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Contaminated soils are widespread and contamination is known to impact several biotic
soil processes. But it is still not clear to what extent soil contamination affects soil carbon
efflux (CO2) occurring through soil microfauna respiration. Regarding the large stocks of
organic carbon (Corga) stored in soils, even limited changes in the outputs fluxes may
modify atmospheric CO2 concentration with important feedbacks on climate. In this study,
we aimed at assessing and quantifying how soil respiration is affected by contamination.
For that, we performed a quantitative review of literature focusing on 1) soil heterotrophic
respiration measurements thus excluding autotrophic respiration from plants, 2) soil
copper contamination, and 3) the influence of pedo-climatic parameters such as pH,
clay content or the type of climate. Using a dataset of 389 data analyzed with
RandomForest and linear mixed statistical models, we showed a decrease in soil CO2

emission with an increase in soil copper contamination. Specific data from ex-situ spiking
experiments could be easily differentiated from the ones originated from in-situ
contamination due to their sharper decrease in soil Corga mineralization. Interestingly,
ex-situ spikes data provided a threshold in soil Cu contents for CO2 emissions: CO2

emission increased for inputs below 265mgCu.kg−1 soil and decreased above this
concentration. Data from long-term in-situ contaminations due to anthropogenic
activities (industrialization, agriculture, . . . ) also displayed an impact on soil carbon
mineralization, much particularly for industrial contaminations (smelter, sewage sludge,
. . . ) with decreased in CO2 emissions when Cu contamination increased. Soil pH was
identified as a significant driver of the effect of Cu on CO2 emissions, as soil Cmineralization
was found to bemore sensitive to Cu contamination in acidic soils than in neutral or alkaline
soils. Conversely the clay content and the type of climate did not significantly explain the
responses in soil C mineralization. Finally, the collected data were used to propose an
empirical equation quantifying how soil respiration can be affected by a Cu contamination.
The decrease in soil CO2 emissions cannot be related, however, in a role of C sink as it
comes together with a decrease in soil microbial biomass.
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HIGHLIGHTS

* A literature review assessed soil Cu contamination and basal
respiration links.

* Soil Cu was found to decrease basal respiration specifically in
acidic soils.

* Taking into account microbial biomass specific respiration
increases with soil Cu.

* Soil respiration decreased after a 265 mgCu.kg1 threshold as
assessed in laboratory.

INTRODUCTION

Soils play a key role in different ecosystem services such as water
storage, food production or carbon sequestration. The last one is
of particular interest due to the strong interactions with all the
other ecosystems services and its direct impact on the climate
system (FAO and ITPS, 2015; Adhikari and Hartemink, 2016). In
the context of an increase in atmospheric greenhouse gas
concentrations, soil carbon management is hence of major
importance with a roughly three times larger carbon (C) pool
in soils than in atmosphere (2400 GtC vs 800 GtC (Batjes, 2014;
Friedlingstein et al., 2019)]. However, the soil C residence times
vary from years to millennia depending on land use, climate or
soil mineral composition (Sorensen, 1981; Liang and Balser, 2011;
Schmidt et al., 2011).

Carbon fluxes from soils to atmosphere are estimated from 75
(Schlesinger, 2000) to 91 Pg.C.year−1 (Hashimoto et al., 2015) and
represent the second largest carbon fluxes after photosynthesis
between terrestrial ecosystems and the atmosphere (Xu and
Shang, 2016). Soil microbial respiration would account for
around 56% of these C fluxes (Hashimoto et al., 2015) with a
magnitude depending on environmental factors such as soil
mineralogy (Wang, et al., 2003; Müller and Höper, 2004) or
pH (Rousk et al., 2009). The soil microbial respiration results
from soil organic matter (OM) decomposition and is driven by
the amount of microbial biomass and by howmuch is respired by
microbes. Microbial activities are driven by environmental factors
(temperature, soil moisture, etc.) but are also affected by
contamination (Baath, 1989). The ratio of respiration (C-CO2)
per unit of microbial carbon biomass (Cmic) is called specific
respiration or metabolic quotient (qCO2) depending of the
authors. Jones and Ananyeva (2001) identified the metabolic
quotient as an interesting indicator of stress related to organic
contaminations with higher metabolic quotients in soils
contaminated by pesticides. Metabolic quotient is thus
commonly used as a suitable indicator to investigate the
impact of environmental conditions on soil microbial
communities (Anderson and Domsch, 1993). Soil contaminant
effect on soil microbial community structure is complex and can
varies with time (Deary et al., 2018). However, soil contaminants
are expected to alter soil ecosystem services by 1) a general
decrease in microbial communities sizes, 2) a replacement by
competitor or a lack in trophic-chain (Wakelin et al., 2010) due to
differential mortality in communities, 3) an increase in
respiratory activities per unit of microbial biomass in reaction

to stress (Odum, 1995), and/or 4) an impact on the soil OM
degradation due to a decrease in soil OM availability following
associations between OM and contaminants (Dumestre et al.,
1999; Sauvé et al., 2000).

It has been estimated during the 90’s that more than 22 Gha of
soils over the globe were contaminated by organic and/or metallic
substances from numerous origins (Rodríguez-Eugenio, 2018).
These contaminations were due either to atmospheric deposition
near roadside (Kumar et al., 2016; Venuti et al., 2016), or near
industries, or to water treatment plant or landfill (Baderna et al.,
2011). Agricultural practices have also provided different soil
contaminants through the spreading of pesticides, or mineral or
organic fertilizers which have been widely used in developed
countries since the 50’s. In the attempt to estimate the effect of
soil pollution on the soil functions, microbial respiration
measurements have been mainly used in ecotoxicological
studies. Bååth (1989) claimed that microbial respiration is “the
oldest and most studied variable in connection with metal
pollution”, because it is a key process in the soil C storage
function. But the use of this indicator and the ways of
interpreting it were shown to be contrasted, depending on the
pollutant and on local conditions. Consequently no clear pattern
arose across studies on the effects of contaminants on soil
respiration, even with respiration values normalized by
microbial community size or soil OM content as suggested by
Brookes (1995).

Among metal pollutants, copper (Cu) is of major
environmental and toxicological concern (Komárek et al.,
2010) and many data can be found in the literature (Panagos
et al., 2018). Soil Cu contamination has various origins including
both industrial or agricultural activities. Mine tailing or
atmospheric deposition can increase soil Cu concentration
regarding to geochemical background as well as the
agricultural practices with the use of Cu-based fungicide or
the application of enriched Cu animal manure or sewage
sludge. As a cation, Cu is easily complexed by the negatively
charged soil OM more than other metallic cations, inducing high
Cu concentrations in the upper layers of soils where OM
concentration are higher (Rodríguez-Eugenio, 2018). Cu
contamination was shown to affect soil respiration, but some
studies provided contrasting results. For instance, without
supplement in carbohydrates (the source of energy for
microorganisms) Soler-Rovira et al. (2013) had not detected
any effect of Cu contamination on soil respiration while other
studies showed either a decrease or an increase in respiration with
an increase in Cu soil concentration (Merrington et al., 2002; Li
et al., 2005; Keiblinger et al., 2017). The type of soil appears as a
key factor modulating the effect of Cu on soil respiration due to
biotic or abiotic Cu bounds with soil constituents (Komárek et al.,
2010). Dominant mechanisms, however, are still not clearly
assessed, even when using the various technics mimicking the
bio-available pool of Cu such as soil extractions with CaCl2,
ethylenediaminetetraacetic (EDTA), or
diethylenetriaminepentaacetic acid (DTPA) solutions (Wang
et al., 2018). Other parameters like soil OM content or soil pH
have been proposed to explain some of the contrasting results
observed in the literature (Moreno et al., 2009; Fernandez-
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Calvino and Baath, 2016). Finally, if soil Cu contamination
unambiguously can have an impact on soil respiration, it is
not clear if a generic relationship can be defined or if observed
results are site-specific. Such a generic and empiric relationship,
however, could be useful to take into account soil contamination
in various modeling prospective scenario involving carbon cycle
like those of climate change.

