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Abstract

We investigate inference of variable-length codes in other domains of computer science,
such as noisy information transmission or information retrieval-storage: in such topics, tra-
ditionally mostly constant-length codewords act. The study is relied upon the two concepts
of independent and closed sets: given an alphabet A and a binary relation 7 C A* x A™,
aset X C A" is T-independent if 7(X)NX = 0; X is 7-closed if 7(X) C X. We focus to
those word relations whose images are computed by applying some peculiar combinations
of deletion, insertion, or substitution. In particular, characterizations of variable-length
codes that are maximal in the families of 7-independent or 7-closed codes are provided.

Keywords: Bernoulli, bifix, channel, closed, code, complete, decoding, deletion, depen-
dence, edition, error, edit relation, embedding, Gray, Hamming, independent, insertion,
Levenshtein, maximal, metric, prefix, regular, solid, string, substitution, substring, sub-
word, synchronization, variable-length, word, word relation

1 Introduction

In computer science the concept of code is one of the most widely used: with the terminology
of the free monoid, given some alphabet A, a subset X of A* (the free monoid generated by A)
is a wvariable-length code (for short in the present paper, a code) if every equation among the
words (or strings) of X is necessarily trivial. Famous topics are concerned by such mathematical
concept: we particularly mention the frameworks of text compression, information transmission,
and information storage-retrieval.

For its part, text compression particularly involves two fundamental concepts from the theory
of variable-length codes, namely maximality and completeness [I, Sec. 3.9], [II], B9]. Given a
family of codes over a fixed alphabet A, say F, a code X € F is mazimal in F, if no code in
the family can strictly contain X. A set (resp., a code) X is complete if any word of A* is a
factor of some words of X*, the submonoid (resp., free submonoid) generated by X: actually,
a famous result due to Schiitzenberger states that, in the family of reqular codes maximality
and completeness are two equivalent notions. In addition, information transmission by noiseless
channels is mostly concerned by variable-length codes.
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At the contrary, variable-length codes so far have little impact on the questions related to
information transmission by noisy channels or information storage-retrieval. More precisely,
due to technical specificity, in each of these last topics only sets whose elements have a common
length, the so-called uniform codes, are practically used: this is noticeably illustrated by each
of the famous domains of error-detecting (resp., error-correcting) codes and Gray sequences.
Numerous outstanding studies have been drawn in such topics: whereas in the framework of
error detection (see e.g. [14] 20} [26] 3] B7]) linear algebra appears as a tool of choice, in the
field of Gray codes many questions of interest involve combinatorics, graph theory and group
theory (see e.g. [, 12} 18], 24, [36]).

However, as is further shown below, in all the preceding domains the part of codes is high-
lighted thanks to specific notions related to the theory of dependent systems [I5], namely the
so-called independent codes, and the closed ones. The aim of the present paper, whose a pre-
liminary version appeared in [28] is to draw some comparative study of the behaviors of such
families of codes: this will be particularly done in connection with the two notions of maximality
and completeness, which have been introduced above.

— In the first part of the paper, we investigate how variable-length codes themselves can
impact in the framework of noisy information transmission. Informally and in very simple
terms, with the notation of the free monoid some model for information transmission requires
two fixed alphabets, say A, B: actually every information is modeled by a unique word v € B*.
Beforehand, in order to facilitate the further transmission of that information, usually the word
u is transformed in another word w of A*. This is done by making use of a one-to-one coding
mapping ¢ : B* — A*: in numerous cases, ¢ consists in an injective monoid homomorphism,
whence X = ¢(B) is a variable-length code of A*: such a translation is particularly illustrated
by the well-known examples of the Morse code, or the Huffman code. Next, the resulting word
w is transmitted via a fixed channel into some word w’ € A*. Should w’ be altered by some
noise that is, w’ different from w, and then the word ¢~!(w’) € B* could be different from the
initial word u. Therefore, in order to retrieve u, the morphism ¢ (thus the code X) has to satisfy
error-detecting and error-correcting constraints, which of course depend of the channel. In the
most general model of message transmission, this channel is represented by some probabilistic
transducer. However, in the framework of error detection, most of the models only require that
highly likely errors need to be taken into account: in this paper we will overcome probabilistic
aspect that is, we assume the transmission channel modeled by some binary word relation,
say T C A* x A*. To be more precise, every communication process actually involves the two
following main challenges:

(i) On a first hand, in view of minimizing the amount of errors, some minimum-distance
constraint over 7(X) U X should be applied (with 7(X) = {2/ : 32 € X, (z,2') € 7}), the
most famous ones certainly corresponding to the Hamming or the Levenshtein metrics [10] 23]:
the smaller the distance between the input word x € X and any corresponding output word
x' € X U7(X), the more optimal is error detection.

