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Let G be a connected semisimple real Lie group with finite center, and µ a probability measure on G whose support generates a Zariski-dense subgroup of G. We consider the right µ-random walk on G and show that each random trajectory spends most of its time at bounded distance of a well-chosen Weyl chamber. We infer that if G has rank one, and µ has a finite first moment, then for any discrete subgroup Λ Ď G, the µ-walk and the geodesic flow on ΛzG are either both transient, or both recurrent and ergodic, thus extending a well known theorem due to Hopf-Tsuji-Sullivan-Kaimanovich dealing with the Brownian motion.

Introduction

This paper studies the asymptotic properties of random walks on semisimple Lie groups or their quotients. This topic has been developed for 60 years. The heart of the subject is the theory of random walks on linear groups [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF][START_REF] Benoist | Random Walks on Reductive groups[END_REF] worked out by Furstenberg [START_REF] Furstenberg | Noncommuting random products[END_REF], Kesten [START_REF] Kesten | The limit points of a normalized random walk[END_REF], Guivarc'h [START_REF] Guivarc | Products of random matrices: convergence theorems[END_REF], and many others, to transpose classical limit theorems for Markov chains on Z d to the context of linear random walks. It recently led to spectacular applications to walks on finite volume homogeneous spaces, such as Eskin-Margulis Theorem [START_REF] Eskin | Recurrence properties of random walks on homogeneous manifolds[END_REF] establishing the non escape of mass for any starting point, or later Benoist-Quint's classification of stationary probability measures [START_REF] Benoist | Mesures stationnaires et fermés invariants des espaces homogènes (i)[END_REF][START_REF] Benoist | Stationary measures and invariant subsets of homogeneous spaces (ii)[END_REF][START_REF] Benoist | Stationary measures and invariant subsets of homogeneous spaces (iii)[END_REF] (see also [START_REF] Eskin | Random walks on locally homogeneous spaces[END_REF]). Our paper adds to this network of ideas by enriching the general theory of walks on linear groups and infering a recurrence criterion for walks in infinite volume.

A seminal result due to Furstenberg [START_REF] Furstenberg | Noncommuting random products[END_REF] is that a trajectory of a Zariskidense random walk on a semisimple Lie group goes to infinity in a specific direction, given by a point on the flag variety. In the very concrete setting of a walk on P SL 2 pRq, seen as the unitary bundle of the Poincaré disk D, this means that every walk trajectory converges toward a limit point on the boundary BD. Furstenberg's result has since been transposed to the context of Gromov hyperbolic spaces. More precisely, Ancona [START_REF] Ancona | Théorie du potentiel sur les graphes et les variétés[END_REF] considers the Brownian motion on a Gromov hyperbolic manifold and shows that the distance between a Brownian trajectory and its limit geodesic ray grows at most logarithmically. Analogous results for walks on hyperbolic groups are proven in [START_REF] Ancona | Positive harmonic functions and hyperbolicity[END_REF][START_REF] Ledrappier | Some asymptotic properties of random walks on free groups[END_REF][START_REF] Blachère | Harmonic measures versus quasiconformal measures for hyperbolic groups[END_REF][START_REF] Sisto | Tracking rates of random walks[END_REF] .

The first theorem of our paper completes this panel of results by claiming that the distance between a random trajectory and its asymptotic geodesic ray (or more generally asymptotic Weyl chamber) is most of the time bounded. We state and prove our result in the context of walks on Lie groups, eventhough the method could be adapted to deal with hyperbolic groups.

Let G be a connected semisimple real Lie group with finite center, µ a probability measure on G. The (right) µ-random walk on G is defined by the transition probabilities ppg, hq " µpg ´1hq

A trajectory starting from a point x 0 P G is thus obtained as a sequence px 0 b 1 . . . b n q ně1 where the b i P G are independent µ-distributed increments.

We make the assumption that the subgroup Γ µ " xsupp µy Ď G generated by the support of µ is Zariski-dense in G. Denoting by g the Lie algebra of G, this means that every polynomial function on Endpgq which vanishes on the adjoint representation AdΓ µ is also null on AdG.

Theorem A (Bounded deviations). Let G be a connected semisimple real Lie group with finite center, and µ a probability measure on G such that Γ µ is Zariski-dense in G. Set B " G N ‹ , β " µ bN ‹ , fix a maximal compact subgroup K Ď G, and a left invariant metric d on G.

To every b P B, one can associate a Weyl Chamber Cpbq Ď G{K such that the following holds. For all ε ą 0, there exists a constant R ą 0, such that for β-almost every b P B, lim inf Recall that when G has rank 1 (e.g. G " SO e pd, 1q or G " SU pd, 1q), then a Weyl chamber of G{K is just a geodesic ray for the symmetric space structure of G{K. In higher rank, it corresponds to a convex cone in a maximal flat of G{K. The result we prove is actually slightly more precise than Theorem A: the map b Þ Ñ Cpbq is explicit in terms of the Cartan decompositions of pb 1 . . . b n q ně1 , and we bound the distance between b 1 . . . b n and a particular point in Cpbq (see Section 2.5).

In concrete linear algebra terms, for G " SL d pRq, K " SO d pRq, we can set a `" tt " diagpt 1 , . . . , t d q, t 1 ě ¨¨¨ě t d , ř t i " 0u and choose Cpbq of the form Cpbq " k 8 pbq exppa `qK where k 8 pbq P K. Writing b 1 . . . b n K " k n pbq exppt n pbqqK where t n pbq P a `is the so-called Cartan projection, our deviation result bounds the difference of angle k ´1 n pbqk 8 pbq in terms of t n pbq: for all ε ą 0, for β-typical b P B, there is a subset S ε,b Ď N ˚of asymptotic density at least p1 ´εq such that pk ´1 n pbqk 8 pbqq i,j " O ε pexppt n pbq i ´tn pbq j qq for n P S ε,b , i ą j

In particular k ´1 n pbqk 8 pbq converges to Id (up to sign of coefficients) at speed O ε pexpp´min i‰j |t n pbq i ´tn pbq j |qq along n P S ε,b . More information on the asymptotic behavior of t n pbq can be found in [START_REF] Benoist | Random Walks on Reductive groups[END_REF] (in particular [START_REF] Benoist | Random Walks on Reductive groups[END_REF]Th. 10.9]).

Finally, we emphasize that no moment assumption is made on µ in Theorem A. In contrast, the logarithmic bounds of [START_REF] Ancona | Positive harmonic functions and hyperbolicity[END_REF][START_REF] Ledrappier | Some asymptotic properties of random walks on free groups[END_REF][START_REF] Blachère | Harmonic measures versus quasiconformal measures for hyperbolic groups[END_REF][START_REF] Sisto | Tracking rates of random walks[END_REF] all rely strongly on the hypothesis of a finite exponential moment (or at least the Hölder regularity of the harmonic measure). Note also that Theorem A is already new in the case where the µ-walk is a (discrete) Brownian motion.

Our second theorem considers the µ-random walk induced on a quotient X " ΛzG, where Λ is a discrete subgroup of G, and characterizes the situations of recurrence or transience in terms of the geodesic flow. A first result of this kind was obtained by Tsuji [START_REF] Tsuji | Potential theory in modern function theory[END_REF], who built on Hopf's alternative [START_REF] Hopf | Statistik der geodätischen Linien in Mannigfaltigkeiten negativer Krümmung[END_REF][START_REF] Hopf | Ergodic theory and the geodesic flow on surfaces of constant negative curvature[END_REF] to prove that the Brownian motion and the geodesic flow on a hyperbolic surface are either both recurrent ergodic, or both transient. Sullivan [START_REF] Sullivan | On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions[END_REF] extended Hopf-Tsuji Theorem to hyperbolic manifolds of arbitrary dimension, and Kaimanovich [START_REF] Kaimanovich | Ergodicity of harmonic invariant measures for the geodesic flow on hyperbolic spaces[END_REF] pushed it even further, dealing with walks on rank one symmetric spaces. However, all these theorems concern a Brownian motion or at least a spread-out random walk, i.e. a µ-walk such that µ (or a convolution power) is absolutely continuous with respect to the Haar measure on G. In this paper, we extend them to walks determined by an arbitrary Zariski-dense probability measure µ with a finite first moment, meaning that

ż G log ||Adg|| dµpgq ă 8
Let us now prepare our statement by recalling some basic definitions. More details can be found in [4, 1.2-1.3].

Assume G has rank one and let a Ď g be a Cartan subspace of G which is orthogonal to the Lie algebra of K for the Killing form. For t P a, set a t " expptq P G. The one-parameter subgroup pa t q tPa acts by right multiplication on X, inducing a flow that we call the geodesic flow. This terminology is natural as any geodesic path on the locally symmetric space X{K is of the form t Þ Ñ xa t K for a suitable x P X [START_REF] Paulin | Cours de seconde année de mastère : Groupes et géométries[END_REF]Proposition 4.3].

