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Abstract

In this work we solve the problem of design of optimal multiplierless second-order Infinite Impulse Response (IIR) filters.
Given a frequency specification, we design a filter with fixed-point coefficients yielding minimal number of adders when evaluated
with Direct Form. The coefficient design and quantization steps, typically conducted independently, are now gathered into one
global optimization problem, modeled through mixed integer linear programming and efficiently solved using generic solvers.
Moreover, we guarantee the frequency-domain stability of the filter, increasing the confidence in the result. The generated filters
are implemented and synthesized using our new operators within FloPoCo IP core generator for Field Programmable Gate Arrays
(FPGA). With respect to state-of-the-art two-step filter design methods our one-step optimal design approach achieves, on average,
42% reduction in number of lookup tables (LUT) and 21% improvement in delay.

Index Terms

Digital filters, IIR, optimal design, multiplierless hardware, ILP

I. INTRODUCTION

Digital filters are essential components of modern technology, from medical equipment to scientific instruments. Filter design
is a core topic in digital signal processing and control, and efficient filter implementation in software and hardware has received
a significant research interest for half a century. Infinite impulse response (IIR) filters is class of widely-used recursive linear
time-invariant filters. IIR filters can be relatively easily designed in software, but hardware implementation is essential for
embedded systems, where performance/power constraints are critical. Some application domains, such as 5G/6G backbones
and autonomous vehicles, rely on reconfigurable hardware using Field Programmable Gate Arrays (FPGA).

A designer of floating-point software filters rely on many powerful and easy-to-use approaches. Hardware design is confronted
to numerous challenges, such as fixed-point arithmetic, which is more efficient in hardware. What is a constraint in software
(e.g. using 32-bit coefficients) becomes a degree of freedom in hardware (e.g. finding the smallest fixed-point format).

Classic fixed-point filter design and implementation flow follows three separate steps:
• filter design consists in finding real (in practice, double precision) filter coefficients, adhering to the given frequency

specification. IIR filters are defined by coefficients of a rational transfer function, for which a stability criteria must be
also satisfied. In general, a large amount of different filter coefficient sets can realize a given frequency specification;

• quantization converts the coefficients to a fixed-point representation in such a way that they still respect the given frequency
response;

• implementation consists in generating, using quantized coefficients, a valid hardware description. This step exposes a high
number of parameters, e.g. the type of multipliers used.

The combination of filter design and quantization steps has been studied extensively since 1960s, for IIR filters it can even be
considered solved, but with respect to a probabilistic error model, not guaranteeing numerical safety. A large body of work exists
for the implementation step. Hardware filters involve multiplications with constants, for which optimization techniques have
been extensively explored. In the shift-and-add-based methods, constant multiplications are replaced by additions, subtractions
and bit shifts. The associated optimization problem is known as the multiple constant multiplication (MCM) problem, for which
heuristics [7], [8] as well as optimal approaches exist [4], [5], [9]. Another constant multiplication method, especially relevant
for FPGAs, is based on precomputed tables and is called Ken Chapman multiplier (KCM), after its inventor [10]. It has also
been successfully applied to digital filtering [2], [5], [11] and in [1] an approach for optimization of combined quantization
and implementation steps has been proposed. Both KCM and shift-and-add reduce arithmetic resources by sharing intermediate
results. However, this reduction strongly depends on the coefficient values, which are typically fixed in the previous FD and
Q steps. This is a first major drawback of the state-of-the-art, since the obtained implementations are optimized only for one
filter instance, or a small sub-set of the overall design space.

In this work, we address the question of modeling the filter design, quantization and implementation steps as one
global optimization problem. This is a very difficult non-linear combinatorial problem, hence heuristics are often applied. In
contrast, our ambition is to attempt optimal solution thanks to the advancement of mixed-integer linear programming (MILP)
solvers. Hence, the objective is to model the combined problem using linear constraints over integer variables, and rely on
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Fig. 1: Direct form realization of a second-order IIR filter.

existing solvers such as CPLEX and Gurobi. This problem is very difficult in general case, it has been partially solved for FIR
filters in [6] but has not yet been attempted for IIR filters by previous work.

