
HAL Id: hal-03208423
https://hal.science/hal-03208423v1

Submitted on 26 Apr 2021 (v1), last revised 29 Apr 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

D-CACEV: a Dynamic Cost And Carbon
Emission-efficient Virtual machine placement method for

green distributed clouds
Ehsan Ahvar, Shohreh Ahvar, Zoltan Adam Mann, Noel Crespi, Joaquin

Garcia-Alfaro, Roch Glitho

To cite this version:
Ehsan Ahvar, Shohreh Ahvar, Zoltan Adam Mann, Noel Crespi, Joaquin Garcia-Alfaro, et al.. D-
CACEV: a Dynamic Cost And Carbon Emission-efficient Virtual machine placement method for green
distributed clouds. IEEE Access, In press, pp.1-20. �hal-03208423v1�

https://hal.science/hal-03208423v1
https://hal.archives-ouvertes.fr

1

Authors (draft) version
This paper has been accepted in IEEE Access

D-CACEV: a Dynamic Cost and Carbon
Emission-Efficient Virtual Machine Placement

Method for Green Distributed Clouds
Ehsan Ahvar, Shohreh Ahvar, Zoltan Adam Mann,

Noel Crespi, Joaquin Garcia-Alfaro, and Roch Glitho,

Abstract—As an increasing amount of data processing is done at the network edge, high energy costs and carbon emission of Edge
Clouds (ECs) are becoming significant challenges. The placement of application components (e.g., in the form of containerized
microservices) on ECs has an important effect on the energy consumption of ECs, impacting both energy costs and carbon emissions.
Due to the geographic distribution of ECs, there is a variety of resources, energy prices and carbon emission rates to consider, which
makes optimizing the placement of applications for cost and carbon efficiency even more challenging than in centralized clouds. This
paper presents a Dynamic Energy cost and Carbon emission-efficient Application placement method (DECA) for green ECs. DECA
addresses both the initial placement of applications on ECs and the re-optimization of the placement using migrations. DECA considers
geographically varying energy prices and carbon emission rates as well as optimizing the usage of both network and computing
resources at the same time. By combining a prediction-based A* algorithm with Fuzzy Sets technique, DECA makes intelligent
decisions to optimize energy cost and carbon emissions. Simulation results show the applicability and performance of DECA.

Index Terms—Edge cloud, Energy consumption, Energy costs, Green computing, Carbon emission, Application placement.

F

1 INTRODUCTION

The Internet of Things (IoT) is producing rapidly increasing
amounts of data. Data analytics applications that process IoT
data require significant computational capacity, which IoT devices
typically do not possess. Using centralized cloud data centers
to host the analytics applications is an option, but transferring
the data from the IoT devices to the cloud incurs high latency
and large network traffic. Therefore, new distributed computing
paradigms that move processing closer to the network edge
(fog computing, edge computing etc.) are gaining popularity. In
the computing model considered in this paper, computational
resources are provided in several Edge clouds (ECs) instead of
a single centralized cloud. ECs have limited capacity and are
geographically distributed. Applications can be deployed on ECs,
and data produced by IoT devices can be processed in an EC
near the IoT devices. Thereby, latency and network traffic are
significantly reduced, making ECs an attractive paradigm for many
IoT applications [1], [2].

E. Ahvar is with Learning, Data and Robotics Lab, ESIEA, Paris, France.
e-mail: (ehsan.ahvar@esiea.fr).
S. Ahvar is with ISEP-Institut Supérieur d’Électronique de Paris. e-mail:
(shohreh.ahvar@isep.fr).
N. Crespi, J. Garcia-alfaro are with Télécom SudParis, Institut Polytech-
nique de Paris, France. e-mail: (noel.crespi, joaquin.garcia alfaro@telecom-
sudparis.eu).
Z. A. Mann is with University of Duisburg-Essen, Germany. e-mail:
(zoltan.mann@paluno.uni-due.de).
R. Glitho is with Concordia University, Canada. e-mail:
(glitho@ciise.concordia.ca).

With the rise of data processing in ECs, the increasing energy
consumption of ECs is becoming a major concern for two reasons:
energy costs and carbon emissions. Both energy costs and carbon
emissions are becoming pressing issues for the providers of ECs
[10].

Similar to centralized clouds, also ECs need energy saving
methods, e.g., workload consolidation. However, minimizing en-
ergy costs and carbon emissions in ECs is a more complex
problem. Energy prices and carbon emission rates vary by location
and even by time (e.g., because of different local energy sources).
Therefore, even the same energy consumption may lead to differ-
ent energy costs and carbon emissions depending on which EC
(and when) serves the given workload. It is important to note that
there is no correlation between the cleanness (carbon footprint)
and the price of a location’s energy sources [3]. Hence, optimizing
energy costs and carbon emissions are two independent objectives.

We consider an infrastructure comprising several geographi-
cally distributed ECs, where each EC consists of a set of Compute
Nodes (CNs). A set of applications is to be placed on this
infrastructure. Every application consists of one or more com-
ponents, for example in the form of containerized microservices.
For every component, detecting an appropriate place (in which of
the ECs, on which CN) is considered as an important issue. For
the component placement, there is a variety of resources, energy
prices and carbon emission rates to consider. To optimize energy
costs and carbon emissions, we have three levers: (i) minimizing
energy consumption (usually by optimizing resource utilization),
(ii) choosing resources in locations with low energy price, and

2

Resources

Compute
nodes

Intra-cloud
network

Inter-cloud
network

Energy

Edge cloud energy
consumption

Inter-cloud energy
consumption

Objectives

Energy
cost

Carbon
emission

PUE Varying
unit cost

Varying
unit CO2
emission

Fig. 1. Sources of energy consumption and its impact on optimization
objectives

(iii) choosing resources in locations with low carbon emission
rate. Hence the challenge is to consider these three, sometimes
conflicting aims simultaneously (see also Fig. 1).

To address the above problem, this paper proposes a dynamic
energy cost and carbon emission-efficient application placement
method (DECA) for ECs, considering the above three levers to
optimize both energy costs and carbon emissions in distributed
ECs. DECA includes two main parts: (i) determining the initial
placement of newly deployed applications and (ii) re-optimization
of the placement of applications to react to workload changes. In
contrast to most previous works, DECA considers both CNs and
network devices because both of them may contribute significantly
to energy consumption.

DECA combines a variant of the A* search algorithm [6]
with a Fuzzy Sets technique [7]. Using these powerful techniques,
DECA can perform more effective optimization than traditional
greedy heuristics used by most existing approaches [8], [9]. We
describe in the Appendix the benefit of the A* algorithm for
application placement in ECs compared to other heuristics.

DECA performs joint optimization of compute and network
resources, also considering their associated energy price and
carbon emission rate. It can select CNs from multiple ECs to place
the components of an application, in order to (i) be able to achieve
low overall energy cost and carbon emission and (ii) overcome
capacity limitations of a single EC.

Our major contributions are summarized below:

1) We build this work based on our previous work on green
cloud computing [10], adapting it to the characteristics
of emerging EC systems and improving its application
placement method (i.e., from static placement to dy-
namic).

2) To offer a better view about DECA mechanism, a com-
prehensive logical architecture is presented.

3) New methods for the dynamic re-optimization of the
placement using live migration are proposed. Two AC
migration mechanisms are proposed for under-utilized
and over-utilized CNs respectively.

4) We perform a comprehensive comparison on energy cost,
carbon footprint and energy consumption for different AC
placement algorithms.

The rest of the paper is organized as follows. Section 2
describes related work. Section 3 introduces our problem for-
mulation. Section 4 provides the algorithmic solution underlying
DECA. Section 5 evaluates DECA. Section 6 concludes the paper.

2 RELATED WORK

As already mentioned, the applications are assumed to be made of
independently deployable ACs, for example in the form of VM-
based or containerized microservices. The provider should make
a decision on resource allocation for the components by selecting
the most suitable CN. This process is known as placement.

In recent years, many different aspects of the placement prob-
lem (mostly in the form of VM placement) have been investigated
[9]. We can divide the related work into three categories: i)
the works which focus on improving energy consumption and
cost, ii) the studies which consider both energy consumption/cost
and carbon emission together, iii) the works that utilize AC or
VM migration algorithms to improve energy consumption and/or
carbon emission.

2.1 Energy consumption and cost

Li et al. [11] considered network and compute resources at the
same time for their allocation algorithm. Pahlevan et al. [12]
proposed an energy- and network-aware approach that integrates
heuristic and machine learning methods. You et al. [13] designed a
network-aware VM placement method to improve communication
cost. Although these works considered also the optimization of
data transfer, they are limited to a single-node (i.e., centralized
cloud) environment and are not appropriate for a distributed EC
with varying resource prices and carbon emission rates.

Goudarzi et al. [47] have recently proposed an application
placement technique based on the Memetic Algorithm to make
batch application placement decision for IoT applications in a
heterogeneous Edge and Fog computing environment. However,
in this work, the energy consumption is considered from the IoT
device perspective. They also do not consider the price of energy.

Pallewatta et al. [48] proposed a microservices-based IoT
application placement technique for heterogeneous and resource
constrained fog environments. They also proposed a fog node
architecture to support their proposed placement approach. But
their main objective is to minimize latency and network usage,
and not energy costs.

Hu et al. [49] proposed an approach to optimize the placement
of service-based applications in clouds for reducing the inter-
machine traffic. They first partition the application into several
parts while trying to keep the overall traffic between the created
parts to a minimum. Then, the created parts are carefully located
into machines with respect to their resource and traffic demands.
However, they do not consider energy cost optimisation.

Hassan et al. [50] have recently proposed a method for service
placement in fog-cloud systems. They classified services into two
categories: critical and normal ones. For critical services, they
try to minimize response time, and for normal ones the goal
is to reduce the energy consumption of the fog environment.
The same authors [52] formulated the VM placement of IoT
applications in Cloud DCs as an MILP model and proposed two
algorithms. Minimization of the power (i.e., CPU) and network
for the first algorithm. And second algorithm focuses on reducing
the power (i.e., CPU) and resources wastage. Yet, carbon emission
and energy cost optimisation has not been accounted for in these
two works.

Kayal et al. [51] proposed a placement strategy to jointly opti-
mize energy consumption of fog nodes and communication costs
of applications. The algorithm applies the Markov approximation

3

method to solve the combinatorial optimization objective. How-
ever, they are concerned with methods for assigning microservices
to fog nodes with the objective of balancing energy consumption
at fog nodes and network traffic costs.

Nabavi et al. [53] proposed a multi-objective VM placement
scheme (considering VMs as fog tasks) for edge cloud DCs called
TRACTOR using an artificial bee colony optimization algorithm.
TRACTOR goal is power and network-aware assignment of VMs
onto PMs. The proposed scheme aims to minimize the network
traffic of the interacting VMs and the power dissipation of the
DC’s switches and PMs.

Our current work is different from all above-mentioned results
since we consider not only energy costs but also carbon emission.

2.2 Both energy consumption (cost) and carbon emis-
sion
Khosravi et al. [16] considered both carbon emission and energy
during VM allocation. However, they did not consider the variabil-
ity of energy prices. Also, inter-VM (inter-AC) communication
was not considered, although it is an important factor for reducing
energy of network resources. Khosravi et al. in [17] have presented
several energy and carbon-aware algorithms. But they did not
consider the energy consumed by network elements in their energy
model. Zhou et al. [4] jointly considered electricity cost, emission
and Service Level Agreement (SLA) reduction for distributed
ECs, while Gu et al. [18] presented a method to minimize
carbon emission of ECs or Data Centers (DCs) while satisfying
constraints on response time, electricity budget and maximum
number of running CNs in an environment with homogeneous
CNs. These papers target service jobs with constraints on response
time. Moreover, different from all mentioned works, our work
considers both component (VM) placement and migration to keep
costs and emissions low.

2.3 AC (VM) migration
Tziritas et al. [19] targeted the problem of placement considering
two objectives: (1) to minimize energy consumption of the CNs,
and (2) to minimize the network overhead stemming from commu-
nication between VMs and from VM migrations. They select the
most energy-consuming CN based on both maximum power and
current workload to migrate its VMs. This method may select CNs
with low power consumption but heavy workload as migration
source and CNs with high power consumption and low workload
as destination, which may lead to sub-optimal results.

Zhou et al. [20] proposed a VM deployment algorithm called
three-threshold energy saving algorithm (TESA) and five VM
selection algorithms: MIMT, MAMT, HPGT, LPGT and RCT.
Unlike our work which selects a destination CN based on both
communication and compute resource metrics, they select a CN
with the least increase of power consumption (we called it Min.
Compute policy) due to VM allocation. This way, the target CN
may be located far from the source CN so that migration consumes
a large amount of energy.

