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Efficient channel charting via phase-insensitive
distance computation

Luc Le Magoarou

Abstract—Channel charting is an unsupervised learning task
whose objective is to encode channels so that the obtained
representation reflects the relative spatial locations of the
corresponding users. It has many potential applications, ranging
from user scheduling to proactive handover. In this paper, a
channel charting method is proposed, based on a distance measure
specifically designed to reduce the effect of small scale fading, which
is an irrelevant phenomenon with respect to the channel charting
task. A nonlinear dimensionality reduction technique aimed at
preserving local distances (Isomap) is then applied to actually get
the channel representation. The approach is empirically validated
on realistic synthetic multipath MIMO channels, achieving better
results than previously proposed approaches, at a lower cost.

Index Terms—channel charting, dimensionality reduction,
MIMO signal processing, machine learning.

I. INTRODUCTION

MACHINE learning techniques have been applied with
success to several wireless communication problems in

recent years [1]. However, most of these techniques fall within
the supervised learning paradigm, and thus require labeled data
to operate. The acquisition of such data may be unpractical or
complex to implement within existing communication systems.

Channel charting [2] on the other hand is a fully unsupervised
learning task. Indeed, its objective is for a multi-antenna base
station to build a low-dimensional map (called chart) of the radio
environment based on uplink channel measurements, without
requiring access of the users’ actual locations. The chart should
reflect as much as possible the physical reality, in the sense
that the charting function should preserve spatial neighborhoods.
Predicting this way the relative locations of users from channel
measurements has many potential applications, ranging from SNR
prediction [3] and pilot reuse [4], to user grouping, proactive han-
dover management or beam-finding (see [2] for more details on
potential applications). What makes channel charting particularly
interesting compared to classical positioning methods is its fully
unsupervised nature. Indeed, no link with the application layer
in order to get locations from a global navigation satellite system
(GNSS) is required (even offline to build a dataset). Only channel
measurements are needed, which are readily accessible from the
radio access network (RAN). Moreover, having access to the
relative locations of users instead of their absolute locations is
sufficient for most applications that need to assess the proximity
of users. In that sense channel charting can be seen as an
unsupervised alternative to radio maps [5].
Contributions. This paper proposes a computationally efficient
method to perform channel charting, based on the computation
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of a distance measure that is designed to be insensitive to small
scale fading and to locally reflect physical distance. This measure
is theoretically motivated based on a simple physical channel
model. It allows to compute a distance matrix from the training
channels, which is then used within the Isomap [6] nonlinear
dimensionality reduction method to get the chart coordinates.
The proposed method is empirically assessed on channel data
used in [2], for which it yields better results than previously
proposed approaches at a lower computational cost. The method
is also assessed on higher-dimensional channels for which some
of the previously proposed methods are too costly to be applied.
Related work. In the seminal paper on channel charting [2], the
raw second order moment of channels is used as input features
in order to reduce the influence of small scale fading which
is irrelevant to the channel charting task. Such features have
the disadvantage of being of dimension equal to the square of
the channel dimension. On the other hand, it was more recently
proposed to use the channel autocorrelation as input features
[7]. This has the advantage of yielding features of the same
dimension as the channel that are also quite insensitive to small
scale fading. However, using autocorrelations automatically
makes the features translation invariant in the angular and delay
domains, which is a potentially harmful property with respect
to the channel charting task, especially for channels in line
of sight (LoS) or comprising a dominant path. In contrast, the
method proposed in this paper does not require to square the
channel dimension nor introduces any invariance in the angular
or delay domain. Finally, it is interesting to notice that the
distance measure used in this paper was also used for supervised
learning tasks such as user positioning and channel mapping in
a previous work [8], although it was not theoretically motivated.