We restrict the design space to the second-order IIR filters, which are basic building blocks for higher-order filters [12]–[15]
that are often decomposed into second-order cascades. We consider the multiplierless implementation using optimal MCM
solution [4], [5], which is modeled as an MILP problem and can be easily incorporated for en overall global optimization
problem. The constraints of the global optimization approach include the frequency-domain specification constraints that capture
the combined filter design and quantization steps. They will define a (large) set of fixed-point coefficients achieving the given
frequency specification. We linearize the filter design constraints exploiting an efficient frequency discretization. Additionally,
for IIR filters, a stability constraint must be incorporated in the overall process. Classically, the stability criteria [16] is expressed
w.r.t. locations of filter’s poles, which is clearly non-linear but can be simplified in case of second-order filters. Moreover, we
show in the present paper that the stability constraints divide the design space into symmetrical zones and that optimization time
improvement can be achieved when these symmetries are broken. Finally, various cost functions can be considered. We target
a metric based on the number of adders in the multiplierless implementation, which is high-level but representative enough [4].
An important consequence of the global optimization approach is that if a stable implementation with a given fixed-point
wordlength is not possible, the proof is generated quickly. This allows the filter designer a faster implementation process. Our
approach is implemented as an open-source Julia package1, which takes the worldnegth and frequency specifications as inputs,
and generates the fixed-point coefficients for the multiplierless implementation with the minimal number of adders.

Finally, we implement a second-order hardware code generator within the FloPoCo hardware IP core generator for FPGAs.
Our implementations are numerically stable in the presence of rounding errors, guaranteeing that all output digits are correct.
Extensive benchmarks show that our one-step design process achieves significant performance improvement: 42% improvement
in number of LUTs and 21% in improvement in delay, on average.

Section II presents the proposed ILP model formulation, where we first detail the linear frequency constraints and provide
several search space reductions, followed by a high-level description of the overall formulation, including the MCM formulations
fromn [4]. In Section III, we show that our model combined with well-known solvers leads to the optimal design of multiple
filters in a reasonable amount of time, and present a hardware code generator.

II. ILP FORMULATION FOR SECOND-ORDER IIR FILTER DESIGN

A. Problem definition

Direct Form II structure of second order digital filters is represented in Figure 1. Its output is computed as follows:

yn =

2∑
k=0

bkun−k −
2∑

k=1

akyn−k, (1)

where ak, bk ∈ R are the filter coefficients. The corresponding transfer function is

H(z) =
B(z)

A(z)
=
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2
, (2)

with z ∈ C. Designing a filter means finding the coefficients ak and bk such that the filter is stable and given frequency
constraints hold. These constraints can be expressed as bounds on the filter frequency response:

β(ω) ≤
∣∣H(ejω)∣∣ ≤ β(ω) , ∀ω ∈ [0, π] , (3)

where β and β are the given frequency dependent lower and upper bounds. They typically encode constant bounds valid inside
frequency intervals.

As we will search for coefficients ak and bk in a FxP representation, we introduce a′k, b
′
k ∈ Z their integer counterparts that

are linked with these real numbers by

ak = 2−w+1 2ga a′k, a′k ∈
[
−2w−1 + 1, 2w−1

]
, (4)

bk = 2−w+1 2gb b′k, b′k ∈
[
−2w−1 + 1, 2w−1

]
, (5)

