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[1] Nonirrigated agriculture on the Iberian Peninsula is regularly affected by dry periods
that can cause important losses. This paper focuses on the comparison of the classical
Standard Precipitation Index (SPI) with a fragility index developed by the multivariate
extreme value theory community, which is used to describe monthly precipitation deficits
below 30.5 mm (about 1 mm/d) in the Spanish Duero basin. The multivariate extreme value
model allows to capture relevant information concerning the dependence structure among
extreme precipitation deficits. Maps of those extremal dependence summaries and of
loadings of principal components of the SPI provide quantitative information for water
management. In addition, jointly analyzing data from several stations improves the
inference of uncertainty. Spatial patterns of extremal dependence emerged with respect to
orographic features. Most severe dry spells occur in the southeast of the Duero basin. In
central plain of the Duero basin, a predominantly agricultural area, a strong fragility index
for severity of dry spells is particularly found in eastern regions. Results of the MEVT and
SPI analysis point in the same direction. Beyond this, the MEVT assessment gives a
quantitative measure of the dependence between stations and regions. Estimates of return
periods for extreme dry spell severity are discussed. Deficits below 42.7 mm are also
analyzed.

Citation: Kallache, M., P. Naveau, and M. Vrac (2013), Spatial assessment of precipitation deficits in the Duero basin (central Spain)
with multivariate extreme value statistics, Water Resour. Res., 49, 6716–6730, doi:10.1002/wrcr.20490.

1. Introduction

[2] Dry periods are common in central Spain. They
mostly affect the agricultural and tourism sectors. Crop
yields on the Iberian Peninsula have been severely reduced
during dry years [Vicente-Serrano, 2006]. In the case of
extreme droughts, the water supply of the whole region is
under question, as happened in the mid-1990s for the
region of Madrid. In this paper, rainfall deficits of monthly
precipitation totals are analyzed for the Duero basin located
in central Spain. High rainfall deficits indicate dry periods
and thus potentially adverse conditions for agriculture. The
main scope of our paper is the analysis of spatial depend-
ence of extreme rainfall deficits.

[3] Dry periods have many facets, such as spatial exten-
sion, severity, and duration. Therefore, diverse definitions
of a dry period exist, depending on the scope of a study.
Intense research on droughts in the last decades leads to a

portfolio of drought concepts and drought classifications.
Here droughts are commonly seen as deviation from nor-
mal conditions [see, e.g., World Meteorological Organiza-
tion, 1986; Mishra and Singh, 2010]. Precipitation is
commonly used to indicate meteorological droughts, river
runoff deficits represent hydrological droughts, and a lack
of soil moisture is related to agricultural droughts. An over-
view is given in Hisdal and Tallaksen [2000], Heim [2002],
or Keyantash and Dracup [2002]. Another important
branch investigates the characteristics of dry spells. Com-
monly, a dry spell is seen as a period of abnormally dry
weather (normally reserved for less extensive, and there-
fore less severe, conditions than for droughts). Dry spell
definitions are usually derived from the definition of a dry
day. In general, a common threshold level is used to define
a dry day and thus a dry spell, e.g., 0.1 mm/d or 5 mm/d.
The level depends on the application at hand [cf. Mathu-
gama and Peiris, 2011; Lana et al., 2008; Ceballos et al.,
2004]. In this study, monthly precipitation deficits are ana-
lyzed with the Standard Precipitation Index (SPI) and with
a multivariate extreme value analysis [see, e.g., Coles,
2001; Beirlant et al., 2004; Resnick, 2007] of cumulative
precipitation below 30.5 mm. The focus of our work lies in
the application of this novel approach to cumulative precip-
itation deficits and in its comparison with the common SPI.
One motivation for the multivariate extreme value analysis
is the creation of dependence maps for extreme precipita-
tion deficits. This important visualization of spatial depend-
ence complements common frequency maps, which
document the frequency of occurrence of past dry periods.
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[4] The number of application of multivariate extreme
value theory (MEVT) to geophysical sciences has been
steadily growing during this late decade. To name a few,
Blanchet et al. [2009] studied snow cover over Switzerland,
Ribatet et al. [2012] and Cooley et al. [2007] estimated pre-
cipitation return levels, and de Haan and de Ronde [1998]
investigated sea level and wind extremes. Besides those
references, there exists a large body of work concerning the
modeling and the inference of extremes. In this work, we
focus our attention on the so-called fragility index (FI), an
indicator of extremal dependence that has been studied by
Geluk et al. [2007] and Tichy and Falk [2009] for financial
application. This indicator basically counts the expected
number of extremes given that another extreme event has
already occurred. Section 4.2 provides a precise definition
of this probabilistic tool.

[5] The SPI (see equation (1) for details) is a common
drought assessment indicator with good performances
under various conditions [see, e.g., Heim, 2002; Keyantash
and Dracup, 2002]. By applying a principal component
analysis (PCA) to the SPI data, regions with similar vari-
ability can be identified and according spatial maps pro-
vided [cf., e.g., Raziei et al., 2009].

[6] This article is organized as follows. In section 2, the
Duero basin region characteristics are described. Monthly
precipitation deficits and droughts are defined then in sec-
tion 3. The MEVT analysis method is described in section
4 and applied to the Duero basin in section 5. For the same
basin, the SPI approach is applied and then discussed in
section 6. Conclusions are given in section 7.

2. The Duero Basin

[7] The watershed has a surface area of 97.290 km2 and
extends 78.954 km2. It is the most extensive watershed of
the Iberian Peninsula. The topography of the basin is
depicted in Figure 1a. Spatially, mean annual precipitation
decreases from North to South. The mountain range which
surrounds a topographic depression in the middle of the ba-
sin has the largest precipitation intensity. The central zone
is very dry, contains most of the aquifer formations and is
an important area of agricultural production. Most of the
population lives in the central plain, and so water consump-
tion happens mostly here. The volume of average annual

precipitation in the complete Duero basin is around 50,000
hm3, of which the majority (35,000) hm3 evaporates or is
directly used by the vegetation [Moratiel et al., 2011]. Pre-
cipitation shows a marked seasonality. It peaks roughly in
autumn and winter and decreases in spring to its lowest
amounts in summer [Mor�an-Tejeda et al., 2011c]. Precipi-
tation from October to December generates soil water
reserves and runoff. The dry period coincides with warm
temperatures in summer [Mor�an-Tejeda et al., 2011c].
Summer drought conditions affect 90% of the surface of
the Duero river basin [Moratiel et al., 2011]. Rivers in this
basin are highly regulated, which hinders stochastic model-
ing of river runoff. Here we concentrate thus on the analy-
sis of precipitation. In any case, meteorological and
hydrological droughts are often well correlated [Lorenzo-
Lacruz et al., 2010].