II. PROBLEM FORMULATION

The method proposed in this paper applies to a wide variety
of multi-user massive multiple input multiple output (massive
MIMO) wideband systems [9], [10], operating indifferently in
time division duplex (TDD) or frequency division duplex (FDD),
where the antennas at the base station are indifferently colocated
or not (in which case it is a distributed MIMO system). Let
us consider A base station antennas and S subcarriers evenly
distributed at frequencies f1, . . . , fS around a center frequency
fc spanning a total bandwidth B, and denote h ∈ CAS the uplink
channel vector between any given user and the base station and
ha,s ∈ C the channel for the ath antenna on the sth subcarrier.
In order to lighten notations, the total channel dimension is
denoted M , AS. Note that no index is introduced to denote to
which specific user corresponds the channel, since the proposed
method treats indifferently the channels from all users.
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Based on a database of N estimated uplink channels

{hi}Ni=1, (1)

the objective in this paper is to build a forward charting function
(or simply charting function)

C : CM → RD′

h 7→ z , C(h), (2)

where z is the vector in the chart associated to channel h
and D′ is the chart dimension. Note that, as opposed to [2],
no feature extraction step is considered, so that the forward
charting function directly operates on estimated channels.
Performance measures. In order to evaluate charting functions,
the location of the user yielding channel hi is denoted pi ∈ RD ,
where D is the number of considered spatial dimensions (two or
three). A charting function C is considered good if it preserves
neighborhoods. Mathematically, it corresponds to the property

pl ≈ pk ⇔ C(hl) ≈ C(hk) (3)

being true for any k, l using the Euclidean distance. In order
to quantify this rather vague requirement, and following [2],
the performance measures used in this paper are the continuity
(CT) and trustworthiness (TW), which are classical performance
measures for dimensionality reduction methods [11]. Both
measures are between zero and one (the higher the better).
Continuity assesses whether channels corresponding to nearby
locations are mapped to nearby vectors in the chart (forward
implication in (3)). Its precise expression is

CT(K) = 1− 2
NK(2N−3K−1)

N∑
i=1

∑
j∈VKi

r̂(i, j)−K, (4)

where r̂(i, j) corresponds to the rank (in terms of proximity mea-
sured with the Euclidean distance) of the charted channel C(hj)
with respect to C(hi) (r̂(i, j) = n if C(hj) is the n-th closest to
C(hi) considering all the charted channels), and VKi is the set
containing indices of channels being among the K closest to the
ith in space but not in the chart. if the K nearest neighbors of all
considered channels in terms of spatial location are all mapped
among the K nearest neighbors of their representation on the
chart, then CT(K) = 1. On the contrary, if the K nearest neigh-
bors of all considered channels in terms of spatial location are all
mapped among the K furthest of their representation on the chart,
then CT(K) = 0. On the other hand, trustworthiness assesses
whether nearby vectors in the chart do correspond to spatially
close users (converse implication in (3)). It is defined in a very
similar way as continuity, except that the roles of the spatial lo-
cations and locations on the chart are switched. It is expressed as

TW(K) = 1− 2
NK(2N−3K−1)

N∑
i=1

∑
j∈UKi

r(i, j)−K, (5)

where r(i, j) corresponds to the rank (in terms of proximity
measured with the Euclidean distance) of the location pj with
respect to pi, and UKi is the set containing indices of channels
being among the K closest to the ith in the chart domain but
not in space.

III. FORWARD CHARTING FUNCTION

In this section, the proposed forward charting function
is introduced and explained in details. The general strategy
is to first design a distance measure between channels that
preserves spatial neighborhoods and then use it to compute chart
coordinates via a nonlinear dimensionality reduction method.

A. Distance measure
In order to set up the proposed method, a distance measure

d between channels which locally reflects physical reality
(locations of the corresponding users) is first sought. If the
Euclidean distance between channel vectors preserved spatial
neighborhoods, no charting would be needed. However, this
is not the case for several reasons. First of all, as noticed in
[2, Figure 4], using as distance measure

d(hk,hl)
2 = ‖hk − hl‖22 (6)

makes channels corresponding to users far away from the base
station appear closer to one another and channels corresponding
to users close to the base station appear further away to one
another. This issue can be partly resolved by normalizing
channels (for example simply dividing channel vectors by their
`2-norm [7]), using the distance

d(hk,hl)
2 =

∥∥∥∥ hk
‖hk‖2

− hl
‖hl‖2

∥∥∥∥2
2

. (7)