1available at
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where w is the wordlength (including sign bit), ga and gb are the maximum of the position of the most significant bit (MSB)
of the FxP representation (double braces represent intervals of integers). The MSB positions ga and gb together with the
wordlength w define the FxP representation of the coefficients. It is typical to use the same wordlength but to allow different
values for the MSB of the coefficients in the numerator and denominator of the transfert function. The optimal design process
proposed here is cast into the integer programming framework by searching for the integer counterparts a′k and b′k of the FxP
representation. The values of w, ga and gb are not known a priori but are critical since they actually fix the precision and
the range of FxP representation used for the coefficient: on the one hand, a large wordlength increases the precision of the
FxP representation but also lead to heavier hardware implementations. On the other hand, large values of the MSB enlarge
the domain of representable coefficients but also lower the precision of the FxP representation. Resolving this typical tradeoff
requires having tight bounds on the coefficients, which allow fixing the MSB of the representations. These bounds will have to
be computed as a preprocess before actually searching for values in the chosen FxP representation. The wordlength is typically
fixed independently to reach a user prescribed precision. The wordlength is supposed given here.

As it has been successfully done for FIR filters [17], we unify the filter coefficients design and their quantization by searching
directly for coefficients satisfying the frequency constraints in their FxP representation: the overall objective is to find FxP
representations of filter coefficients such that filter specifications are met and the hardware implementation is optimal with
respect to the number of adders. Extending this approach from FIR to IIR filters requires several technical contributions: the
frequency constraints (3) on the module of the rational transfert function (2) involve highly nonlinear operations, which are
linearized in Section II-B. A stability criteria is added to the ILP model, which allows enforcing stability of the coefficient
in FxP format. Bounds on the coefficients ak and bk are furthermore deduced in Section II-C. Search space reductions are
presented in Section II-D. The connection of this filter specification part of the model to two standard MCM ILP models for
the adder graphs formulation is presented in Section II-E.

B. Formulating linear frequency constraints

In order to use obtain an ILP model, we have to solve two issues related to the frequency constraints (3). First of all, (3)
actually enforces one constraint for each ω ∈ [0, π]. There are therefore infinitely many such constraints to be satisfied. The
constraint (3) is called semi-infinite (see [18] for a survey on this class of constraints). The standard discretization approach
to handling semi-infinite constraints consists in discretizing [0, π] into a finite set of frequencies Ωd, leading to a finite
number of constraints. This discretization can be dynamically updated, but we consider here a fixed discretization dedicated
to frequencies [17] and a a posteriori verification of the semi-infinite frequency constraint [19]. In the rare cases where the
verification fails, the verification procedure proposed in [19] outputs a faulty frequency that can be added to the discretized
set of frequencies for a new trial. Continuous variables generically lead to active constraints, which require some theory and
accurate algorithms with some adaptive discretization to allow discovering active frequencies for optimal coefficients (see [18],
[20] for details). Integer variables generically don’t lead to active constraints, therefore allowing a finite number additional faulty
frequency addition to the model before obtaining coefficients verifying the constraints associated to all frequencies. This easy
reduction to a finite problem of the semi-infinite constraint is a positive side-effect of searching directly FxP representations
of the coefficients.

After this discretization of the semi-infinite constraint, a finite number of nonlinear constraints need to be handled. For a
fixed ω ∈ Ωd, the constraint (3) includes a complex absolute value, which involves a square-root of squared terms, and a
fraction. By incorporating (2) into (3), then multiplying with the denominator

∣∣A(ejω)∣∣, and finally squaring the result we
obtain a constraint equivalent to (3): ∣∣A(ejω)∣∣2 β(ω)

2 ≤
∣∣B(ejω)∣∣2 ≤ ∣∣A(ejω)∣∣2 β(ω)

2
, (6)

where,

∣∣B(ejω)∣∣2 =

2∑
k=0

2∑
l=0

bkbl cos((k − l)ω), (7)

∣∣A(ejω)∣∣2 =

2∑
k=0

2∑
l=0

akal cos((k − l)ω), (8)

with a0 = 1.
Yet, in (7) and (8), the filter coefficients are still involved in bilinear terms bkbl and akal. Billionnet et al. [21] proposed a

method that allows linearizing products of positive integers assuming that bounds on these numbers are known: consider the
product z = xy where x, y, z ∈ N, with x ≤ x and y ≤ y. The linearization [21] basically consists in first rewriting of one of
the positive integers into its binary representation:

x =

dlog2 xe+1∑
k=0

2k tx,k, (9)
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where tx,k are binary auxiliary variables. This constraint ensures that the bits tx,k encode the value of x. Then, the product
z = xy becomes a sum of products between binary variables tx,k and a positive integer y. Finally, such a binary by integer
product is common and its well known linearization involves indicator or big M constraints [22], [23].