[8] During the summer months, precipitation is mostly
associated with storms and convective systems that occur
with high spatial irregularity. In winter, larger and more sys-
temic events impact precipitation. Various studies show a
relationship between high values of the North Atlantic Oscil-
lation (NAO) index and the decrease in winter precipitation
in the western part of the Iberian Peninsula [cf., e.g.,
McCabe et al., 2001; Ceballos et al., 2004; Caramelo and
Manso Orgaz, 2007]. Mor�an-Tejeda et al. [2011b] describe
moreover the connection between river runoff and the NAO.

[9] The most vulnerable sectors to water stress in the
Duero basin are the tourism and the agricultural sector. In
2003, still over 50% of the Duero basin area has been used
as cropland [Mor�an-Tejeda et al., 2011a], mainly for
summer production (the cultivation of winter crops is less
than 5%) [MARM, 2008]. Though dry, the basin has enough
water to allow mostly for nonirrigated agriculture. Official
statistics indicate that only about 10% of the area is irri-
gated. The irrigation season is from May to October [cf.
Gil et al., 2011], due to precipitation decrease and increase
in evapotranspiration during this period [Moneo La�ım,
2008].

3. Indication of Dry Periods: The SPI and
Cumulative Precipitation Deficits

[10] The SPI was developed by McKee et al. [1993] and
indicates standardized precipitation anomalies. To calculate

Figure 1. (a) Elevation and rivers of the Duero basin in central Spain. (b) Parts of subwaterbasins in
the middle of the Duero basin, in which agriculture plays a major role. The available precipitation sta-
tions are marked with dots.
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it, precipitation is commonly fitted by a Gamma distribu-
tion whose parameters are estimated at each station and for
each month [cf., e.g., Keyantash and Dracup, 2002; Vidal
and Wade, 2009; Hayes et al., 1999]. To account for dry
events, the cumulative distribution function (cdf), say H(x),
is represented by a mixture model

H xð Þ ¼ qþ 1� qð ÞG xð Þ; ð1Þ

where G(x) denotes the Gamma cdf and q corresponds to
the probability of a dry event.

[11] To standardize and compare series at different
weather stations, H(x) is transformed into a standard Gaus-
sian cdf. The SPI values are quantiles of this standard nor-
mal distribution [Wanders et al., 2010]. In other words, the
SPI of the precipitation amount x corresponds to
F(�1) H xð Þð Þ, where F(�1) (.) corresponds to the inverse of
the Gaussian cdf.

[12] Although there exists no universal drought indica-
tors, Keyantash and Dracup [2002] tested the robustness of
18 different drought indices by means of statistical methods
and concluded that the SPI represents the best climatic index
for drought identification and for quantification of the sever-
ity, duration, and spatial extent of droughts. Compared to
other indicators, the SPI success can be explained by its
capacity to cope with sparse data. SPI does neither consider
soil moisture nor temperatures. Indicators that include soil
moisture depend crucially on adequate soil maps with reli-
able soil textures and associated hydraulic properties [Wan-
ders et al., 2010]. Yet such data are often not available.
Improvement of drought indices may also be achieved by
the consideration of management and storage effects. Basin
managers rather rely on precipitation and runoff variables to
determine the onset of droughts [Garrote et al., 2007]. Many
complex indices which take storage and management into
account are not easily be interpolated across regions and
cannot be validated over wide geographical areas.

[13] Droughts are commonly defined as deviations from
normal circumstances. For a humid location, the indication
of a drought does, therefore, not necessarily imply the need
for irrigation measures for agricultural plants. Dry spells
are defined as a set of consecutive days with daily rainfall

amounts below a fixed level [Lana et al., 2008]. For
extreme events, we focus here on cumulative precipitation
deficits below a given precipitation level [Engeland et al.,
2004]. This approach was originally called ‘‘method of
crossing theory’’ [Rice, 1945]. It was extended by Cram�er
and Leadbetter [1967] and applied in hydrology by, e.g.,
Yevjevich [1967]. To be able to infer to irrigation needs,
here fixed levels will be used, e.g., 1 mm per day [Ceballos
et al., 2004]. The undershooted percentile may thus vary
from site to site. In order to apply this approach, we need to
describe precisely our definition of cumulative precipitation
deficits. In particular, we need to chose a level.

[14] Common dry spells levels lie between 0.1 mm/d and
30 mm/d [Ceballos et al., 2004; Lana et al., 2008] and pre-
cipitation below 1 mm/d is directly evaporated off. In this
paper, we mainly focus on the level of 30.5 mm/month
(i.e., 1 mm/d) to define our cumulation deficit. We have
also studied a second level of 42.7 mm/month, see the fig-
ures and conclusions. Our level choice makes sense for the
rather dry basin of the Duero river with average precipita-
tion amounts of 1.72 mm/d, about 53 mm/month.

[15] Let pt be the precipitation amount for month t. Our
cumulative precipitation deficit event Di is then defined as
the sum of monthly deficits (i.e., when pt < 30:5) as

Di ¼
Xend i

t¼start i

30:5� ptð Þ; ð2Þ

where starti and endi correspond to the starting and ending
month of the ith deficit event during the period of interest,
respectively. The cumulative precipitation deficit of an
event, that is a dry spell, indicates its severity. Figure 2
illustrates this computation. In Figure 3, three SPIs (SPI,
SPI3, and SPI6) and the cumulative precipitation deficit are
compared for the station ‘‘La Parilla’’ during the time pe-
riod 1970–1972. The SPIs are derived from monthly pre-
cipitation (SPI1), running means of 3 months (SPI3), or 6
months (SPI6) of precipitation and are depicted with lines.
The horizontal straight lines indicate the standard SPI
drought classification from moderate to extreme droughts
[Wanders et al., 2010]. Black triangles and diamonds mark
cumulative precipitation deficits (they have been standar-
dized to zero mean and unit variance). For the cumulative
precipitation deficit, no running mean over several months
is taken. Avoiding this smoothing procedure preserves very
low deficits as illustrated in Figure 3. On the other hand,
cumulative precipitation deficits result in one single event
per dry spell. As precipitation deficits are cumulated for
consecutive months, they can get large when a dry period
persists. For this example, a dry event lasted about 6
months in autumn/winter 1971 and lead to a high cumula-
tive precipitation deficit. The SPI averages over a fixed
number of months. Here, in contrast, the dry period may be
cut into several values of moderate amount, depending on
the window length chosen for averaging.

[16] Concerning the seasons of interest, we study two
time periods, the irrigation period from May to October
and the entire year.

[17] An overview of the dry spell characteristics is given
in Table 1. The average dry spell lengths are between 2 and
3 months. The number of dry spell occurrences is about the

Figure 2. Precipitation at station Valladolid for years
1961–1968 (black line). Connected areas below the levels
30.5 mm/month and 42.7 mm/month indicate dry spells
(gray hatched areas).
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same for irrigation period and the whole year. Dry spells
occur frequently in winter, but they are more severe during
the irrigation period.