In this context, the aim of this study was twofold: 1) to
establish a generic relationship describing soil Cu
contamination effect on soil CO2 emissions using available
literature data and 2) to identify the main drivers of CO2

emissions, following a gradient of soil Cu contamination. We
carried out a quantitative review of peer review published
available data and created a database by collecting soil
respiration data in the presence of Cu contamination
together with available pedo-climatic conditions of the
samples used for the measured data. We took into account
both papers dealing either with data involving in situ Cu
contamination or those dealing with ex situ Cu spikes under
laboratory conditions. To be environmentally relevant, we
chose to focus the present study on basal respiration, defined
as the steady state of respiration in soil which originates from
the mineralization of soil OM by microorganisms and the
associated CO2 fluxes (Pell et al., 2006). Thus, we do not to
take into account data where carbohydrates were added.
Selected papers were those which only provided data both
from soil basal respiratory activities and soil total Cu
concentrations. In order to highlight the drivers of the
changes in soil C mineralization, collected data included
total soil Cu concentration, and when they were available
the values for the microbial biomass carbon and pedological
factors as soil pH, clay, and OM contents. We also included
the origin of the soil contamination, and the climatic zone of
the soil samples as, different climatic conditions can impact
microbial communities evolution (Fierer, 2017). Data were
discussed by exploring the main factors best explaining the
Cu contamination effect on soil C mineralization.

MATERIALS AND METHODS

Bibliographic Research
To find data linking soil C emissions and soil Cu concentrations,
we ran a Wos Core Collection research using the following
equation of research:

TS � (("soil C" OR "soil organic C*" OR "soil organic matter")
NEAR/10 (minerali* OR decomposition)) OR TS � ((soil near/4
("CO2 emission" OR "CO2 release" OR "basal respiration" OR
respiration)) OR "soil respiration") AND TS � (Cu OR cupric OR
copper)

Where “TS” refers to the titles, abstracts or subjects of research
papers. NEAR was used to restrict the research to the “C
mineralization” nominal group related to soil processes. Four
and ten spacing between words were defined by successive
research looking for a maximum of results with a minimum of
noise and usable number of papers. The research was lastly
actualized in December 2019.

This provided 238 papers published between 1983 and 2019.
To focus only on soil heterotrophic basal respiration, we excluded
from this selection through careful reading the papers where litter
or lake sediment respiration were measured, or when studies
focused on substrate induced respiration. In order to focus mainly
on Cu effect, we also excluded papers from multi-contaminated
soil if the contribution of Cu contamination was identified by the
authors as minor compared to other contaminants. Finally, we
excluded soil remediation studies using mineral (lime, beringite,
and Ca) or biochar amendment because these soil inputs
introduced a bias in the soil carbon emissions and their side
effects were poorly documented.

The final selection consisted in 92 papers from both in-situ or
ex-situ (laboratory) Cu contamination. Papers with unclear
protocols regarding to the incubation lengths, or with supply
in carbohydrates or in the presence of plant (particularly in the
case of field measurements) were also discarded. Furthermore we
extracted data giving outcomes only with long term
measurements (> 7 days) to avoid the parts corresponding to
the Birch effect, i.e. the known major increase in mineralization
rate due to soil re-humidification (Birch, 1958). None of the
papers dealing with in situ field measurements satisfied our
standards (e.g., absence of plants, knowledge of total Cu
content, . . . ), so they were not kept in our final selection.
This ended to 46 papers describing incubations experiments
using either uncontaminated soils which were further copper
contaminated, or already contaminated soils. These papers
allowed us to have access to 389 data including their
associated control in order to build the database. Fourteen
from those 46 papers where published between 1990 and
2000, 24 between 2000 and 2010 and 17 between 2010 and
December 2019. Graphical values were exported with the
Engauge digitizer (v12.0) software (Engauge digitizer v12.0)
(Mitchell, 2019).

Database Construction
We gathered 389 experimental laboratory measurements. All
contained total Cu in soil (mg.kg soil−1) and the corresponding
basal heterotrophic respiration (C-CO2 kg soil−1 d−1). When
available soil Corga, soil pH, clay percentage and microbial C
biomass (Cmic gC.kg soil−1) were also reported. When soil carbon
data were originally expressed in OM we converted them in Corga
using Corga � OM/2 (Pribyl, 2010). When total carbon was
measured without mention of carbonates, we assumed that total
C � Corga. Data were expressed on a dry soil weight basis. When
original data were expressed on a fresh soil weight basis, we
converted fresh soil weight data in dry soil weight data using
water holding capacity (WHC) and soil moisture information’s
when given. In the absence of mention on the humidity state of the
samples used in the experiments, we hypothesized that data were
expressed on a dry weight basis. For 7 papers (corresponding to 33
data) where the soil Cu concentrations in the control samples were
not explicitly given, we used as a surrogate the corresponding
copper concentration given by the map of Ballabio et al. (2018) for
the position.

The database was supplemented when possible with two types
of calculated data:
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1) In order to take into account soil Corga concentration,
daily mineralization was divided by the soil Corga and was
further named soil C mineralization (expressed as fluxes
per day). When soil C respiration was reported with
cumulative measurements (e.g., amount of C released
during incubation time) we calculated a daily
respiration from the data after the equilibration period
(i.e.; after rewetting) using the two last points from curve
of cumulative C release to provide an amount of C release
per day at the end of the incubation period.

2) The Response Ratio (R.R, Eq. (1)) for each incubation
experiment involving laboratory copper contamination,
defined as the ratio of C mineralization in contaminated
conditions on C mineralization for the control:

R. R � Mineralisation in contaminated condition
Mineralisation without supplementary contamination

(1)

Finally, the database was also supplemented with two other
extractable data: 1) the climatic origin of the soil samples and 2)
the origin of the Cu contamination. This latter being linked to the
form under which it is present (organic or mineral, in solution or
included in a solid phase for example). For each data we gathered
the climatic origin of the soil samples using the Koeppen
classification system (Rudolf Geiger, 1954) with ten
subdivisions corresponding to the main geographic repartition
of climate in the world. Thereafter two letters were used in
accordance with the Koeppen classification system: the first
letters refer to the main type of climate (A � Tropical,
B � Dry, C � Temperate, D � continental), and the second
letters will refer to the rainfall pattern (f � humid all year long,
m � monsoon, s � dry summer, w � dry winter).

To fill in the database with the origin of the Cu contamination
and in order to take into account the magnitude of the Cu
contamination together with the exposition time in the effect
on soil C mineralization, we collected explicit information
regarding the site where the soils were sampled. We have thus
divided the contamination information into four main categories:
1) the “non contaminated” sites (thereafter named Nc) used as
“non-polluted” controls in the laboratory experiments, or often
sampled in situ under grassland or forest, 2) the agricultural sites
(thereafter named Agr) with moderate but chronic
contamination, 3) the industrial sites (thereafter named Ind)
with high mostly multi-contaminated soils during the last
100 years from industrial effluents or atmospheric dust
deposition; and 4) a category we called “Other sites”
(thereafter named Oth) in which the Cu contamination was
from various or from undefined origin (city park, roadside . . .).
In addition to this information on contamination, a suffix was
added to distinguish the various ex-situ experiments: 1) the
addition of a non-contaminated OM like straw or grass to a
soil sample (thereafter called + OM), 2) the addition of an
already Cu contaminated OM like pig slurry or sewage sludge to
a soil sample (thereafter called + OMc), 3) the addition of Cu
spikes under mineral forms to soils (thereafter called + S), or 4)

the addition of both OM and Cu spikes to soils (thereafter called
OM + S).