Let F Ď X be a compact set of positive Haar measure. The Green function of the µ-walk associated to F , denoted by G µ p., F q : X Ñ r0, `8s, estimates the average time spent in F by the µ-trajectories starting at a given point. We may define in a similar way a Green function for the geodesic flow Gp., F q : X Ñ r0, `8s. The precise formulas are

G µ px, F q " ż B ÿ ně0 1 F pxb 1 . . . b n q dβpbq Gpx, F q " ż a `1F pxa t q dt
where a `Ď a is a fixed Weyl chamber of a.

The µ-walk on X is recurrent (resp. transient) if for almost-every x P X, β-almost every b P B, the trajectory pxb 1 . . . b n q ně0 sub-converges to x (resp. leaves every compact). It is equivalent to say that for every F , almost-every x P X, one has G µ px, F q P t0, `8u (resp. G µ px, F q ă `8).

The µ-walk on X is ergodic if the subgroup Γ µ of G generated by the support of µ acts ergodically on X for the Haar measure. In the context of a recurrent random walk, this amounts to say that G µ px, F q " 8 for every F and almost-every x P X.

Analogous definitions of recurrence, transience, ergodicity hold for the geodesic flow on X.

Theorem B (Recurrence criterion).

Let G be a connected simple real Lie group of rank one, Λ Ď G a discrete subgroup, X " ΛzG. Let µ be a probability measure on G with a finite first moment and with Γ µ Zariski-dense in G.

Then the µ-walk and the geodesic flow on X are either both recurrent ergodic, or both transient with locally integrable Green functions.

A striking consequence is that the recurrence properties of a walk on a rank-one homogeneous space do not depend on the generating measure µ but only on the geometry of the space. Also note that in the particular case where G " Spp1, mq for some m ě 2, or G " F ´20
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, the geodesic flow (or equivalently the µ-walk) is always transient as long as Λ has infinite covolume in G (see Theorem 4.1 and the subsequent remark).

Organization of the paper.

Section 2 is dedicated to Theorem A. It is the occasion to set the notations, recall the dynamics of Zariski-dense random walks on the flag variety of G, and introduce a parametrization of the set of maximal flats of G{K which will also be useful in the rest of the paper.

Section 3 is dedicated to Theorem B. The proof that the transience of the geodesic flow on X implies the transience of the walks is entirely contained in the section. The converse relies on the framework that ermerged in Section 2, more specifically Corollary 2.6. Both statements use renewal results for the Cartan projection on rank one simple real Lie groups.

Section 4 is an appendix that recalls the Hopf alternative for the geodesic flow, usually stated in terms of Poincaré series, and explains how it can be formulated via the Green functions of the flow.

Acknowledgments. The author is grateful to Yves Benoist and to the anonymous referee for their helpful comments.

Random trajectories and asymptotic Weyl chambers

This section is dedicated to the proof Theorem A.

Notations and strategy

Throughout Section 2, we denote by G a connected non-compact semisimple real Lie group with finite center, K Ď G a maximal compact subgroup, g, k their respective Lie algebras, a Ď g a Cartan subspace orthogonal to k for the Killing form, a `Ď a a closed Weyl chamber of a, and for t P a we set a t " expptq P G. Recall that in this context, every element g P G can be written as g " k g a tg l g where k g , l g P K, t g P a `. This is called the Cartan decomposition, and the element t g is unique and called the Cartan projection of g.

Let µ be a probability measure on G and Γ µ Ď G the subgroup generated by its support. We suppose that Γ µ is Zariski-dense in G, but make no moment assumption on µ. We denote by pB, βq " pG N ‹ , µ bN ‹ q the space of instructions guiding the µ-walk on G.

The proof of Theorem A can be summarized as follows. We fix for every b P B, n ě 0 a Cartan decomposition b 1 . . . b n " k n pbqa tnpbq l n pbq Section 2.2 guarantees that we can choose those decompositions such that for β-almost every b P B, the sequence pk n pbqq P K N ‹ has a limit k 8 pbq P K. We aim to control the distance dpb 1 . . . b n , k 8 pbqa tnpbq q given a left G-invariant riemmanian metric on G. To this end, we define the flag varieties G{P

´, G{P , denote by ξ 0 " P ´{P ´, ξ 0 " P {P their basepoints, and set F `" G.pξ 0 , ξ 0 q the G-orbit of pξ 0 , ξ 0 q in G{P ´ˆG{P . Section 2.3 introduces a map pξ ´, ξq Þ Ñ F pξ ´, ξq from F `to the space of maximal flats in G{K. It is a G-equivariant cover such that F pξ 0 , ξ 0 q " exppaqK. We see in Section 2.4 that for some constant C 0 ą 0, every ξ ´P G{P ´, β-almost every b P B, large enough n ě 0,

dpb 1 . . . b n , k 8 pbqa tnpbq q ď C 0 dpb 1 . . . b n , F pξ ´, ξ b qq `C0
where ξ b " k 8 pbqξ 0 is the limit point of pb 1 . . . b n q on the flag variety G{P . Finally, in Section 2.5, we use Birkhoff Ergodic Theorem to control the righthand side of the previous inequality and conclude the proof of Theorem A.

Remark. The method of proof is inspired by Ledrappier's paper [START_REF] Ledrappier | Some asymptotic properties of random walks on free groups[END_REF] establishing logarithmic deviation on free groups between sample paths and their asymptotic geodesic rays, under a finite exponential moment condition. As pointed out by the referee, it is also related to [START_REF] Tiozzo | Sublinear deviation between geodesics and sample paths[END_REF] in which Tiozzo proves sublinear deviation of sample paths under very general assumptions.

Dynamics of walks on the flag variety

We recall here basic facts about the dynamics of the µ-walk on the flag variety of G. The existence of the limit direction k 8 introduced in 2.1 is also justified.

Let us begin with the definition of the flag variety. For α P a ‹ , set g α :" ts P g, @t P a, pad tqpsq " αptqsu As the action of pad tq tPa on g is simultaneously diagonalizable, we can write g " g 0 ' à αPΦ g α where Φ :" tα P a ‹ t0u, g α ‰ t0uu is the root system of a. Denote by Φ `Ď Φ the subset of positive roots given by a `, namely Φ `" tα P Φ, αpa `q Ď R `u. Set u " À αPΦ `gα and let P " N G pg 0 ' uq be the subgroup of elements g P G whose adjoint action preserves the subspace g 0 ' u. The flag variety of G is defined as the quotient P " G{P . We set ξ 0 " P {P the standard base point.

It will often be convenient to work with a concrete realisation of P as some G-orbit in a product of projective spaces. To this end, we recall the following fact [START_REF] Benoist | Random Walks on Reductive groups[END_REF]Lemma 6.32]. Let Π be the basis of Φ prescribed by Φ `.

Fact 1. There exists a family pV α , ρ α q αPΠ of proximal irreducible algebraic representations of G such that • denoting by ξ α P PpV α q the line of highest weight of pV α , ρ α q, we have a G-equivariant embedding

P ãÑ ź αPΠ PpV α q, gξ 0 Þ Ñ pρ α pgqξ α q αPΠ
• the heighest weights pχ α q αPΠ form a basis of a ‹ . Moreover χ α ´α is also a weight of pV α , ρ α q.

We equip each V α with a scalar product that is ρ α pKq-invariant and such that every element of T ρ α paq is self-adjoint [START_REF] Benoist | Random Walks on Reductive groups[END_REF]Lemma 6.33].

We know by [START_REF] Benoist | Random Walks on Reductive groups[END_REF]Proposition 10.1] that P admits a unique stationary probability measure, we call it ν P . This measure gives no mass to proper subvarieties, and is proximal: for β-almost every b P B, the limit measure ν P,b " limpb 1 . . . b n q ‹ ν P is a Dirac mass ν P,b " δ ξ b . We then have ν P " ş B δ ξ b dβpbq. The α-coordinate map ψ α : P Ñ PpV α q, gξ 0 Þ Ñ ρ α pgqξ α sends ν P to the unique µ-stationary probability measure ν PpVαq on PpV α q. It is atom free and proximal, with limit measures ν PpVαq,b " δ ξ b,α where ξ b,α " ψ α pξ b q.

Recall that we have fixed for every b P B, n ě 0, a Cartan decomposition b 1 . . . b n " k n pbqa tnpbq l n pbq. We show in Lemma 2.1 that the sequence pk n pbqξ 0 q ně0 converges in P. As P " K{M where M " Z K paq, this result ensures we can always choose our decompositions so that pk n pbqq ně0 converges in K, justifying the definition of k 8 given in Section 2.1.