[18] Our time series come from the MOPREDAS data-
base [Gonz�alez-Hidalgo et al., 2010], which include meas-
urements from 1945 to 2005. Those records have been
homogenized, gaps have been filled, and outliers have been
discarded. To do so, reference series have been calculated
from neighboring sites. Details on the procedures are out-
lined in Gonz�alez-Hidalgo et al. [2010]. A total of 491 sta-
tions are available for the whole Duero basin (cf. Figure
1a), and 175 stations from the crop lands in the center of
the basin (see Figure 1b). Concerning the temporal cluster-
ing of dry spells that can affect the statistical analysis, shift-
ing algorithms have been used to deal with this issue. For
details, see Appendix B.

[19] To conclude this section, we note that a strong cor-
relation between dry spell severity and dry spell duration is
found in this data set. This leads us to only focus on dry
spell severity. Still, commonly frequency or duration of dry
spells has been assessed in the past [see, e.g., Mathugama
and Peiris, 2011].

4. Modeling Multivariate Extremes

4.1. Defining Extreme Precipitation Deficits

[20] In the previous section, the level of 30.5 mm/month
was used to define cumulative precipitation deficits, see
equation (2). In this work, we would like to study extreme
deficits. This means that another threshold is needed to
select a subset of those already low precipitation quantities.
In other words, extremes correspond here to very low pre-

cipitation amounts that have been thresholded twice, first to
define precipitation deficits and second to introduce
extreme cumulative precipitation deficits. As a compromise
between sample sizes and modeling considerations, the
threshold for defining extreme deficits is set to be equal to
the 50th percentile of whole year precipitation deficits and
for the irrigation period all deficit events have been used. A
study of subbasin regions, where station series in those
regions have been joined (see section 5.2), is based on the
rate of 20% uppermost dry spells (for the whole year and
for the irrigation period). To explore the suitability with
respect to the expected EVT Generalized Pareto Distribu-
tion (GPD) [see, e.g., Coles, 2001], an Anderson-Darling
test [cf. Choulakian and Stephens, 2001] has been applied
to those extreme deficits. One percentage of the series did
not suit the GPD at a significance level of 0.05, which is
less than the expected 5%. So, the GPD hypothesis is rein-
forced. To complement this test, quantile-quantile plots for
the GPD [see Coles, 2001] have been inspected for a few
stations randomly chosen. Those graphs seem adequate
(results are not shown, but available upon request). As one
may expect for precipitation deficits, they have an upper
endpoint, most of the estimated GPD shape parameters are
negative. This endpoint corresponds to the theoretical event
of no precipitation during the whole time period.

[21] A prerequisite of applying the multivariate extreme
value model is that extremes at each site are independent
and identically distributed in time [cf. Coles, 2001]. No sig-
nificant temporal trends have been found for the region and
time period analyzed [Ceballos et al., 2004]. To assess tem-
poral clustering among extreme deficits, the so-called
extremal index that measures the reciprocal of the limiting

Table 1. Dry Spell Definition Levels and According Characteristics on Average (Minimum-Maximum) Over all Stations and Years

Level (mm/Month) Dry Spell Length (Month) Dry Spell Number Dry Spell Severity (mm/Dry Spell Length)

30.5 (All year) 2 (1.3–3.7) 147 (60–180, 1–3 per year) 33.73 (17.74–68.13)
30.5 (Irrigation period) 2.4 (1.3–3.7) 68 (48–79, 0.8–1.3 per period) 43.59 (18.05–101.93)
42.7 (All year) 2.73 (1.4–5.5) 147 (83–172, 1.3–2.8 per year) 64.21 (27.13–151.29)
42.7 (Irrigation period) 3.1 (1.5–5.7) 67 (46–81, 0.8–1.3 per period) 84.1 (31.37–217.2)

Figure 3. SPI1, SPI3, and SPI6 and the cumulative precipitation deficits (standardized, negative) at
level 30.5 mm/month and 42.7 mm/month for station La Parilla and years 1970–1972.
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mean cluster size of extremes has been estimated by using
the method of Ferro and Segers [2003]. For our excesses,
no significant clusters were found. Consequently, we regard
those extreme deficits as temporally independent and iden-
tically distributed.

[22] Without loss of generality, all precipitation deficits
are changed into unit Fr�echet random variables by applying
a probability integral transform [cf. Ramos and Ledford,
2009; Cooley et al., 2010]. We recall that the unit Fr�echet
distribution P X � xð Þ ¼ exp �1=xð Þ for x > 0 is max-
stable. In the sequel, X ¼ X1; . . . ;Xdð ÞT will correspond to
a multivariate random vector with unit Fr�echet marginals
(other choices for marginals are possible). This framework
simplifies the MEVT dependence model and its inference
because the marginal behavior can be decoupled from the
issue of dependence among extremes [see, e.g., Ledford
and Tawn, 1997].

4.2. The Fragility Index FI Inference

[23] The concept of measuring dependences among
extremes lays at the core of the FI. While it is trivial to define
independence, it is arduous to describe and infer various
degrees of dependence or near independence in MEVT. One
particular delicate point resides in the subtle case of asymp-
totically independence. To illustrate this point, suppose that
the vector X has only two components and that we are inter-
ested in the conditional probability, P X1 > qjX2 > qð Þ, of
observing a large of X1 given X2 is also large,

lim
q!1

P X1 > qjX2 > qð Þ ¼ �: ð3Þ

[24] If � > 0, then X1 and X2 are said to be asymptoti-
cally dependent. If � ¼ 0, then we are in the case of as-
ymptotic independence [Sibuya, 1960]. Another way to
interpret � is to introduce the limiting expected number of
extremes given that one extreme event has occurred al-
ready. This number is denoted by N and has been studied
by Geluk et al. [2007] and Tichy and Falk [2009]. For the
bivariate case, N ¼ 2= 2� �ð Þ varies between one and two.

[25] In MEVT, it is classical to present all mathematical
results in terms of excess above a high threshold or max-
ima. For our application, we focus on precipitation deficits,
and consequently, we study low values under a threshold.
Theoretically, it is always possible to multiply by �1. This
trick transforms deficits under a low threshold into excesses
above a high threshold. For this reason, we follow the con-
ventional way to present MEVT tools, and in practice,
those tools will be applied on negative deficits, i.e.,
excesses.