All these subdivisions introduced in the database were made to
provide clusters in order to interpret the whole set of data and
assess the genericity of the soil C mineralization answers to soil
Cu contamination.

Statistical Analysis
Statistics were used here to overcome two main difficulties in
dealing with our bibliographic data: 1) the missing data across
papers and in particular pedological data, and 2) the fact that
because some studies performed several treatments, data
extracted from a same paper were less independent from each
other than data from different papers. Thus, two successive and
complementary statistical approaches were conducted, one
descriptive and the other predictive.

To explain daily soil Corga mineralization we first analyzed
the data with the maximum number of parameters including the
pedo-climatic ones (thus with the smallest number of data) using
the descriptive statistics PCA (R packages FactoMineR and
factoextra) and Random Forest (R package randomforest) to
determine which parameters have to be firstly considered. This
prevents us to deal with parameters which restrict the number of
data to be analyzed simultaneously (due to a lack of this
information in some papers). This also prevents us to deal
with co-correlation. Random Forest results were exploited
through the partial modelled plots and the % of Mean
Standard Error (MSE) Increase. This percentage represents the
increase in MSE predictions of a randomly chosen variable being
permuted among all the variables.

The following step consisted in using the stepwise regression
on linear mixed effects models (lme, stepAIC, MASS package,
with bidirectional selection) as predictive statistics. This method
takes a given number of variables as fixed effect and selects the
better ones as predictors to explain a response variable by
minimizing the model AIC. It was used on the sub-dataset
defined thanks to the use of Random Forest and PCA. A final
model was then gradually built by adding or deleting variables
which were or were not linearly related to the response variable.
The model was selected thanks to the AIC criterion. The final
selected model had to provide the maximum likelihood for the
minimum number of response variables. It could happen that one
variable is selected in the final model even if its p-value does not
appear as particularly relevant: this is because the final model
would have been particularly degraded without this variable.

The three following variables: 1) soil C mineralization, 2)
respiration per microbial C biomass also named metabolic
quotient thereafter called qCO2 and 3) response ratio (R.R.)
were tested as response variables whereas soil Cu content, pH,
% of clay or microbial C biomass (Cmic) were fixed quantitative
effect. Interactions between response variable were also tested,
but were limited to Cu and pH interaction due to the lack of data
for the other response variables. The rainfall pattern
(corresponding to the 2nd letter of the Koeppen classification),
the ex-situ additions of contamination (under the form of added
organic or mineral Cu contents) and the nature of the in-situ
contamination (agricultural, industrial or “other” as well as
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non-contaminated) were tested as fixed qualitative variables.
Data originating from a same paper -thus a same set of experiment-
were less independent from each other than data from different
articles. To tackle this problem, we used those articles from which
the data came from as a random effect in linear mixed model. In our
case the complementary use of descriptive and predictive statistics was
used to confirm the robustness of the results. All analyses were
performed using R v3.5.1 and log transformed data to satisfy normal
distributions hypothesis tested using Kurtosis and skewness tests.

RESULTS

Collected Data and Structure of the
Database
The complete database can be found in the attached data.

Themain characteristics of the database are given Table 1with
the descriptors used in this study. Compared to the number of
data we gathered for soil total Cu and pH (389), Corga (385), or
mineralization of Corga (382), the data much missing were the
microbial biomass Cmic (128 data). The number of data we could
account for the response ratio was also limited (173 data) because
R.R was calculated only with the set of papers dealing with added
Cu contamination during laboratory experiments (spikes or
contaminated organic matter). The percentage of clay was also
a data not frequently specified (206 data). Furthermore, papers
reported either Cmic or clay values but both were very seldom
reported (43 data, 9 papers) which prevents us from analyzing
collectively these two predictors. The range of values covered by
the data was large (Table 1) which allows working with wide
gradients. In particular, the Cu gradient covers a large range of
soil Cu contents from non-contaminated to highly contaminated
soils, with a total soil Cu concentration of 586 ± 65.6 mg.kg soil−1

(mean and SE) due to the various sources of Cu. The number of
data in each categories of type of climate is given in
Supplementary Table S1. Data covered a wide range of
ecosystems but not equally distributed (Supplementary Figure
S1): main data come from European countries and temperate
climate, either with or without dry seasons, while the least well
represented is the dry climate.

In the dataset, spiked samples to introduce Cu contamination
represent almost half of the data (Supplementary Table S2) and

the highest values of added Cu concentrations pull up the
average. When excluding laboratory contaminated
experiments, most of the reported soil Cu concentrations
ranged around 140 ± 19 mg.kg soil−1 as mean and SE
respectively calculated for all the sites classified Agr, Nc, Oth
or Ind in Supplementary Table S2. This value largely
overwhelmed the mean Cu concentration measured in
Europe (16.85 mg.kg−1) as reported by the European Soil
Data Centre (ESDAC in Ballabio et al., 2018). But comparing
with the measured concentration in vineyard soils (mean at
49.26 mg.kg−1) and considering that more than 14% of vineyard
samples have values higher than 100 mg.kg soil−1), the mean
140 mg.kg soil−1 describing our database is in the upper Cu
range of European soils. The database also reported few high
spots of soil Cu contents in the so-called ‘industrial
contamination’ group of data but the mean Cu concentration
was around 190 mg.kg soil−1 (with a median at 95 mg.kg soil−1).

The discrepancy in the number of data per category had
ambivalent impacts on our dataset. In one hand it confers
some large sub-groups (for instance the “spiked” or the soils
under agriculture) to carry out the analysis, but on the other hand
the analysis of cross subgroups were not possible. For instance,
industrial soils further contaminated by contaminated OM just
provided 4 data. It was also not possible to cross rainfall pattern
with the origin of the contamination (see Supplementary Tables
S1,S2).

Selection of the Predictive Variables
A first selection of the predictive variables (also called thereafter
predictors) was made by Random Forest on all the variables
(numerical variables: Cu, clay, pH, microbial C biomass, and
soil C mineralization but also categorical variables: main
climate, rainfall pattern, soil use type and type of
contamination).

A small number of papers (9) presented both values for clay
percentage and Cmic, thus the analyzed data associated was 43.
Random Forest explained 78.9% of the soil C mineralization
variance. Random Forest emphasizes an effect of seasonal rainfall
pattern (Figure 1A) which account for 19.7% of increase in MSE
per standard deviation. pH, microbial biomass carbon and clay
represent a second pool of variable of interest as these variables
account respectively for 13.7,12.7 and 12.2% of increase in MSE

TABLE 1 | Number of collected data after the final selection of the 46 papers and their corresponding ranges of values given as minimal (Min), medium (Med), maximal (Max),
1st and 3rd quadrant (Qua) and mean (Mean) values. Corga is the soil organic carbon content, R.R is the Response Ratio calculated according to Eq. (1), Cmic is the
microbial C biomass.