Lemma 2.1. For β-almost every b P B, one has the convergence in

P k n pbqξ 0 ÝÑ nÑ`8 ξ b
Proof. It is enough to argue for each coordinate, i.e. show that for each α P Π,

ρ α pk n pbqqξ α ÝÑ nÑ`8 ξ b,α
To lighten the proof, we just write g for ρ α pgq.

Notice that b Proposition 4.7] states that any accumulation point in EndpV α q of the sequence p b 1 ...bn ||b 1 ...bn|| q ně1 must be of rank one with image ξ b,α . This yields that the sequence a tnpbq ||a tnpbq || converges to the orthogonal projection on the line of heighest weight ξ α . Let k 1 8 pbq be some limit value of the sequence k n pbq, and σ : N Ñ N an extraction such that k σpnq pbq Ñ k 1 8 pbq and l σpnq pbq converges in

1 . . . b n ||b 1 . . . b n || " k n pbq a tnpbq ||a tnpbq || l n pbq [8,
K. Then b 1 ...b σpnq ||b 1 .
..b σpnq || converges as well and its limit has image k 1 8 pbqξ α . Hence ξ b,α " k 1 8 pbqξ α , which proves the lemma.

Parametrization of maximal flats

Let P ´be the opposite flag variety of G defined by setting u

´" À αPΦ Φ `gα , P ´" N G pg 0 'u ´q and P ´" G{P ´. Let ξ 0 " P ´, ξ 0 " P be the base points of P ´, P and denote by F `" G.pξ 0 , ξ 0 q the (open) G-orbit of pξ 0 , ξ 0 q in P ´ˆP . The following lemma associates to every pair of flags pξ ´, ξq P F à maximal flat of G{K.

Lemma 2.2. There exists a unique G-equivariant map

F `ÝÑ tmaximal flats of G{Ku pξ ´, ξq Þ Ñ F pξ ´, ξq
such that pξ 0 , ξ 0 q Þ Ñ exppaqK. Moreover this map is a Galois cover whose group of deck transformations is the Weyl group of G.

Remark. The map F is also used in [START_REF] Kaimanovich | The Poisson formula for groups with hyperbolic properties[END_REF]Section 10] to describe the Poisson boundary of walks on discrete subgroups of semi-simple Lie groups, via the strip approximation method.

Proof. We can identify F `to G{pP ´X P q " G{Z G paq and the set of maximal flats of G{K to G{N G paq. The map we are to define is just the quotient projection map G{Z G paq Ñ G{N G paq. Moreover the Weyl group W " Z G paqzN G paq is finite and acts freely on G{Z G paq by right multiplication, so the above projection map is a Galois cover whose group of deck transformations is W .

We now check that for every ξ ´P P ´, and β-almost every b P B, the maximal flat F pξ ´, ξ b q is well defined. To this end, we begin with the following criterion Lemma 2.3. Let g 1 , g 2 P G.

pg 1 ξ 0 , g 2 ξ 0 q P F `ðñ g ´1 1 g 2 P P ´P Proof.
pg 1 ξ 0 , g 2 ξ 0 q P F `ðñ pξ 0 , g ´1 1 g 2 ξ 0 q P G.pξ 0 , ξ 0 q ðñ Dh P G, hξ 0 " ξ 0 and hξ 0 " g ´1 1 g 2 ξ 0 ðñ Dh P P ´, h ´1g ´1

1 g 2 P P Lemma 2.4. For every ξ ´P P ´, and β-almost every b P B, one has pξ ´, ξ b q P F `.

Proof. Write ξ ´" g 1 ξ 0 for some g 1 P G. According to Lemma 2.3, we need to check that for β-almost every b P B,

ξ b P g 1 P ´ξ0
Bruhat decomposition [10, Theorem 5.15] guarantees that P " \ wPW g 1 P ´wξ 0 where W stands for the Weyl group. It is thus enough to show that for w P W t0u, we have ν P pg 1 P ´wξ 0 q " 0.

As w ‰ 0, we have wξ 0 ‰ ξ 0 , so by Fact 1, there exists α P Π such that ρ α pwqξ α ‰ ξ α . As ρ α pwq permutes the weights of V α , it has to send ξ α to V ă α the unique a-invariant complementary subspace of ξ α . But V ă α is stable under ρ α pP ´q. To sum up, we have ψ α pg 1 P ´wξ 0 q Ď Ppρ α pg 1 qV ă α q where ψ α is the α-coordinate projection P Ñ PpV α q, gξ 0 Þ Ñ ρ α pgqξ α . As the action of G on V α is irreducible, the stationary measure ν PpVαq " ψ α‹ ν P gives no mass to proper projective spaces [START_REF] Benoist | Random Walks on Reductive groups[END_REF]Lemma 4.6]. In particular, the above yields ν P pg 1 P ´wξ 0 q " 0. Finally ν P pg 1 P ´ξ0 q " 1.

Distance formula

The goal of Section 2.4 is to prove Corollary 2.6 which bounds the distance from b 1 . . . b n to k 8 pbqa tnpbq by the distance from b 1 . . . b n to a well-chosen maximal flat of G{K. Corollary 2.6 will follow from geometric (non-random) considerations encapsulated in Proposition 2.5. We endow G with a left Ginvariant Riemannian metric, and denote by d the distance induced on G. For ξ P P, we write ξ " k ξ ξ 0 where k ξ P K. Recall that for x P G, we denote by x " k x a tx l x where k x , l x P K, t x P a `a Cartan decomposition of x. The Cartan projection t x is uniquely defined, and k x , k ξ are uniquely defined in K{M (where M " Z K paq) as long as t x is in the interior of a `.

Proposition 2.5.

There exists C 0 ą 0 such that for all pξ ´, ξq P F `, all sequence px n q P G N such that inf αPΦ `αpt xn q Ñ `8 and k xn Ñ k ξ in K{M , we have for n large enough,

dpx n , k ξ a tx n q ď C 0 dpx n , F pξ ´, ξqq `C0
Corollary 2.6. There exists C 0 ą 0 such that for all ξ ´P P ´, for β-almost every b P B, for large enough n ě 0,

dpb 1 . . . b n , k 8 pbqa tnpbq q ď C 0 dpb 1 . . . b n , F pξ ´, ξ b qq `C0
We first prove Proposition 2.5. It relies on the following technical lemma.

Lemma 2.7.

There exists a constant C 1 ą 0 such that for every u P exppuq, there exists a neighborhood V K Ď K of the neutral element e in K such that for all s, t P a, k P V K dpa s , a t q ď C 1 dpua s , ka t q `C1 Let us see first how to deduce Proposition 2.5 from Lemma 2.7.

Proof of Proposition 2.5. Let pξ ´, ξq P F `and px n q as in Proposition 2.5. Using Section 2.3,

F pξ ´, ξq " k ξ F pk ´1 ξ ξ
´, ξ 0 q " k ξ u ξ ´exppaqK for some element u ξ ´P exppuq. The assumption inf αPΦ `αpt xn q Ñ `8 implies that a ´txn u ξ ´atx n Ñ 0 as n goes to infinity. Hence we can write for n ě 0, s P a,

dpx n , k ξ a tx n q " dpx n , k ξ u ξ ´atx n q `op1q ď dpx n , k ξ u ξ ´as q `dpa s , a tx n q `op1q
Using the assumption that k xn Ñ k ξ in K{M and Lemma 2.7, we have for large n ě0, every s P a,

dpa s , a tx n q ď C 1 dpk ´1 ξ k xn a tx n , u ξ ´as q `C1 " C 1 dpk xn a tx n , k ξ u ξ ´as q `C1 ď C 1 dpx n , k ξ u ξ ´as q `C2 where C 2 " C 1 diamK `C1 , which leads to dpx n , k ξ a tx n q ď p1 `C1 qdpx n , k ξ u ξ ´as q `C2 `op1q
Choosing s to realise the infimum, we obtain for large enough n ě 0,

dpx n , k ξ a tx n q ď p1 `C1 qdpx n , F pξ ´, ξqq `C2 `1
which concludes the proof.

We now need to show Lemma 2.7.

Proof of Lemma 2.7. Notice first that if d 1 , d 2 are the distances induced on G by two left G-invariant Riemannian metrics, then there exists a constant

R ą 0 such that 1 R d 2 ď d 1 ď R d 2
Hence, in order to prove Lemma 2.7, we can specify d as follows. Let s " k K be the orthogonal of k for the Killing form K : g ˆg Ñ R. We know by [START_REF] Benoist | Random Walks on Reductive groups[END_REF] that K is negative definite on k and positive definite on s. In particular we have a decomposition g " k ' s and we may define a saclar product on g by setting x., .y " ´Kpθ., .q where θ " Id k ' ´Id s is the opposition involution map. We endow G with left G-invariant metric that coincides with x., .y on g and write d the corresponding distance map.

