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Abstract

The selection of a validation basis from a full dataset is often required in indus-
trial use of supervised machine learning algorithm. This validation basis will serve
to realize an independent evaluation of the machine learning model. To select this
basis, we propose to adopt a “design of experiments” point of view, by using sta-
tistical criteria. We show that the “support points” concept, based on Maximum
Mean Discrepancy criteria, is particularly relevant. An industrial test case from the
company EDF illustrates the practical interest of the methodology.

1 Introduction

With the development of automatic diagnostics based on statistical predictive mod-
els, coming from any supervised machine learning (ML) algorithms, important
issues about model validation have been raised. For example in the industrial non-
destructive testing field (e.g. for aeronautic or nuclear industry), generalized auto-
mated inspection (that will allow large gain in terms of efficiency and economy)
has to provide high guarantees in terms of performance. In this case, it is necessary
to be able to select a validation data basis that will not be used for the training nor
the selection of the ML model [3, 7]. This validation data basis (also referred as
verification data in the literature) has not to be communicated to the ML develop-
ers because it will serve to realize an independent evaluation of the provided ML
model (applying a cross validation method is then not possible). This validation
sample is typically used to provide prediction residuals (which can be finely ana-
lyzed), as well as average ML model quality measures (as the mean square error
in a regression problem or the misclassification rate in a classification problem).
In this paper, we address the particular question about the way to select a
“good” validation basis from a dataset useful to specify a ML model. We use
indifferently the term “validation” and “test” for the basis (also called sample) be-
cause we restrict our problem to the distinction between a learning sample (which
includes the ML fitting and selection phases) and a test sample. An important
question is the number and the location of these test points. For the size of the test
sample, no general theoretical rule can be given while the classical ML handbooks



[6, 5] provide different heuristic rules (as, e.g., 80%/20% between the learning
and test samples and 50%/25%/25% between the learning, model selection and
test samples).

In our validation basis selection problem, the dataset already exists so the prob-
lem turns to selecting a certain number of points in a finite collection of points.
For simplicity, our work is limited to a supervised classification problem with two
clusters: a validation sample is extracted in each sub-dataset (corresponding to
each cluster). For the test sample location issue, simple selection algorithms are
sometimes insufficient to ensure the representativity of the validation basis, in par-
ticular for small-size and highly unbalanced datasets. Indeed, the simplest and
usual practice to build a test sample is to randomly extract an independent Monte
Carlo sample [6]. If the sample size is small, as for the space-filling design issues
[4], it is well known that the proposed points can be badly localized (test samples
too close from learning points or leaving large input space subdomain unsampled).
Therefore, a supervised selection based on statistical criteria is necessary.

A review of classical methods for solving this issue is given in [1]. For exam-
ple, CADEX [8] is a sequential selection algorithm of points inside a database to
put in a validation basis, via inter-points distance computations. From chemomet-
rics, [2] complements this literature with cluster-based selection methods. Several
ideas have also been recently introduced in order to help interpreting the ML mod-
els [10]. It consists in identifying (in the dataset) the so-called prototypes (data
instance representative of all the data) and criticisms (data instance not well repre-
sented by the set of prototypes). To extract prototypes and criticisms, [10] explains
the principle of a greedy algorithm based on the Maximum Mean Discrepancy
(MMD, see [13]).

Our work hybridizes the latter approach with the concepts of support points re-
cently introduced by [9], and which can be used to provide a representative sample
of a desired distribution, or a representative reduction of a big dataset. In Section
2, the support points based algorithm is presented, with a simple application case.
Section 3 illustrates the practical interest of the methodology on an industrial test
case. Section 4 concludes with some perspectives of this work.

2 Use of support points

In this section, we use the recent work of [9] about a method to compact a con-
tinuous probability distribution F into a set of representative points, called support
points. With respect to more heuristic methods for solving this problem, support
points have theoretical guarantees in terms of the asymptotic convergence of their
empirical distribution to F. Moreover, the extraction algorithm is efficient in terms
of computational cost, even for large-size test sample N (up to N = 10%) and in
high input space dimension d (as large as d = 500).

The construction of the support points is based on the optimization of the en-
ergy distance which is a particular case of the MMD criterion [14]. The MMD
provides a distance between F and a uniform distribution (via a kernel metric)
and can be used with a relative good computational efficiency in high dimension
(thanks to the kernel trick). Let denote X = (xi,...,x;) € R?. The discrete dis-
tribution of N, support points XV = (x<")),»:1va is denoted Fy, and the energy



distance between F and Fy, writes:
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with §,§’ ~ F and by using the Euclidean norm. The energy distance is always
non-negative and equals zero if the two distributions are the same. The support
points (£0)_; N, are then defined by minimizing d (F, Fy, ). Finding the support
points corresponds to solving an optimization problem of large complexity, where
F is empirically known by the sample points (the dataset). [9] provides an efficient
algorithm to solve it. The objective function is approximated by a Monte Carlo
estimate, giving
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where (x/ (k)) k=1...n 1 the n-size sample from F. This cost function can be written
as a difference of convex functions in x™ and then can be minimized thanks to a
formulation as a difference-of-convex program. This procedure being quite slow,
a combination of the convex-concave procedure (CCP) with resampling is used
(see [9] and references therein for details) in order to obtain an efficient algorithm.
The examples given by [9] clearly show that support points distribution are more
uniform than the ones of Monte Carlo and quasi-Monte Carlo samples [4].