Here however, x and y correspond to filter coefficients that have no sign restriction. We extend the linearization exposed
above to signed integers by adding the auxiliary variables x+, y+ ∈ N and xsg, ysg ∈ {0, 1}, and link them by following
constraints:

x+ = |x| , y+ = |y| , (10)
xsg = sign(x) , ysg = sign(y) , (11)

z+ = x+y+, (12)

where the linearization of the absolute values (10) and the sign constraints (11) involve indicator or big M constraints [24],
[25], and where z+ = x+y+ is the positive case we already presented. Finally, z = ±z+ and the sign is determined by the
values of xsg and ysg directly in the model. This whole linearization relies on the fact that bounds on x and y are known. This
is addressed in the next subsection.

C. Stability and bounds on filter coefficients

Necessary and sufficient stability conditions for second-order filters are well-known [16, Section 16.8]:

−2 < a1 < 2, (13)
|a1| − 1 < a2 < 1. (14)

As explained before, the absolute value is standardly linearized using indicator or big M constraints, thus (13)-(14) actually
fit in an ILP model. From these constraints it is straightforward to derive bounds on ak: a1 ∈ ]−2, 2[ and a2 ∈ ]−1, 1[. These
bounds are independent of the frequency specification of the filter and yield an optimal value ga = 1 for the MSB of the
coefficients ak.

Bounds on bk, however, cannot be obtained independently of the filter specifications. Using the bounds (13)-(14) and the
fact the cosine in (8) belongs to [−1, 1], we deduce that

∣∣A(ejω)∣∣2 ≤ 16. This bound together with the frequency specification
constraints (6) lead to the following constraint that needs to be satisfied by the coefficients bk:∣∣B(ejω)∣∣2 ≤ 16β(ω)

2
. (15)

As can be seen from (7),
∣∣B(ejω)∣∣2 is a quadratic form bTQb with respect to the variables bk. Its characteristic matrix Q,

whose entries are Qkl = cos((k− l)ω), is symmetric and its spectrum is {0, 1− cos(2ω), 2 + cos(2ω)}. Its eigenvalues being
non-negative, the inequality constraint (15) is convex. As a consequence, some lower and upper bounds on the coefficients bk
can be computed by solving the convex quadratic problems consisting in minimizing or maximizing bk subject to the convex
quadratic constraints (15) for ∀ω ∈ Ωd′ where Ωd′ is a discretization of Ω. The global minimum and maximum of these
problems are required to be used as valid lower and upper bounds, such global extrema being easily computed by local solvers
since the quadratic constraints are all convex and the cost is linear. In particular, common MILP solvers can solve this kind
of nonlinear problem. In addition to allowing the linearization of frequency constraints, these bounds permit to decide a valid
value gb for the MSB of the coefficients bk.

These bounds do not take into account the specificity of filter we are designing and use worst case and simplified models.
Thus, it is possible to compute tighter these bounds in order to reduce the search space. This is explained in the next section.