It is then a standard exercise to check that for s P a, dpe, a s q " ||s|| where ||.|| is the euclidean norm associated to x., .y. In particular, for any g, h P G,

||κpg ´1hq|| ´2diamK ď dpg, hq ď ||κpg ´1hq|| `2diamK
where κ : G Ñ a `denotes the Cartan projection map.

This inequality means that we may reformulate Lemma 2.8 as follows Lemma 2.7 bis. There exists a constant C 2 ą 0 such that for every u P exppuq, there exists a neighborhood V K Ď K of the neutral element e in K such that for all s, t P a, k

P V K ||s ´t|| ď C 2 ||κpa ´suka t q|| `C2
Proof of Lemma 2.7 bis. We use the representations pV α , ρ α q αPΠ introduced in Fact 1. For α P Π, let v α P ξ α be a vector in the line of heighest weight of V α such that ||v α || " 1. Recall from [8, Section 6.8] that ρ α puqpv α q " v α . In particular, there exists a neighborhood V K,α Ď K of e in K such that for all As κpgq " κpg ´1q, we can apply the previous argument to pa ´suka t q ´1 to strengthen the previous inequality and get for s, t P a, k P

k P V K,α , we have ρ α pukqv α " v 1 α `v2 α with v 1 α P ξ α , v 2 α P ξ K α and
V 1 K,α neighborhood of e in K, |χ α pt ´sq| ď ||χ α || ||κpa ´suka t q|| `log 2 Now assuming k P V K " X αPΠ V 1
K,α and summing over α P Π,

ÿ αPΠ |χ α pt ´sq| ď p ÿ αPΠ ||χ α ||q ||κpa ´suka t q|| `7Π log 2 (1)
As the weights pχ α q αPΠ form a basis of a ‹ , there exists a constant C ą 0, depending only on pχ α q αPΠ and ||.||, such that

||t ´s|| ď C ÿ αPΠ |χ α pt ´sq| (2) 
Inequalities ( 1) and ( 2) together prove Lemma 2.7 bis.

We now turn to the proof of Corollary 2.6. In order to apply Proposition 2.5, we prove Consider again the representations pV α , ρ α q introduced in Fact 1. Arguing as in Lemma 2.1, we see that ραpa tnpbq q ||ραpa tnpbq q|| converges to the orthogonal projection on the line of heighest weight ξ α in V α . In particular, given a vector w α in the weight space of χ α ´α, we get ραpa tnpbq q ||ραpa tnpbq q|| pw α q Ñ 0. Noticing that ||ρ α pa tnpbq q|| " e χαptnpbqq , the latter can be rewritten as e ´αptnpbqq ÝÑ nÑ`8 0 which concludes the proof.

Proof of Corollary 2.6. It follows from the combination of Proposition 2.5 and Lemmas 2.4, 2.8, 2.1.

Proof of Theorem A

We conclude Section 2 with the proof of Theorem A. We actually show the following more detailed version. Then for all ε ą 0, there exists a constant R ą 0 such that for β-almost every b P B,

lim inf nÑ`8 1 n 7ti P 1, n , dpb 1 . . . b i , k 8 pbqa t i pbq q ď Ru ą 1 ´ε
Proof. In view of Corollary 2.6, it is enough to prove that for all ε ą 0, there exists a constant R ą 0 and an element ξ ´P P ´, such that for β-almost every b P B,

lim inf nÑ`8 1 n 7ti P 1, n , dpb 1 . . . b i , F pξ ´, ξ b qq ď Ru ą 1 ´ε
The observation that

dpb 1 . . . b i , F pξ ´, ξ b qq " dpe, F pb ´1 i . . . b ´1 1 ξ ´, ξ T i b qq (3) 
where T : B Ñ B, b " pb i q iě1 Þ Ñ pb i`1 q iě1 is the one-sided shift, motivates the following. Let q µ be the image of µ under the inversion map g Þ Ñ g ´1, and ν P the q µ-stationary probability measure on P ´. Define T `: B ˆP´Ñ B ˆP´, pb, ξ ´q Þ Ñ pT b, b ´1 1 ξ ´q. The ergodicity of the q µ-walk on P ´is a consequence of [START_REF] Benoist | Random Walks on Reductive groups[END_REF]Proposition 4.7] and means that the dynamical system pB ˆP´, β b ν P ´, T `q is measure-preserving and ergodic [8, Proposition 2.14] . Define (almost everywhere) a function f : B ˆP´Ñ r0, `8r setting

f pb, ξ ´q " " 1 if dpe, F pξ ´, ξ b qq ď R 0 otherwise
Notice that f is measurable1 and that we may choose R ą 0 large enough so that β b ν P ´pf q ą 1 ´ε. In this case, Birkhoff Ergodic Theorem implies that for ν P ´-almost every ξ ´P P ´, β-almost every b P B, large enough n ě 0,

1 n n ÿ i"1 f ˝pT `qi pb, ξ ´q ą 1 ´ε
which can be rewritten as

1 n 7ti P 1, n , dpb 1 . . . b i , F pξ ´, ξ b qq ď Ru ą 1 ´ε
This concludes the proof.

Recurrence criterion

The goal of this section is to prove our second theorem announced in the introduction.

Theorem B.

Let G be a connected simple real Lie group of rank one, Λ Ď G a discrete subgroup, X " ΛzG. Let µ be a probability measure on G with a finite first moment and Γ µ Zariski-dense in G.

Then the µ-walk and the geodesic flow on X are either both recurrent ergodic, or both transient with locally integrable Green functions.

We will use freely the notations of 2.1 and always be in the setting of Theorem B. In particular, a denotes a Cartan subspace of dimension 1, that we will identify with R via the linear isomorphism sending 1 P R to the element v 0 P a `of norm 1 for the Killing form. In this regard, for t P R, we have by definition a t " expptv 0 q P G.

As we shall explain in Section 4, the dichotomy presented in Theorem B is already known for the geodesic flow : Fact 2. The geodesic flow pa t q tPR on X is either recurrent ergodic, or transient with locally integrable Green functions.

Hence Theorem B is equivalent to the following propositions that we will prove independently in the next sections. Proposition 3.1. If the geodesic flow on X is recurrent and ergodic, then it is also the case of the µ-walk on X.

Denote P C pXq the collection of subsets F Ď X such that F is relatively compact and has positive Haar measure. Proposition 3.2. If the Green functions of the geodesic flow Gp., F q F PP C pXq are locally integrable, then it is also the case of the Green functions G µ p., F q F PP C pXq of the µ-walk on X.

For the proofs to come, it will be useful to embed G in a linear group SLpV 0 q via a faithful irreducible proximal algebraic representation. V 0 will be endowed with a K-invariant scalar product x., .y 0 such that a is self-adjoint [8, Lemma 6.33].

Renewal theory

It happens that both Propositions 3.1 and 3.2 rely on renewal results for the Cartan projection of the right random walk on G. The role of this section is to state and prove these results.

We first give some context. A renewal theorem considers a transient random walk and estimates the average time spent in a given bounded subset when the latter degenerates. The standard case of a non-arithmetic walk on R can be found in [START_REF] Lacroix | Chaînes de Markov et Processus de Poisson[END_REF]. It was generalized by Kesten in [START_REF] Kesten | The limit points of a normalized random walk[END_REF] to the Iwasawa cocycle for linear random walks.

Theorem (Renewal Theorem for the Iwasawa cocycle, [START_REF] Kesten | The limit points of a normalized random walk[END_REF]). Let d ě 2 and m be a probability measure on SL d pRq with a finite first moment and such that Γ m :" xsupp my is strongly irreducible and unbounded. Denote by λ m ą 0 the first Lyapunov exponent of m and by pS n q ně0 the left µ-random walk on SL d pRq starting at Id. Then, for any interval I Ď R and vector v P R d t0u,

Ep7tn ě 0, log ||S n v|| P I `tqq ÝÑ tÑ`8 lebpIq λ m
Remark. A more precise statement is proven in [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF], and the speed of convergence is estimated in [START_REF] Li | Fourier decay, renewal theorem and spectral gaps for random walks on split semisimple lie groups[END_REF] under the assumption that m has an exponential moment.