Min 1st Qua Med Mean 3rd Qua Max Number of data

Cu soil (mg.kg−1) 1.0 32.4 122 586.3 500 8052 389
Corga. (g.kg soil−1) 0.6 17.2 30.1 66.12 58.6 480 385
pH 2.5 5.3 5.9 6.1 7.2 9.2 389
Clay (%) 2 12 18.3 18.4 23.0 60 206
Incubation length (day) 7 28 31 87 84 630 356
Mineralization eq.(mgC.kg soil−1.day−1) 0.01 1.26 5.2 16.0 22.5 149.11 386
R.R 0.09 0.64 0.95 1.39 1.24 13.92 194
Mineralization/Corga (mgC.gCorga−1 day) 0.0001 0.05 0.13 0.82 0.54 27 382
Cu/Corga. (mg.g−1) 0.003 0.79 3.71 31.3 16.6 2234 385
Cmic (gC.kg soil−1) 0.01 0.17 0.31 0.67 0.88 6.2 128
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per standard deviation (Figure 1A). Finally, Random Forest
attributes a moderate part of the variation of the soil C
mineralization to soil Cu contamination (4.3% of increase in
MSE per standard deviation, Figure 1A).

Sensus stricto PCA analyses cannot use categorical variables to
define axis. Thus, the PCA was run on the same numerical
variables than Random Forest (Cmic, pH, clay, Cu,
mineralization per Corga). The component space (build on the
numerical variables) was represented and then the data were
added with respect to their categorical variables (climate, type or
in or type of ex situ contamination). Their category was illustrated
in color (Figure 1B) but they were not use to build the axes. The
PCA explained 60.5% on the two first axes of the data set variance
(Figure 1B), all variables being well reproduced (cos2>0.2)
through these 2 dimensions. The 5 variables account
significantly in the data set description with a highest
contribution in the PCA construction of pH and Cmic
(respectively 27 and 23%) and a smallest contribution for soil
Cu (7%). Based on the PCA representation we could expect a
positive correlation between Cu and Cmic and a negative one
between Cu and soil C mineralization.

Compared to the Random Forest analysis, the exclusion of
categorical variables in the PCA only slightly decreased the
explanation of variances. The representation of data’s rainfall
pattern is shown in Figure 1B. The PCA analysis doesn’t show
significant differences between the different rainfall patterns,
which also have a small number of soils sampled and large
variation, particularly for the “w” soils. The other categorical

variables (main climate, rainfall pattern, types of in situ and
type of ex situ contamination) where not displayed by the PCA
(Figure 1B for the rainfall pattern, other data not shown).
Random Forest partial model plot (not shown) also showed
that the rainfall pattern had weak interaction with the pH or
with the nature of in situ contamination and no interaction
with the other covariables. From our database, the rainfall
pattern is thus suggested to impact the microbial biomass
amount but the relationships with the effect of soil Cu and C
mineralization were less clear and will have to be clarified
using lme.

Global Soil Copper Contamination Effect on
Soil C Mineralization and Influence of
Specific Descriptors
In order to assess the specific impacts of the several descriptors,
the first results with Random Forest and PCA have guided the
further analyses on Cu effect on soil C mineralization using linear
mixed effect models. Successive analyses were made on five types
of dataset: 1) on the maximum dataset thus including only the co-
variables always recorded (soil C mineralization and Cu contents)
to clarify the effect of soil Cu on soil C mineralization; 2) on a
dataset including in addition pH, rainfall pattern and clay
percentage, as these co-variables were shown to be of main
importance by our previous analysis (but not Cmic); 3) on a
dataset replacing rainfall pattern and clay by Cmic then using the
analyses of metabolic quotient qCO2 as response variable; 4) on a

FIGURE 1 | Analytical statistic description of the 43 data with all recorded variables set by two statistical approaches (A) Random Forest analysis with the % of
increase in mean standard deviation (%IncMSE) due to each variable for soil C mineralization per soil organic carbon (B) PCA with the 2 first dimensions contributing to
60.5% of variance in the data set. Quality of representation through PCA construction of quantitative variables (axes component) are represented through the color of the
arrow (cos2). Rainfall pattern is illustrated with the color of the data point, ellipse are the 95% confidence interval of groups representation in the PCA space
estimation. Cmic is expressed in g per kg of soil, clay in percentage of soil, soil Cu in mg of Cu per kg of soil and C mineralization in mg of C-CO2 per g of soil Corga.
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dataset restricted to response ratio measurements thus
corresponding only to copper contamination supplied in
laboratory; 5) on a dataset restricted to natural, in situ
contamination in order to point out the influence of the origin
of the contamination.

Modulation of Soil Organic C Mineralization by Soil Cu
Content
We checked the influence of soil Cu per se with a lme analysis
using the 382 data concerning soil C mineralization (as the
response variable), Cu contents (as the fixed effect) and the
papers as random effects as described in material and
methods. Figure 2 shows the results confirming a non-
negligible effect of soil Cu content on soil C mineralization as
soil C mineralization decreases when soil copper content
increases. The relationship was defined as:

log(mineralisation
soil C orga

) � −1.04 − 0.09 log(Cu),
R2 � 0 .92 , p − value < 0.001 (2)

Influence of Clay, Rainfall Pattern, and pH
Once clay, pH and rainfall pattern were included in the linear
model selection, the selected model after stepwise regression
(R2 � 0.92, 206 data) excluded clay but included pH and Cu
as explaining variables as well than their interactions. However,
p-values weren’t below acceptance rate (Cu p-value � 0.08; pH
p-value � 0.70 and pH-Cu interactions p-value � 0.1,

Supplementary Table S3). Rainfall pattern did not
significantly affect soil C mineralization.

Investigations were then pursued without clay values and
focusing on pH taking into account that pH is expected to be a
determining factor based on PCA and Random Forest analysis
(Figure 1). pH was a parameter always recorded in our
database, thus, a largest number of soil C mineralization
data could be analyzed (382). The selected model shows
that an increase in soil Cu significantly decreases the soil C
mineralization (p-value <0.005) and that the soil pH increase
was related to an increase in soil C mineralization
(p-value<2e−16). The interaction between pH and Cu
weren’t selected in the final model. The analysis also
showed an effect of the rainfall pattern: the soil C
mineralization was significantly higher in the case of the
“w” soils than in the case of the “f” ones. The adjusted
effects of soil C mineralization with rainfall pattern are
presented in Table 2, and the global equation of soil C
mineralization is:

log(C mineralization
soil C orga

) � −2.3 + 0.2 pH − 0.08 log(Cu), all
p − value < 0.005, general R2 � 0.92.

(3)

The small size effective of the different rainfall pattern doesn’t
allow to assess if the Cu effect (understood as Cu slope) was
significantly different between rainfall patterns.

FIGURE 2 | Daily Soil C mineralization per g organic C per day as a function of soil Cu concentration. Soil pH is colored scale and rainfall pattern represented with
point shape. The full black line models copper effect on daily mineralization for all data considering median pH (5.9), R2 � 0.90. The black dash line models copper effect
on daily mineralization for data with pH < 5.3. The purple line models copper effect on daily mineralization for data with pHЄ[5.3,7]. The shaded area are 95% confidence
interval for all data in black and data with pH Є05.3,7] in purple. Rainfall patterns are the following: f � humid all year long, m �monsoon, s � dry summer, w � dry
winter.
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Specific Influence of pH
Taking into account specifically the pH values allows us to work
with a larger number of data analyzed. A first analysis showed
that the interaction between soil pH and soil Cu concentration
weren’t selected by the step wise (see Influence of Clay, Rainfall
Pattern, and pH). To disentangle the effect of soil Cu across pH
from a potential threshold effect on the soil C mineralization, we
completed this first result with a splitting of the database in 3
subgroups defined on the basis of a decisional tree
(Supplementary Figure S2): 1) 102 data with data pH ≤ 5.3,
2) 159 data with 7 > pH > 5.3, 3) 121 data with pH ≥ 7.