D. Search space reduction

1) Linearized specifications projections: The bounds for ak and bk computed in the previous section allows implementing
an ILP model by fixing an FxP format and linearizing the bilinear terms involved in the frequency specifications. This first
incomplete ILP model does not include the geometry of the adder graph defined in Section II-E. Yet, in order to speed up the
solving of the complete ILP model, similarly to [17], we tighten the bounds on the coefficients by solving these incomplete
ILPs that are simpler than the complete ILP model in the sense that it does not include the geometry of the adder graph
defined in Section II-E: they consist in minimizing or maximizing b′k subject to the stability constraints and the linearized
frequency constraints. These ILPs are obviously more difficult to solve than the continuous convex quadratic problems used
in the previous section to obtain crude bounds, but still much easier to solve than the final comlpete model. As it has been
shown in [17] in the context of the design of FIR filters, solving these simpler ILPs to obtain tighter bounds for the solving of
the final ILP is worthwhile. However, this benefit has to be assessed experimentally in the context of second-order IIR filters.
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2) Symmetry breaking: The model contains some symmetries that can be broken in order to reduce the search space: the
first symmetry consists in simultaneously changing the sign of the values taken by b0, b1 and b2, the second symmetry consists
in exchanging the values taken by b0 and b2. These two symmetries leave the constraints on the coefficients bk unchanged, as
can be easily seen on the explicit expression

b20 + b21 + b22 + 2b0b1 cos(ω) + 2b1b2 cos(ω) + 2b0b2 cos(2ω), (16)

of (6) involved in the constraint (15): indeed, (16) is insensitive to changing all coefficients sign simultaneously, and to
exchanging b0 and b2. Both symmetries have no incidence one the MCM problem defined in Section II-E, the existence of
symmetric adder graphs being obvious for opposed or exchanged coefficients.

As a consequence, from an arbitrary solution with

b0 = b∗0, b1 = b∗1 and b2 = b∗2, (17)

we can build three new solutions by simply applying these symmetries:

b0 = −b∗0, b1 = −b∗1 and b2 = −b∗2, (18)
b0 = b∗2, b1 = b∗1 and b2 = b∗0, (19)
b0 = −b∗2, b1 = −b∗1 and b2 = −b∗0. (20)

The fourth solution (20) is obtained by applying the two symmetries consecutively, in any order. Note that some of these four
symmetric solutions (17)-(20) may be equal in some special cases, e. g., when b0 = b1 = b2 = 0.

Breaking these symmetries means finding additional constraints, called symmetry breaking constraints (SBCs), that remove
some symmetric solutions but keep at least one of them [26]. If necessary, symmetric solutions that have not been calculated
due to the SBCs can be built afterward. In the best case, SBCs keep only one solution among all symmetric solutions, in that
case the SBCs are called total. Therefore, we expect here to reduce the size of the search space of a ration 4 since solutions
come within symmetry classes containing 4 symmetric solutions. Finding SBCs for general symmetry groups is difficult, e. g.,
SBCs generation for symmetries consisting only of variable permutations rely on modern group theoretic algorithms [27]. In
our case, the symmetry group is generated by one variable permutation and one central symmetry. Up to our knowledge, SBCs
involving both variable permutations and central symmetries have not yet been investigated and no SBC defined for them.

The search space for b0, b1 and b2, which is R3, can be divided into four areas:

Σ1 =
{

(b0, b1, b2) ∈ R3 | b0 ≥ |b2|
}
, (21)

Σ2 =
{

(b0, b1, b2) ∈ R3 | − b0 ≥ |b2|
}
, (22)

Σ3 =
{

(b0, b1, b2) ∈ R3 | b2 ≥ |b0|
}
, (23)

Σ4 =
{

(b0, b1, b2) ∈ R3 | − b2 ≥ |b0|
}
. (24)

One can verify that: a solution lying inside Σ2 moves to Σ1 applying the sign symmetry; a solution lying inside Σ3 moves
to Σ1 applying the the exchange symmetry; a solution lying inside Σ4 moves to Σ1 applying both symmetries consecutively.
As a consequence, one can restrict the search to Σ1 and reconstruct all solutions using symmetries. This restriction to Σ1 is
achieved by adding the SBC

b0 ≥ |b2| (25)

to the model, which restricts the search to Σ1. Restricting to another Σi would be lead to another SBC, with an equivalent
improvement of the resolution process. Yet, on the frontier Σk ∩ Σl between areas two equivalent solutions might be kept
despite the SBC, which is a typical situation that is counterproductive to resolve because the great majority of the search space
lies in the interior the sets Σi and not on their boundaries (Σk ∩ Σl have zero volume in R3).