Now consider the µ-walk on our rank one simple Lie group G. The assumption that µ has a finite first moment implies that for β-almost every b P B, t n pbq " nÑ`8 nλ µ where λ µ ą 0 is the first Lyapunov exponent of µ (see [START_REF] Benoist | Random Walks on Reductive groups[END_REF]). In view of the above renewal theorem, it is natural to conjecture the following renewal statement for the Cartan projection :

E β p7tn ě 0, t n P I `tuq ÝÑ nÑ`8 lebpIq λ µ (4)
This is known to be true if µ has a finite exponential moment [START_REF] Li | Fourier decay, renewal theorem and spectral gaps for random walks on split semisimple lie groups[END_REF] but the case where µ has only a finite first moment is still open. We prove two propositions (3.3,3.5) that can be seen as first steps to show the convergence (4).

The first proposition guarantees that for any point x P X which has a recurrent orbit pxa t q tą0 under the geodesic flow, the sequence pxa tnpbq q ně0 is also recurrent for β-almost every b P B (see Lemma 3.9). Proposition 3.3. Let I Ď R be a large enough bounded interval. For any subset S Ď R `containing arbitrary large real numbers, for β-almost every b P B, 7tn ě 0, t n pbq P I `Su " `8

The proof Proposition 3.3 relies on Lemma 3.4, according to which the probability that the Cartan projection of a µ-trajectory pgb 1 . . . b n q meets the translate I `s is close to 1 as long as s is large enough. Recall from 2.1 that t g ě 0 denotes the Cartan projection of an element g P G. Proof of Lemma 3.4. We use the represention G Ď SLpV 0 q introduced earlier in Section 3. Our assumptions on the scalar product x., .y 0 of V 0 imply that the product gb 1 . . . b n and its adjoint 

S
We know by [24, (1.17)] this statement is true for the Iwasawa cocycle : there exists a bounded interval J such that for all g P G, v P V t0u, for all s ą s g,v , βtb P B, Dn ě 0, log ||S n pb, gqv|| P J `su ą 1 ´ε{2

Moreover, arguing by contradiction, we can infer from [8, Corollary 4.8] that the difference between the Iwasawa cocycle and the Cartan projection is ultimately bounded : there exists constants R ą 0 such that for all unit vector v P V 0 βtb P B, @n ě 0, log

|| t b n . . . t b 1 || ´log || t b n . . . t b 1 v|| ă Ru ą 1 ´ε{2
In particular, choosing for each g P G a unit vector

v g P V 0 such that || t gv g || ě 1 2 || t g||, and setting R 1 " R `log 2, βtb P B, @n ě 0, log ||S n pb, gq|| ´log ||S n pb, gqv g || ă R 1 u ą 1 ´ε{2 (7) 
Consider now an interval I that contains the R 1 -neighborhood of J. Then using ( 6) and [START_REF] Benoist | Stationary measures and invariant subsets of homogeneous spaces (iii)[END_REF], for all g P G, s ą s g,vg , We have finally obtained [START_REF] Benoist | Mesures stationnaires et fermés invariants des espaces homogènes (i)[END_REF], hence the lemma.

Proof of Proposition 3.3. Let ε Ps0, 1r and I Ď R as in Lemma 3.4. Let S Ď R `be a subset containing arbitrarily large real numbers. Define by induction a family of stopping times pn k : B Ñ Nq kPN as follows :

• n 0 " 0 

βtb P B, @i P 1, N , @n P n k i ´1, n k i , t n pbq R I `Su ď p1 ´εq N Hence, given any infinite sequence of integers 1 ď k 1 ă ¨¨¨ă k i ă . . . , βtb P B, @i ě 1, @n P n k i ´1, n k i , t n pbq R I `Su " 0
This equality implies the statement of the lemma.

The second proposition will be used to compare the Green functions of the geodesic flow and of the µ-walk on X. It states that the average time spent by the Cartan projection pt n pbqq of a trajectory pb 1 . . . b n q in a given interval I of R is bounded by a constant that only depends on lebpIq. Proposition 3.5. Let I Ď R be a bounded interval. Then

sup tPR E β p7tn ě 0, t n P I `tuq ă 8
The idea is that the Cartan projection of a trajectory pb 1 . . . b n q ně0 has a low probability to come back to an interval once it has gone past it. We formalize this in Lemma 3.6. Lemma 3.6. Let R, ε ą 0. There exists n 0 ě 0 such that for every g P G, βtb P B, @n ě n 0 , t gb 1 ...bn ě t g `Ru ě 1 ´ε

Proof of Lemma 3.6 . We use again the represention G Ď SLpV 0 q introduced earlier in the section. Our assumptions on the scalar product x., .y 0 of V 0 imply that the product gb 1 . . . b n and its adjoint S n pb, gq " t b n . . . t b 1 t g have the same Cartan projection t gb 1 ...bn . Hence ||S n pb, gq|| " e c 0 t gb 1 ...bn where c 0 " log ||a 1 || ą 0. Lemma 3.6 can then be rephrased as : for any C, ε ą 0, there exists n 0 ě 0 such that for all g P G, βtb P B, @n ě n 0 , ||S n pb, gq|| ě C|| t g||u ě 1 ´ε (8)

To prove [START_REF] Benoist | Random Walks on Reductive groups[END_REF], assume by contradiction there exist C, ε ą 0, a sequence of integers pN k q Ñ 8 and elements pg k q P G such that for all k ě 0,

βtb P B, Dn ě N k , ||S n pb, g k q|| ă C|| t g k ||u ě ε (9)
Up to extraction, one may also suppose that the normalized sequence p t g k || t g k || q converges to an endomorphism f 8 P EndpV 0 q. By ( 9), there exists a set B 1 Ď B of measure at least ε such that for every b P B 1 , there are sequences of integers pk i q, pn i q going to infinity and satisfying

||S n i pb, g k i q|| ă C|| t g k i || leading to || t b n i . . . t b 1 f 8 || ă || t b n i . . . t b 1 pf 8 ´tg k i || t g k i || q|| `C " op|| t b n i . . . t b 1 ||q
where the last equality is true for almost every b. But this yields a contradiction with [START_REF] Benoist | Random Walks on Reductive groups[END_REF]Corollary 4.8]. Hence we have [START_REF] Benoist | Random Walks on Reductive groups[END_REF], and the lemma follows.

We can now conclude the section with the proof of Proposition 3.5

Proof of Proposition 3.5 . Denote by N I : B Ñ N Y t8u, b Þ Ñ 7tn ě 0, t n pbq P Iu the function that counts the time spent in I for the Cartan projection of a µ-trajectory on G. We want to bound above the expectation of N I . Let R ą lebpIq, ε Ps0, 1r, and n 0 ě 0 as in Lemma 3.6. We are going to show that for all k ě 0,

βtb P B, N I pbq ě kn 0 `1u ď ε k (10)
Once ( 10) is established, it is easy to conclude : Let us now prove [START_REF] Borel | Tits. Groupes reductifs[END_REF]. We introduce a sequence of stopping times pτ i : B Ñ N Y t8uq iě1 indicating the first hitting time of the interval I by the sequence pt n pbqq ně0 , then its successive return times separated by at least n 0 steps. τ 1 " inftn ě 0, t n P Iu, τ i`1 " inftn ě τ i `n0 , t n P Iu

Observe that βtb P B, N I pbq ě kn 0 `1u ď βtb P B, τ k`1 pbq ă 8u "

ÿ jPN k βtb P B, pτ i pbqq iďk " j, τ k`1 pbq ă 8u
The inequality R ą lebpIq yields for every j " pj 1 , . . . , j k q P N k the inclusion tb P B, pτ i pbqq iďk " j, τ k`1 pbq ă 8u Ď tb P B, pτ i pbqq iďk " j et Dn ě j k `n0 , t n pbq ă t j k pbq`Ru Using the Markov property and Lemma 3.6, we infer that βtb P B, pτ i pbqq iďk " j, τ k`1 pbq ă 8u ď βtb P B, pτ i pbqq iďk " ju ε Summing over every j P N k , and iterating the process, we obtain βtb P B, τ k`1 pbq ă 8u ď βtb P B, τ k pbq ă 8u ε ď ¨¨¨ď ε k Hence, as announced, βtb P B, N I pbq ě kn 0 `1u ď ε k

Recurrence and ergodicity

In this section we prove Proposition 3.1 : we assume the geodesic flow pa t q tPR on X to be recurrent ergodic and show that the µ-random walk on X is recurrent ergodic as well.

Recurrence

We begin with the recurrence of the walk.