For the acidic soils (pH ≤ 5.3) the lme analysis showed a
significant effect of pH but not of Cu on soil C mineralization. Cu
was however maintained in the final model through the selection
procedure even if the p-value wasn’t significant (p-v � 0.15) as
explained in the material and method section (Table 2; Figure 2).
For the soils with pH in the range]5.3; 7[soil C mineralization is
expected to decrease with increase in soil Cu but no effect of pH
was found (Table 2; Figure 2). For the soils with alkaline pH
values soil C mineralization was not correlated neither to pH nor
Cu (Table 2). In the two first cases the soils samples under “w”
(dry winter) rainfall pattern were found to have soil C
mineralization highest than the soils samples under the other
rainfall patterns whereas the rainfall pattern was not supposed to
modulate the soil C mineralization in the last case.

Finally, no clear interactions between Cu and pH were found,
but we found different Cu effects on soil C mineralization
depending on the ranges of pH values. The selection of Cu

through stepwise for pH < 7 tends to show that soil Cu
mostly affects soil C mineralization in acidic soil pH
conditions, but the limited associated p-v for pH lower than
5.3 doesn’t allow us to draw general conclusion.

Cu Contamination and Microbial Parameters Effects
on Soil Organic Carbon Mineralization: Use of the
Metabolic Quotient qCO2

Based on the descriptive statistics, microbial C biomass was also
an important variable to explain C mineralization variability.
However, only few C-CO2 emission data were found associated
with both clay and Cmic values while both variables were
pointed out by descriptive analyses. We thus considered
microbial carbon biomass rather than clay percentage in the
explanatory variables (128 values), and did not find any
significant Cu effect on soil C mineralization variability,
which was found to only depend on Cmic and pH (general
R2 � 0.90, Supplementary Table S4).

Based on the dependency of soil Cmineralization on Cmic and
because it has been shown that relative variables were most
informative than absolute (Brookes, 1995) we modified our
lme equation in order to use the metabolic quotient eg., daily
mineralization per microbial carbon biomass (Figure 3) to use it
as response variable in the lme. The final selected model shows
that qCO2 increases with pH and Cu without evident interaction
between the two variables. Neither rainfall pattern nor soil Corga
were selected and the relationship obtained was:

log(qCO2) � 1.5 + 0.2 × pH × log(Cu), general R2 � 0.94 (4)

TABLE 2 | (A) Slope and intercept ± SE between log (mineralization/ Corga) and variables selected through stepwise analyses with the linear mixed model for different
dataset (all data, data with pH ≤ 5.3, data with 7 > pH > 5.3 and data with pH ≥ 7) as well as the metrics associated to each model. (B) Shift of the intercept for log
(mineralization/organic C) between the different groups of qualitative variable (rainfall pattern) (s � dry summer, w � dry winter) and the reference one (f � humid all year long)
Bold values are estimated coefficient through step wise regression.

(A)

Log (mineralization /
Corga)

Intercept
(±s.e)

pH (±s.e.) log (Cu tot)
(±s.e.)

AIC BIC logLIK R2

(all data, n � 382) −2.68** (± 0.51) +0.19*** (± 0.04) −0.07** (± 0.02) 922 954 −453 0.92
(pH ≤ 5.3, n � 102) −2.61** (± 0.77) 0.24 (± 0.1) −0.06NS (± 0.04) 229 247 −107 0.96
(7 > pH > 5.3, n � 159) −1.85** (± 0.47) Not selected by the stepwise

regression
−0.11** (± 0.04) 406 425 −197 0.90

(pH ≥ 7, n � 121) −1.13** (± 0.45) Not selected by the stepwise
regression

Not selected by the stepwise
regression

323 331 −158 0.89

(B)

Log (mineralization / Corga) Rainfall pattern Intercept (±s.e.)

(all data, n � 382) s 0 .57NS(± 0.69)
m 3.41NS (± 2.2)
w 1.4*** (± 0.36)

(pH ≤ 5.3, n � 102) s 0 .61NS (± 1.22)
m Not selected by the stepwise regression
w 1.69*** (± 0.38)

(7 > pH > 5.3, n � 159) s 0 .24NS (± 1.22)
m Not selected by the stepwise regression
w 1.3* (± 0.51)

(pH ≥ 7, n � 121) s Not selected by the stepwise regression
m Not selected by the stepwise regression
w Not selected by the stepwise regression

p-values of each estimate are symbolized by NS for p-value > 0.1, by ° for p-value < 0.1, by * for p-value < 0.05; by ** for p-value < 0.01 and by *** for p-value < 0.001.
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From Eq. 2 we showed that soil C mineralization decreases
with an increase in soil Cu concentration, and we also showed
that soil CO2 emission increases with soil C microbial biomass
(lme result, Supplementary Table S4). The effect of soil Cu on
metabolic quotient was hence refined with the use of Cmic as
response variable and Corga, soil Cu, pH and rainfall pattern
as fixed explanatory variable. The model selection shows
that microbial C biomass increases with soil Corga, but
decreases when soil Cu content increases (p-value.
respectively 0.02 and 0.008, general R2 � 0.84 see
Supplementary Table S5). Rainfall pattern wasn’t
selected by this step AIC selection.

Influence of Cu Contamination Supplied Ex-Situ using
the Analysis of Response Ratio
Several data from our dataset concerned experiments introducing
Cu contamination into soil microcosms in the form of Cu in
solution (spikes), sometimes with OM (grass residues . . . ) or
in the form of Cu contaminated OM (Supplementary Table
S2). These experiments represent an artificial, non-repetitive
and short-term contamination. Consequently, the microbial
community has no time to develop evolutional response and
must adapt thanks to phenological plasticity in contrary to
more chronic, long-term diffuse contaminations where
microbes can evolve to adapt. It was thus interesting to
analyze these data per se, and in particular the R.R
calculated as the variation of a given soil sample to a
sudden increase in Cu content compared to a control (Eq.
(1)). To include a maximum number of data in the response
ratio analyses we didn’t take soil clay percentage into
account. Soil pH and soil Corga were however kept in the

analysis because they were well reported thus didn’t limit the
number of data (176) to be analyzed.

Results show that R.R decreases when soil copper content
increases (Table 3A) but increases when pH increases following
Eq. (5):

log(R.R) � − 0.1 ( ± 0.4) + 0.12 ( ± 0.04)pH
− 0.10 ( ± 0.04)log(Cu), general

R2 � 0.74 (5)

Interestingly, Figure 4 shows that response ratio is higher
than 1 (log (R.R) > 0) for low soil Cu concentrations, meaning
that the soil C mineralization is highest in contaminated soils
than in the control ones. For all the OM + S and OMc
contaminated samples, mean R.R was higher than 1. In
these cases it is important to note that R.R, for the OM + S
data, were calculated with the OM contamination as a control,
thus largest soil C mineralization fluxes could not be attributed
to organic matter supply. Figure 4 also shows that R.R lower
than 1 (log(R.R) < 0) is expected for a soil Cu concentration
exceeding a threshold value. From our dataset the soil Cu
threshold was found controlled by the pH following the
Eq. (6):

Cuthreshold � e−0.076/0.109+0.115/0.109pH (6)

As an example, a threshold value of 265 mg Cu. kg soil−1

can be calculated taking into account the mean reported pH
5.95 value in artificially contaminated samples. In those
conditions, such a threshold value means that 1) for Cu
inputs below 265 mg Cu. kg soil−1 the soil C
mineralization fluxes will increase, 2) the soil C
mineralization in contaminated soil is lower than in the

FIGURE 3 | Variation of the metabolic quotient (qCO2) in mg C-CO2 respired per g of C of soil microbes as a function of soil copper concentration and pH
represented through the color of points. The black full line models soil Cu effect on qCO2 with median pH value (5.7), R2 � 0.94.
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control for soil Cu higher than 265 mg.kg soil−1, and 3) the
highest the Cu inputs the lowest the R.R.