[26] The asymptotically independent case (� ¼ 0 or
N¼ 1) is complex because the definition � does not capture
anything about the rate of convergence toward zero. For
example, if the original vector comes from a standardized
bivariate Gaussian random vector with a strong correlation
coefficient (say 0.99), it is possible to show that � ¼ 0. But
this convergence is extremely slow and can only be
inferred from samples of enormous sizes. In other words, it
would be of interest to measure some second-order infor-
mation for the case of asymptotic independence. A few
alternatives have been proposed in this context. For exam-
ple, the coefficient

� ¼ lim
q!1

2log P X1 > qð Þ
log P X1 > q;X2 > qð Þ � 1 ð4Þ

relates the probability of having a joint extreme event to
the probability of having any extreme event (joint or not)
[see Coles et al., 1999].

[27] Lately, various models which jointly treat asymp-
totic dependence and independence have been proposed
and studied [e.g., Coles and Pauli, 2002]. Here, we will
pay a special attention to the work of Ledford and Ramos
who extensively studied a very general framework to
model the joint tail (survival function) defined by

P X1 > x1;X2 > x2ð Þ ¼ L x1; x2ð Þ
x1x2ð Þ1= 2�ð Þ ; ð5Þ

where L represents a bivariate slowly varying function
[Ramos and Ledford, 2009; Resnick, 2007]. A fundamental
feature of equation (5) is the so-called tail dependence
coefficient � 2 0; 1ð � that encapsulates the strength of as-
ymptotic independence. To see this, one can write that

� ¼ 1

2
lim
q!1

log P X1 > qð Þ þ log P X2 > qð Þ
log P X1 > q;X2 > qð Þ :

[28] and deduces from equation (4) that � ¼ 2� � 1
[Ramos, 2003]. Definition (5) also allows for the modeling
of the dependence case (�¼ 1) and complete independence
(�¼ 0.5) and, consequently, offers a large flexibility. One
important parametric example for our precipitation deficit
assessment corresponds to the �-asymmetric logistic model
studied by Ramos and Ledford [2011] (see Appendix A for
its definition within a multivariate context).

[29] Coming back to N, the limiting expected number of
extremes given that one extreme event has occurred al-
ready, its definition of N can also be widened to deal with
the asymptotically independent case. This leads to the so-
called FI [Geluk et al., 2007; Tichy and Falk, 2009]

FI ¼ N ; if � ¼ 1;
�; if � < 1:

�
ð6Þ

[30] An FI¼ 0.5 indicates thus independent extremes, an
FI in (0.5, 1) asymptotic independence and an FI � 1 as-
ymptotic dependence.

[31] For example, the FI can explicitly be computed for
the asymmetric logistic model with parameters � and %
[Ramos and Ledford, 2009]

N ¼ lim
q!1

q�1 %þ 1=%ð Þ
q�1 %�1=� þ %1=�f g�

¼ %þ 1=%ð Þ
%�1=� þ %1=�f g�

; ð7Þ

cf. Appendices A and C for inference and the extension to
d > 2.

4.3. Inference From Simulations With the Asymmetric
Logistic Model

[32] The relation of N and the model parameters has
been assessed by means of simulation studies with artificial
bivariate data (results not shown) and for the asymptoti-
cally dependent case (�¼ 1). Here the simulation studies
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indicate a previsible influence of the other parameter esti-
mates on N : In case % ¼ 1, the whole spectrum of asymp-
totic dependence is possible, that is, N lies in (1,2]. The
more asymmetric the data is (that is the further away % is
from 1), the less dependent the data can be. This is
expected, strongly asymmetric data have few or no
extremes on the diagonal. Moreover, it showed that large
differences in the thresholds of the (standardized unit
Fr�echet) data resulted in low dependence of the data. This
result is independent from the underlying distribution of
the data and underlines the importance of the threshold
choice.

[33] The distinction between asymptotically dependent
and asymptotically independent data can be done by means
of a modified likelihood ratio test where the complete
model is compared to a submodel with � restricted to 1. To
test for symmetry, the standard likelihood-ratio test can be
used, that is the complete model is compared to submodels
with %i fixed to 1 for all possible combinations of %i [Ramos
and Ledford, 2009]. In simulation studies with artificial
data of the same length as the application data, a high capa-
bility of the likelihood-ratio test to discriminate between
symmetric and asymmetric data has been found (results not
shown). We thus applied the test for symmetry and chose
the submodel with %i fixed to 1, when appropriate. The
modified likelihood-ratio test revealed also a high power to
detect asymptotically independent data. However, in case
the data were actually asymptotically dependent, the modi-

fied likelihood ratio test accepted too often falsely the hy-
pothesis of asymptotically independent data, that is, � fixed
to 1. Thus, in the following, the FI has been set to N, in
case � is compatible with being 1 (i.e., 1 lies within the
68% confidence band of �), otherwise FI ¼ �.

[34] As an example for the estimation of � and N, � and
� are depicted in Figure 4 for stations Aguas de Cabreiroa
and Barxa (Figures 4a and 4b) and Aguas de Cabreiroa and
Cantimpalos (Figures 4c and 4d). The estimates shown in
black have been calculated from N and �. For comparison
reasons, empirical estimates � and �, as described in Coles
et al. [1999], are added in gray. Aguas de Cabreiroa and
Barxa are most likely asymptotically dependent (� is com-
patible with being larger than 0 and � is compatible with
being 1). The according estimate of N is with 1.48 (0.093)
high, and the according estimated � is with 0.967 (0.14)
compatible with being one (the numbers in brackets denote
the standard errors). Aguas de Cabreiroa and Cantimpalos
are most probable asymptotically independent. The esti-
mate for � is 0.7 (0.12). For the submodel with fixed �¼ 1,
N is estimated as 1.13 (0.17), which is also compatible with
being one. In both cases, the empirical estimates of � and
� converge toward the estimates calculated from � and N,
as the threshold (x axis) gets larger. It is difficult to set the
FI of different sets of stations into relation. When looking
for example at the dependence between all three stations,
three bivariate dependence measures, and one dependence
measure (indicating the dependence between all three

Figure 4. (left) � calculated from N estimates (black line, with 95% confidence bands) and an empiri-
cal estimate of � (gray). (right) � calculated from � estimates (in black) and an empirical estimate of �.
The dependence of (a and b) stations Aguas de Cabreiroa (2978E) and Barxa (2970I) and (c and d) sta-
tions Aguas de Cabreiroa (2978E) and Cantimpalos (2199) is measured.

KALLACHE ET AL.: PRECIPITATION DEFICIT ASSESSMENT WITH MEVT

6721



stations in their joint tail) can be calculated. However, the
latter cannot be used to infer the three bivariate dependence
measures.