Fig. 1: Example of a pathological situation

However, the Euclidean distance between normalized channels
given in (7) is still unsatisfactory. This can be seen with a very
simple example exposing a pathological situation. Imagine two
users u1 and u2 located in the same direction v with respect
to the base station at distance d1 and d2 (as shown on figure 1).
Using the plane wave assumption, and considering a single
propagation path, the normalized channels of users u1 and u2
can both be expressed as

hi
‖hi‖2

= e−j2π
di
λ f(τi)⊗ e(v) (8)

where λ , c
fc

is the wavelength (at the central frequency), τi ,
di
c is the time delay, e(v) ∈ CA is the steering vector associated

with direction v (see [12], [13] for their complete definitions)
and f(τi) , 1√

S

(
e−j2πτi(f1−fc), . . . , e−j2πτi(fS−fc)

)T ∈ CS
is the vector of relative phase differences along subcarriers
associated to delay τi (simply equivalent to a steering vector in
the frequency domain). Now, if the two users are separated by
half a wavelength, assuming that the bandwidth is much smaller
than the central frequency (B � fc), the two normalized
channels are almost opposite vectors:

|d1 − d2| =
λ

2
⇒
∥∥∥∥ h1

‖h1‖2
− h2

‖h2‖2

∥∥∥∥
2

≈ 2. (9)
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This is because in that case, e−j2π
d1
λ = −e−j2π

d2
λ and f(τ1) ≈

f(τ2). In other words, normalized channels are almost maximally
far away while users are very close (a few centimeters at usual car-
rier frequencies). This simple example shows that the Euclidean
distance between channels is very sensitive to small scale fading,
which is clearly a harmful behavior with respect to the channel
charting task. This sensitivity comes from the very fast changes in
the global phase of channels due to small movements of users. In
order to overcome this issue, a distance measure which is totally
insensitive to the global phase of channels is proposed here:

d?(hk,hl)
2 , min

φ∈[0,2π]

∥∥∥∥ hk
‖hk‖2

− ejφ
hl
‖hl‖2

∥∥∥∥2
2

. (10)

In the context of the previous example, this distance measure
yields d?(h1,h2) = 0 for d1 = d2 and a monotonically
increasing value of d? with |d1−d2| (for values of |d1−d2| up
to several meters for classical systems). This distance measure
allows to get rid of the oscillating behavior (of period λ) of
the distance given in (7) with respect to |d1 − d2| which is
due to small scale fading. The distance d? may seem difficult
to compute at first sight, because of the involved optimization
problem. However, it can be expressed simply as

d?(hk,hl)
2 = 2− 2

|hHk hl|
‖hk‖2 ‖hl‖2

. (11)

The proof of this equality is given in appendix A. It means that
taking the modulus of the inner product (instead of the real part)
implicitly corresponds to put channels in phase (without needing
to solve an optimization problem). Under this form, d? is easy
to compute. Note that the distance measure d? is introduced here
motivated by a simple example, but it is illustrated on realistic
channels (comprising several paths) in the experimental section.

Compared to previously proposed channel charting methods,
using this phase-insensitive distance d? allows to gain
insensitivity to small scale fading without introducing features
of dimension M2 (as proposed in [2]), nor having to lose all
sensitivity to absolute direction and delay (as is the case when
using autocorrelations as input features [7]).

B. Chart coordinates

Now that a distance measure has been chosen, the chart
coordinates remain to be obtained. The objective is to find a
global coordinate system in D′ dimensions (with D′ � M )
in which the Euclidean distances between training samples are
as close as possible to the distances measured with d? (that
should be close to the spatial distance between users). To do
so, a dimensionality reduction method can be applied.