Mustafa et al. [30] proposed two consolidation based tech-
niques to reduce energy consumption along with resultant SLA
violations. They also enhanced two existing techniques that at-
tempt to reduce energy consumption and SLA violations. They
finally show that the proposed techniques perform better than the
selected heuristic based techniques in terms of energy, SLA, and
migrations.

Zheng et al. [21] proposed a dynamic energy efficient resource
allocation scheme. They consider a mapping probability matrix
where each VM request is assigned with a probability on a
specific CN. The proposed method then decides where to allocate
new VM requests and whether to migrate existing VMs in order
to improve energy efficiency. Although the authors proposed an
idea to migrate VMs for energy reduction, their exact solution in
situation of CN overloading is not clear.

Beloglazov et al. [22] devised heuristics to continuously con-
solidate VMs leveraging live migration and switching off idle CNs
to minimize the number of utilized CNs. They proposed a modified
version of the Best Fit Decreasing algorithm (MBFD) to place
VMs on CNs and four heuristics to select VMs for migration. They
did not consider the energy consumption of network elements. In
another study, Beloglazov et al. [23] proposed three stages of VM
placement optimization including reallocation based on current
utilization of multiple system resources, optimization of virtual
network topologies established between VMs and VM reallocation
considering thermal state of the resources. However, Beloglazov
et al. in both studies did not consider carbon emission.

Liu et al. [24] developed an ant colony system-based approach
to reduce cloud energy consumption. To handle both homogeneous
and heterogeneous CN environments, they also proposed an order
exchange and migration mechanism. However, their objective
is limited to minimizing the number of active CNs. Forestiero
et al. [25] proposed a hierarchical method (i.e, composed of
two workload assignment and migration algorithms) for efficient
workload management in distributed ECs. Li et al. [26] proposed a
dynamic virtual machine scheduling algorithm, called GRANITE,
to minimize total EC energy consumption. However, these works
do not take into account carbon emission.

Ibrahim et al. [54] attempted to reduce consumed energy,
number of VM migrations, number of host shutdowns and the
combined metric Energy SLA Violation (ESV) with a dynamic
consolidation of VMs. In the method, the servers are checked peri-
odically and appropriate VMs from under and over utilised servers
are migrated to destinations selected based on Particle Swarm
Optimization techniques. The authors mentioned that increasing
energy consumption has a significant impact on the environment
due to emissions of carbon. However, they have not done any
study in carbon emission reduction. Cost also was not considered
by the authors.

Table 1 lists the related works considering their main objec-
tives/characteristics. All mentioned related works addressed some
of the points listed in the Introduction to characterize the problem,
but only in isolation, missing some other important aspects. Our
previous work CACEV [10] is the first to address most aspects
in combination, although in a cloud computing setting. It is
also the first VM placement algorithm integrating the prediction-
based A* search algorithm [6] with a Fuzzy Sets technique [7].
However, CACEV makes only a static VM placement. Our current
work, DECA, extends CACEV to ECs and with support for VM
migrations. Different from related works on VM consolidation,
DECA uses a fuzzy set-based decision maker which can sharply
improve its performance.

3 PROBLEM FORMULATION

3.1 System model
To offer a realistic solution, the paper considers a system model
characterized by the following points:

4

TABLE 1
Related Work Summary

Reference energy saving/cost carbon emission AC/VM migration
[11], [12], [13], [47], [48], [49], [50], [51], [52], [53] X
[4], [16], [17], [18] X X
[19], [20], [21], [22], [23], [24], [25], [26], [54] X X

1) Heterogeneity of ECs, CNs, and network devices in terms
of capacity and energy consumption characteristics.

2) Heterogeneity of application components in terms of
resource needs.

3) Load-dependent energy consumption (for example, the
energy consumption of a CN depends on its CPU load).

4) Joint optimization of compute and network resources.
5) Arbitrary network topology among ECs and within ECs;

in particular, there can be multiple network paths between
a pair of CNs.

6) Variety in unit energy price and unit carbon footprint
among ECs.

7) Ability to select CNs from multiple ECs to place the
components of an application.

8) Taking into account the communication between applica-
tion components and the associated impact on network
traffic, preferring to place components with intensive
communication close to each other.

9) Workload consolidation by live migration of application
components.

We consider a hierarchical distributed architecture [27] consisting
of a set of ECs, with each EC consisting of a set of CNs. The ECs
and the inter-cloud connectivity information are given by a graph
�0 = (�, �, F�, F�) where � is the set of ECs, F� denotes their
current capacity, � consists of connections (network paths) among
the ECs, and F� denotes the weights of the connections (e.g.,
number of routers on the network paths). Each EC is characterized
by a Power Usage Effectiveness (PUE) value and is associated
with one or more energy sources with different energy prices
and carbon footprint rates. PUE is considered as the ratio of total
power consumed by the EC to the power consumed by IT devices
within the EC [16]. We assume a high-capacity backbone network
to carry the traffic between the ECs. Inside an EC, the model (and
our proposed algorithm) supports both structured (e.g., Fat-Tree
[38]) and arbitrary [28] topologies. Table 2 gives an overview of
the abbreviations and notations used in the paper.

Each EC 3 ∈ � is represented by a weighted graph �3 =

(#3 , �3 , F#3 , F�3), where #3 is the set of CNs in EC 3, �3
is the set of links (network paths) between CNs, F#3 shows the
current capacity of the CNs, and F�3 denotes the link weights
(e.g., number of switches on the network path) between CNs
within the given EC. Similar to [29], for every pair of CNs 8 and
8′ in EC 3, a set of pre-calculated paths from 8 to 8′ is considered,
and is given by �3 . Resource parameters of each CN 8 are given
as a vector '8 , including CPU, memory, disk, and I/O bandwidth.

To handle time-varying request rates and energy prices, time
is split into equal time windows. We assume that within a time
window) , energy prices do not change.

A set � of application deployment requests is received for
the next time window. Application 0 ∈ � consists of a set <0
of application components. The set of all requested application
components is denoted by " = ∪0∈�<0. An application usually

consists of several components that communicate to each other.
An |" | × |" | traffic matrix)' contains the amount of traffic
exchanged among the application components. Each application
component : is characterized by a vector +: of its resource needs
according to CPU, memory, disk, and I/O bandwidth.

Carbon emission and energy cost are related to the amount of
energy consumption by network and server resources. The energy
consumption of a CN is considered as a function of its CPU
load since the CPU is the main contributor to dynamic power
consumption in a CN [31], [36]. Switches and routers are the main
contributors to network energy consumption [37]. We consider
sleep and active modes for both CNs [31] and switches [32], [33].

3.2 Application allocation problem
Each component in " has to be assigned to an EC, taking
into account the geographically varying energy prices and carbon
emission rates (e.g., see [46]). The distributed requests in each
selected EC are then allocated on appropriate CNs in the EC.
Appropriate paths are also selected between the CNs hosting
communicating components.

As (1) shows, our aim is to allocate the application components
such that energy costs and carbon emissions are minimized:

minimize: (.C>C , /C>C), where
.C>C = .2; + .2><, and
/C>C = /2; + /2><

(1)

with the constraint that the selected CNs must have enough
capacity to accommodate the components shown in (2).∑

3∈�

∑
8∈#3
('8 · (3) ≥

∑
:∈"

+: . (2)

In (1), .C>C is the total cost, /C>C is the total carbon emission,
.2; is the cost within the ECs, .2>< is the cost of the inter-cloud
network communication, /2; is the carbon emission within the
ECs, and /2>< is the carbon emission of the inter-cloud network
communication. In (2), +: is a vector of the requested resources of
component : , the variable (3 is 1 if EC 3 is selected for hosting
some of the requested components (otherwise 0), and '8 is the
capacity vector of CN 8.

The next subsections describe the details of determining .C>C
and /C>C (see also Fig. 2 for an overview).

3.2.1 Overall cost formulation (.C>C)
In order to determine .C>C , (3)-(16) formulate .2; and (17)-(19)
formulate .2><.

Costs incurred within the ECs: .2; is the cost of incremental
energy of selected ECs (including both the CNs and the intra-
cloud network) to place the newly requested components:

.2; =
∑
3∈�

%*�3 · (. ′3 + .
′′
3) · H3 · (3 . (3)

5

TABLE 2
Notation overview

Symbol Meaning
� Set of applications to be deployed
�� Application Component
�# Compute Node
�: CPU load of component :
�8max CPU processing capacity of CN 8

� Set of Edge Clouds (ECs)
�� Edge Cloud
� Set of connections between ECs
�3 Set of links among CNs in EC 3

� 8inc,: Energy increment of component : on CN 8

� 8F ? Energy for going from sleep to active mode
� 8idle Idle energy consumption of node 8
� 8
:

Additional energy of running component : on node 8
� 8max Energy consumption of node 8 with full load
��inc Incremental energy of network element � for a packet
��? Per-packet processing energy of network element �
��S&F Per-byte store&forward energy of network element �
<0 Set of components of application 0
" Set of all components to be deployed
#3 Set of compute nodes (CNs) in EC 3

PUE3 Power usage effectiveness of EC 3

'8 Resource vector of CN 8

(4A�=8 Energy increment of new components on node 8
)' Traffic matrix of inter-component traffic
+: Resource needs of component :
+" Virtual Machine
F� (3) Current capacity of EC 3

F� (4) Weight of connection 4
, C
8,8′ Incremental energy for transferring the CCℎ packet

F�3 (4) Weight of link 4 in EC 3

F#3 (8) Current capacity of CN 8 in EC 3

.C>C Total cost

.2; Cost incurred within the ECs

.2>< Cost incurred by inter-cloud communication
H3 Energy unit price for EC 3

. ′
3

Energy increment of CNs in EC 3

. ′′
3

Energy increment of switches in EC 3

H3,3′ Energy unit price between ECs 3 and 3 ′
.3,3′ Incremental energy between ECs 3 and 3 ′
/2>< Carbon emission of inter-cloud communication
/C>C Total carbon emission
/2; Carbon emission generated within the ECs
_8,8′,C Path between nodes 8 and 8′ to carry the CCℎ packet
X8,8′ Number of exchanged packets between nodes 8 and 8′

Here, . ′
3

and . ′′
3

are the incremental energy consumption of CNs
and switches, respectively, caused by deploying new components
in EC 3. PUE3 is the power usage effectiveness value and H3 is the
energy unit price for EC 3. (3 is 1 if EC 3 is selected, otherwise
0.

Equations (4)–(7) formulate . ′
3

and (12)–(16) formulate . ′′
3

.
For the sake of notational simplicity, we skip the index of ECs in
these equations.

. ′3 =
∑
8∈#3

(4A�=8 · (8 . (4)

(4A�=8 =
∑
:∈"

� 88=2,: · !:,8 . (5)

� 88=2,@ = (� 8F ? + � 883;4) · (
8
(; ? + �

8
: . (6)

� 8: = (�
8
<0G − � 883;4) ·

�:

�8<0G
. (7)

Subject to the following constraints:

!:,8 ≤ (8 . ∀8 ∈ #3 , : ∈ ", (8)∑
8∈#3

!:,8 = 1. ∀: ∈ ", (9)∑
:∈"

+: · !:,8 ≤ F#8 . ∀8 ∈ #3 . (10)

In (4), (4A�=8 is the incremental energy of running new
components on CN 8. (8 is 1 if at least one new component is
deployed to CN 8, otherwise 0. In (5), � 8

8=2,:
is the incremental

energy of running component : on CN 8. !:,8 is 1 if component :
is allocated on CN 8.

Equation (6) formulates � 8
8=2,:

from (5), and where � 8F ? is
the energy needed by CN 8 to go from sleep to active mode and
� 8
83;4

is the energy consumption of CN 8 if idle (i.e., active, with

6

Objective: minimize (Ytot ,Ztot)

Total energy cost (Ytot)

Eq. 3: Inside EC (Ycl)

CNs
Eqs. (4-10)

Intra-ECs
Eqs. (11-15)

Eq. 16: Inter-ECs (Ycom)

Total carbon emission (Ztot)

Intra-ECs
Eqs. (17-18)

Inside EC (Zcl)

Eqs. (19-20)

Inter-ECs (Zcom)

Eq. 21

Eqs. (1-2)

CNs
Eqs. (4-10)

Intra-ECs
Eqs. (11-15)

Fig. 2. Problem formulation diagram for the application allocation part

zero load). (8
(; ?

is 1 if CN 8 is in sleep mode (0 if in active
mode) and � 8

:
is the additional energy consumption of running

component : on CN 8. If CN 8 is in sleep mode and receives the
first component, it needs to spend energy � 8F ? to go from sleep to
active mode. If active but idle, CN 8 consumes constant energy of
� 8
83;4

; component : adds � 8
:

to it. As the first component lets the
CN wake from sleep mode, the resulting energy consumption is
� 8F ? + � 883;4 + �

8
:
. But for components added to an already active

CN, the increase in energy is only � 8
:
. To compute � 8

:
, we use the

following formula derived from [31] and [39]:

� 8 = � 883;4 +
|" |∑
@=1
(� 8@ · !@,8) (11)

In (7), � 8<0G is the energy consumption of CN 8 with full
load, �: is the CPU load of component : and �8<0G is the CPU
processing capacity of CN 8.