5. Severity of Extreme Dry Spells in the Duero
Basin (MEVT Model)

[35] Average precipitation and dry spell severity in the
Duero basin are depicted in Figure 5. The highest average
precipitation amounts are given in the surrounding moun-
tain range (Figure 5a). The most severe dry spells (on aver-

age over the whole time period) occur in the southeast of
the basin center, in the crop lands of the Bajo Duero region
(Figure 5b). This result is independent of the dry spell level
and the season assessed. Accordingly, the (severe) dry
spells with level 30.5 mm/month occur more frequently in
the topographic depression in the basin center (Figure 5c).
For comparison, a level of 42.7 mm/month has also been
tested. The dry spells defined with this level happen more
frequently in the mountain regions at the edges of the basin
(Figure 5d).

Figure 5. Maps of the dry spell characteristics. (a) Average yearly precipitation, (b) average dry spell
severity for level 30.5 mm/month, and average dry spell numbers for (c) 30.5 mm/month and (d) 42.7
mm/month.

Figure 6. FI of bivariate assessment for the stations in the Duero basin crop lands (gray dots). (a) For
30.5 mm/month level and (b) for 42.7 mm/month level. A linear fit and polynomial fit of degree 3 with
68% confidence bands are added in black.
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5.1. Bivariate Dependence

[36] For the evaluation of the dependence between any
two stations in the Duero basin, the threshold for defining
extreme deficits is set to the 50th percentile of whole year
precipitation deficits. For comparison purpose, in the fol-
lowing, the evaluation is also performed separately on the
irrigation period (May to October) where another threshold
has been set up to include 100% of the precipitation defi-
cits. Moreover, for those two time periods (whole year and
irrigation period, with different thresholds), analyses are
brought on two levels (30.5 and 42.7 mm/month) to define
cumulative precipitation deficits.

[37] The FI values retrieved from fitting the bivariate
extreme value model to any of the combinations of two sta-
tions in the Duero basin crop lands (cf. Figure 1b) are
visualized in Figure 6. The gray dots denote the FI values.
The gap between 0.8 and 1 is due to the shortness of the se-
ries, which does not allow for a sharp distinction between
asymptotically dependent and independent data (0.2 is on
average the standard deviation of the � estimates). It shows
that the FIs measuring bivariate dependence decrease with
distance in space. For the quite severe 30.5 mm/month
level, the polynomial fit of order 3 (black line) reveals a
decrease of the speed of decay for very distant stations. For
this level, 70% of the stations are asymptotically independ-
ent, which is reduced to 60% for the 42.7 mm/month level:
These less extreme and longer dry spells are more often
asymptotically dependent. For both levels, the asymptoti-

cally independent data show a lower dependence-distance
slope than asymptotically dependent data. The distance-
dependence relation is frequently exploited in geostatistics
to simplify the description of dependence. However, here
the FI shows a large variability over all distances.

[38] To exemplify the spatial pattern of dependence of
extreme dry spells in the Duero basin, maps of the depend-
ence with station Castronu~no are shown in Figure 7 (the
red dot indicates the location of Castronu~no). The FI values
have been interpolated with inverse distance weighting.
Castronu~no lies in the middle of the Bajo Duero crop land
region, which is affected by the severest dry spells. For this
station, strong dependence (FI > 1:25) is spatially less
extended for the irrigation period than for the whole year.
However, in all cases, nearly the whole basin shows an
FI > 0:625: The stations are not independent from
Castronu~no. The dependence of the more severe dry spells
(Figures 7a and 7b) is more concentrated in the Western
part of the Duero basin then for the dry spells at the 42.7
mm/month level.

[39] When looking at maps of other stations (results not
shown), spatial patterns in the dependence structure get
apparent as well : The FI decays with distance. Further-
more, some stations are clearly connected to the surround-
ing mountain area and others to the central plain, which
shows the influence of topology. However, the spatial pat-
terns are too diverse to deduce the dependence of the dry
spell severity from elevation and spatial distance only.

Figure 7. Maps of the fragility index (FI) as measure of bivariate dependence between Castronu~no
(red dot) and all other stations. In the upper line results for level 30.5 mm/month and (a) all year and (b)
the irrigation period are depicted. In the lower line, the same for level 42.7 mm/month is shown (all
year, c) and (d) irrigation period.
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When looking at severity extremes of the whole year,
larger areas are connected through strong dependence
(FI > 1:25) than in the irrigation period. This hints to a
more diverse behavior of extremely severe dry spells in the
irrigation period and to a reduced influence of large-scale
patterns (the NAO, for example). A further climatological
interpretation of the results would need an in-depth descrip-
tion and analysis of atmospheric circulation patterns and
variability in time. This is out of scope of the presented pa-
per; according analyses are done for example in Vicente-
Serrano [2006].

5.2. Dependence Between Crop Regions

[40] Here spatial patterns of dry spell severity will be
explored in the center of the basin (see Figure 1b), where
agriculture is the dominant land use practice. In the follow-
ing, these regions are thus called crop regions. Watershed
borders are used to separate the crop regions. In this way,
the water courses and hydrological systems of the regions
are separated. The series of dry spell severity of each
region have been joined to a single time series. This series
thus represents a dry spell happening anywhere in one of
the regions. Dependence between the regions is assessed by
analyzing these series. Here the threshold excess rates have
been set to 20%.

[41] Results for strong bivariate dependence between the
regions are shown in Figure 8. Regions exhibiting asymp-
totic dependence with an FI > 1:5 are depicted in the same
color. A connection of the eastern regions gets apparent for
the 30.5 mm/month level (Figure 8a). The crop land zone
of Riaza-Duraton-Alto-Duero is asymptotically dependent
with both neighboring sites, but the three regions together
are not asymptotically dependent. Therefore, Riaza-
Duraton-Alto-Duero is hatched in two colors. For this dry
spell definition level, the results for the whole year and the
irrigation period are the same. In Figure 8b, results for the
42.7 mm/month level and the irrigation period are depicted.
Here, the southern regions exhibit strong bivariate depend-
ence, and even all three southern regions together are
asymptotically dependent with an FI > 1:5. The Northern
part is divided in two dependent zones. The same depend-
ence structure shows for the whole year. However, here no

trivariate asymptotic dependence with an FI > 1:5 occurs.
All in all, the regions are more connected when looking at
the longer and less severe dry spells at the 42.7 mm/month
level.