In the CCP procedure, the selected points are not extracted from the dataset
but are the “best” points representative of the full dataset distribution. Therefore,
for our points selection problem, an additional step is required in order to find the
N, representative points inside the dataset. For each support point, we select the
nearest dataset point and call this new algorithm SPNN (“support points nearest
neighbor™).

To illustrate SPNN on a toy example, we build a two-class two-dimensional
(d = 2) dataset of size N = 100. The classification model is the following:

Y =1y xx%-x-3>0 3

with 1) the indicator function, X; ~ % (—10,10) and X ~ % (—10,10). The goal
is to extract 20% of points for the test sample, respecting the proportion of points in
each class. Applying the SPNN algorithm on the two sub-datasets (corresponding
to each class) gives Fig. 1 which shows that the test points distribution in each
class is quite satisfactory.

3 Application on an industrial use-case

This industrial problem aims at studying the fission products released in the pri-
mary circuit’s water of the EDF nuclear reactors, during the load drop phase of the
reactor cold shutdown. The available full dataset allows for N = 90 observations
containing d = 25 covariates (describing the operation conditions of the reactor
just before the shutdown) and the iodine activity level [12]. The goal is to model
the event that this iodine activity level exceeds a specific threshold, that can have
large impact on the scheduled planning, so on operational costs. Our classifica-
tion dataset is well balanced as 48.9% of the observations (called “positive”) are
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Figure 1: Indicator function example. Left: dataset points corresponding to the two
clusters (black: ¥ =0, red: Y = 1). Right: test points selected by the SPNN algorithm
(triangle symbol).

above the threshold and 51.1% of the observations (called “negative”) are below
the threshold.

For simplicity and, as it is not the subject of this work, we consider a naive
logistic linear regression model (which predicts the probability for an individual
to be positive) as the ML model (the probability threshold value of 0.5 is used to
assign each individual to one of the two classes). To measure the quality of this
ML model, we use the two main classification metrics: the error rate € (number of
missclassified observations on total number of observations) and the sensitivity 7
(number of well classified positive on the total number of positive observations).
Due to the large number of covariates relatively to the observations number, the
ML model applied on the full dataset (or on any sub-sample) gives unsurprisingly
an error rate of zero and a sensitivity of 100%. By using a leave-one-out (LOO)
procedure [6], we are able to evaluate these metrics in prediction: € = 18% and
T = 82%. This LOO procedure is also used in the following tests on each learn-
ing sample (resulting from the extraction of the validation sample from the full
sample).

Our goal is to study the capabilities of the SPNN algorithm in evaluating these
metrics for different sizes of the validation sample (between 10% and 66% of the
full sample size). Figure 2 provides the results that are compared to those obtained
from a random sampling strategy. Error rates and sensitivities seem adequately
predicted from the SPNN-based validation samples, from ratio N, /N between 0.1
and 0.35. Of course, this result is specific to our small-size use-case. For such stud-
ies, the results also clearly show the inadequacy of the random validation samples
to predict the ML model predictive capabilities. Indeed, their confidence-intervals
(CD) are huge and far from reference values.
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Figure 2: Classification metrics (error rate € at left and sensitivity 7 at right) on the
fission products dataset. Black line: reference values (LOO on full dataset). Red points
(resp. dotted line): values from SPNN-based validation sample (resp. LOO-learning
sample). Blue (resp. green) CI: 95%-CI from random validation samples (resp. LOO-
learning samples).

4 Conclusion

In this work, the SPNN algorithm has been proposed for the selection of a test
sample representative of a dataset. It is not restricted to an hypercubic domain (no
need to transform each input to % (0, 1)) as the classical space-filling criteria in the
computer experiments literature [4]. Moreover, compared to classical algorithms
(as CADEX [8]), its computational cost does not depend on the dataset size and
the data dimension. Its main practical limitation is that it becomes prohibitive for
a test sample size N, too large (> 10%).

Further improvements of this work would be interesting to study in a near
future. First, the approach gives equal importance to all the d inputs. It seems
however useless to consider the inputs whose influence is negligible on the output.
A preliminary step would be useful to identify important inputs and to apply the
test sample selection algorithm only on these components. Second, new ideas for
the support points definition can be developped, as for instance the use of the kernel
Wasserstein distance [11] instead of the energy distance. Finally, this algorithm
will also be useful for more complex classification problems where the inputs are
temporal signals or images. Specific kernels on the input space should be adapted
to these cases.
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