E. MCM for direct-form IIR filters

We stated that the last step of the filter design is the hardware implementation. This implementation can be optimized
solving the MCM problem and we propose to incorporate this solving into the MILP model we are building. The idea is to
link together an existing ILP model for MCM [28], [29] and the model used to search filter coefficients by adding a set of
constraints that we will refer to as glue.

Before adding glue constraints, we note that two MCMs are involved in CCDE (1) since two sets of constants are multiplied
with two variables. The objective function of each MCM-ILP model is meant to minimize the number of adders. We can sum
the objective functions. To minimize the number of structural adders we can subtract to the objective function binary variables,
one for each filter coefficient. Having these binary variables set to one if the associated coefficient is different to zero ensure
that the total number of adders is minimized. As it can be seen in Figure 1, a filter coefficient fixed to zero implies removing
an adder. After adding two MCM models, their output variables are linked to a′k and b′k.
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Glue in-between

Constraints w.r.t. specifications Constraints w.r.t. stability

MCM A MCM B

Symmetry breakingCoefficient bounds

Fig. 2: High-level overview of second-order IIR filter ILP model. Search space reductions by the mean of coefficient bounds
precomputation or symmetry breaking constraint are optional.

Filter Specifications

Solving a quadratic convex model

ILP model with specification and stability constraints without MCM

Bounds precomputation ak first / bk first / None

Final ILP model

Coefficients and adder graph

Fig. 3: Computation process that leads to an ILP model for the design of second-order IIR filter.

The model for MCM we use intrinsically bounds the AD. This limits the potential valid solutions of the theoretical MCM
problem. However, in recursive filters it is a reasonable objective to bound the AD so the feedback stays controlled. Thus, in
practice, this model would be preferred over a theoretical MCM.

F. Wrapping up

We propose a high-level representation of our model in Figure 2. Two blocks of constraints, represented with dashed lines,
are optional. Activating the coefficient bounds block corresponds to the precomputation of ak and bk bounds. In any case,
constraints with respect to specifications need a first bound on all the coefficients, these bounds are obtained by solving a
quadratic convex model. The whole process that leads to the final model is represented by the Figure 3 in which we recognize
the quadratic convex problem solving step and the optional reduction of the coefficient range. Doing or not the reduction of the
coefficient range does not impact the optimality of the solution but might speed up the resolution time which we investigate
in Section III.

Using a wide set of tools from optimization we obtained a linear model. To obtain this linear model we have solved a nonlinear
model. Yet, we showed that the problem we face is quadratic convex, thus, easy to solve, even using linear specialized solvers.
Finally, we have a model that, from filter specifications, permits us to directly obtain a hardware implementation. The traditional
three step process can be tackled as a single step which ensures that we do not lose information at each step. In the following
we test our linear model and verify that, using common MILP solvers, we are able to optimally solve practical second-order
IIR filter designs.

III. EXPERIMENTAL RESULTS

Although the design of second-order IIR filters is an important part of the design of larger order filters, usually benchmarks
are not intended to test their design efficiency but directly focus on large order filters. First, we propose a few sets of filter
specifications of increasing difficulty specially for testing the design of second-order IIR filters. Second, we report our results
and we compare them with other design methods in order to show that an optimal solution has a tangible impact on the
hardware.

A. Set of benchmarks

We use three sets of lowpass filters with increasing difficulty. For each set, one of the parameters, ht magnitude specification
δ or the width of the passband or stopband, is variable. These filters are given in Table I. To these sets we add another lowpass
filter, lp4, with a stopband in [0.0, 0.5π], a passband in [0.9π, π] and a δ of 0.1. Finally, we add a last filter, hp0, from the
literature [30]–[33] that we approximate from its frequency response showing the versatility of our model.