[42] In addition, the joint occurrence of dry spells in all
six regions has been examined for the irrigation period and
dry spells defined with the 42.7 mm/month level. Dry peri-
ods with 1 mm or less precipitation per day and station,
which last longer than one month and which cover large
areas, might cause severe damage to the agricultural sector.
In extreme value analysis, the return period T¼ 1=p of
such an extreme event is commonly calculated as the recip-
rocal value of the probability p that such an event occurs
[Coles, 2001]. Here different approaches can be used to
estimate p and, thus, the length of the return period. In a
first attempt, the characteristics of a structure variable X,
which is defined as sum of the dry spell severity time series
of the six regions, is examined. A GPD is suited to the
extremes of this variable, which exceed the threshold q,
which is the sum of the 30.5 mm/month thresholds of the
single stations [cf. de Haan and de Ronde, 1998]. The prob-
ability of an extreme event is, thus, p ¼ P X > qð Þ. The
according shape parameter estimate is with �0.33 (0.06)
negative. For this model, the return period for such a dry
spell of on average less precipitation than 1 mm per day
and station for the whole region of crop lands (cf. Figure
1b) is estimated to be 1.88 irrigation seasons, that is about
2 years. However, here stations with a lot of precipitation
can balance stations with little precipitation. This result can
be further refined by using the multivariate extreme value
model to describe the joint extremes of the six regions. The
FI of the six regions is below 0.5, which indicates negative
tail dependence. Nevertheless, there exist 20 joint extreme
events, which allows for the examination of the joint tail.
For this model, p ¼ P X1 > q1; . . . ;X6 > q6ð Þ is given, and
the return period of a joint extreme event, where in every
region precipitation falls on average per station below 30.5
mm/month, is 3.24 irrigation seasons. This return period is
longer than the 1.88 irrigation seasons, because here pre-
cipitation in the different regions cannot counterbalance.

[43] The MEVT model for the six regions also serves to
estimate return periods of joint extreme events in subsets of

Figure 8. Strong bivariate dependence (FI > 1:5) between subwaterbasins in the crop zones of the
Duero basin for dry spells defined with (a) a level of 30.5 mm/month and (b) dry spells defined with a
42.7 mm/month level. Regions with similar dependence are hatched in the same color. Extremes in the
region hatched in two colors are strongly dependent to extremes in both neighboring regions.
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these regions. The three southern crop land regions Bajo
Duero, Cega-Eresma-Adaja, and Riaza-Duraton-Alto-
Duero are highly dependent. They have an FI larger
than 1.5 for dry spells in the irrigation period and at
the 42.7 mm/month level (cf. Figure 8b). As expected,
the return periods for dry spells below 30.5 mm/month

in solely these three regions are, with 3.12 irrigation
periods, shorter than for extremely severe dry spells in
less dependent regions. The regions Bajo Duero, Esla-
Valderaduey, and Pisuerga-Arlanza, for example, have a
small FI in the trivariate analysis. They are not asymp-
totically dependent. A simultaneous dry period in these
three regions is expected every 3.19 irrigation periods.
When suiting a trivariate extreme value model to the
three southern regions only, that is when having no
constraint for the other three regions, the return period
for precipitation deficits larger than 30.5 mm/month in
these regions reduce to 2.37 irrigation periods. The dif-
ferent results may be used to tackle different water
management problems. The use of the multivariate
extreme value model serves in any case to refine the
spatial analysis of extremal dependence.

Table 2. Variance Contributions (%) of the First Four Unrotated
PCs and of the Rotated PCs for SPI3 Dataa

Number PCs SPI3 Variance
SPI3 Varimax

(2 PC rot.)
SPI3 Varimax

(3 PC rot.)

1 76.04 44.36 31.64
2 4.49 38.04 25.45
3 1.81 27.00

aRotations have been performed with the first two or three PCs.

Figure 9. Loading patterns of the first unrotated three principal components of the SPI3 data (top, Fig-
ures 9a–9c). Figures 9d and 9e show the loading patterns after a rotation of the first two PCs, and Figures
9f–9h show the loading patterns after a rotation of the first three PCs.
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6. Droughts in the Duero Basin Analyzed With
the SPI

[44] By construction, the SPI inference procedure does not
take into account of any spatial dependence. To identify spa-
tial regions with similar variability patterns, a principal com-
ponent analysis (PCA) can be applied to the calculated SPI
fields [see, e.g., Bonaccorso et al., 2003]. As a benchmark for
our MEVT approach, we implemented this PCA technique on
three month running mean deficits (SPI3) in the central plane
of the Duero basin, see Figure 1b. To reduce high loadings
with several PCs, which hampered the determination of a spa-
tial pattern, a Varimax rotation to the loadings [von Storch
and Zwiers, 1999] was added with the rule by North et al.
[1982] to determine the number of principal components.

[45] The first PC, which explains more than 70% of the
variance of the data (cf. Table 2), is similarly related to all
stations and does thus not result in a spatial pattern (see
Figure 9a). This reflects findings of Vicente-Serrano
[2006], who analyze the SPI12 from stations of the whole
Iberian Peninsula. They find similar variability for the
whole center of the peninsula. The second and third PC
result in a North-West to South-East and in a North-East to
South-West gradient, respectively (see Figures 9b and 9c).
Some parts of the crop lands, such as Esla-Valdereduey in
the North, for example, cannot be clearly assigned, they
show positive loadings for PC2 and PC3. We applied thus
an orthogonal varimax rotation to the most important PCs
to get clearer spatial patterns [Bonaccorso et al., 2003].
North’s rule, see North et al. [1982], suggests to retain up
to three PCs. When interpreting the screen diagram or con-
centrating on the PCs which explain more than 80% of the
variance, only two PCs are kept. As the number of retained
PCs change the spatial patterns obtained from the varimax
rotation, we interpret results from both rotations. When
rotating two PCs, a North-West to South-East gradient gets
apparent. The first PC hints to a similar variability of
droughts within the Esla-Valdereduey zone. The direction
of the PC does not matter for the determination of regions
with similar variance. We thus regard stations with high
negative loadings also as connected. The second-rotated
PC indicates a connection of sub-basins Riaza-Duraton-
Alto-Duero and Cega-Eresma-Adaja in the South-East (see
Figures 9d and 9e). When rotating three PCs, the first PC
hints again to a strong connectivity within the Esla-
Valdereduey basin. The second PC now indicates a com-
mon variability in the Southern basins, especially Bajo-
Duero and Cega-Eresma-Adaja (cf. Figure 9g), whereas the
third PC connects the North-East, namely Pisuerga-Arlanza
and Riaza-Duraton-Alto-Duero. It is thus not clearly identi-
fiable if the subbasin Riaza-Duration-Alto-Duero is rather
connected to its North or to its South-West, which confirms
the findings of the MEVT analysis (cf. Figure 8a). By con-
struction, the rotated PCs explain similar amounts of var-
iance, which is about 40% when two PCs are rotated and
28% for three PCs (see Table 2).

[46] Comparable results have been obtained when analyz-
ing the SPI derived from monthly precipitation and from run-
ning means of 6 months of precipitation (results not shown).
The spatial study by means of SPI and PCA illustrates the de-
pendence structure of droughts in the Duero basin. However,
the decision on the number of PCs to retain and the classifica-

tion of the loading values into distinct spatial regions leaves
some ambivalence. With regard to content, the results support
the findings of the MEVT study in section 5.2.