The type of added contamination (spikes only or in the
presence of OM) could affect the soil response due to different
Cu speciation as inputs. It would have been useful to include the

interaction between the type of inputs and Cu in the R.R analysis
through lme. However, due to the effective size we could only
include the type of inputs but not their interactions with Cu.
Nevertheless, results given in Table 3 show that the type of inputs
affected the range of R.R values. Indeed, different intercepts were

TABLE 3 | (A) Slope and intercept (±SE) between log(R.R) and variables selected through stepwise analysis with the linear mixed model for different dataset (all
contamination, spikes and contamination due to organic matter additions). (B) Shift of the intercept for log(R.R) between the different groups of qualitative variable
(different type of laboratory contamination, S � Spike, OMc � contaminated organic matter) and the reference one (Spike + Organic matter contamination) only calculated for
the full dataset. Bold values are estimated coefficient through step wise regression.

(A)

Log (R.R) Intercept
(±s.e.)

pH (±s.e.) log (Cu
tot),
(±s.e.)

log (Cu
tot)*pH,
(±s.e.)

Log (Corga) AIC BIC logLIK R2

(all contamination,
n � 173)

1.8° (± 0.9) 0.12NS (± 0.15) −0.30*
(± 0.12)

0.03° (± 0.02) Not selected by the
stepwise regression

278 303 −131 0.81

(S, n � 123) 0.24NS

(± 0.79)
−0.1NS (± 0.12) −0.29**

(± 0.10)
0.04* (± 0.02) 0.04* (± 0.02) 133 153 −59.8 0.73

(OM + S, n � 18) 5.32**

(± 0.87)
Not selected by the
stepwise regression

−0.23*
(± 0.09)

Not selected by the
stepwise regression

−1.32*** (± 0.16) 30 35 −11 0.97

(OMc, n � 32) 5.9NS

(± 4.30)
−1.00NS (± 0.70) −1.08NS

(± 0.14)
0.21NS (± 0.84) Not selected by the

stepwise regression
65 75 −26.9 0.94

(B)

Type of contamination Intercept (±s.e.)

Log (R.R), (all contamination, n � 382) S −0.74*** (± 0.15)
OMc 0.2NS (± 0.38)

p-values symbols are explained in the legend of Table 2.

FIGURE 4 | Variation in soil C mineralization due to artificial contamination. pH and nature of artificial contamination are represented through color and shape. Black
red line models soil Cu effect on log (Response Ratio) for all supplementary contamination with median pH value (5.9), black full line for Spike contamination with median
pH and Corga (5.7 and 29.4 g. kgsoil−1) value and black dashed line for organic matter + spike data with median Corga value (27 g.kg soil−1). Mean Response Ratio are
calculated according to Eq. (1) and soil respiration in contaminated condition is equal to control respiration for log(Response Ratio) � 0 which is the grey
dashed line.
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defined but the influence of the type of contamination on the Cu
effect on C mineralization was less clear.

In order to improve the quantification of the effect of different
kinds of added contamination (pure spike contamination, spike
with non-contaminated OM and OM associated contamination)
we analyzed separately the different subgroups. Results show that
copper contamination effect was different depending of the
contamination cases (Tables 3A,B) so that:

1) For pure spikes contaminations (123 data) and spikes with
non-contaminated OM (16 data) we observed a decrease
in R.R when Cu concentration increased (p-value � 0.005,
general R2 � 0.89 and p-value � 0.01, general R2 � 0.80
respectively). Nevertheless, co-factors were found
different between these two cases. In the cases of
spikes, R.R is expected to increase with an increase in
pH and in Corga. In the cases of spikes with non-
contaminated OM, R.R is expected to decrease with an
increase in Corga (see Tables 3A,B and Figure 4)

2) For contamination associated with OM (32 data), the
effect of soil Cu on R.R was not significant even though Cu
was kept in the model selection but with a p-value > 0.1.
No effect of pH nor of Corga were found.

Thus, a strong influence on the nature of the Cu
contamination supplied ex-situ was assess using R.R and the
dataset restricted to laboratory conditions.

Effect of the Origin of Cu Contamination on Soil C
Mineralization: Case of In Situ Copper Contamination
To investigate specifically data of in situ Cu contaminated soils
without laboratory added Cu contamination (eg., when limiting

the data set to the « non added contamination »), the soil clay
content data were not included because the number of data from
industrial or “other” soils would have been too small. Our
analyses were then restricted to Cu and pH effects on soil C
mineralization without investigation of other parameters. On
their whole the 189 data thus obtained and analyzed by lme
showed a slight tendency of a soil C mineralization to decrease
with an increase in soil Cu (p-value � 0.08) and an increase with
an increase in soil pH (p-value � 0.08) (Supplementary
Table S6A).

Focusing on the 105 data with pH < 6.2 (taking the mean value
of the 105 data as threshold) we found a significant and negative
effect of soil Cu (p-value � 0.02) on soil C mineralization
(Table 4A) as well as an effect of soil contamination type.
Aggregating all the in situ contamination type the soil Cu
contamination effect on soil C mineralization was modelled as
Eq. (7):

log(Cmineralization
soil C orga

) � −0.8 ( ± 1.15) − 0.1 ( ± 0.2) × pH

− 0.40( ± 0.21) × logCu

+ 0.06 ( ± 0.04) × pH × log(Cu)
(7)

The p-values were 0.6; 0.06; and 0.1 for pH, Cu and their
interactions respectively, with a R2 � 0.97.

We did not find any effect of soil Cu on the soil C
mineralization when agricultural type of contamination was
involved (29 data, Table 4A). The same was found when the
non-contaminated samples at the background Cu level were
involved (46 data, Table 4A) but we did find an effect of soil Cu

TABLE 4 | (A) Slope and intercept (±SE) between log(mineralization/organic C) and variables selected through step wise analyze for the linear mixed model for different
dataset (all nature of the in situ contamination with pH ≤ 6.2, agricultural soils with pH ≤ 6.2, industrial soils with pH ≤ 6.2, non-contaminated soils with pH ≤ 6.2). (B) Shift
of the intercept for log(mineralization/organic C) between the different groups of qualitative variable (different types of in situ contamination with pH ≤ 6.2, industrial soils with
pH ≤ 6.2, non-contaminated soils with pH ≤ 6.2) and the reference one (agricultural soils) only calculated for the full dataset. Bold values are estimated coefficient through step
wise regression.

(A)

Log (mineralization /C orga) Intercept
(±s.e.)

pH (±s.e.) log (Cu tot)
(±s.e.)

log (Cu
tot)*pH,
(±s.e.)

AIC BIC logLIK R2

(all nature of the in situ contamination,
with pH ≤ 6.2 n � 105)

−0.12NS
(± 1.20)

−0.16NS
(± 0.20)

−0.5* (± 0.21) 0.07° (± 0.04) 219 243 −101 0.98

(agricultural soils, with pH ≤ 6.2 n � 29) −3.5NS (± 0.9) +0.34NS

(± 0.11)
Not selected by the
stepwise regression

Not selected by the
stepwise regression

64 79 −28 0.97

(industrial soils, with pH ≤ 6.2 n � 26) −2.5° (± 1.7) 0.48° (± 0.24) −0.27** (± 0.08) Not selected by the
stepwise regression

58 65 −24.6 0.99

(non contaminated soils, with pH ≤
6.2 n � 46)

−3.7° (± 2.2) 0.34NS

(± 0.41)
1.22NS (± 0.08) −0.23 (± 0.15) 121 132 −54 0.98

(B)

Type of contamination Intercept (±s.e.)