6



TABLE I: Sets of lowpass filters used for the IIR experiments. First the set with decreasing δ, next the sets with increasing
passband and stopband.

Name lp1k lp2k lp3k

k {0, 1, . . . , 9} {0, 1, . . . , 7} {0, 1, . . . , 7}
passband/π [0, 0.3] [0, 0.3 + 0.05k] [0, 0.3]
stopband/π [0.7, 1] [0.7, 1] [0.7− 0.05k, 1]
δ 0.1− 0.01k 0.1 0.1

It is important to note that for a given value of k and a given coefficients’ wordlength, our benchmark can lead to an instance
with filter specifications that are not realizable with a second-order IIR filter. Hence, the MILP solver will return “infeasible”
and our method proved that no method could produce a second-order IIR filter that satisfies those specifications with a given
coefficients’ wordlength.

B. Solving optimization problem

For the design of second-order IIR filters we use the modified MCM model from [29]. Instances were solved using CPLEX
on i7-10810U processor. The solving process has been tested with multiple parameter settings and based on unreported results
we chose to use symmetry breaking constraint and reduction of the ak coefficient range first and bk coefficient range second
with a time limit on this presolving. Note that even when the process stops because of that time limit, we still obtain a
suboptimal coefficient range bound which permits to reduce the search space.

We report optimization results in Table II and show that our method can find, in a reasonable time, second-order filters for
many different specifications using a reduced number of adders. In order to compare the hardware efficiency of our method to
the state of the art, we used MATLAB to obtain double precision coefficients for our benchmarks. Due to the design methods,
MATLAB was not able to return second-order IIR filter coefficients for a few specifications. By loosing up these, we obtained
second-order IIR filter coefficients for every filter specification that we did not proved infeasible. Then we truncated to the
nearest these coefficients for some wordlengths and compared hardware designs with our method. For that comparison we used
KCM (2-step KCM) on the coefficients obtained with MATLAB and, on truncated coefficients, we used a generic method with
(2-step Generic) and without (2-step Generic NoDSP) digital signal processors (DSPs). We also compare to a multiplierless
method using MCM (2-step MCM) on truncated coefficients.

In the following, the error, ε, corresponds to the distance between the target specification and the obtained frequency response.
As expected our method fits the specifications for every filter. In contrast, even double precision filter coefficients obtained
from MATLAB lead to a small error. Depending on the rounding, truncated coefficients can produce a filter that has a big error
to no error. Theses possibilities have been illustrated in Figure ?? for lp14. We can see on that figure that double precision
coefficients produce a frequency response that is close to the passband and stopband while our coefficients lead to a frequency
response that has a bigger margin from the bands.

Finally, hp0 has been defined with different sets of coefficients [31], [32]. To approximate it we used its poles and zeros from
[31], plus a gain, as it seems to be the most precise coefficients available. Obtaining coefficients that permit to approximate
this filter was not straightforward, we proved that for many sets of parameters, the coefficient wordlength and a approximation
percentage, there is no second order filter that satisfy the specifications. The poles of this filter are close to the unit circle
and especially to 1 thus it is not surprising that it is difficult to approximate it for frequencies around zero. However, by
adding more slack in the approximation these frequencies, we were able to find a set of coefficients that leads to a frequency
response close to the original. We represent both the original and our approximation in Figure ??. Due to its pole position, the
original filter is sensitive to rounding errors [33]. On the other hand, our coefficients (b0 = −101.5 , b1 = −51, b2 = −50.75,
a1 = −0.46875, a2 = −0.484375) lead to a transfer function with poles that are further from the unit circle.

C. Hardware implementation and comparison

We report most results in Table II. The results were obtained using FloPoCo [34] for the VHDL generation and Vivado
for their simulation. From Table II it can be noted that increasing the difficulty of specifications or the wordlength does not
necessarily lead to more look-up tables (LUTs) or a bigger delay for our method. On the other hand, in Figure 4 it can be seen
that, for the methods that rely on truncated coefficients, the number of LUTs and DSPs tends to increase with the wordlength
while it is not clear that it permits to the error to decrease. Our method seems robust as the number of LUTs does not increase
much with the wordlength and even decreases when a better solution in term of the number of adders is found.