7. Conclusions

[47] Precipitation deficits in the Duero basin and their
spatial dependence have been assessed. Dry periods are a
frequent phenomenon in the Duero basin.

[48] A multivariate extreme value model is applied, which
captures the dependence structure of extreme severity of dry
spells (asymptotically dependent as well as asymptotically
independent extremes). Here cumulative precipitation defi-
cits below 42.7 mm/month and 30.5 mm/month have been
assessed. In the Duero basin, such dry spells occur between
one and three times a year, and they have a length between 2
and 3 months on average. These dry spells emerge during
the whole year, but they are more intense in the irrigation pe-
riod. The most severe dry spells (on average over the whole
time period) occur in the Bajo Duero, which is situated in
the southeast of the Duero Basin.

[49] The MEVT allows for the assessment of bivariate
dependence. The estimated dependence between extreme
severity of dry spells at each two stations have been visual-
ized in dependence maps, where the dependence of dry
spells at a single station with dry spells at all other stations
in the region is depicted. It is found that up to 30% of the
bivariate dependence measures indicate asymptotic de-
pendence. Thus, dry spells in this basin are very connected.
The dependence between dry spells at the 42.7 mm/month
level in general spatially more extensive. It got apparent
that topography and spatial distance influence the extremal
dependence between dry spells. However, no simple law,
which describes the influence of topography and spatial dis-
tance, could be deduced. This also showed in a
dependence-distance study: As expected, the extremal de-
pendence decreases with distance. However, its large vari-
ability hampered an approach to deduce a simple
correlation function. Thus, the presented dependence maps
are a valuable complement of risk maps, where solely the
probability of dry spell occurrence is depicted.

[50] Moreover, the stochastic model has been employed
to describe the dependence between six regions in the cen-
ter of the Duero basin where most of the agricultural activ-
ities take place. Bivariate to trivariate dependence between
these regions is found. In the irrigation period, the shorter
and more severe dry spells (defined at the 30.5 mm/month
level) exhibit strong asymptotic dependence (FI > 1:5) in
the eastern regions, whereas less severe dry spells at the
42.7 mm/month level are more connected in the South.

[51] These findings are supplemented with a drought
assessment of the crop zones by means of the common SPI.
It shows that subregions with similar variability can be iden-
tified. Esla-Valdereduey in the North-East contains highly
connected stations. Furthermore, the subbasins in the South
and North-West are connected. Riaza-Duraton-Alto-Duero
is connected either with its North or with its South-East.

[52] In summary, the SPI analysis results are well in line
with the MEVT findings. They also indicate regions of sim-
ilar variability in the South and in the North-East, and bipo-
lar characteristics of Riaza-Duraton-Alto-Duero. With
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respect to the methodology, several similarities and differ-
ences between the SPI and MEVT approach arise. The SPI
is calculated from running means of precipitation. Droughts
of the respective window length, e.g., 1, 3, or 6 months, are
thus in focus. Averaging reduces the severity of droughts,
which are shorter than the window length, and longer
droughts are split into several events. The comparison of
SPI1, SPI3, and SPIs with a wider window width might be
necessary to get a complete overview over drought charac-
teristics in a region. Cumulative precipitation deficits can
also be defined with different precipitation levels. These
levels are of the same kind as the classification levels,
which classify the SPI into moderate, severe, and extreme
droughts. However, the assignment of one event to each
dry spell, whatever length it has, allows for a joint assess-
ment by means of MEVT.

[53] Beyond this, the dependence between stations or
regions can be quantified with the MEVT framework by
means of the FI. According confidence bands are provided,
which allow for uncertainty assessment. The MEVT model
allows moreover to the inference of yet not observed,
extreme events. This includes the estimation of return peri-
ods for extreme dry spell severity in a region. The return
period for a large-area dry spell in the crop lands of the
Duero basin, with precipitation being on average below
30.5 mm/month in all six subregions, is about 3 years.

[54] The spatial patterns of dry spells are usually complex.
It is common for one area to suffer dry conditions, whilst
neighboring areas experience normal or even humid condi-
tions. The presented analyses assess dependence at station
and subbasin level; thus, more of the spatial heterogeneity
of dry periods is captured. However, the presented MEVT
approach analyses joint extremes; thus, the number of ana-
lyzable entities is restricted. The extension to the assessment
of joint dependence between all stations is envisaged in fur-
ther work. One way to achieve this goal would be the use of
a spatial inhomogeneous dependence measure.

[55] Nonirrigated agriculture is a common practice in the
Duero basin. However, average yearly precipitation amounts
in this region are close to levels, which might cause yield
losses. The anticipated future decrease of precipitation [Vice-
nte-Serrano et al., 2011] hints to an aggravation of dry peri-
ods in the Duero basin. In addition, temperature is expected
to increase and runoff supply to decrease (due to revegeta-
tion processes in the mountain areas, which surround the
Duero basin). An increasing water demand of the population
in the center of the Duero basin is anticipated as well. Thus,
a greater social and economic vulnerability to dry spells is to
expect [Vicente-Serrano, 2006]. The presented approach
may be used for short-term water management planning to
face this situation. Up to now, dry periods in the Duero basin
have been analyzed rather with respect to their temporal evo-
lution [see, e.g., MARM, 2007]. However, the temporal driv-
ers for dry periods are not well determined. A probabilistic
view and the provision of maps of dry spell probability and
dependence provide, thus, valuable additional information
for water management.

Appendix A: �-Asymmetric Logistic Model and
the FI

[56] There are infinitely many ways to define a depend-
ence measure H !ð Þ for multivariate extremes. We use the

�-asymmetric logistic model and define such a measure as
presented in Ramos and Ledford [2011]. In the following,
this measure will be denoted H� �ð Þ. The according measure
density for multivariate data with dimension d is

h� xð Þ ¼

Yd�1

i¼1
i���ð Þ

�d�d�1N%

Xd

i¼1

�
!i

%i

��1=�
)�=��d
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 !�1=��1
8<
:

ðA1Þ

with parameters �2 0;1ð �; %1; . . . ;%d�1 > 0 and � 2 0;1ð �.
Nx1 ...xd% ¼

P
b2B �1ð Þjbjþ1ð

P
i2b %i=xið Þ1=�Þ�=� holds, and N%

is N1 ...1%. Here B represents the set of all nonempty subsets
of 1; . . . ;d and jbj is the number of elements in the set b.
The constraints

P
!i ¼ 1 and

Y
%i ¼ 1 hold. They deter-

mine !d ¼ 1�!1� . . . �! d�1ð Þ and %1 ¼ 1= %2� . . .ð
�%dÞ. The parameters influence the characteristics of the
multivariate extreme value distribution: The limit function
of L; g� !ð Þ, is concave in ! when �< 2�, and it is con-
vex in ! when �> 2�. When �¼ 2�, then g� !ð Þ is flat and
thus ray independent. %i is a measure of symmetry between
two variables, e.g., X1 and X2. For %i ¼ 1, these variables
are symmetric.