Lemma 3.7. The µ-walk on X is recurrent

Consider a large compact set r L Ď X. We aim to show that for almost every x P X, and β-almost every b P B, there exist infinitely many times n ě 0 such that xb 1 . . . b n P r L Endow G with a left invariant Riemannian metric, X with the quotient metric, denote by ξ 0 " P ´{P ´the base point of the flag variety P ´. According to Corollary 2.6, there exists a constant C 0 ą 0 such that for β-almost every b P B, large enough n ě 0,

dpb 1 . . . b n , k 8 pbqa tnpbq q ď C 0 dpb 1 . . . b n , F pξ 0 , ξ b qq `C0
Fix a compact subset L Ď X and a constant R ą 0 (to be specified below), and assume r L contains the C 0 pR `1q-neighborhood of L. In this case, we just need to show that for almost every x P X, β-almost every b P B, there exists infinitely many times n ě 0 such that

xk 8 pbqa tnpbq P L and dpb 1 . . . b n , F pξ 0 , ξ b qq ď R ( 11 
)
The difficulty is that the set of return times in L given by tn ě 0, xk 8 pbqa tnpbq P Lu has null density in N, hence we can not say directly that it intersects tn ě 0, dpb 1 . . . b n , F pξ 0 , ξ b qq ď Ru even if the latter has a density close to one (by the proof of Theorem A).

A first important observation is that we can ignore the term k 8 pbq. More precisely, using Fubini's Theorem and equation 3, the statement [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF], hence Lemma 3.7, reduces to the following. Lemma 3.8. We can choose the parameters pL, Rq such that for almost every x P X, β-almost every b P B, infinitely many times n ě 0,

xa tnpbq P L and dpe, F pb ´1 n . . . b ´1 1 ξ 0 , ξ T n b qq ď R
This reduction is crucial because it separates the effects of the n first instructions pb 1 , . . . , b n q and of the tail T n b, thus allowing to argue conditionally to the situation at time n. To show Lemma 3.8, we use the following strategy : Prove that for almost every px, bq, the sequence pxa tnpbq q ně0 meets L infinitely often (Lemma 3.9). Show that among those n, infinitely many satisfy

dpe, F pb ´1 n . . . b ´1 1 ξ 0 , ξ T n b qq ď R
To obtain the latter, we justify in Lemma 3.10 that we may replace ξ T n b by the term b n`1 . . . b n`kn ξ n where k n ě 0 is a large integer, and ξ n is a random point on the flag variety P, then we use the Markov property to conclude (together with Lemma 3.11).

Let us begin with the statements and proofs of the three lemmas advertised at the moment. Lemma 3.9. We can choose the compact set L Ď X such that for almost every x P X, β-almost every b P B, there exists infinitely many times n ě 0 for which xa tnpbq P L Proof. Let us first specify the compact set L. According to Proposition 3.3, there exists a constant c ą 0 such that if I " r0, cs and ps k q Ñ `8 then for β-almost every b P B, 7tn ě 0, t n pbq P

ď kě0 I `sk u " `8 (12) 
Set c 1 " max |t|ďc dpe, a t q where d refers to the metric on G. Fix some point y 0 P X and set L " ty P X, dpy 0 , yq ď c 1 `1u the set of vectors y P X whose distance (in X) to y 0 is less than c 1 `1.

Let E Ď X be the set of elements x P X such that there exists a sequence of real numbers ps k q Ñ `8 for which pxa s k q Ñ y 0 . The assumption that the geodesic flow on X is recurrent ergodic implies that E has full measure in X. Let x P E. Then the set tt ą 0, xa t P Lu contains a subset of the form Ť kě0 I `s1 k where ps 1 k q Ñ `8. Hence, by ( 12), for β-almost every b P B, the sequence pxa tnpbq q meets L infinitely often. Lemma 3.10. Let δ ą 0. There exists a sequence of integers pk n q P N N ‹ such that for β-almost-every b P B and ν bN ‹ P -almost every pξ n q P P N ‹ , for large enough n ě 0, dpb n`1 . . . b n`kn ξ n , ξ T n b q ď δ Proof. We have for β-almost every b P B,

pb 1 . . . b n q ‹ ν P ÝÑ nÑ`8 ν P,b " δ ξ b hence ν P tξ P P, dpb 1 . . . b n ξ, ξ b q ą δu ÝÑ nÑ`8 0
Integrating in b P B, we obtain

β b ν P tpb, ξq P P, dpb 1 . . . b n ξ, ξ b q ą δu ÝÑ nÑ`8 0
Extracting a subsequence whose sum is finite, we obtain pk n q P N N ‹ such that

ÿ ně0 β b ν bN ‹ P tpb, pξ i qq P B ˆPN ‹ , dpb 1 . . . b kn ξ n , ξ b q ą δu ă 8
The observation that dpb 1 . . . b kn ξ n , ξ b q and dpb n`1 . . . b n`kn ξ n , ξ T n b q have the same law, combined with Borel-Cantelli Lemma, lead to the statement in Lemma 3.10.

Lemma 3.11.

There exists a constant R 1 ą 0 such that for every ξ ´P P

´, νtξ P P, dpe, F pξ ´, ξqq ď R 1 u ą 2{3

Proof. We know from Lemma 2.4 that for every ξ ´P P ´, there exists a constant R ξ ´ą 0 such that

νtξ P P, dpe, F pξ ´, ξqq ď R ξ ´u ą 2{3 (13) 
We need to show that R ξ ´may be chosen independently of ξ ´. To see this, notice that the function

F `Ñ r0, `8r, pξ ´, ξq Þ Ñ dpe, F pξ ´, ξqq
is continuous and proper, as it can be identified with the quotient map G{Z G paq Ñ r0, `8r, gZ G paq Þ Ñ dpg ´1, exppaqKq. In particular for all C ą 0, Heine Theorem gives a constant δ ą 0 such that for all pξ ´, ξq, pη ´, ηq P

F ẁith dpξ ´, η ´q ď δ, dpξ, ηq ď δ, dpe, F pξ ´, ξqq ď C ùñ dpe, F pη ´, ηqq ď C `1 (14) 
(13) and ( 14) together imply that the constant R ξ ´can be chosen uniformly on a neighborhood of ξ ´. The compactness of P ´then leads to a uniform constant R 1 ą 0 as in the statement of the lemma.

We now prove Lemma 3.8.

Proof of Lemma 3.8. We first make preparations to replace later the term ξ T n b by b n`1 . . . b n`kn ξ n where k n ě 0 is a large integer and ξ n is a random point on the flag variety P. Let R 1 ą 0 as in Lemma 3.11, set R " R 1 `1.

As we saw in the proof of Lemma 3.11, there exists a constant δ ą 0 such that for all pξ ´, ξ 1 q P F `, all ξ P P with dpξ 1 , ξq ď δ, one has dpe, F pξ ´, ξ 1 qq ď R 1 ùñ dpe, F pξ ´, ξqq ď R Choose a sequence pk n q P N N ‹ as in Lemma 3.10.

We now proceed to the proof. Let L Ď X be as in Lemma 3.9 and fix a vector x P X such that for almost every b P B, the set N x,b :" tn ě 0, xa tnpbq P Lu has infinite cardinal. Define by induction a sequence of stopping times

τ i : B Ñ N Y t8u setting $ & % τ 1 pbq :" inftn ě 0, n P N x,b u τ i`1 pbq :" inftn ě τ i pbq `kτ i pbq `1, n P N x,b u
Given some integers i 1 ą i 0 ě 0, one has by the Markov property and Lemma 3.11

p 1 3 q i 1 ´i0 `1 ě β b ν bN ‹ P tpb, pξ i qq P B ˆP, @i P i 0 , i 1 , dpe, F pb ´1 τ i pbq . . . b ´1 1 ξ 0 , b τ i pbq`1 . . . b τ i pbq`k τ i pbq ξ i qq ą R 1 u
Letting i 1 go to `8, we deduce that for β-almost every b P B, there exists

i ě i 0 such that dpe, F pb ´1 τ i pbq . . . b ´1 1 ξ 0 , b τ i pbq`1 . . . b τ i pbq`k τ i pbq ξ i qq ď R 1
As i 0 can be chosen arbitrarily large, we obtain that for almost-every b P B, almost every pξ i q P P N ‹ , there exists infinitely many integers i ě 0 such that

dpe, F pb ´1 τ i pbq . . . b ´1 1 ξ 0 , b τ i pbq`1 . . . b τ i pbq`k τ i pbq ξ i qq ď R 1 (15) 
But our choice of pk n q guarantees that for large enough i ě 0,

dpb τ i pbq`1 . . . b τ i pbq`k τ i pbq ξ i , ξ T τ i pbq q ď δ (16)
By ( 15), ( 16) and the definition of δ, we can conclude : for almost-every b P B, there exists infinitely many integers i ě 0 such that dpe, F pb ´1 τ i pbq . . . b ´1 1 ξ 0 , ξ T τ i pbq q ď R This finishes the proof of Lemma 3.8, yielding Lemma 3.7.