The constraint, mentioned in (8), ensures that a component can
be assigned only to a selected CN. Equation (9) guarantees that
each component is assigned to exactly one CN and (10) guarantees
that the total load of the components assigned to a CN does
not exceed its capacity. Recall that +: is the vector of requested
resources of component : and F#8 is the current capacity of CN
8.

After formulating . ′
3

(incremental energy consumption of CNs
in EC 3), (12)–(16) formulate . ′′

3
(incremental network energy

consumption in EC 3). . ′′
3

is computed based on incremental
network energy stemming from the additional traffic between each
pair of CNs in EC 3 for running the new applications:

. ′′3 =
∑
8∈#3

∑
8′∈#3 ,
8≠8′

X8,8′∑
C=1

, C
8,8′ . (12)

Here, X8,8′ is the number of exchanged packets between CNs 8
and 8′, and , C

8,8′ is the incremental energy of network elements
between CNs 8 and 8′ for transferring the CCℎ packet. Note that
in (12), only the selected CNs will be considered automatically,
because when there is no traffic between CNs 8 and 8′, then X8,8′ =
0. X8,8′ is computed based on the characteristics of the components
allocated on CNs 8 and 8′ and on the traffic matrix:

X8,8′ =
∑
:∈"

∑
:′∈"

!:,8 · !:′,8′ · CA:,:′ . (13)

!:,8 is 1 if component : is allocated on CN 8 (otherwise=0) and
CA:,:′ is the number of packets between components : and : ′.

, C
8,8′ is computed as follows:

, C
8,8′ =

∑
�∈_8,8′,C

��inc. (14)

Here, _8,8′,C denotes the path between CNs 8 and 8′ to which the CCℎ

packet is assigned. ��inc is the incremental energy consumption of
network element � for servicing a packet. The incremental energy
consumption of network element � is computed analogously to
that of CNs (see (6)):

��inc = (�
�
wp + ��idle) · #

�
Slp + �

� . (15)

In (15), �� is computed as indicated in [37].

�� = ��? + ��S& F!, (16)

where ��? (i.e., per-packet processing energy) and ��S&F (i.e., per-
byte store-and-forward energy) are constants for a given switch or
router configuration, and ! is the packet length.
Costs incurred by inter-cloud communication: .com is the in-
cremental energy of the network to transfer data between different
ECs while running the newly requested applications.

.com =
∑

3,3′∈�
.3,3′ · H3,3′ · (3 · (3′ . (17)

where H3,3′ is the energy unit price for communication between
ECs 3 and 3 ′. .3,3′ is the incremental energy between ECs 3 and
3 ′ and is formulated in (18).

.3,3′ =

X′
3,3′∑
C=1

∑
�∈_′

3,3′

��inc,C . (18)

X′
3,3′ is the number of exchanged packets and _′

3,3′ is the set of
network elements between ECs 3 and 3 ′.

X′3,3′ =
∑
8∈3

∑
8′∈3′

∑
:∈"

∑
:′∈"

!:,8 · !:′,8′ · CA:,:′ . (19)

where !@,8 is 1 if AC@ is allocated on CN8 of �� 9 (otherwise=0)
and !F,8′ is 1 if ACF is allocated on CN8′ of �� 9′ (otherwise=0).
CA@,F is the number of packets between AC@ and ACF .

3.2.2 Carbon emission formulation (/C>C)

Recall that /C>C is the sum of /2; and /2><, which are computed
as follows.

Intra-EC carbon emission: /2; is the carbon emission caused
by incremental energy in the selected ECs (CNs and intra-EC

7

networks) to run the requests, computed as:

/2; =
∑
3∈�

%*�3 · (. ′3 + .
′′
3) · ��3 · (3 . (20)

Recall that . ′
3

and . ′′
3

(formulated in (4) and (12)) are the
incremental server (CN) energy and network energy, respectively,
in a selected EC 3. (3 is 1 if EC 3 is selected, and 0 otherwise.
��3 is the average carbon emission rate (in g/kW) of the energy
sources of EC 3. It is computed as follows [4]:

��3 =

∑ℓ
:=1 ��

:
3
· A:∑ℓ

:=1 ��
:
3

. (21)

where �� :
3

and A: denote the electricity generated by energy
source : and its carbon emission rate, respectively.

Inter-EC carbon emission: /2>< is the amount of incremental
carbon emission resulting from data transfer between the selected
ECs:

/2>< =
∑

3,3′∈�
.3,3′ · ���3,3′ · (3 · (3′ . (22)

where ���3,3′ is the average carbon emission rate for communi-
cation between EC 3 and 3 ′. (3 is 1 if EC 3 is selected (otherwise
0). .3,3′ was defined in (18).

3.3 AC consolidation (migration) problem

Given a set " ′ of ACs running on CNs of EC 3, our goal is
to reduce the total energy consumption of running those ACs
in 3 using migrations. That is, given a number of ACs (already
allocated on CNs) with their sizes and traffic matrix as an input,
we aim to find a new feasible placement for ACs allocated on
under-utilized CNs, minimizing: (1) the energy spent to run the
ACs (by consolidating ACs to reduce the number of active CNs),
(2) the total network overhead (by improving placement of ACs to
reduce inter-AC traffic and the number of active switches), and (3)
the overhead of AC migrations (by selecting a closer destination
for migration in order to reduce network energy/traffic and using
already activated switches to have minimum number of active
switches).

AC consolidation should obtain maximum energy saving using
appropriate AC migrations while consuming minimum possible
energy for the migrations. The AC consolidation problem can be
formulated as follows:

maximize (o − o′ − o′′),
o = oB + o=, and
o′ = o′B + o′=

(23)

where o and o′ denote the energy consumption in EC 3 for
running the ACs before and after AC consolidation, respectively.
o′′ is the amount of energy consumed by the migrations.

o is composed of the energy consumption of running the ACs
on CNs (oB) and the energy consumption of the communication
among them (o=). oB is computed as follows:

oB =
∑
8∈#3

(8 ·
∑
@∈" ′

� 8@ . (24)

Here, (8 is 1 if at least one AC is allocated on CN 8, and � 8@ is
the energy consumption of running AC @ on CN 8. oB is computed
analogously to . ′

3
(see (4)–(7)). The main difference is that oB

contains the energy consumption of all allocated ACs on EC 3,

while . ′
3

considers only the energy consumption needed for the
new requests.

o= is the network energy consumption for the communication
among the already allocated ACs:

o= =
∑
8∈#3

∑
8′∈#3
8≠8′

X8,8′∑
C=1

�8,8′∑
q=1

UC8,8′,q ·
∑

�∈_8,8′,q

��8=2 . (25)

H8,8′ is the number of available paths between CN 8 and CN 8′.
UC
8,8′,q is 1 if the qCℎ path is selected. o= is computed analogously

to . ′′
3

(see (12)–(16)). The main difference is that o= includes
the communication energy consumption of all already allocated
ACs on EC 3, while . ′′

3
considers only the communication energy

consumption for the new requests.
o′ is calculated in the same way as o, but using the new

allocation after the migrations have been effectuated.
o′′ is the energy needed for the migration of the ACs selected

by the AC consolidation algorithm.

o′′ =
∑
@∈" ′

(@ · o′′@, (8,8′) . (26)

where (@ is 1 if ��@ is migrated, otherwise 0. o′′
@, (8,8′) is the

energy needed to migrate ��@ from its source CN 8 to destination
CN 8′:

o′′
@, (8,8′) =

)@∑
C=1

�8,8′∑
q=1

VC8,8′,q ·
∑

�∈_8,8′,q

��8=2 . (27)

)@ is the number of needed packets to transfer AC@ .)@ is
computed based on the size of AC@ and packet size ! (i.e., ��@

!
).

H8,8′ is the number of available paths between CN 8 and destination
CN 8′. V8,8′,q is 1 if the qCℎ path is selected.

4 DYNAMIC ENERGY COST AND CARBON
EMISSION-EFFICIENT APPLICATION PLACEMENT
METHOD (DECA)
To describe DECA, first we introduce its general three-phase
mechanism. Then, we present the DECA logical architecture and
describe in detail each of its components.

4.1 General mechanism
DECA consists of three main phases: (1) Pre-allocation, (2)
Allocation, and (3) Placement improvement.
Phase 1—Pre-allocation. Based on the requested application
components, the components’ traffic matrix, the available ECs
and CNs, this phase tentatively determines the best resources
considering cost and carbon emission. This is done in two steps
(see Algorithm 1). Step 1 pre-selects ECs and pre-distributes
the components to them simultaneously (joint EC selection and
component distribution). Step 2 pre-chooses CNs in each pre-
selected EC and pre-allocates components on them simultaneously
(joint CN selection and component placement). In both steps, we
first create candidate subgraphs and then select the best subgraph
in terms of overall energy cost and carbon emission.

If a component is distributed to EC 3 in Step 1, then it is tried
to be allocated on a compute node within EC 3 in Step 2. This
will be normally successful since the decisions in Step 1 ensure
that the total capacity of an EC is sufficient for the total demand of
components mapped to that EC. However, this is only a necessary
but not sufficient condition for being able to place the set of ACs

8

Fig. 3. Logical architecture of DECA

in this EC. It may turn out in Step 2 that an AC cannot be allocated
in the intended EC. In this case, the AC and its related ACs are
re-allocated to another EC.

Based on the pre-allocation observation, this phase finds the
best resources for the requested ACs and offers them for allocation
in Phase 2.
Phase 2—Allocation. Phase 2 actually allocates the requested
ACs on the resources finally selected in Phase 1.
Phase 3—Placement improvement. Phase 3 is in charge of man-
aging already allocated ACs. It has two main objectives: (1) energy
saving: it includes inter-EC and intra-EC AC migration methods
and continually minimizes energy consumption of each EC to
optimize energy cost and carbon emission, (2) SLA violation
prevention: by migrating ACs from overloaded CNs, it prevents
SLA violation.

4.2 DECA architecture

As mentioned in Section 3.1, we assume a cloud controller and
EC controllers in a hierarchical distributed EC architecture. Note
that the cloud controller is a logical component which might be
implemented in a physically distributed way enabling both load
balancing and fault tolerance, but this is beyond the scope of the
paper. In each time slot, the cloud controller selects appropriate
resources (ECs, CNs and paths) for the received AC requests and
distributes the ACs to the chosen ECs. Inside each EC, the EC
controller places the received AC requests on the chosen CNs.
Moreover, in each time period) , the cloud controller runs inter-
EC AC migration and, right after that, each EC controller uses
intra-EC AC migrations to continually optimize cost and carbon
emission of the EC and also to prevent SLA violations (CN
overloading).

To offer a better view about the DECA mechanism, we
mapped the three phases of DECA on its logical architecture (see
Fig. 3). Cloud and EC controller include some modules which are
described next.

4.2.1 Cloud controller modules

Pre-Allocator (PA). This module (see Algorithm 1) reads gen-
eral cloud information from the Information database, creates a
complete graph of ECs and complete graph of CNs inside each
EC, calls the appropriate sub-modules to pre-allocate the ACs,
and finally sends the determined placement information to the
Allocator (Level 1 and 2) modules. The PA module includes
several sub-modules that we will describe as follows:

Algorithm 1: Pre-Allocator(�0, {�8},),)') → (c, f,
e[f])

1 (a, b) = CSC(�0, M, TR); /*a: subgraphs of ECs, b:
ACs on them*/

2 c = FBSS (a,b); /*c: the best subgraph of ECs */
3 foreach �� ∈ c do
4 (d, e) = CSC(��� , b[c][EC] , TR);
5 /*d: subgraph of CNs, e: ACs on them*/
6 f = FBSS(d, e); /*f: the best subgraph of CNs for

EC*/
7 /*c: selected ECs, f: selected CNs inside ECs, e: way of

placing ACs on CNs*/

Graph Creator (GC). The GC module creates a complete graph
of ECs and complete graph of CNs inside each EC based on
general cloud information in the Information database.
AC Mapper (ACM). The ACM module (see Algorithm 2) re-
ceives a candidate vertex E (which may represent an EC or a CN)
with its current capacity and a set - of ACs with their traffic matrix
)' as input. Starting from each AC @ ∈ - , ACM determines a
subset .@ of - that fits on E. .@ is grown greedily: in each step,
the AC from - \ .@ is chosen that has the largest traffic with
the ACs already in .@ , and is added to .@ if E still has sufficient
capacity. After creating a subset starting from each AC @, ACM
selects the subset with highest inter-AC traffic and maps it to E.