It is interesting to notice that distances measured with d?

reflect physical distances only locally (only small values of d?

are reliable). Indeed, a small value for d? corresponds to nearby
users, but a large value for d? does not necessarily correspond
to far away users. In such a situation, the Isomap method [6] is
particularly adapted. Indeed, it is based on the assumption that it
is possible to reliably compute small distances between training
samples but not large ones. It is based on a neighborhood
graph (considering k neighbors), from which large distances are
estimated by finding shortest paths. In the studied context, this

allows to approximate large distances using only small values of
d?. Then, multidimensional scaling (MDS) [14] is applied to the
obtained distance matrix to get a low dimensional embedding
(see [6], [15] for a detailed description of Isomap). In the
sequel, ISOMAP(D, D′, k) denotes the matrix whose columns
are the result of the Isomap method applied to the input distance
matrix D with an embedding in D′ dimensions considering
the k nearest neighbors to build the neighborhood graph. In
practice, the scikit-learn [16] implementation of Isomap is used.
The proposed method is summarized in algorithm 1.

Algorithm 1 Proposed channel charting method

Input: Training channels {hi}Ni=1, chart dimension D′

1: Distance computation:
Build the matrix D ∈ RN×N , with dij ← d?(hi,hj)

2: Dimensionality reduction:
U ∈ RD′×N ← ISOMAP(D, D′, k)

Output: C(hi)← ui, i = 1, . . . , N (chart coordinates)

Computational complexity. One of the main advantages of the
proposed method compared to prior art is its low complexity
with respect to the channel dimension M and number of
training channels N . Indeed, the distance computation step has
complexity O(MN2), while the dimensionality reduction step
has complexity O(N2 logN) [17], [16]. Note that the original
channel charting methods based on raw second order moments
[2] have complexity at least O(M2N2), or require to train
a neural network (whose complexity is difficult to precisely
quantify but which takes time in practice).

In summary, the proposed method is particularly adapted
to high-dimensional channels (large M ), with relatively few
examples (not too large N ). However, if a lot of examples are
available, one can perfectly envision to use landmark Isomap
[18] instead of the classical Isomap. This would allow to reduce
complexity of the method to O(Mn2) for the first step and
O(nN logN) for the second, with n� N being the number
of considered landmarks.

IV. EXPERIMENTS

In this section, the proposed method is empirically assessed on
several kinds of MIMO channels. At first, and in order to compare
to previously proposed methods [2], [19], training channels
obtained with the Quadriga channel simulator [20] are used. Then,
higher dimensional channels taken from the DeepMIMO dataset
[21] are considered. In all the following experiments, the dimen-
sion of the chart is fixed to D′ = 2. Besides the obvious advan-
tage of this choice for visualizing the chart, it comes from the fact
that if users are distributed on a 2D-plane, then the channel mani-
fold should be two-dimensional (see [8, Section III.C] for a more
detailed explanation of this point). One could of course optimize
the chart dimension empirically. This option is left to future work.

A. Quadriga channels

For this first set of experiments, exactly the same multipath
channels as those used in [2] are considered. Namely, N = 2048
users are randomly located in an area of 1000m× 500m and
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their channels are obtained considering an urban macrocell
environment at a center frequency of 2GHz within the Quadriga
channel simulator [20] (details available in [2, Table I]). User
locations are shown on figure 2, the base station being at the
origin and equipped with an uniform linear array (ULA) of
32 half-wavelength separated antennas. The dimension of these
training channels is M = 32, and they are assumed to be
acquired at an SNR of 0 dB and averaged over 10 time instants.

4002000200400
x (m)

100

200

300

400

500

y 
(m

)

Fig. 2: User locations for Quadriga channels

Results. The obtained chart for D′ = 2 and k = 30 is shown
on figure 3 (in the nLoS case). Neighborhoods are quite well
preserved, although channels seem to be mapped on a circle. This
may be explained by the fact that using a single subcarrier makes
the system insensitive to delay, so that only angle discrimination
is possible (no distance information appears on the chart). Results
in terms of continuity (CT) and trustworthiness (TW) are shown
on the leftmost (LoS) and center (nLoS) parts of figure 6, where
it is compared to the original channel charting methods of [2]
(PCA, SM, SM+ and AE, see [2] for the details of each method).
The obtained performance is very good. Indeed, the proposed
method outperforms previously proposed methods in terms of
continuity and is at the same level in terms of trustworthiness,
while being more computationally efficient. Indeed, it does not
require to compute high dimensional features, which is the case
for the concurrent methods which use raw second order moments
of dimension M2. The proposed method runs in less than 6
seconds on a regular laptop (Intel(R) Core(TM) i5-6300U CPU
@ 2.40 GHz), which makes it very fast. Moreover, note that
the proposed method is also better than the previously proposed
method that uses channel autocorrelation as input features (see
[19, Table II], “Plain” column to precisely compare).