Ergodicity

We now prove the ergodicity of the µ-walk on X. Lemma 3.12. The µ-walk on X is ergodic.

The key idea is that the subgroup Γ µ generated by the support of µ must contain loxodromic elements, whose action on X is (almost) conjugate to the geodesic flow, hence ergodic. Recall that an element g 0 P G is loxodromic if it can be written, up to conjugation, as g 0 " ma c where m P K, c ą 0, and ma c " a c m (see also [START_REF] Benoist | Random Walks on Reductive groups[END_REF]Section 6.10]). Lemma 3.13. The action of a loxodromic element g 0 on X is conservative ergodic for the Haar measure.

In this statement the conservativity of g 0 means that for almost-every point x P X, the sequence pxg n 0 q ně0 subconverges to x (see [1, Section 1.1] for more details).

Proof of Lemma 3.13. One can assume that g 0 " ma c where m P K, c ą 0, and ma c " a c m. In particular, the recurrence of the geodesic flow on X implies the conservativity of g 0 . Its ergodicity follows by standard arguments (given for the geodesic flow in [START_REF] Aaronson | An Introduction to Infinite Ergodic Theory[END_REF]Theorem 7.4.3]). We explain them briefly. Denote by λ a Haar measure on X, let f, p P L 1 pX, λq with p ą 0, λppq " 1. Hopf Ergodic Theorem [1, 2.2.5] and the conservativity of g 0 imply the almostsure convergence :

ř n´1 k"0 f p.g k 0 q ř n´1 k"0 pp.g k 0 q ÝÑ nÑ˘8 E pλ p f p |Iq loooomoooon Φ f,p
where E pλ p f p |Iq is the conditional expectation of f {p for the probability measure pλ and with respect to the σ-algebra I of the λ-a.e. g 0 -invariant subsets of X. We need to show this σ-algebra is λ-trivial, which amounts to say that for every choice of f, p, the limit Φ f,p is λ-a.e. constant. Endow G with a Riemannian metric that is G-left invariant and K-right invariant, and equip X with the quotient metric. Arguing as in [1, 7.4.3] we can assume that p, then f , are regular enough so that Φ f,p is constant along the stable or unstable manifolds of g 0 . More precisely, denote by U Ď G (resp. U ´) unipotent connected subgroup of G whose Lie algebra is u (resp. u ´). Then for x P X, u P U , dpxug k 0 , xg k 0 q " dpxua k c , xa k c q ÝÑ kÑ`8 0 and the same goes for U ´and k Ñ ´8. By our choice of p and f , this yields for every u P U Y U ´the almost-sure equality Φ f,p p.uq " Φ f,p (λ-a.e.)

As U and U ´together generate G, the λ-a.e. invariance of Φ f,p by U and U ímplies its λ-a.e. invariance by a countable dense subset of G, hence by G. The map Φ f,p is then λ-a.e. constant.

Proof of Lemma 3.12. The subroup Γ µ generated by the support of µ is Zariskidense in G, so it must contain some loxodromic element g 0 (see [START_REF] Benoist | Random Walks on Reductive groups[END_REF]Prop. 6.11]). By Lemma 3.13, the action of g 0 on X is ergodic, hence so is the action of Γ µ . This proves the ergodicity of the µ-walk on X.

Transience

In this section we prove Proposition 3.2 : Proposition 3.2. If the Green functions of the geodesic flow Gp., F q F PP C pXq are all locally integrable, then it is also the case of the Green functions G µ p., F q F PP C pXq of the µ-walk on X.

Proof. Let E, F Ď X be compact K-invariant subsets of X and λ a Haar measure on X. We can write

ż E G µ px, F q dλpxq " ż E ż B ÿ ně0 1 F pxb 1 . . . b n q dβpbqdλpxq " ż E ż B ÿ ně0 1 F pxa tnpbq q dβpbqdλpxq ( 17 
)
where the last inequality comes from the K-invariance of E, F and λ.

Let

F 1 Ď X be a compact set such that Ť tPr0,1s F a t Ď F 1 . Then 1 F pxa tnpbq q ď ż R `1F 1 pxa t q1 rtnpbq,tnpbq`1s ptqdt (18) 
Combining ( 17) and ( 18), we obtain The term between brackets estimates the average time spent by the Cartan projection of a µ-trajectory on G in the interval rt ´1, ts. By Proposition 3.5 it is less than a constant R Ps0, `8r that does not depend on t but only on the initial data pG, K, a `, µq. Finally, we get

ż E G µ px, F q dλpxq ď ż E ż B ż R `ÿ ně0
ż E G µ px, F q dλpxq ď R ż E ż R `1F 1 pxa t q dtdλpxq " R ż E Gpx, F 1 q dλpxq ă `8 25 4 

Appendix : Hopf dichotomy for the geodesic flow

In this appendix, we justify the following fact used in Section 3. The notations are those of Section 3. In particular G is a connected simple real Lie group of rank one, Λ Ď G is a discrete subgroup, and X " ΛzG.

Fact 2

The geodesic flow pa t q tPR on X is either recurrent ergodic, or transient with locally integrable Green functions.

This result is already known but usually stated differently using the notion of Poincaré series, as in Theorem 4.1 below. We explain here why Fact 2 is a reformulation of Theorem 4.1. The point is that the Poincaré series of Λ at the maximal exponent expresses, up to a multiplicative constant, the integral of the Green function of the geodesic flow on a K-orbit in X (Lemma 4.3).

Recall first the notion of Poincaré series. Endow G{K with its standard structure of symmetric space, i.e. with its unique left G-invariant Riemannian metric that coincides with the Killing form on T K{K G{K » k K . Write d the corresponding distance map on G{K. Given points z 1 , z 2 P G{K, and a positive real number s ą 0, the Poincaré series of Λ at pz 1 , z 2 , sq is defined as

ppz 1 , z 2 , sq " ÿ gPΛ e ´sdpz 1 ,gz 2 q
Observe that the convergence or divergence of the series ppz 1 , z 2 , sq does not depend on the points z 1 , z 2 but only on the parameter s. It is then natural to introduce the number δ Λ " infts ą 0, ppz 1 , z 2 , sq ă 8u known as the critical exponent of Λ. As Λ is discrete, δ Λ is less or equal to the exponential growth rate of the volume of balls in G{K, given by

δ G " lim RÑ`8 1 R logpV R q
where V R ą 0 is the Riemannian volume of a ball of radius R in G{K. The case of equality δ Λ " δ G expresses that the orbits of Λ are not too sparse in G{K. As we see below, it is a necessary condition for the geodesic flow on X to be recurrent, but it is not sufficient in general. For instance, if G " P SL 2 pRq and X{K is a Z d -cover of a compact hyperbolic surface with d ě 3, then the geodesic flow on X is transient [START_REF] Rees | Checking ergodicity of some geodesic flows with infinite Gibbs measure[END_REF] but δ Λ " δ P SL 2 pRq " 1 [START_REF] Coulon | Twisted pattersonsullivan measures and applications to amenability and coverings[END_REF]. The following result claims that we can strengthen slightly the condition that δ Λ is maximal to characterize the situations of recurrence/transience. It is usually called Hopf-Tsuji-Sullivan Theorem, but it is actually due to Kaimanovich in the context of rank-one symmetric spaces.

Theorem 4.1. [22, Theorem 3.3] The geodesic flow pa t q on X is recurrent ergodic if and only if ppz 1 , z 2 , δ G q " `8, and is transient otherwise.

Remark. If G " Spp1, mq for some m ě 2, or G " F ´20

4

, then [START_REF] Corlette | Hausdorff dimensions of limit sets I[END_REF]Theorem 4.4] claims that a discrete subgroup Λ Ď G of infinite covolume satisfies δ Λ ă δ G . In particular, by Theorem 4.1, the geodesic flow on X " ΛzG is transient. According to Theorem B, the same holds true for walks on X given by a probability measure µ on G with finite first moment and Γ µ Zariski-dense in G.