Algorithm 2: ACM(E, X, TR)→ highest traffic .8
1 foreach ��@ ∈ - do
2 .8 = {};
3 if E has enough capacity for AC@ then
4 Add AC@ to .8;
5 while E has enough capacity for .8 and .8 ≠ - do
6 Let + ∈ - \ .8 have the highest total traffic

with ACs in .8;
7 if E has enough capacity for .8 ∪ {+} then
8 Add + to .8;

9 /* return the .8 with highest inter-AC traffic */

Candidate Subgraph Creator (CSC). As Algorithm 3 shows,
this module receives a weighted graph � = (+, �, F+, F�), a list
of ACs M[] and their traffic information TR as input and returns
|+ | subgraphs (i.e., () with allocated ACs on them (i.e., (E). The

9

aim of CSC is to determine for each E8 ∈ + (1 ≤ 8 ≤ |+ |) an
induced subgraph � ′(E8) with sufficient total capacity for hosting
the ACs and optimized overall cost and carbon emission. � ′(E8)
is grown from {E8} as starting point by iteratively adding one
vertex a time. The already selected vertices of � ′(E8) and their
allocated ACs are stored in arrays ([8] and (E [8] respectively. In
each step, CSC checks whether the selected vertices have sufficient
total capacity. If this is the case, � ′(E8) is finished. Otherwise, the
PFBS module is called to select one more vertex for inclusion in
(, and the cycle continues, until the total capacity of the selected
vertices is sufficient. Then, � ′(E8) is the subgraph induced by
([8], with its allocated ACs stored in (E [8]. This way, a subgraph
is created for each vertex E8 as a starting point yielding altogether
|+ | candidate subgraphs.

Trying each vertex as a starting point is important because
the subgraph formed starting from E8 will often be biased towards
vertices in the proximity of E8; taking the best one of the candidate
subgraphs helps to find a globally optimal one. In principle, it
would also be possible to consider all subgraphs of � with suf-
ficient total capacity. However, the number of all such subgraphs
can be exponential, making this approach intractable in practice.
In contrast, our method is a faster, polynomial-time heuristic.

Prediction and Fuzzy Sets-Based Selector (PFBS). Whenever
CSC needs to add a new vertex (i.e., E:) to a candidate subgraph
� ′(E8) being generated, it calls the PFBS module (recall that the
subgraph � ′(E8) formed starting from E8). As Algorithm 4 shows,
PFBS receives a graph �, a list of already selected vertices in
subgraph � ′(E8) (i.e., ([8]), a set of unallocated ACs (i.e., -), AC
traffic information (i.e.,)'), and a variable � as input. PFBS
returns the most cost/carbon effective vertex E: ∈ + \ (and
selected ACs on it ((E) to be included in � ′(E8). H = 1 means
all vertices of � will be used for allocating the requested ACs and
so we do a simple random vertex selection to save time. + \ (
are the vertices still available in � for selection. Selecting the
best vertex based on a single metric (e.g., only cost or carbon
emission) is relatively easy. But selecting the best vertex according
to two, sometimes conflicting, metrics simultaneously is more
challenging. This is where Fuzzy Sets [7] are helpful to trade off
the two metrics and thus select the best vertex. Another challenge
is that, to be fast, we must make local decisions on the next
vertex; but ignoring the effect of later decisions could lead to poor
results. For this reason, we propose a combination of the Fuzzy
Sets technique and the �∗ algorithm [6] to get the benefits of
both appropriate decisions for multiple metrics (using fuzzy sets)
and global decisions (using �∗) together. An example showing the
benefits of using �∗ is given in the Appendix.

Equations (28)–(38) detail our proposed method. PFBS uses a
fuzzy set of all possible (EC or CN) candidates (i.e., + \ (). There
is a membership function 2() for this set to map each candidate to
a membership value in the range [0, 1]. For a candidate E: ∈ + \(,
2(E:) is computed based on its cost and carbon emission.

Inspired by the �∗ algorithm, 2(E:) is made up of two
functions: 6(E:) is based on the immediate costs and carbon
emission incurred by selecting the candidate E: , while ℎ(E:) is
based on an estimate of the costs and carbon emission that will
be incurred in the future if E: is selected now. This estimation
aspect of the �∗ algorithm can give a global optimization view. It
also helps to consider the capacity of each candidate in addition to
cost and carbon emission. Hence, for a candidate E: ∈ + \ (, the

Algorithm 3: CSC(G, M[], TR)→ (S, SE)

1 ([] [] = { }, (E [] [] [] = { }, copy members of array
M[] into a set - ;

2)B: Total requested of |- | ACs,)=: Total available
capacity of G

3 H = 1 if all nodes of G will be used for placing the
requested ACs; else H = |+ |;

4 for i=1 to H do
5 ([8][0] = E8 , j = 0, - ′ = { }, (E [8][j][]←

ACM(E8 , - \ - ′, TR),
6 - ′ = - ′ ∪ (E [i] [9],)2 = wv8; /*)2 :Total current

capacity,*/
7 while)2 <)B do
8 j ← j+1;
9 (E=4F , (E [8] [9]) = PFBS(�, ([8], - \ - ′,) ', H);

10 /*selects one more vertex and its ACs*/
11 - ′ = - ′ ∪ (E [i] [9], S[i][j] = E=4F ;
12)2 =)2 + vE=4F ; /*vE=4F is resource vector of

E=4F*/
13 /*if not all ACs could be allocated*/
14 if - ≠ - ′ then
15 - ′′ = { }; /*Set of ACs to move to another EC*/
16 foreach G′ ∈ - ′ do
17 add x’ to - ′′;
18 foreach G ∈ - do
19 if x’ has relation with x then
20 add x to - ′′;
21 if x is already pre-allocated then
22 remove x from its CN and EC;

23 else
24 /*x is also a member of set X’*/
25 remove x from X’;

26 /*allocate - ′′ to an appropriate EC*/
27 (S’, S’E) = CSC(G \ S[i], X”, TR)
28 S = S ∪ S’, SE = SE ∪ S’E ;

29 /*returns candidate subgraphs with allocated ACs*/

Algorithm 4: PFBS(G(V,E,wV,wE) → (selected,
(E [E:])
1 2<0G = −1;
2 if � == 1 then
3 select a E: ∈ + \ (randomly where

E
2?D

:
< (!�) ℎA4Bℎ>;3;

4 (E [E8] [9] ← ACM(wE8 , X, TR);
5 return (E: , (E [E:]);

6 foreach E: ∈ + \ (do
7 if E2?D

:
< (!�) ℎA4Bℎ>;3 then

8 (E [E8] [9] ← ACM(wE: , X, TR);
9 compute 2 (E:) using (28)–(38);

10 if 2 (E:) > 2<0G then
11 2<0G = 2 (E:), selected = E: ;

�∗-based membership value is

2(E:) = 0.5 · (6(E:) + ℎ(E:)). (28)

10

The algorithm selects the candidate with the largest 2(E:) value.
Here, 6(E:) computes a membership value based on the increment
in overall cost and carbon emission (for both server and network
resources) incurred by selecting E: :

6(E:) = 1 − 1 (E:) · 2 (E:). (29)

where 1 (E:) and 2 (E:) are normalized values of cost and
carbon emission (in range of [0,1]) respectively. Equation (29)
ensures that maximizing 6(E:) leads to low values for both cost
and carbon emission. Equations (30) and (31) normalize cost and
carbon emission respectively.

 1 (E:) =
(E: · %E: + #E: · %′E:

(<0G · %<0G + #<0G · %′<0G
. (30)

 2 (E:) =
(E: · ��E: + #E: · �� ′E:

(<0G · ��<0G + #<0G · �� ′<0G
. (31)

where SE: is the incremental energy of E: caused by running the
new ACs and S<0G is the incremental energy of the candidate
with the maximum incremental energy. PE: and P′E: (for network
elements inside E8) are the energy price in the location of E8 .
However, for inter-EC network elements, we consider P′E: as
average of the energy prices. P<0G and P′<0G are the maximum
energy price among all locations. CEE: and CE′E: (for network
elements inside E:) are the carbon emission rate in location of E: .
For inter-EC network elements, CE′E: is the average of the carbon
rates. CE<0G and CE′<0G are the maximum carbon rate among
all locations. NE: is the incremental energy of network elements
caused by adding the candidate E: to the subgraph � ′(E8):

#E: =
∑

E9 ∈([8]
=E: ,E9 . (32)

where nE: ,E9 is the incremental energy of transferring data from
candidate E: to the already selected E 9 in� ′(E8) (recall that� ′(E8)
is the subgraph that is grown from E8 and S[i] holds the current
vertices of � ′(E8)). For EC selection, nE: ,E9 is computed based on
(18) whereas for CN selection, (14) is used. PFBS calls for each
candidate E: the ACM module to detect allocated ACs on E: and
then computes X:, 9 for CNs based on (13) and for ECs based on
(19). Recall that (14) also selects the best path between two CNs.

ℎ(E:) computes a membership value based on an estimate of
the increment in overall cost and carbon emission caused by the
vertices that we will have to select later on to accommodate all the
" ACs.

ℎ(E:) = 1 − ′1 (E:) ·
′
2 (E:). (33)

where ′1 (E:) and ′2 (E:) are normalized values of the estimated
cost and carbon emission (in range of [0,1]) respectively.

 ′1 (E:)=
H·(0 ·%0+*·#0 ·%′0

H·(<0G ·%<0G+*·#<0G ·%′<0G
. (34)

 ′2 (E:)=
H·(0 ·��0+*·#0 ·�� ′0

H·(<0G ·��<0G+*·#<0G ·�� ′<0G
. (35)

where H and * are the estimated number of vertices and edges
(network paths) to be added later to the subgraph � ′(E8), when
allocating the remaining ACs. S0 is the estimated average and
S<0G the maximum possible incremental energy for a new vertex,
N0 is the estimated average and N<0G the maximum possible
incremental energy of the network for the further edges. P0 and
P′0 are the average, P<0G and P′<0G the maximum price of energy

for vertices and edges, respectively.
To estimate *, recall that � is a complete graph, so that each

new node added to a subgraph � ′(E8) with I vertices will add I
new edges. After adding E: to the subgraph � ′(E8) with I vertices,
it will consist of I + 1 vertices, so adding further vertices will lead
to I + 1, I + 2, . . . new edges. Hence, if H further vertices will have
to be selected after E: , we have

* =

(I+1)+(H−1)∑
:=I+1

: = I · H + H · (H + 1)
2

. (36)

The value of H can be calculated as follows:

H =
|" | − ((∑E9 ∈([8] � (E 9)) + � (E:))

�E
. (37)

where |" | is the total number of newly requested ACs, � (E 9) is
the number of allocated ACs on vertex E 9 of subgraph � ′(E8),∑
E9 ∈([8] � (E 9) is the number of allocated ACs till now on � ′(E8),

� (E:) is the number of ACs that can be allocated if E: is chosen
next, and �E is the average capacity of all vertices.

It remains to estimate N0, the average network energy con-
sumption for the edges that will be added to the subgraph � ′(E8)
in subsequent steps. One possibility is to use the average network
energy consumption among all CNs. This would be a good
estimate if we sampled edges randomly. However, our algorithm
is biased towards edges of lower energy, so that the overall
average may be an overestimate. A better estimate is the average
energy consumption of the edges that the algorithm has selected
so far, i.e., the edges within the subgraph � ′(E8) extended with
E: (denoted as Al). However, when selecting the second vertex,
� ′(E8) has only one vertex and no edge, so in this case, we use
the average network energy consumption between the first vertex
(i.e., E8) and all other vertices:

#0 =

∑

E9 ∈�;

∑
Eℓ ∈�;\{E9 }

=(E9 Eℓ)

(I+1)I/2 if I > 1∑
E9 ∈+ \�;

=(E8 ,E9)

#−1 if �; = {E8}

(38)

Putting all the pieces together, we get a fairly good estimate of
the overall energy cost and carbon emission when selecting E8 .
Based on these estimates, the algorithm can select the best E8 (see
Algorithm 4).
Fuzzy Sets-based Best Subgraph Selector (FBSS). This module
receives as input a set of subgraphs (i.e., S) along with a list of
allocated ACs on their vertices (i.e., SE). FBSS selects the most
appropriate subgraph in terms of cost and carbon emission. While
selecting the best subgraph based on only cost or carbon emission
is easy, the simultaneous optimization of the two metrics is more
challenging. We use fuzzy sets to solve this.

As Algorithm 5 shows, FBSS computes for each � ′(E8) the
overall cost (�>BC8) and carbon emission (�0A8) using (39)–(40).
Recall that vertices of a subgraph � ′(E8) stored in S[i] and also
SE [i] consists of the allocated ACs of � ′(E8).