Log (mineralization /C orga)
(all nature of the in situ contamination, n � 109)

Ind −0.43° (± 0.26)
Nc −0.41* (± 0.19)
Oth 0.57NS (± 0.41)

p-values symbols are explained in the legend of Table 2.
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on soil C mineralization for the industrially contaminated soil
types (26 data, Table 4A). The “other” sources of
contamination were not examined separately because of the
small number of data (n � 4). Hence, even for a diffuse and
chronic in situ Cu contamination, the increase in soil Cu
concentration can be related to a decrease in soil C
mineralization. As previously we noticed a more pronounced
effect of soil Cu on soil C mineralization in the acid soils.
However, the differences in soil pH or soil Cu concentration
could not explain the different relationships for the acid
agricultural or industrial sites. In fact for Agr soils 1st and
3rd quartile of pH are 4.7 and 5.9 against 4.6 and 5.7 for Ind soils
whereas mean and max Cu concentration are 148 and
992 mg.kg soil−1 for Agr soils and 109 and 898 mg.kg soil−1

for Ind soils. The multicontamination occurring in the
industrial sites could artificially increase the effect of soil Cu
on soil C mineralization in these sites, but we also observed a
decreasing tendency in the whole naturally contaminated data
set, which comfort us in the hypothesis of an observable in situ
soil Cu effect.

DISCUSSION

From General to Specific Relationship of
Soil Copper Content Effect on Soil CO2

Emissions
Our general bibliographic approach allowed us to construct a
large database with soil Cu concentrations associated to soil C
mineralization for a large panel of ecosystems and
contamination cases and with a broad range of soil
pedological characteristics. Most of the in situ soil Cu
content values (1st and 3rd quartile are respectively 16 and
133.4 mg.kg soil−1) used in these studies are in the range of
European values from ESDAC Database [Supplementary
Table S2 and (Ballabio et al., 2018)]. Moreover, for some
cases (industrial fields) the Cu values were higher than data
reported by ESDAC (1st and 3rd quartile respectively 44.6 and
216.3 mg.kg soil−1 but max at 1251 mg.kg soil−1). This might be
due to the spatial heterogeneity of the Cu distribution at smaller
scale (Chopin and Alloway, 2007) not reflected by the European
database ESDAC despite their large (22,000) number of
samples (Ballabio et al., 2018). Hence our industrial
contamination database provides 8 data in the range of the
highest spike contamination Cu concentration we also
recorded. The high concentrations reached with spikes
overwhelmed by several orders of magnitude most of the in-
situ reported Cu concentrations. But they can still be
considered as environmentally relevant because industrial
sites, or amended agricultural soils like vineyard soils, are
known to exhibit such concentrations (Aoyama and
Nagumo, 1997; Zimakowska-Gnoińska et al., 2000; Usman,
et al., 2005).

The complementarity uses of PCA and Random Forest
allowed us to establish important cluster of analysis while
analysis with lme limited the statistical bias in the small size

factor classes. Using our quantitative analysis approach, we were
able to define a generic relationship between soil C mineralization
and soil Cu contamination and thus confirm an effective impact
of Cu contamination on soil C mineralization. Several authors
reported different effects of Cu on microbial characteristics and
functions in soils (biomass, C mineralization, . . . ) depending of
local soil properties, soil type (Doelman and Haanstra, 1984;
Broos et al., 2007; Li et al., 2016), OM content, clay types (Li et al.,
2015), pH (Fernández-Calviño and Bååth, 2016) or specific
environmental conditions (freezing exposure (Salminen et al.,
2002). Hence, from our global dataset, we confirmed the
possibility of obtaining a general log linear relationship
between soil C mineralization and soil Cu content, that shows
a decrease in soil C mineralization when soil Cu content increase
(Eq. (2)). Furthermore, we identified specific cases based on
general soil properties such as pH but not clay. Even if Eq. (2)
Eq. (3) relying soil C mineralization to soil Cu contents were
different, it is notable that their slopes were rather identical (near
−0.08, cf Eqs. (2) and Eqs. (3)). Thus, effect of soil Cu
contamination on soil C mineralization was similar whatever
the co-factor.

Soil contamination history, which was here roughly
assimilated to the in situ contamination and soil use type,
has also been identified as a non-negligible co-factor in Cu
effect on soil C mineralization. The relationship between soil C
mineralization and Cu contamination was also refined for the
industrial sites or acidic soils. To better understand the impact of
soil contamination on soil CO2 emissions, we looked at three
response variables: qCO2, R.R and soil C mineralization. The
equations thus obtained can be further used in other works
depending on the desired expression of soil C mineralization or
CO2 emission of interest and the available datamostly as soil pH and
Corga.

How Environmental Factors Influence the
Effect of Soil Cu Contamination on Soil C
Mineralization?
We have shown that the global decrease in soil respiration with
the increase in soil Cu contents could be refined considering the
soil pH or the origin of contamination (Table 2). Our results
showed that this decrease was i) particularly marked for acidic
soils and ii) somehow influenced by OM.

The highest sensitivity of soil C mineralization to Cu
contamination in the case of acidic soil compared to neutral
or alkaline soil conditions is consistent with the fact that
cationic Cu species are known to readily associate with OM,
hence be less bioavailable for microbial communities. This was
shown for moderate Cu concentrations but not for too high
concentrations (Fließbach et al., 1994). In acidic soils, H+ and
Cu2+ can compete to link with the functional reactive groups of
OM so that for a same amount of soil Cu and soil OM, more Cu
can be bioavailable in acidic soil (Khan and Scullion, 2000;
Sauvé et al., 2000; Li et al., 2015). Furthermore, soil Cu
concentration has been found positively correlated with soil
pH (Panagos et al., 2018). Thus, the highest sensitivity of soil C
mineralization in acidic soils found in laboratory conditions can
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be counter-balanced by the fact that in situ these soils are
generally found to be less contaminated. As a result, the
global effect of soil Cu contamination on soil C
mineralization could be limited.

Numerous studies emphasize the potentiality of OM
bindings to limit Cu bioavailability (Degryse et al., 2009;
Amery et al., 2010; Groenenberg et al., 2010; Ren et al.,
2015) particularly in the case of organic fertilizer
amendments. Our results do not allow us to clearly assess
the OM effect on Cu contamination. However, we saw that
Corga could not be excluded from R.R analyses in spiked cases
(Table 4B). In the case of spikes, the increase in R.R with OM
tends to show that the negative Cu effect on soil C
mineralization would be mitigated by the soil organic matter.
But in the case of contamination with both spikes and OM
inputs (OM + S), the negative influence of Corga could be due to
confounding effects between an increase in soil Cu and an
increase in soil Corga. Moreover, in this last case R.R is
expected to be largely higher than 1 for the lowest Cu input
but to decrease more abruptly with Cu concentration than in the
case of spike only. Finally, no clear effect on soil C
mineralization was found when dealing with the OMc
samples for which Cu was provided in tight association with
OM. Nonetheless our results are consistent with previous
studies reporting that high soil OM contents diminished to a
certain extent Cu availability (Smolders et al., 2012; Laurent
et al., 2020), hence somewhat diminished the decrease in soil C
mineralization due to Cu contamination. Thus, the soil C
mineralization of soils with high C contents could be less
impacted by Cu contamination than the one in soils with
low Corga contents.