We now explain why Fact 2 is a reformulation of Theorem 4.1. We freely identify any subset of G{K to a right K-invariant subset of G. Given z P G{K, ε ą 0, we denote by Bpz, εq the ball of center z and radius ε in the symmetric space G{K. We also set λ K the Haar probability measure on K. Finally, given s, t ě 0, c ą 1 we write s " c ˘1t if s P rc ´1t, cts. Lemma 4.2. For all ε ą 0, there exists c ą 1 such that for z 1 , z 2 P G{K,

g 1 P z 1 , ż K Gpg 1 k, Bpz 2 , εqqdλ K pkq " c ˘1e ´δG dpz 1 ,z 2 q (19)
Proof. Let m be the Liouville measure on the symmetric space G{K. According to Helgason's book [START_REF] Helgason | Groups & Geometric Analysis: Integral Geometry, Invariant Differential Operators and Spherical Functions[END_REF]Theorem 5.8], there exists a constant r ą 0 such that for all non-negative function measurable functions f :

G{K Ñ R `, ż G{K f dm " r ż KˆR `f pka t Kqσptq dλ K pkqdt (20) 
where σptq " Π αPΦ `sinhpαptv 0 qq dim gα , with v 0 P a `unique vector of norm 1 (see beginning of 3). We must have the equivalence σptq " r 1 e δ G t for some r 1 P t1{2, 1{4u as t goes to `8, and in particular, there exists a constant R ą 0 such that for all t ą 1,

σptq " R ˘1e δ G t
Let us now check [START_REF] Helgason | Groups & Geometric Analysis: Integral Geometry, Invariant Differential Operators and Spherical Functions[END_REF]. We can assume that g 1 " e and dpz 1 , z 2 q ą 1 `ε. Specifying f in [START_REF] Hopf | Statistik der geodätischen Linien in Mannigfaltigkeiten negativer Krümmung[END_REF] to be the characteristic function of the ball Bpz 2 , εq in G{K, we obtain V ε " r ż KˆR `1Bpz 2 ,εq pka t Kqσptq dλ K pkqdt " rR ˘1 ż KˆR `1Bpz 2 ,εq pka t Kqe δ G t dλ K pkqdt " rpRe ε q ˘1e δ G dpz 2 ,0q ż K Gpk, Bpz 2 , εqqdλ K pkq and finally, ż K Gpk, Bpz 2 , εqqdλ K pkq " V ε r ´1pRe ε q ˘1e ´δG dpz 2 ,0q

We now use the previous lemma to show that the Poincaré series of Λ with parameter s " δ G expresses the average of the Green function of the geodesic flow on a K-orbit in X. Given a point p P X{K and r ą 0, denote by Bpp, rq the ball of center p and radius r in X{K for the quotient metric, and define r X ppq as the supremum of the real numbers r ą 0 such that the preimage of Bpp, rq in G{K is a collection of disjoint open balls (on wich Λ acts transitively). In the case where Λ has no torsion, the action of Λ on such a collection of balls is simply transitive, and r X ppq is called the injectivity radius of X at p. In general, we only know that the action of Λ has finite stabilizer (by discreteness), and write N X ppq P N t0u its cardinal. Lemma 4.3. Let ε ą 0 and N P N t0u. There exists a constant C ą 1 such that for any p 1 , p 2 P X{K with r X pp 2 q ą ε and N X pp 2 q ď N , and any z 1 , z 2 P G{K, x 1 P X such that p 1 " Λz 1 " x 1 K, p 2 " Λz 2 , one has

ż K Gpx 1 k, Bpp 2 , εqqdλ K pkq " C ˘1ppz 1 , z 2 , δ G q
Proof. The assumption that r X pp 2 q ą ε means that the preimage in G{K of Bpp 2 , εq is the disjoint union Ť gPΛ Bpgz 2 , εq where each ball appears with multiplicity N X pp 2 q. Hence, given g 1 P G such that x 1 " Λg 1 , we can write

ż K Gpx 1 k, Bpp 2 , εqqdλ K pkq " 1 N X pp 2 q ÿ gPΛ ż K Gpg 1 k, Bpgz 2 , εqqdλ K pkq " c ˘1 1 N X pp 2 q ÿ gPΛ e δ G dpz 1 ,gz 2 q " c ˘1 1 N X pp 2 q ppz 1 , z 2 , δ G q
if c ą 1 is chosen as in Lemma 4.2.

It is now easy to conclude that Fact 2 is a reformulation of Theorem 4.1 :

Fact 2 ðñ Theorem 4.1. We check that the Poincaré series ppz 1 , z 2 , δ G q is finite if and only if the Green functions of the geodesic flow are locally integrable. Let z 2 P G{K, p 2 " Λz 2 P X{K its projection on X{K, pε, N q P R ą0 ˆN such that r X pp 2 q ą ε and N X pp 2 q ď N , and write C ą 1 the associated constant of Lemma 4.3. Let E Ď X be a right K-invariant compact subset. Lemma 4.3, together with the K-invariance of E and of the Haar measure λ on X, implies that ż E Gpx, Bpp 2 , εqqdλpxq "

ż E ż K Gpxk, Bpp 2 , εqqdλ K pkqdλpxq " ż E C ˘1ppz, z 2 , δ G qdλpxq " pCe δ G R q ˘1λpEqppz 1 , z 2 , δ G q (21)
where z P G{K is any lift of x (i.e. satisfies Λz " xK), z 1 is the lift of some fixed arbitrary point in E, and R is the diameter of the projection of E in X{K.

The equation ( 21) implies that Gp., Bpp 2 , εqq is locally integrable if and only if the poincaré series ppz 1 , z 2 , δ G q is finite. Notice this is also true if one replaces Bpp 2 , εq by any relatively compact subset F Ď X with positive measure. More precisely, if ppz 1 , z 2 , δ G q ă 8 then, covering F by a finite number of balls Bpp 2 , εq with ε ă r X pp 2 q, we infer from above that Gp., F q is locally integrable. Conversely, if ppz 1 , z 2 , δ G q " `8, then by Theorem 4.1, the geodesic flow is recurrent ergodic, and as F has positive measure, we necessarily have Gp., F q " `8 almost everywhere.

1 ,

 1 n , dpb 1 . . . b i , Cpbqq ď Ru ą 1 ´ε Here dpb 1 . . . b i , Cpbqq refers to the distance between b 1 . . . b i and Cpbq seen as a right K-invariant subset of G.

Lemma 2 . 8 . 8 ` 8 8 ` 8

 288888 For β-almost every b P B, for every α P Φ `, αpt n pbqq ÝÑ nÑ`Proof of Lemma 2.8. We only need to show that for every α P Π, β-almost every b P B, αpt n pbqq ÝÑ nÑ`

Theorem A bis .

 bis Keep the notations of Section 2.1. In particular, G is a connected semisimple real Lie group with finite center, µ a probability measure on G with Γ µ Zariski-dense in G, set B " G N ‹ , β " µ bN ‹ and for β-almost every b P B, choose a Cartan decomposition b 1 . . . b n " k n pbqa tnpbq l n pbq with k n pbq converging in K, and let k 8 pbq " lim k n pbq.

Lemma 3 . 4 .

 34 Let ε ą 0 and I Ď R a large enough bounded interval. Then for every g P G, lim inf sÑ`8 βtb P B, Dn ě 0, t gb 1 ...bn P I `su ą 1 ´ε

  βtb P B, Dn ě 0, log ||S n pb, gq|| P I `su ě β b P B, Dn ě 0, log ||S n pb, gqv g || P J `s and log ||S n pb, gq|| ´log ||S n pb, gqv g || ă R 1 ( ě 1 ´ε

βpN I ě nq ď ÿ kě0 n 0 βpN I ě kn 0 `1q ď n 0 1 1 ´ε and the constant n 0 1 1´ε

 1 depends on I only via the choice of R which is solely bound to satisfy R ą lebpIq.

  ||v 1 α || ě 1 2 . Let s, t P a and k P V K,α .

	||ρ α pa ´suka t v α q|| ě	1 2	e χαpt´sq
	which leads to		
	χ		

α pt ´sq ď log ||ρ α pa ´suka t q|| `log 2 However, log ||ρ α pa ´suka t q|| " χ α pκpa ´suka t qq ď ||χ α || ||κpa ´suka t q||, so χ α pt ´sq ď ||χ α || ||κpa ´suka t q|| `log 2

•

  Applying Lemma 3.4 with g " b 1 . . . b n k pbq , choose n k`1 pbq ą n k pbq for which βta P B, Dn P n k pbq, n k`1 pbq , t b 1 ...b n k pbq a n k pbq`1 ...an P I `Su ą 1 ´ε and such that n k`1 is a measurable function of the product b 1 . . . b n k pbq . Now observe that if 1 ď k 1 ă ¨¨¨ă k N are distinct integers, then by the Markov property

To check this, observe that the map φ : F `Ñ R `, pgξ 0 , gξ 0 q Þ Ñ dpe, F pgξ 0 , gξ 0 qq " dpg ´1, F pξ 0 , ξ 0 qq is continuous, hence its extension to P ´ˆP by setting φ " `8 on the (closed) complement P ´ˆP F `is measurable. Now the measurability of f follows from the measurability of B Ñ P, b Þ Ñ ξ b .