�>BC8 =
∑
E∈([8]

∑
9∈(E [8] [E]

� E8=2, 9 · HE +
∑

E,E′∈([8]
.E,E′ · HE,E′ . (39)

�0A8 =
∑
E∈([8]

∑
9∈(E [8] [E]

� E8=2, 9 ·��E +
∑

E,E′∈([8]
.E,E′ ·��E,E′ . (40)

where � E
8=2, 9

(incremental energy of vertex v of � ′(E8) caused by
running AC j) is computed based on (6)–(7), .E,E′ (incremental

11

Algorithm 5: FBSS(S[][],(E [][][])→ (selected)

1 �<0G = −1, i=0;
2 while ([8] ≠ =D;; do
3 compute cost of S[i] using (39);
4 compute carbon emission of S[i] using (40);
5 compute �8 using (41);
6 if �8 > �<0G then
7 F<0G = �8 , selected = S[i];

8 i = i+1;

9 /* returns the best subgraph */

network energy between vertices v and v′) for EC subgraphs is
computed from (18) and for CN subgraphs from (12)–(16). HE
and HE,E′ (for network elements inside an EC) are the energy price
in location of the EC. For inter-EC network elements, we consider
HE,E′ as average of the energy prices. CEE and CE′

E,E′ (for network
elements inside an EC) are the carbon emission rate in location of
that EC. For inter-EC network elements, CE′

E,E′ is the average of
the carbon emission rates. As we have the list of allocated ACs for
each vertex, the number of exchanged packets between two nodes
is easily computed for CNs from (13) and for ECs from (19).

FBSS then computes membership value of S[i] using the
membership function shown in (41).

�8 = 1 − �>BC8

�>BC<0G
· �0A 8

�0A<0G
. (41)

where �>BC<0G and �0A<0G are the maximum possible cost
and carbon emission for running the new requests, respectively.
Finally, the subgraph with highest membership value is selected.
Allocator (Level 1). Based on AC allocation information from the
Pre-Allocator module, this module sends each AC request to the
chosen EC controller.
Monitoring. Cooperating with EC controllers, this module con-
tinuously monitors the cloud environment and updates the Cloud
Information Database.
Information Database. All information related to the distributed
EC is stored in this module.
Inter-EC AC Migration. The energy price and carbon emission
rate not only can be different from EC to EC (i.e., in different
locations) but can also vary with time (e.g., even on an hour-to-
hour basis). Therefore, the overall energy cost or carbon emission
may be reduced by shifting portions of the ACs to ECs that
currently offer better energy prices and/or carbon emission rates
[25]. Because of the similar decision-making for inter-EC and
intra-EC AC migration, we describe them together in Section
4.2.2.

4.2.2 EC controller modules

The EC controller receives AC requests along with target CNs
from the cloud controller. The EC controller allocates the ACs
on the selected CNs (Allocator level 2), monitors the CNs (EC
Monitoring) and gathers information of the EC and sends it to
the cloud controller. To keep optimizing cost and carbon emission
while preventing SLA violations, a Migration module is also used.
Allocator (Level 2). This module executes the AC allocation, as
determined by the cloud controller.
Monitoring. Cooperating with CN controllers, this module con-
tinuously monitors the EC and updates the Information Database.

Algorithm 6: AC Migration-Under-utilized CNs (S,D)

1 '>D=3<8= = ∞, m=1, copy sets S to S′ and D to D′

2 while m != |(′ | do
3 for i=1 to |(| do
4)BC0H=0,)<6A=0
5 foreach AC@ on CN8 ∈ S do
6 F<8= = ∞
7 foreach CN8′ ∈ D do
8 compute F(��@ ,�#8′) (see (42))
9 if F(��@ ,�#8′) < F<8= then

10 F<8= = F(��@ ,�#8′) , Index[i][q]=�#8′

11 if Index[i][q] is full, remove it from Set D
12 compute F(��@ ,�#8) (see (42))
13)BC0H=)BC0H+F(��@ ,�#8) ,)<6A=)<6A+F<8=
14 if ()BC0H + �83;4 >)<6A) then
15 pre-migrate (map) each AC@ of �#8 to

Index[i][q], Round[i]=Round[i]+)<6A
16 else
17 Round[i] = Round[i]+)BC0H + �83;4,

Index[i][q]=CN8

18 do a circular shift for set S′

19 if ('>D=3<8= > '>D=3 [8]) then
20 '>D=3<8==Round[i], copy array Index[][] to array

Temp[][]
21 copy sets S′ to S and D′ to D, m++

22 migrate based on array Temp information

Information Database. All information related to the EC is stored
in this module.
Intra-EC AC Migration. The aim of this module is twofold: (i) to
prevent SLA violations of over-utilized CNs, and (ii) to optimize
energy consumption (and thus costs and carbon emission) by
emptying and switching off under-utilized CNs.

Inspired by [20], we consider three thresholds:)! (low),)"
(middle) and)� (high). These thresholds divide a CN’s possible
workload situations into four states: under-utilized (under)!),
light (between)! and)"), moderate (between)" and)�), and
over-utilized (above)�).

The goal of this workload classification is to easily find source
and destination CNs for AC migration as follows: (1) all ACs
on an under-utilized CN 8 should be migrated to CNs with light
workload; then, 8 can be switched to sleep mode to save energy; (2)
to prevent SLA violations, some ACs on over-utilized CNs must
be migrated to other CNs (usually to CNs with light workloads);
(3) ACs on lightly or moderately loaded CNs are not migrated to
avoid unnecessary migration cost [20], [40].

For over-utilized CNs, migrating some ACs is mandatory to
prevent SLA violation, even if this increases energy consumption.
In contrast, migration of ACs from under-utilized CNs should be
carried out only if it improves the energy balance, i.e., the energy
consumption of the migrations is less than the energy reduction
achieved.

Algorithm 6 shows the proposed AC migration mechanism for
under-utilized CNs. In each time period, first, all under-utilized
CNs are put in a set (and potential migration destinations are
collected in a set �. These are primarily the lightly-loaded CNs,
but if there is no such CN, we select moderately-loaded CNs

12

that have the capacity of receiving one AC without being over-
utilized. If there are neither lightly nor moderately-loaded CNs to
be included in �, we select a subset of the under-utilized CNs
(e.g., the 30% with lowest load) and move them from (to �.

The AC Migration Module then selects an under-utilized CN
from ((CN8) and the first AC of it (AC@). We estimate the energy
needed for running AC@ on each destination CN8′ ∈ � (1 ≤ 8′ ≤
|� |) (in case of migration) or on CN8 (no migration):

�(��@ ,�#8′) =

� 8
′
@ + # 8

′
@ + "@, (8,8′) , if �#8′ ≠ �#8

� 8
′
@ + # 8

′
@ , if �#8′ = �#8

(42)

Here, � 8
′
@ is the energy consumption of running AC@ on CN8′

(computed based on (7)) and "@, (8,8′) is the energy needed to
migrate AC@ from CN8 to CN8′ , computed based on (27). # 8

′
@

is the energy needed for the communication between AC@ and
related ACs, assuming that AC@ is mapped to CN8′ . Similar to
(25), # 8

′
@ is computed as:

8
′
@ =

∑
�#8′′ ∈#
�#8′′≠�#8′

X
@

8′,8′′∑
C=1

�8′,8′′∑
q=1

UC8′,8′′,q ·
∑

�∈_8′,8′′,q

��8=2 . (43)

where X@
8′,8′′ is the number of exchanged packets between AC@ on

CN8′ and its related ACs on CN8′′ . # is the set of CNs in the EC.

X
@

8′,8′′ =
∑

��F ∈�#8′′
CA@,F . (44)

If ACF has no communication with AC@ , then tr@,F = 0; hence,
only ACs communicating with AC@ are considered in (44).

Using (42), the AC Migration Module determines two values:
(1) Stay value: value of the cost function when AC@ remains
on CN8 (i.e., � (��@ , �#8)); (2) Migrate value: minimum value
of cost function among all destination candidates in � (denoted
�<8=). In addition, the index of the CN with minimum value is
saved.

The AC Migration Module repeats the above procedure to get
� (��@ , �#8) and �<8= for each AC on CN8 . Then, all Stay values
are summed to get)BC0H and all Migrate values are summed to get
)<6A , leading to:

�<6A = ()BC0H + ��#883;4
) −)<6A . (45)

where ��#8
83;4

is the idle energy consumption of CN8 . If �<6A > 0,
then running the ACs of CN8 on CN8 consumes more energy than
migrating and running them on other CNs. In this case, all ACs of
CN8 will be migrated to their already detected optimal destination
CNs and �#8 is switched to sleep mode. But if �<6A ≤ 0, then
migrating the ACs of CN8 would not save energy, so the AC
Migration Module does not migrate any of them.

The AC Migration Module repeats this procedure for all under-
utilized CNs (listed in set () one by one. It should be noted that the
actions of choosing destinations for underutilized CNs can affect
each other (non-independent events [6]). For example, a CN that
has become fully occupied by migrating ACs from underutilized
CNs is not available anymore as destination for other underutilized
CNs. Therefore, a different ordering of the source CNs may cause
a different set of feasible destinations for each AC. In addition,
the heterogeneity of ACs and of destination CN candidates makes
it difficult to find a good ordering of the ACs. To cope with this
issue, for a set (of under-utilized CNs, we make |(| permutations
with circle shifting their list by 1 to the left and run the algorithm

Algorithm 7: AC Migration-Over-utilized CNs(S,D)

1 Set S: over-utilized CNs, Set D: destination candidates
2 foreach CN8 ∈ S do
3 while CN8 is over-utilized do
4 select an AC with highest membership degree

(based on (46))
5 select a CN with lowest cost from D; called CN3

(based on (47))
6 after AC migration, if CN3 becomes full, remove

it from D.

again. Finally, the permutation which leads to the solution with
the least energy consumption is selected.

Now we come to the handling of over-utilized CNs. Note
that our proposed AC allocation approach tries to avoid over-
utilized CNs in the first place. However, to cope with applications
with dynamically changing AC loads, the AC Migration Module
supports an over-utilization avoidance mechanism.

First, the AC Migration Module puts all over-utilized CNs in
a set ((see Algorithm 7). Then, the set � of potential destination
CNs is built similarly as in the previous case.

Let CN8 be an over-utilized CN in (. To select an AC to
migrate from CN8 , memory size and CPU utilization of ACs are
both important: selecting ACs with low CPU load increases the
number of necessary migrations, and migrating ACs with large
memory size increases traffic and network energy consumption.
Therefore, it is important to consider both metrics at the same
time. To this end, we use a fuzzy set-based technique and compute
a membership value for each AC@ on CN8:

� ′(��@ , �#8) =
2@

2<0G
·
(
1 −

<@

<<0G

)
. (46)

where 2@ and <@ are the CPU utilization and memory size of
AC@ , respectively, and 2<0G and <<0G are the maximum CPU
utilization and maximum memory size, respectively. We select the
AC@ with highest membership value, which we denote as AC? .

To select a destination CN for the chosen AC? , we compute a
cost function for each candidate CN8′ ∈ �, similarly as in (42):

� ′′(��? , �#8′) = � 8
′
? + # 8

′
? + "?, (8,8′) . (47)

� 8
′
? is the energy consumption of AC? if it is run on CN8′

(computed based on (7)) and "?, (8,8′) estimates the energy needed
to migrate AC? from CN8 to CN8′ , computed based on (27). # 8

′
?

is the energy of the communication between AC? and its related
ACs, assuming that AC? is migrated to CN8′ (computed based on
(43)).

We select the CN3 ∈ � for which � ′′(��? , �#3) is mini-
mum. After migrating the selected AC? to CN3 , if CN3 becomes
full (i.e., migrating another AC to CN3 would make it over-
utilized), then CN3 is removed from �.

If the CN8 is still over-utilized, the AC with the second highest
membership value is selected, and this procedure continues until
the CN is not over-utilized anymore. Afterwards, the second over-
utilized CN is selected and the above procedure is repeated. This
procedure continues until no over-utilized CN remains in �� 9 .

Our inter-EC AC migration algorithm is similar to the above-
mentioned AC migration algorithm for under-utilized CNs with
considering the following two minor additional points: (1) sets
S and D are from two different ECs. In order to detect possible

13

EC candidates for both source and destination of AC migration,
we use a simple threshold-based technique. We consider a weight
for each EC which shows its energy cost and carbon emission
effectiveness in comparison to other ECs. Equation (48) computes
the weight of an EC 9 .

, 9 =
% 9

%<0G
+

� 9

�<0G
. (48)

where % 9 , � 9 , %<0G and �<0G are the energy price of EC 9 , carbon
emission rate of EC 9 , highest energy price of all ECs and highest
carbon rate of all ECs, respectively.