3 2 1 0 1 2 3

2

1

0

1

2

3

Fig. 3: Obtained chart for Quadriga channels (nLoS)

B. DeepMIMO channels
For this second experiment, N = 3000 training multipath

channels are taken from the DeepMIMO dataset [21]. The ‘O1’

urban outdoor ray-tracing scenario is chosen (with 5 paths per
channel), with a single base station (BS 16) and a subset of
all possible user locations. The scenario is depicted on figure 4,
where the colorized points correspond to users whose channels
are in the training data, and the base station is circled in red. The
base station is equipped with a square uniform planar array (UPA)
with 64 half-wavelength separated antennas at a central frequency
of 3.5GHz, with 16 subcarriers evenly spaced spanning a band
of 20MHz. This results in channels of dimension M = 1024.
No noise is added for this experiment. Note that, as opposed to
the previous experiment, only a single time instant is considered
here for the channels (no averaging is done).

Fig. 4: User locations for DeepMIMO channels

Results. The obtained chart for D′ = 2 and k = 30 is shown
on figure 5, where it is seen that spatial neighborhoods are well
preserved. In particular, thanks to the fact that several subcarriers
are considered (as opposed to the previous experiment), the
system exhibits sensitivity to delay, so that both the angle and
distance information are expressed in the chart. Regarding the CT
and TW performance measures for a varying number of neighbors
K , results are shown on the rightmost part of figure 6. The perfor-
mance seems better than for the Quadriga channels, which may
be explained by the fact that channels are noiseless. More interest-
ingly, the proposed charting method runs in less than 15 seconds
on a regular laptop, even though channels are high-dimensional
(M = 1024). This is promising for its applicability, since
concurrent methods [2], [19] would take much more time for such
channels. For example, the raw second order moment for such
channels would comprise M2 = 220 entries, this is why methods
of [2] are not compared to the proposed one for these channels.
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Fig. 5: Obtained chart for DeepMIMO channels
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Fig. 6: Continuity (CT) and trustworthiness (TW) results for the Quadriga and DeepMIMO channels. The proposed method
is compared to several baselines proposed in [2].

V. CONCLUSION AND PERSPECTIVES

In this paper, a computationally efficient channel charting
method was introduced. It is based on the computation of a
distance measure between channel vectors which is designed
to be insensitive to small scale fading. The distance matrix
obtained with this measure is then used within the Isomap
nonlinear dimensionality reduction method in order to obtain the
chart coordinates. The proposed method is assessed on realistic
multipath channels of various dimensions, showing great
potential in terms of accuracy and computational efficiency.

In the future, several research leads could be investigated
in the continuation of this paper. First of all, it would be
interesting to handle out of sample channels in order to allow
for online implementations in practical systems. Second, the
method could be used as an initialization for a deep neural
network in order to perform fine tuning (as done for example
in [8] for channel mapping and user positioning).

APPENDIX A
PROOF OF EQUATION (11)

The proof starts with a re-expression of the norm as∥∥∥∥ hi
‖hi‖2

− ejφ
hj
‖hj‖2

∥∥∥∥2
2

= 2− 2
Re
{
hHi ejφhj

}
‖hi‖2 ‖hj‖2

.

Then, using Re(z) ≤ |z| and noticing that Re
{
hHk ejφhl

}
=∣∣hHk hl

∣∣ for φ = arctan

[
Re{hHk (jhl)}
Re{hHk hl}

]
concludes the proof.
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