 

obtain: 
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From equation (7) it follows that          
 
   , with: 
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The linearized estimator of the variance-covariance matrix       is: 
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Similar developments for cases of logistic regression are provided in the Supplementary 

Appendix 1.  

1.2.3 Robust estimator 

Alternatively, the so-called robust variance estimator is obtained as follows: in the definition of 

the linearized variable    given in equation (10), the component               
    accounts for 

the estimation of the response probabilities.  Suppressing this term is equivalent to considering 

that the response probabilities are known rather than estimated. This leads to: 
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If the response probabilities     were known, this variance estimator would be approximately 

unbiased, even if the association model was mis-specified, hence its name. The R and SAS codes 

to compute robust and linearized variance estimators are given in the Supplementary Appendix 

2. 

2. Simulation study 

We conducted a Monte-Carlo simulation under several MAR and MNAR scenarios to compare the 

performance of the three variance estimators (naïve, robust, linearized). We focused on the case 

of a linear regression model in which a continuous outcome is explained by continuous exposure 

and covariates. 

2.1 Data-generating process 

We compared the performance of the three variance estimators under various response model 

specifications, differing according to the role played by the variables (predictor of the outcome, 

of the exposure, or both outcome or exposure …).. We first created a sample of size          , 

containing seven covariates          generated independently according to standard normal 

distributions. We then generated an exposure variable according to the following model: 

                                      (    

 

where    is generated according to a standard normal distribution. In the exposure model (15), 

the coefficients were chosen such that the correlation between    and each of the covariates    

was approximately    . We generated an outcome variable according to the following model: 

                                              (    

 

where     is generated according to a standard normal distribution. In the outcome model (16), 

the coefficients were chosen such that the correlation between    and    was approximately 
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     and the correlation between    and any of the covariates    was approximately    . Finally, 

we generated response probabilities according to the following logistic model: 

                                                      (    

 

We used the values            or     and            or    . The case in which   =0.0 

corresponds to a MAR situation. The cases in which   =0.2 and 0.5 correspond to MNAR 

situations. In the response model (17), the coefficients         , and    were chosen to be equal 

to 0.1. The coefficient    was chosen such that the average response rate was approximately 

60% for all cases. In the sample, the individuals responded independently with the probabilities 

  . The data-generation model is presented in Figure 1 and the nine response mechanism 

scenarios are summarized in Table 1. 

2.2 Simulation performance criteria 

The performance of the naïve, robust, and linearized variance estimators was assessed using the 

response and association models that perfectly matched the data generation models.  

We performed 10,000 simulations per scenario. The results are expressed in terms of Monte 

Carlo relative bias, namely:   

             
           

     
                    

 

      
                  

      

   

  

and where the variance       was obtained through an independent simulation run of 10,000 

simulations. The simulations were conducted using SAS version 9.4. 

3. Results of the simulation study 

We plotted the relative bias of each variance estimator for the nine response mechanism 

scenarios (Figure 2). The variance was significantly underestimated by the naive estimator in all 

scenarios. This phenomenon was even more pronounced in MNAR scenarios 3, 4, 5, and 6.  
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The performance of the robust and linearized estimators was similar. They correctly estimated 

the variance for all scenarios, including MNAR scenarios.  

4. Discussion 

Several authors have proposed the IPW method to handle attrition in cohort studies.2,3 The care 

that must be taken with variance estimation when using this method is relatively unknown to 

applied researchers.  

Our simulation study compared the performance of two variance estimators possibly used in 

common practice (naïve and robust estimators) with that of a linearized estimator that accounts 

for the weight estimation phase. We showed that the use of naïve variance estimators should be 

avoided because they strongly underestimate variance. The linearized variance estimator, for 

which we presented the explicit formulas, estimated the variance approximately unbiasedly, 

even in MNAR scenarios. Publications within the inverse-probability-of-treatment weighting 

(IPTW) framework (propensity score) also showed the variance of the treatment effect to be 

accurately estimated when the weight estimation phase was included in the calculation of the 

variance estimator.14–17  

We expected an overestimation of the variance with the robust variance estimator, which does 

not account for the weight estimation phase. However, our simulation study showed that the 

results obtained using robust and linearized estimators were similar in all scenarios. Enders et 

al. also reported negligible differences between results obtained using a robust estimator and an 

estimator that accounts for the weight estimation phase for the IPTW method in survival 

analysis and ultimately recommended using the robust estimator for practical reasons (better 

implementation in software).18 In our case, researchers can use the code provided in the 

Supplementary Appendix to implement robust and linearized variance estimators in their own 

studies.  

Conclusion  
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We alert researchers to the impact of the choice of the variance estimator when using the IPW 

method to handle attrition in cohort studies. We encourage the use of a robust or linearized 

variance estimator, and discourage the use of a naïve estimator of the variance.  

Conflict of interest 
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Table 1.  Response mechanism scenarios 

Scenario                       Description 

MAR 1 0.0 0.0 0.1 Response depending only on covariates 

MAR 2 0.2 0.0 0.1 Response depending on covariates and exposure 

MAR 3 0.5 0.0 0.1 Response depending on covariates and exposure 

MNAR 1 0.0 0.2 0.1 Response depending on outcome and covariates 

MNAR 2 0.2 0.2 0.1 Response depending on outcome, exposure, and covariates 

MNAR 3 0.5 0.2 0.1 Response depending on outcome, exposure, and covariates 

MNAR 4 0.0 0.5 0.1 Response depending on outcome and covariates 

MNAR 5 0.2 0.5 0.1 Response depending on outcome, exposure, and covariates 

MNAR 6 0.5 0.5 0.1 Response depending on outcome, exposure, and covariates 

     regression coefficients of the generated response models (                                

                    ) 
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Figure 1. Scheme of the data-generation model for the Monte-Carlo simulation 

 

Figure 2. Relative bias of the three variance estimators (naïve, robust, linearized) in the nine 

response mechanism scenarios 

 

 

  