We then order all ECs based on their weights in a list. We first
compare weights of the EC with highest weight with the EC with
lowest weight, because AC migration between them has the most
important effect on cost and carbon efficiency. In addition, we use
a weight threshold. The aim of the threshold is to avoid costly
migrations with questionable benefit. If the difference between
weights of the highest-weight and lowest-weight ECs is less than
the threshold, there is no need to do inter-EC AC migration.
Otherwise, the inter-EC AC migration algorithm is called for
the EC pair (the EC with highest weight is source and the EC
with lowest weight is destination of migration). The AC migration
continues until either the algorithm detects that it is more energy
efficient if the ACs stay than if they migrate, or the capacity of
the destination EC becomes exhausted. In the first situation, the
highest weight EC is removed from the list of available ECs;
in the second case, the lowest weight EC is removed from the
list of candidates. After that, the comparison is repeated between
the ECs with highest and lowest weight. Again, if the difference
between their weights is higher than the threshold, the inter-EC AC
migration algorithm is called, and so on. This module is carried
out right before the migration module.

5 PERFORMANCE EVALUATION

To evaluate DECA, we considered a distributed EC system with
10 ECs and implemented three different scenarios using CloudSim
[42], a simulator developed in Java [43]. Scenario I was designed
for evaluating the AC placement algorithm of DECA showing
the obtained trade off between carbon emission and energy cost
while optimizing both at the same time. Scenario II emphasizes
on evaluating the AC migration part of DECA for under-utilized
CNs, and Scenario III for the evaluation of the migration algorithm
of DECA for over-utilized CNs. Scenarios II and III validate
the DECA migration phase ability in still decreasing the energy
consumption after the initial placement.

Based on information from the US Energy Information Ad-
ministration [45, Table.5.6.A], we consider energy price is in
range [4, 20] cents/kWh and for each EC was randomly selected
between 4 and 20. For the inter-EC network, the energy price
was considered as the average (12 cent/kWh). The PUE value was
considered in the range [1.56, 2.1] based on [16]. We considered
six energy sources with different carbon emission rates from [4]
(Nuclear: 15, Coal: 968, Gas: 440, Oil: 890, Hydro: 13.5 and
Wind: 22.5 g/kWh), and assumed five different combinations with
an average of 100, 200, 300, 400 and 500 g/kWh, respectively. We
selected one of them randomly for each EC. We used real energy
models for routers, switches and servers (CNs) from [37], [44].
The available capacity of each CN is between 10-15 slots. The
traffic matrix of the ACs generates randomly. The randomly set
parameters remain fixed across the runs of all tested algorithms to
ensure comparability of the results.

TABLE 3
Scenario I details

EC number 10
Total free capacity 1000 to 2000 slots
EC free capacity 100 to 200 slots
AC requests 100, 200, and 300

The experiments were conducted on an Intel Core i9-9880H
2.30 GHz computer, with 32 GB of memory. Each execution run
simulated one hour of traffic and completed in less than 1 minute
for Scenario I, less than 6 minutes for Scenario II and less than 2
minutes for Scenario III. For each scenario, we also computed the
average results of up to ten executions, i.e., less than 100 minutes
of total simulation time (hence, validating the feasibility of our
proposal, both in terms of computational and time constraints).

5.1 Scenario I

For Scenario I, the free capacity of the distributed EC system was
chosen randomly, between 1,000 and 2,000 slots, in each run. This
total capacity was divided among the 10 ECs (the free capacity of
each EC was between 100 and 200 slots). Three different sets of
requests with 100, 200, and 300 ACs were considered. Table 3 lists
the details in Scenario I. In order to simplify our implementation,
similar to [11], we describe our scenarios using the simplification
of slots (i.e., each basic vector resource unit is represented by
one slot). Nevertheless, our proposal can be implemented without
using slots, as well.

We compare the performance of DECA against DECA-Cost,
DECA-Carbon, Random and Greedy resource allocation algo-
rithms. DECA-Cost is a version of DECA which only considers
cost optimization and DECA-Carbon only considers carbon foot-
print optimization. Comparing DECA to these special versions
can show how DECA manages to find a trade-off between the
two optimization goals. The Random algorithm starts by selecting
a vertex (EC or CN) randomly and placing as many ACs as
possible in this vertex. If not all ACs could be allocated in the
selected vertex, then a further vertex is selected, again randomly,
to place the remaining ACs. This process is repeated until all
requested ACs are placed. The Greedy algorithm selects a vertex
with maximum free capacity and allocates as many ACs from the
request as possible in this vertex. If further ACs are necessary, then
it selects from the remaining vertices again the one with maximum
free capacity. This process continues until all ACs are placed [10],
[14].

Figures 4, 5 and 6 show the simulation results (each run
simulated 1 hour, i.e., that the energy cost and carbon emission
values are for 1 hour). In particular, Figs. 4(a) and 5(a) show
how DECA could successfully make a joint cost-carbon emission
optimization. DECA outperforms the Random and Greedy algo-
rithms in both dimensions. It was clear that DECA-Cost leads to
the lowest cost. However, the carbon emission of DECA-Cost is
sometimes even worse than that of Random or Greedy. Similarly,
DECA-Carbon is the best in carbon efficiency but performs poorly
in cost efficiency. In general, DECA improves 45-115% in carbon
emissions on DECA-Cost while incurring 20-60% higher costs.
In comparison to DECA-Carbon, DECA improved total cost by
40-60% while increasing carbon emission only by 10-30%.

As shown in Fig. 6(a), Greedy always has the least number of
selected ECs. Together with Figs. 4(a)–(d), this shows that only

14

0

10

20

30

40

50

60

100 200 300

T
ot

al
 C

os
t

($
 C

en
t)

Req. Num.

DECA

Greedy

Random

DECA-
Cost
DECA-
Carbon

(a) total cost

0

10

20

30

40

50

60

100 200 300

S
er

. C
os

t
($

 C
en

t)

Req. Num.

DECA

Greedy

Random

DECA-
Cost
DECA-
Carbon

(b) CN (server) cost

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

100 200 300

N
et

. C
os

t
($

 C
en

t)

Req. Num.

DECA

Greedy

Random

DECA-
Cost
DECA-
Carbon

(c) intra-EC network cost

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

100 200 300

In
te

r
E

C
 C

os
t

($
 C

en
t)

Req. Num.

DECA

Greedy

Random

DECA-
Cost
DECA-
Carbon

(d) inter-EC network cost

Fig. 4. Simulation results for Scenario I - Part I (cost)

reducing the number of selected ECs (and CNs) does not lead to
total cost optimum. In Fig. 6(b), there is no significant difference
in energy consumption between the methods. Since there are still
big differences in costs and carbon emissions, this shows the
importance of taking into account the different energy sources
and resulting variety of prices and emission rates of the ECs in a
distributed cloud.

0
2
4
6
8

10
12
14
16

100 200 300

T
ot

. C
ar

. E
m

is
. (

gr
)

C
en

ta
in

es

Req. Num.

DECA

Greedy

Random

DECA-
Cost
DECA-
Carbon

(a) total carbon footprint

0
2
4
6
8

10
12
14
16

100 200 300

S
er

. C
ar

. E
m

is
. (

gr
)

C
en

ta
in

es

Req. Num.

DECA

Greedy

Random

DECA-
Cost
DECA-
Carbon

(b) CN (server) carbon footprint

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

100 200 300

N
et

. C
ar

. E
m

is
. (

gr
)

Req. Num.

DECA

Greedy

Random

DECA-
Cost
DECA-
Carbon

(c) intra-EC carbon footprint

0

2

4

6

8

10

12

14

100 200 300

In
te

r
E

C
 C

ar
. E

m
is

. (
gr

)

Req. Num .

DECA

Greedy

Random

DECA-
Cost
DECA-
Carbon

(d) inter-EC carbon footprint

Fig. 5. Simulation results for Scenario I - Part II (Carbon emission)

5.2 Scenario II

In Scenario II, we considered an EC with three different sizes: 100,
200 and 300 CNs. Each CN has a capacity between 10-15 slots.
The traffic matrix of the ACs was generated randomly between 0
and 1,500 packets, where each packet has a size of 2 KB. Three
different CPU loads and memory sizes are considered for the ACs
(4, 8 and 12 GB). For migrations, we assume a page dirtying
ratio of 0.2. The path length for each CN pair inside an EC was
randomly chosen from 1 to 5 hops (switches). We used real energy

15

0

1

2

3

100 200 300

N
u

m
. o

f
S

el
. E

C
s

Req. Num.

DECA

Greedy

Random

DECA-
Cost
DECA-
Carbon

(a) number of selected ECs

0

1

2

3

4

5

100 200 300

T
ot

. E
n

er
gy

 C
on

s.
 (

J)

T
ho

u
sa

n
d

s

Req. Num.

DECA

Greedy

Random

DECA-
Cost
DECA-
Carbon

(b) total energy consumption

Fig. 6. Simulation results for Scenario I - part III

TABLE 4
Scenario II details

EC number 1
CN number 100, 200 and 300
Free capacity of a CN 10 to 15 slots
AC size 4, 8 and 12 GB
CN pair path length 1 to 5 hops
Packet size 2KB
Page dirtying ratio 0.2

models for routers and switches from [37] and for servers (CNs)
from [44]. Table 4 lists the details associated to Scenario I.

Scenario II is designed to evaluate the performance of our
proposed AC migration algorithm for under-utilized CNs. The
thresholds)! ,)" and)� are 0.2, 0.5 and 0.8, respectively. We
assume that in the current placement of ACs on CNs, 30% of
the CNs are under-utilized, 50% are lightly and 20% moderately
loaded. To evaluate the effect of our approach accurately and
individually, we assume now that there are no over-utilized CNs
(over-utilized CNs will be considered in Scenario III).

Fig. 7(a) shows the effect of the AC migration algorithm
for under-utilized CNs within DECA, compared to the situation
without AC migrations. The results show that the AC migration
algorithm of DECA for under-utilized CNs could reduce energy
consumption. We would like to stress that the performance of our
algorithm has a direct relation with the number of under-utilized
CNs. Therefore, the resulting energy saving can be even better if
the number of under-utilized CNs is higher.

Fig. 7(b) shows that DECA significantly reduces computing
energy consumption in comparison to no migrations by bringing
under-utilized CNs to sleep mode. AC migration consumes energy,
but this energy is negligible (see Figs. 8(a) and (b)) compared
to the amount of energy saved by bringing under-utilized CNs
to sleep (Fig. 7(b)). Note that the scale of Figs. 7(a)–(c) is

0

50

100

150

200

250

300

350

400

100 CNs 200 CNs 300 CNs

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 [

J]

M
ill

io
n

s DECA No Migration

(a) total energy consumption

0

50

100

150

200

250

100 CNs 200 CNs 300 CNs

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 [

J]

M
ill

io
n

s DECA No Migration

(b) compute energy consumption

0

50

100

150

200

100 CNs 200 CNs 300 CNs

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 [

J]

M
ill

io
n

s

DECA No Migration

(c) network energy consumption

Fig. 7. Scenario II, effect of migrations from under-utilized CNs - Part I

TABLE 5
Energy saving [J] of different AC consolidation algorithms for different

EC sizes

100 CNs 200 CNs 300 CNs
DECA 18,604,070 37,031,702 55,652,790
Zhou [20] 18,555,649 36,953,253 55,539,514
Random 18,109,946 35,908,090 54,059,535

Millions and Figs. 8(a)–(b) scale is x1000. Fig. 8(a) shows that
there is no visible difference in energy consumption of inter-AC
communication, i.e., DECA did not increase inter-AC traffic.

Table 5 shows the energy saving of DECA for AC migration
compared to the method of Zhou [20] and Random (i.e., selecting
destinations randomly). Note that in contrast to the diagrams,
here higher numbers are better. Energy saving is defined as
�=14 5 − (�=0 5 C + �=<6A), where �=14 5 and �=0 5 C are the
total energy consumption of compute and network resources
without respectively with migrations, and �=<6A is the energy

16

0

0.2

0.4

0.6

0.8

1

100 CNs 200 CNs 300 CNs

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 [

J]

x
1

0
0

0 DECA No Migration

(a) inter-AC traffic energy consumption

0

0.5

1

1.5

2

2.5

100 CNs 200 CNs 300 CNs

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 [

J]

x
1

0
0

0

DECA No Migration

(b) energy consumption of inter-AC traffic and AC migrations

Fig. 8. Scenario II, effect of migrations from under-utilized CNs - Part II

TABLE 6
Comparing energy consumption for AC migration of DECA with other

AC consolidation algorithms (Scenario II, under-utilized CNs)

100 CNs 200 CNs 300 CNs
DECA 463.68 977.04 1418.16
Zhou [20] 458.88 976.8 1389.84
Random 477.84 966 1433.76

consumption of the migrations. As Table 5 shows, in all situations
DECA saved more energy than the other methods. Tables 6, 7 and
8 provide more insight into the reasons.