N ¼ lim
c!1

E �cj�c � 1ð Þ;

¼ 1þ lim
c!1

P F1 X1ð Þ > c;F2 X2ð Þ > cf g
1� P F1 X1ð Þ � c;F2 X2ð Þ � cf g

¼ lim
c!1

P F1 X1ð Þ > cf g þ P F2 X2ð Þ > cf g
1� P F1 X1ð Þ � c;F2 X2ð Þ � cf g

ðA2Þ

holds, with �c being the number of joint occurring extreme
events, i.e., counting the number of events of the type
X1 > c;X2 > cf g. Informally, N can be described as 1 (the

extreme which has already occurred)þP(a joint extreme
event occurs)/P(any extreme event occurs).

[57] For the asymmetric logistic dependence function,
we can write

N ¼ lim
q!1

1� F q1ð Þð Þ þ 1� F q2ð Þð Þ
1� F q1; q2ð Þ

¼ lim
q!1

log F q1ð Þf g þ log F q2ð Þf g
log F q1; q2ð Þf g

¼ lim
q!1
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%;�¼1%
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2
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n o�=�
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q!1

%q1ð Þ�1 þ q2=%ð Þ�1

q1%ð Þ�1=� þ q2=%ð Þ�1=�
n o� :

ðA3Þ

[58] It is also possible to derive N for a multivariate
asymmetric logistic dependence function

N ¼ q1%1 . . .%d�1ð Þ�1þ q2=%1ð Þ�1þ . . . þ qd=%d�1ð Þ�1

q1%1 . . .%d�1ð Þ�1=�þ q2=%1ð Þ�1=�þ . . .þ qd=%d�1ð Þ�1=�
n o� :

ðA4Þ

[59] Confidence bands for N can be derived from the pa-
rameter estimates and their covariance by using the delta
method [cf. Coles, 2001].
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Appendix B: Shifting of Dry Spells

[60] Overlapping dry spells are assumed to be dependent.
The presented approach does not model the duration of dry
spells. Thus, the data are preprocessed to integrate this
assumption: Overlapping dry spells are shifted to a com-
mon time point. Extremes are defined as threshold
excesses. Here the actual time point of occurrence of an
extreme is not modeled and thus the shifting does not alter
the results of the analysis of single series.

[61] Comparison : To shift the dry spells, they are com-
pared in descending order, i.e., station 1 is compared with
stations 2 to d, where d is the number of stations. Let sta-
tion 1 be the principal station and stations 2 to d be the
comparison stations. The comparison is not repeated, so
station 2 is compared with stations 3 to d, and so forth.

[62] Eligibility : For each dry spell i of the principal sta-
tion, dry spells of the comparison stations are only eligible
for a shift, if they occur during the time period of dry spell
i, and in case, they have the longest overlap with dry spell i
and not with some other dry spell j of the principal station.
Furthermore, they must not have been shifted previously.

[63] New time point : The time point t within the period
of dry spell i for which the cumulative dry spell lengths of
all eligible dry spells are the highest, is chosen as new time
point. If there are several such time points, the time point
with the largest number of overlapping dry spells is chosen.
Dry spell i and all eligible dry spells, which also cover the
new time point, are shifted to the new time point t.

[64] The result of the shifting algorithm depends on the
(arbitrary) indexing of the stations. To avoid a bias of the
results due to the shifting algorithm, it is repeated in
reverse order. Here, the principal station is station d, and it
is compared to stations 1 to (d – 1). Then, the principal sta-
tion (d – 1) is compared to stations 1 to (d – 2), and so
forth. For illustration, see Figure 10. Here durations for dry
spells defined at the 42.7 mm/month level and the whole
year are depicted. A total of 20 stations have been selected
randomly from the 491 available stations, and the time pe-
riod January 1975 to December 1978 has been chosen for
illustrations. Small differences between the shifting and
reverse shifting get apparent.

[65] When assessing two stations, shifting is not prob-
lematic : Results with standard shifting and reversed shift-
ing are always the same. To eliminate the influence of the
shifting algorithm for more stations, the results obtained
with both algorithms are compared and only common
results are kept, that is, FI estimates whose standard devia-
tions overlap.

Appendix C: Maximum Likelihood Estimation

[66] The Poisson process model is used, so it is assumed
that the extremes in the tail region A occur independently
from each other [Beirlant et al., 2004]. Let A ¼

q1;1ð Þ � . . . � qd ;1ð Þf g denote the region above
thresholds q1; . . . ; qd . The likelihood for the poisson pro-
cess is modeled as

L h; rj;xj; j ¼ 1; . . . ;m
� �

¼ ��m
� Að Þ

Ym
j¼1

�� rj;xj

� �
: ðC1Þ

[67] Thus, m events occur in the joint tail of d dry spell
severity time series at d stations. Here solely, the joint tail
is examined, so the probability of the occurrence of exactly
m extremes in A is set to 1. The estimates ĥ are obtained by
numerical optimization. Due to the specifities of H� !ð Þ, the
equation differs slightly from the result for the classic EVT
model. For this metric, the radius r cannot be neglected in
the likelihood equation: It is needed to estimate �. How-
ever, r and x can still be divided into separate factors.

[68] The likelihood function is given by

L h; rj;xj; j ¼ 1; . . . ;m
� �

¼ ðC2Þ

N �mð Þ
q1 ... qd%

Ym
j¼1

" �r� dþ1=�ð Þ
j

� �Yd�1

i¼1
i� � �ð Þ

�d�d�1

�
Xd

i¼1

!ji

%i

� ��1=�
( )�=��d

�
Yd

i¼1

!ji

 !�1=��1# ðC3Þ

Figure 10. Dry spell durations for January 1975 to December 1978 for 20 randomly chosen stations
(the labels of the y axis are the station IDs) are depicted as black lines and small black dots in case the
duration is 1 month. Furthermore, the time points of the shifted dry spells are marked as gray dots for the
shifting algorithm and as black circles for the reversed shifting algorithm.
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[69] Nq ... q% ¼ N%q�1=� holds for equal thresholds
q1 ¼ . . . ¼ qd ¼ q.

[70] As initial values �¼ 0.65 and %i ¼ 0:75; i ¼
1; . . . ; d � 1 are chosen [Ramos and Ledford, 2009]. The
initial value for � is obtained by means of the structure
variable Ti ¼ min X1i ; . . . ;Xdið Þ : The shape parameter of
the distribution the excesses of Ti over a high threshold is
taken as initial value [Ledford and Tawn, 1996].

[71] The maximum likelihood estimation is only per-
formed, in case 20 or more extremes occur in the joint tail.
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