For the Soil Cu Contamination Effect, Does
the Nature of the Input Matter?
It was interesting to investigate external, anthropogenic factors, as
they are known to influence the soil responses. We thus separated
the impact of land use through the analysis of the different
natures of in situ contamination cases, and the cases of
artificial laboratory contaminations. The comparison was not
straightforward between short-term artificial contaminations in
laboratories and chronic low inputs as in natural in situ
environmental samples. Artificial Cu inputs are expected to
rapidly and temporary decrease soil pH, whereas naturally in
situ contaminated soils progressively equilibrate through various
processes called “aging processes” or “natural attenuation”
leading to less available contamination and less toxicity (Oorts
et al., 2006; Smolders et al., 2009). Moreover on the long term, soil
microbial community adaptation to successive metal stress has
been shown (Niklińska et al., 2006; Philippot et al., 2008). Hence,
compared to naturally contaminated samples, a larger effect of
soil Cu content on soil respiration is expected for the ex-situ
contamination experiments. Our results are consistent with these
findings: the effect of soil Cu content on soil C mineralization is
clearly assessed in the case of laboratory contamination, but only
slightly assessed when considering the entirety of in situ Cu
contaminated soil data.

The influence of the nature of the in situ contamination,
however, was not clear: Cu effect on soil C mineralization was
noticed for all the in situ contaminated acid soils (pH < 6.2) with
different intercept values (Table 4B) depending on the
contamination type. However, focusing on each subgroups of
in situ contamination (Agr, Ind, Nc, Oth, Supplementary Table
S2 the effect of soil Cu contamination on soil C mineralization
was only assessed for the industrial soils. Multi-contaminations
occurring in industrial sites (Wilson and Pyatt, 2007) have often
been proposed to explain strong decline in soil functions
(Ramsey, et al., 2005; Romero-Freire, et al., 2016). Some of
the samples with “other” Cu source were also multi-
contaminated, as they include for instance contamination
from roadside. Unfortunately, the small (7) number of
samples does not allow us to investigate the effect of soil Cu
contamination on C mineralization in those soils and to affine
the potential effect of multi-contamination. Hence, we just
observed a downward trend in CO2 emissions with an
increase in Cu contamination for in-situ contaminated sites.
The effects were more pronounced in acids industrial sites.
However, for low contaminated agricultural or other soils, no
effect was detected.

Implication for the Climate of the Soil Cu
Contaminations as Seen by the Variations in
CO2 Emissions
Nowadays, several environmental policies aim at reducing
atmospheric CO2 according to scenarios included in
predictive atmospheric CO2 models. Soil pollution is still
not included in models projection used to define policies,
even if soil contamination is suspected to alter soil CO2

emissions. Our study focuses on Cu as a common pollutant
known to affect several biological processes like plant
productivity, microfauna reproduction or their biomass
(Eijsackers et al., 2005; Tobor-Kapłon et al., 2006). Here we
focused on one soil function which is the soil C mineralization
and we showed that soil C mineralization and thus CO2

emissions tended to decrease when soil Cu concentrations
increased. This is the results of two compensating processes: 1)
the specific respiration (e.g., the amount of respired C per unit
of microbial biomass) increases in particular for high
contamination levels and low soil pHs and 2) soil microbial
biomass decreases when Cu increases. Analyses of response
ratio data also showed the same trend: as Cu concentration
increases, R.R decreases when contamination stays below an
estimated threshold of about 265 mg.kg−1, meaning that Cu
inputs will increase the respiration of a contaminated soil
compared to its uncontaminated level (see Influence of Cu
Contamination Supplied Ex-Situ using the Analysis of Response
Ratio).

Heavy metals such as Cu are known to accumulate in surface
soils for a long time (Pietrzak and McPhail, 2004) and can be
predicted to increase progressively as they are not biodegradable
and poorly mobile in the soil profile. In accordance with our
results, and following a Cu accumulation with time,
contaminated soils will be supposed to emit less CO2 than
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non-contaminated ones. Furthermore, the increase in soil C
mineralization noticed for Cu input below 265 mgCu. kg−1

would likely not be observed in the case of field
contamination in scenarios with increasing Cu inputs. Finally,
considering minimal and mean Cu contents in the case of in situ
contamination from 1 to 140 mg Cu. kg soil −1 (Table 1;
Supplementary Table S2 and Eq. (2)), we can predict with
the geochemical models of soil CO2 emission an
overestimation from roughly 41%.

Nevertheless, the general observed lower soil C
mineralization in contaminated soils gets with an increase in
the specific respiration rate (respired CO2 per unit of microbial
biomass) at higher copper level. Thus, even though toxic high
Cu contaminations reduce soil microbial biomass we can notice
that CO2 respired per microbial biomass unit increases. Thus,
our results rather show that if soil Cu contamination result in a
decrease in soil C-CO2 emissions it is accompanied by a loss of
soil function but not by an increase in C storing potential.
Hence, a decrease in soil respiration does not necessary mean
that more C is stored in the soil for a long time but it could be
that less C is converted in biomass and biological products as
microbial C biomass decreases. According to Ding et al., (2016)
and Liang et al., (2017) the microbial biomass and more
specifically the necromass are the primary contributors of
stable soil C pool. Hence, taking into account the decrease of
microbial biomass in contaminated soils, the over whole
stabilization of C in soil is not expected to increase. Some
biogeochemicals models include microbial biomass dynamics
(Changsheng Li et al., 1992; Kuijper, et al., 2005; Moore et al.,
2004) and their use could be useful to predict longer term effect
of soil Cu pollution on C stock. In particular, the generic
relationships between soil CO2 emission and soil Cu
concentration obtained here could be used as a first step to
complete continental biogeochemical models including soil Cu
pollution and to refine soil CO2 emission scenarii. We propose
that such a modified model should be used when prospecting
futures of CO2 atmospheric concentrations and climate with, for
instance, soil land use modifications and the estimated
associated Cu pollution.

CONCLUSION

The aim of this study was to quantify a generic effect of soil Cu
contamination on soil Corga mineralization and thus on soil
CO2 emissions. By taking into account various soils types and
contamination cases our study established that Cu
contamination may decrease soil carbon mineralization and
a generic relationship was established (Eq. (2)). This simple
relationship between soil carbon emissions and soil Cu could,
however, be refined to include soil parameters such as pH,
Corga content and, when available the origin of the
contamination. Our study points out that soil Cu
contamination significantly affect soil C mineralization for
soil Cu contents above 265 mg.kg−1 and also for acidic soils.
Artificial acute Cu contaminations lead to highest decreases in
soil C mineralization than in situ contamination. However if we

raise our acceptation p-value to 0.1 the in situ contamination
could be considered as significant. So that, even chronic long
term contamination of soils due to anthropogenic activities can
be related to a decrease in soil C mineralization. Our statistical
analysis of soil microbial C content with Cu contamination
showed a decrease of Cmic and an increase in carbon emission
per unit of microbial biomass in some contaminated
environments. Thus, it must not be concluded that the
observed decrease in soil C mineralization in contaminated
soils may be associated with a way to store more C in soils. On
the contrary, the observed decrease in Cmic is expected to favor
loss of soil functions and of resiliency to face supplementary
stresses like extreme climatic events (Visser and Parkinson,
1992; Tobor-Kapłon et al., 2006).

Although very comprehensive, our study faces the lack of
information on 1) soil carbon mineralization kinetics, 2) field
measurements and 3) studies with extreme climate samples.
Particularly 1) and 3) are factors of interest in long-term soil
carbon release estimation to model CO2 cycle, CO2

atmospheric concentration and climate. The poor number
of data concerning field measurements as well as the over-
representation temperate and continental climates are
damageable for global Earth functioning comprehension. To
better anticipate the climate changes, we need studies in
extreme climate conditions that get out of our
methodological approach but would provide more reliable
results. Nonetheless the generic equation we obtained
relying soil C mineralization to soil Cu concentration can
be considered as a step forward to improve the soil
biogeochemical models and further climate projections.
Moreover, some important drivers of soil OM
mineralization had to be ignored in our study because of
missing data such as microbial community composition or
activity.
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