Table 6 shows the energy consumption achieved with DECA
for AC migration compared to other methods. As the objective of
DECA is optimal energy saving, based on the situation, it may
increase AC migration energy consumption so that it can reduce
compute energy consumption more (and vice versa).

Table 7 shows energy consumption of compute resources
achieved by the different methods. As can be seen, DECA has
an advantage here. Although Zhou always selects the CN with the
least increase in power consumption due to AC allocation, unlike
DECA, it does not consider the order of selecting under-utilized
CNs. Concerning energy consumption of network resources for
inter-AC communication, Table 8 shows only marginal differences
between the methods.

As a consequence, DECA aims to minimize the total energy
consumption (i.e., compute, network and AC migration) rather
than only minimizing compute energy consumption. DECA in-
telligently selects a CN which is not the one with the least
increase in compute power consumption but incurs less energy for
migration and inter-AC communication. In addition, because of
the heterogeneity of ACs and destination CNs, DECA considers

TABLE 7
Compute energy consumption [J] of different AC consolidation

algorithms for different EC sizes

100 CNs 200 CNs 300 CNs
DECA 51,992,989 104,000,260 156,432,026
Zhou [20] 52,041,415 104,078,710 156,545,330
Random 52,487,098 105,123,882 158,025,266

TABLE 8
Network energy consumption [J] for inter-AC communication of different

AC consolidation algorithms for different EC sizes

100 CNs 200 CNs 300 CNs
DECA 95.22 361.73 853.76
Zhou [20] 95.07 362.12 853.58
Random 95.31 362.52 853.25

the order of selecting under-utilized CNs. All of them together
lead to the best overall performance, as seen in Table 5.

5.3 Scenario III

We use the same configuration as in Scenario II, except for the
differences mentioned below. Scenario III is designed to evaluate
the performance of our proposed AC migration algorithm for over-
utilized CNs. Now we assume that the placement of ACs on CNs is
such that 30% of CNs are lightly-loaded, 50% moderately-loaded,
and 20% over-utilized. To accurately and individually evaluate the
effect of our algorithm for handling over-utilized CNs, we now
assume that there is no under-utilized CN.

We compare the migration algorithm of DECA with three
AC(VM) migration policies for over-utilized CNs: (1) MIMT, (2)
MAMT, and (3) RCT [20]. While MIMT chooses the minimum
number of ACs (i.e., selecting an AC with maximum CPU load)
which must be migrated from a CN, MAMT selects the maximum
number of ACs (i.e., selecting an AC with minimum CPU load)
and RCT uses a random selection of ACs to decrease the CN’s
CPU utilization below a threshold. In addition to these three
policies, to evaluate both the AC and CN selection parts of DECA
accurately, we consider eight different combinations of CN and
AC selection policies. Therefore, in total, we compare twelve
policies:

• DECA: proposed CN selection / proposed AC selection
(Proposed / Proposed),

• MIMT: select a CN with the least increase of power
consumption / select an AC with maximum CPU load
(Min. Compute / Max. CPU),

• MAMT: select a CN with the least increase of power
consumption / select an AC with minimum CPU load
(Min. Compute / Min. CPU),

• RCT: select a CN with the least increase of power con-
sumption / a random selection of ACs (Min. Compute /
Random),

• DECA CN selection / MIMT AC selection (Proposed /
Max. CPU),

• DECA CN selection / MAMT AC selection (Proposed /
Min. CPU),

• DECA CN selection / RCT AC selection (Proposed /
Random),

17

• MIMT/MAMT/RTC CN selection / DECA AC selection
(Min. Compute / Proposed),

• Random CN selection / DECA AC selection (Random /
Proposed),

• Random CN selection / MIMT AC selection (Random /
Max. CPU),

• Random CN selection / RTC AC selection (Random /
Random),

• Random CN selection / MAMT AC selection (Random /
Min. CPU).

Recall that all three MIMT, MAMT, and RCT migration policies
use similar CN selection method (i.e., Min. Compute).

Figs. 9, 10 and 11 show energy consumption of the algorithms
for different EC sizes (i.e., 100, 200 and 300 CNs respectively).

As these figures show, DECA outperforms all other methods
for all 100, 200 and 300 CNs. ”Min. Compute Proposed” (i.e.,
combination of the Min. Compute CN selection method with our
proposed AC selection method) is the closest policy to DECA.
However, in all situations, DECA outperforms the ”Min. Compute
Proposed” policy. Even for 300 CNs, DECA’s performance (with
1102.79 J) is still better than ”Min. Compute Proposed” policy
(with 1124.69 J).

This is because both the CN selection and AC selection parts
of DECA are efficient. While our CN selection considers energy
efficiency in computing and network resources at the same time,
the policy used in MIMT, MAMT, RTC (and many other meth-
ods, such as [22], [23]) only consider compute resource energy
consumption (i.e., Min. Compute policy; choosing the CN with
the least increase in power consumption due to AC allocation).
Considering only compute energy consumption may lead to the
selection of a destination CN far from the source and thus to
higher energy consumption of AC migration.

Also, AC selection has a direct effect on energy consumption
of AC migration. Although MIMT (i.e., selecting an AC with
maximum CPU load) is a plausible method as it minimizes the
number of AC migrations, our results show that MIMT may not
be ideal if the memory sizes of ACs are different. For example,
suppose that the CPU load of AC 1 is a bit higher than that of AC
2, while the memory size of AC 2 is much lower than that of AC 1.
In this case, migrating AC 2 consumes less energy. Unlike MIMT
which does not consider memory size of the ACs, our proposed
AC selection policy takes into account both memory size and CPU
load in selecting ACs.

Putting all the pieces together, such as considering both com-
pute and network resources for CN selection and considering both
CPU load and memory size for AC selection, we end up to a highly
effective algorithm for migrating ACs from over-utilized CNs.

5.4 DECA overall discussion
This part consolidates the results obtained in the three scenarios.

Scenario I was designed for evaluating the AC placement
algorithm (i.e., the initial placement) of DECA. Its results showed
how DECA makes a trade off between carbon emission and energy
cost while optimizing both at the same time. DECA combines a
variant of the A* search algorithm [6] with a Fuzzy Sets technique
[7]. Using powerful techniques (i.e., the A* search algorithm [6]
with a Fuzzy Sets technique [7]), DECA could perform more
effective optimization than traditional greedy heuristics.

Scenario II and III demonstrated the DECA migration phase
ability in decreasing the energy consumption after the initial
placement.

Scenario II was considered to evaluate the performance of our
AC migration algorithm for under-utilized CNs. The first part of
its results showed that we could significantly reduce computing
energy consumption in comparison to no migrations by bringing
under-utilized CNs to sleep mode. We found that AC migration
energy consumption is negligible compared to the amount of
energy saved by bringing under-utilized CNs to sleep. The second
part of the Scenario II compared the energy saving of our AC
migration algorithm for under-utilized CNs with the method of
Zhou [20] and Random (i.e., selecting destinations randomly). In
all situations, our AC migration algorithm saved more energy than
the other methods. Because our AC migration algorithm aims to
minimize the total energy consumption (i.e., compute, network
and AC migration) rather than only minimizing compute energy
consumption. It sometimes intelligently selects a CN which is not
the one with the least increase in compute power consumption but
incurs less energy for migration and inter-AC communication.

Scenario III was defined to evaluate the performance of our
proposed AC migration algorithm for over-utilized CNs. Consid-
ering both compute and network resources for CN selection and
also both CPU load and memory size for AC selection, we end
up to a highly effective algorithm for migrating ACs from over-
utilized CNs.

Putting all the pieces together, DECA showed promising
results for two main parts: (i) determining the initial placement
of newly deployed applications (i.e., Scenario I) and (ii) re-
optimization of the placement of applications to react to workload
changes (i.e., Scenarios II and III).

6 CONCLUSION

We have presented a Dynamic Energy cost and Carbon emission-
efficient Application placement method (called DECA) for dis-
tributed Edge Clouds (ECs). It considers geographically varying
energy prices and carbon emission rates as well as optimizing
both network and compute resources at the same time. We showed
that combining the prediction-based A* algorithm with a Fuzzy
Sets technique can make an intelligent decision to optimize cost
and carbon emission. We have proposed two AC migration algo-
rithms and presented the effect of live AC migration algorithms
on energy consumption in ECs. Three different scenarios have
been considered to evaluate performance of DECA. Based on
our experiments, we have seen that considering both compute
and network resources for CN selection and both CPU load and
AC memory size for AC selection can improve the energy cost
and carbon efficiency. In this paper, DECA was targeting batch
applications and force them to run at a cheaper time. As future
work, we will deal with DECA’s limitation for efficiently support-
ing more interactive environments in which it is not possible to
control that all computing will happen within a slot of time. In
addition, effectiveness of a SDN-based orchestration framework
for managing live VM migration in order to minimize cost and
carbon emission will be studied.

ACKNOWLEDGMENTS

The work of Z. Á. Mann was partially supported by the European
Union’s Horizon 2020 research and innovation programme under
grant 871525 (FogProtect). The authors also thank the anonymous
reviewers for their constructive and insightful remarks that helped
in improving this paper.

18

0 300 600 900 1200 1500

Proposed / Proposed (DECA)

Min. Compute / Proposed

Random / Proposed

Proposed / Max. CPU

Min. Compute / Max. CPU (MIMT)

Random / Max. CPU

Proposed / Random

Min. Compute / Random (RCT)

Random / Random

Proposed / Min. CPU

Min. Compute / Min. CPU (MAMT)

Random / Min. CPU

Energy Consumption [J]

Fig. 9. Energy consumption achieved by different algorithms for intra-EC AC (VM) migration (over-utilized CNs) for 100 CNs (Scenario III). The first
parameter shows CN selection method and the second one is AC selection (CN selection / AC selection)

0 500 1000 1500 2000 2500 3000 3500

Proposed / Proposed (DECA)

Min. Compute / Proposed

Random / Proposed

Proposed / Max. CPU

Min. Compute / Max. CPU (MIMT)

Random / Max. CPU

Proposed / Random

Min. Compute / Random (RCT)

Random / Random

Proposed / Min. CPU

Min. Compute / Min. CPU (MAMT)

Random / Min. CPU

Energy Consumption [J]

Fig. 10. Energy consumption achieved by different algorithms for intra-EC AC (VM) migration (over-utilized CNs) for 200 CNs (Scenario III). The
first parameter shows CN selection method and the second one is AC selection (CN selection / AC selection)

REFERENCES

[1] J. Pan, and J. McElhannon, “Future edge cloud and edge computing for
Internet of Things applications”, IEEE J. IoT, vol. 5, no. 1, pp. 439–449,
2017.

[2] M. Chen, Y. Hao, L. Hu, M. S. Hossain, and A. Ghoneim, “Edge-CoCaCo:
Toward joint optimization of computation, caching, and communication on
edge cloud”, IEEE Wirel. Commun, vol. 25, no. 3, pp. 21–27, 2018.

[3] P. Xiang Gao, A. R. Curtis, B. Wong, and S. Keshav, “It’s Not Easy Being
Green”, ACM SIGCOMM, Finland, 2012.

[4] Z. Zhou, F. Liu, Y. Xu, R. Zou, H. Xu, J. C. S. Lui, and H. Jin, “Carbon-
aware Load Balancing for Geo-distributed Cloud Services”, IEEE MAS-
COTS, pp. 232–241, San Francisco, CA, 2013.

[5] S. Gosselin, F. Saliou, F. Bourgart, E. Le Rouzic, S. Le Masson, and
A. Gati, “Energy Consumption of ICT Infrastructures: an Operator’s
Viewpoint”, 38th ECOC Conf., pp. 1–3, Amsterdam, 2012.

[6] S. J. Russell, and P. Norvig, “Artificial Intelligence: A Modern Approach”,
Prentice Hall, 2010.

[7] L. Zadeh, “Fuzzy sets”, Inform. Control, vol.8, pp. 338-353, 1965.
[8] Z.A. Mann, and M. Szabo, “Which is the best algorithm for virtual

machine placement optimization?”, Concurr. Comput. J. , vol. 29, no. 10,
2017.

[9] Z.A. Mann, “Allocation of virtual machines in cloud data centers – a
survey of problem models and optimization algorithms”, ACM Comput.
Surv., vol. 48, no. 1, 2015.

[10] E. Ahvar, S. Ahvar, Z.A. Mann, N. Crespi, J. Garcia-Alfaro, and R.
Glitho “CACEV: A Cost and Carbon Emission-Efficient Virtual Machine
Placement Method for Green Distributed Clouds”, IEEE SCC, pp. 275–
282, San Francisco, USA, 2016.

[11] X. Li, J. Wu, S. Tang, and S. Lu, “Let’s stay together: Towards traffic
aware virtual machine placement in data centers”, IEEE INFOCOM. pp.
1842–1850 Toronto, CA, 2014.