Finally, in Figure 5 we note that other methods led to twice the number of LUTs in many cases or about the same number
of LUTs plus DSPs. For wordlengths from 4 to 10 our method permits an improvement on the average number of LUTs of
42% compare to other methods and an improvement of 21% for the delay. This improvement was possible perfectly fitting
target specifications while other methods led to some error.
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TABLE II: Optimization results for our method using ILP1 with CPLEX and synthesis results for a data wordlength of 16 –
The time (in seconds) of the solving process is reported in the Time column and the number of adders are reported in three
columns: AM , AS and A (A = AM +AS). Column w corresponds to the wordlength for which this was achieved. Columns
delay and #LUTs are the synthesis results.

Names W ε Time (s) AM AS A delay (ns) #LUTs

lp10 4 0 2 1 4 5 7.446 96
lp11 4 0 2 1 4 5 7.452 98
lp12 4 0 2 2 4 6 7.676 115
lp13 4 0 2 3 4 7 7.731 140
lp13 7 0 13 2 4 6 7.754 123
lp14 5 0 2 4 4 8 8.460 160
lp14 7 0 14 3 4 7 8.439 147
lp15 5 0 2 4 4 8 8.460 160
lp20 4 0 2 1 4 5 7.446 96
lp21 4 0 2 1 4 5 7.452 98
lp22 5 0 3 3 4 7 8.632 146
lp22 10 0 320 3 4 7 7.617 138
lp23 6 0 2 4 4 8 8.763 171
lp23 7 0 7 4 4 8 8.924 163
lp30 4 0 2 1 4 5 7.446 96
lp31 4 0 2 2 4 6 7.612 119
lp31 10 0 59 2 4 6 7.829 116
lp32 4 0 2 3 4 7 8.654 136
lp33 5 0 2 3 4 7 8.468 142
lp4 4 0 1 1 4 5 7.525 74
lp4 7 0 7 1 3 4 7.570 100

IV. CONCLUSION AND PERSPECTIVES

• Our method works, we have certified optimal second-order IIR filters
• This probably can be extended to third and fourth order IIR filters as there exists explicit formulas for roots
• Is that important to do? (Numerical instability)
• Problem: Certified optimality is lost when using an external algorithm for the decomposition
• Can we overcome that with a better method?
• Extension to higher order IIR. Essentially needs to extend the stability constraints. They are nonlinear and can be included

as constraints in an optimization problem, but they are not tractable (see, e.g., []). Sufficient conditions that can be linearized
need to be investigated.

REFERENCES

[1] A. Volkova, M. Istoan, F. de Dinechin, and T. Hilaire, “Towards Hardware IIR Filters Computing Just Right: Direct Form I Case Study,” IEEE Transactions
on Computers, pp. 1–1, 2019, https://doi.org/10.1109/TC.2018.2879432

[2] F. d. Dinechin, S.-I. Filip, L. Forget, and M. Kumm, “Table-Based versus Shift-And-Add Constant Multipliers for FPGAs,” in IEEE Symposium on
Computer Arithmetic (ARITH), 2019, https://doi.org/10.1109/ARITH.2019.00037

[3] M. Kumm, O. Gustafsson, F. de Dinechin, J. Kappauf, and P. Zipf, “Karatsuba with Rectangular Multipliers for FPGAs,” in IEEE Symposium on
Computer Arithmetic (ARITH), 2018, https://doi.org/10.1109/ARITH.2018.8464809. (achieved the best paper award)

[4] M. Kumm, “Optimal Constant Multiplication using Integer Linear Programming,” IEEE Transactions on Circuits and Systems II: Express Briefs, 2018,
https://doi.org/10.1109/TC.2018.2879432
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