[12] A. Pahlevan, X. Qu, M. Zapater, and D. Atienza, “Integrating Heuristic
and Machine-Learning Methods for Efficient Virtual Machine Allocation
in Data Centers”, IEEE Trans. on CAD, vol. 37, no. 8, pp. 1667–1680,
2018.

[13] K. You, B. Tang, and F. Ding, “Near-optimal virtual machine placement
with product traffic pattern in data centers”, IEEE ICC, pp. 3705–3709,
2013.

[14] M. Alicherry, and T.V. Lakshman, “Network aware resource allocation
in distributed clouds”, IEEE INFOCOM, pp. 963–971, 2012.

[15] E. Ahvar, S. Ahvar, N. Crespi, J. Garcia-Alfaro and Z.A. Mann,
“NACER: a Network-Aware Cost-Efficient Resource allocation method
for processing-intensive tasks in distributed clouds”, IEEE NCA, pp. 90–
97, USA, 2015.

[16] A. Khosravi, S. Kumar Garg, and R. Buyya, “Energy and Carbon-
Efficient Placement of Virtual Machines in Distributed Cloud Data Cen-
ters”, Euro-Par, pp. 317–328, 2013.

[17] A. Khosravi, L. L. H. Andrew, and R. Buyya, “Dynamic VM Placement
Method for Minimizing Energy and Carbon Cost in Geographically
Distributed Cloud Data Centers”, IEEE Trans. Sustain. Comput., vol. 2,
no. 2, 2017.

[18] C. Gu, C. Liu, J. Zhang, H. Huang, and X. Jia, “Green scheduling for
cloud data centers using renewable resources”, IEEE INFOCOM Ws., pp.
354–359, Hong Kong, 2015.

[19] N. Tziritas, C. Xu, T. Loukopoulos, S. Ullah Khan, and Z. Yu,
“Application-aware workload consolidation to minimize both energy con-

19

0 1000 2000 3000 4000 5000

Proposed / Proposed (DECA)

Min. Compute / Proposed

Random / Proposed

Proposed / Max. CPU

Min. Compute / Max. CPU (MIMT)

Random / Max. CPU

Proposed / Random

Min. Compute / Random (RCT)

Random / Random

Proposed / Min. CPU

Min. Compute / Min. CPU (MAMT)

Random / Min. CPU

Energy Consumption [J]

Fig. 11. Energy consumption achieved by different algorithms for intra-EC AC (VM) migration (over-utilized CNs) for 300 CNs (Scenario III). The
first parameter shows CN selection method and the second one is AC selection (CN selection / AC selection)

sumption and network load in cloud environments”, ICPP, pp. 449–457,
France, 2013.

[20] Z. Zhou, Z. Hu, T. Song, and J. Yu, “A novel virtual machine deployment
algorithm with energy efficiency in cloud computing”, J. CENT SOUTH
UNIV, Springer, vol. 22, no. 3, pp. 974–983, 2015.

[21] X. Zheng, Y. Cai, “Dynamic Virtual Machine Placement for Cloud
Computing Environments”, in Proc. 43th Int. Ws. ICPP, pp. 121–128,
Minneapolis, 2014.

[22] A. Beloglazov, and R. Buyya, “Energy Efficient Allocation of Virtual
Machines in Cloud Data Centers”, CCGrid, pp. 577–578, Melbourne,
2010.

[23] A. Beloglazov, and R. Buyya, “Energy Efficient Resource Management
in Virtualized Cloud Data Centers”, CCGrid, pp. 826–831, Melbourne,
2010.

[24] X. Liu, Z. Zhan, J. D. Deng, Y. Li, T. Gu, and J. Zhang, “An Energy
Efficient Ant Colony System for Virtual Machine Placement in Cloud
Computing”, IEEE Trans. Evol. Comput, vol. 22, no. 1, 2018.

[25] A. Forestiero, C. Mastroianni, M. Meo, G. Papuzzo, and M. Sheikhal-
ishahi, “Hierarchical Approach for Efficient Workload Management in
Geo-Distributed Data Centers”, IEEE Trans. GCN, vol. 1, no. 1, 2017.

[26] X. Li, P. Garraghan, X. Jiang, Z. Wu and J. Xu, “Holistic Virtual Machine
Scheduling in Cloud Datacenters towards Minimizing Total Energy”, IEEE
IEEE Trans. Parallel Distrib Syst, vol. 29, no. 6, pp. 1317–1331, 2018.

[27] M.H. Kabir, G.C. Shoja, S. Ganti, “VM Placement Algorithms for
Hierarchical Cloud Infrastructure”, CloudCom, Singapore, pp. 656–659,
2014.

[28] A. Singla, C. Hong, L. Popa, P. Brighten Godfrey, “Jellyfish: Networking
Data Centers Randomly”, in Proc. 9th USENIX Conf. NSDI, USA, 2012.

[29] M. Rahnamay-Naeini, S. Sen Baidya, E. Siavashi, and N. Ghani, “A
Traffic and Resource-aware Energy-Saving Mechanism in Software De-
fined Networks”, IEEE ICNC-SIREN, pp. 1–5, USA, 2016.

[30] S. Mustafa, K. Sattar, J. Shuja, S. Sarwar, T. Maqsood, S. A. Madani,
and S. Guizani, “SLA-aware best fit decreasing techniques for work-load
consolidation in clouds”, IEEE Access, vol. 7, pp. 135256–135267,2019.

[31] C. Mobius, W. Dargie, and A Schill, “Power Consumption Estimation
Models for Processors, Virtual Machines, and Servers”, IEEE Trans.
Parallel Distrib Syst, vol.25, no.6, pp. 1600–1614, 2014.

[32] N. Vasi, P. Bhurat, D. Novakovic, M. Canini, S. Shekhar,, and D. Kosti,
“Identifying and Using Energy-Critical Paths”, in Proc. 7th ACM Conf.
CoNEXT, USA, 2011.

[33] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma, S.
Banerjee, and N. McKeown, “ElasticTree: Saving Energy in Data Center
Networks”, NSDI, USA, 2010.

[34] Z.A. Mann, “Modeling the virtual machine allocation problem”, MMSSE
Conf., pp. 102–106, 2015.

[35] Z. Xu, and W. Liang, “Minimizing the Operational Cost of Data Centers
via Geographical Electricity Price Diversity”, IEEE Conf. on Cloud
Comput., pp. 99–106, Santa Clara, 2013.

[36] I.S. Moreno, and J. Xu, “Customer-Aware Resource Overallocation to
Improve Energy-Efficiency in Real-Time Cloud Computing Data Centers”,
IEEE Conf.SOCA, pp. 1–8, Irvine, USA, 2011.

[37] A. Vishwanath, K. Hinton, R.W.A. Ayre, and R.S. Tucker, “Modeling
Energy Consumption in high-capacity routers and switches”, IEEE J. Sel.
Areas Commun., vol. 32, no.8, pp. 1524–1532, 2014.

[38] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture”, ACM SIGCOMM., USA, 2008.

[39] G. Warkozek, E. Drayer, V. Debusschere, and S. Bacha, “A new approach
to model energy consumption of servers in Data Centers”, IEEE Conf.
ICIT, pp. 211–216, Athens, 2012.

[40] W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya, “Cost of Virtual
Machine Live Migration in Clouds: A Performance Evaluation”, Conf.
CloudCom, Beijing, 2009.

[41] W. Fang, L. Xiangmin, S. Li, L. Chiaraviglio, and N. Xiong, “VM-
Planner: Optimizing virtual machine placement and traffic flow routing
to reduce network power costs in cloud data centers”, Comput. Netw. J.,
vol. 57, no. 1, pp. 179–196, 2013.

[42] R.N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R.
Buyya, “CloudSim: a toolkit for modeling and simulation of cloud com-
puting environments and evaluation of resource provisioning algorithms”,
Softw Pract Exp J., vol. 41, no. 1, pp. 23-50, 2011.

[43] Melbourne CLOUDS Lab, University of Melbourne. “CloudSim: A
Framework for Modeling and Simulation of Cloud Computing Infras-
tructures and Services”, Available On-Line: http://www.cloudbus.org/
cloudsim/. Access : March 25, 2021.

[44] X. Zhang, J. Lu, and X. Qin, “BFEPM:Best Fit Energy Prediction
Modeling Based on CPU Utilization”, IEEE Conf. NAS, pp. 41–49, 2013.

[45] US Energy Information Administration. www.eia.gov/electricity/
monthly/epm table grapher.cfm?t=epmt 5 6 a

[46] Eurostat Electricity Price Statistics . https://ec.europa.eu/eurostat/
statistics-explained/index.php/Electricity price statistics

[47] M. Goudarzi, H. Wu, M. Palaniswami, and R. Buyya,“An Application
Placement Technique for Concurrent IoT Applications in Edge and Fog
Computing Environments”, IEEE Trans Mob Comput, 2020.

[48] S. Pallewatta, V. Kostakos, and R. Buyya, “Microservices-based IoT
Application Placement within Heterogeneous and Resource Constrained
Fog Computing Environments”, In Proc. 12th IEEE/ACM Conf. UCC, pp.
71–81, 2019.

[49] Y. Hu, C. d. Laat, and Z. Zhao, “Optimizing Service Placement for
Microservice Architecture in Clouds”, Appl. Sci. J., vol. 9, no. 21, 2019.

[50] H. O. Hassan, S. Azizi, and M. Shojafar, “Priority, Network and Energy-
aware Placement of IoT-based Application Services in Fog-Cloud Envi-
ronments”, IET Commun, vol. 14, no. 13, 2020.

[51] P. Kayal and J. Liebeherr, “Autonomic Service Placement in Fog Com-
puting”, IEEE 20th WoWMoM, USA, 2019.

[52] S. Omer, S. Azizi, M. Shojafar, and R. Tafazolli, “A priority, power and
traffic-aware virtual machine placement of IoT applications in cloud data
centers”, J. SYST ARCHITECT, vol. 115, 2021.

[53] S. S. Nabavi, S. Singh Gill, M, Xu, M, Masdari and P. Garraghan,
“TRACTOR: Traffic-aware and power-efficient virtual machine placement
in edge-cloud data centers using artificial bee colony optimization”, Int. J.
Commun. Syst., 2021.

[54] A. Ibrahim, M. Noshy, H. A. Ali and M. Badawy, ”PAPSO: A Power-
Aware VM Placement Technique Based on Particle Swarm Optimiza-

20

(a) The graph (b) A* algorithm

(c) Node-based Greedy (d) Edge-based Greedy

Fig. 12. An example of selecting subgraphs with different methods

tion,” in IEEE Access, vol. 8, pp. 81747-81764, 2020, doi: 10.1109/AC-
CESS.2020.2990828.

APPENDIX

We show the benefit of the A* algorithm for application place-
ment in ECs compared to other heuristics on a simple example.
Fig. 12(a) shows a complete weighted graph on seven nodes
with different capacities. The task is to allocate on the nodes a
load of 40 units in total, with the objective of minimizing the
total weights of edges (distance) between selected nodes. This
example models a distributed EC environment with 7 DCs in
which 40 VMs of equal size should be allocated. We consider
three methods: allocating the VMs (1) greedily based on node
capacity, (2) greedily based on edge weight, and (3) A* algorithm.

Node-based Greedy selects the nodes with largest available
capacity, Edge-based Greedy selects nodes with shortest distance
(based on edge weights) from already selected nodes. A* com-
putes a cost value 2(E) = 6(E) + ℎ(E) for each candidate E, where
6(E) is the total distance of candidate E to already selected nodes
and ℎ(E) is an estimate of total distance caused by adding the
remaining nodes to allocate all 40 VMs. Finally, A* selects the
candidate with lowest 2 value. The procedure of adding new nodes
continues until all 40 VMs allocated.

Fig. 12(b)-(d) show the results of running the three methods
on the graph of Fig. 12(a) with starting node ST. The Node-
based Greedy method leads to the lowest number of selected
nodes, as Fig. 12(c) shows. However, it selects nodes far from
each other. In contrast, Edge-based Greedy selects nodes that
are located as close as possible to each other; however, as it
does not consider node capacity, it selects more nodes of lower
capacity compared to Node-based Greedy (Fig. 12(d)). Therefore,
as this example shows, both Node-based and Edge-based Greedy
methods sometimes lead to poor results.

Unlike the two heuristics mentioned above, the A* considers
both node capacity and distance at the same time, leading to better
overall results (Fig. 12(b)). A* estimates for each candidate the
future costs of selecting it in terms of how many additional nodes
and edges will be necessary, and it selects the candidate with

minimum total of already selected edge weights and estimated
further edge weights. For example, if a low-capacity candidate
is located in the proximity of the already selected nodes but —
because of its low capacity — would lead to the selection of a
higher number of nodes in the future to accommodate all requested
VMs, it may be better to select a candidate that is farther away but
offers higher capacity.