(ii) On another hand, even in case of a noisy transmission, coding the elements of B*, and
above all decoding those of A*, must allow to retrieve with optimal conditions (especially in
terms of time and space) the initial information v € B*. From this point of view, according to
the nature itself of information, numerous performing families of variable-length codes have been
introduced [I},[13], the most famous one certainly being the family of prefiz codes. With regard to
these families, a fundamental question consists in providing some description of their members,
especially from the point of view of maximality and/or completeness. [2], Bl [16, 2], 22] 27, [38].

In the spirit of [I4} [20], we rely on dependence systems: actually this concept can be associ-
ated with each of the families of variable-length codes we have just listed. Formally, given a set



S, a dependence system consists in a family F of subsets of S satisfying the following property:
X belongs to F if, and only if, some non-empty finite subset of X exists in F. Sets in F are
F-dependent, the other ones being F-independent. A famous special case corresponds to word
binary relations 7 C A* x A*, where independent sets are those satisfying 7(X) N X = (: we
say that they are 7-independent; similarly sets satisfying 7(X) N X # () are 7-dependent. From
this point of view, prefix codes are those that are independent with respect to the antireflexive
restriction of the famous prefix order. Codes that are bifiz, or solid [1l, 21] can similarly be
characterized.

A noticeable fact is that error-detecting codes are themselves concerned by dependence
systems. For that purpose, consider the family of the relations 7 that can be generated from
the so-called basic edit relations, which we define below (given a word w, we denote by Subw(w)
the set of its subsequences and |w| stands for its length):

- 0k, the k-character deletion, associates with every word w € A*, all the words w’ € Subw(w)
whose length is [w| — k. The at most p-character deletion is Ay =, <j<,, Ok;

- Lk, the k-character insertion, is the converse (or inverse) relation of di, moreover we set
I, = Ui<p<p tr (at most p-character insertion);

- ok, the k-character substitution, associates with every w € A*, all w’ € A* with length |w]
such that w] (the letter of position ¢ in w'), differs from w; in exactly k positions ¢ € [1,|w]];
we set X, = Ulgkgp k-

By applying some combination, one can define other relations: we mention S, = J; <;.<,, (01U
t1)¥, or A, = U1<k<p(51 Ut Uoy)F. For reasons of consistency, in the whole paper we assume
|A] > 2 and k > 1. In addition, in each case we denote by 7 the antireflexive restriction of
7, that is 7\ {(w,w)|w € A*}. Similarly, we denote by 7 the reflexive closure of 7, that is
7 U {(w,w)|w € A*}. For short, we will refer to all these relations as edit relations.

Actually, for every k > 1, each edit relation 7 € {8, tk, 0k, Ak, Ik, X, Sk, Ax} leads to
introduce a corresponding topology. For this purpose, consider the mapping d : A* x A* — R
defined by d(u,v) = 0 if u = v, and d(u,v) = min{k|(u,v) € 7} otherwise. Although d can be
only a partial mapping, in the case where symmetry is ensured (that is, 7 € {0k, Xk, Sk, Ax}),
it is commonly referred to as metric, and otherwise to as quasi metric — for short, in any
case we write (quasi) metric. With the preceding definition, the set X is 7-independent if,
and only if, for each pair of different words x,y € X, in the case where the integer d(x,y) is
defined, it is necessarily greater than k: in other words, with respect to the channel 7, the
code X is capable to detect at most k-errors. A natural question consists in investigating the
mathematical structure of those independent codes, in particular as regards maximality. In our
paper, we establish the following result:

Theorem A. With the preceding notation, let A be a finite alphabet, k > 1 and let T in
{0k the, Oky Ak, I, B, Sk, Ay} Given a regular T-independent code X C A*, X is mazimal
in the family of T-independent codes if, and only if, it is complete.

In other words, with respect to maximality, codes that are capable to detect at most k
errors behave similarly in several of those families of variable-length codes we mentioned above.
This leads us to formulate, in terms of word binary relations and variable-length codes, some
specification as regards error detection (correction). In addition, in the case where X is assumed
to be regular, some corresponding decidability results are stated.

— In the second part of our paper we focus to the so-called notion of set closed under a
given word binary relation; in fact it consists in some special condition related to dependence.
Actually, in the literature several different notions of closed sets can be encountered, the best-
known being related to topology or universal algebra [5]. The concept we refer in the paper is



different: given a binary relation 7 C A* x A*, a set X C A* is closed under 7 (r-closed for
short) if we have 7(X) C X.

Beforehand, we notice a property that will be of a common use in the paper: any non-empty
set is 7-closed if, and only if, it is closed under 7* = (J, oy 7%, As such, many famous topics
are concerned: in the case where the binary relation is some (anti)-automorphism, the so-called
invariant sets [29] are directly involved. The topics of L-systems [34], or congruences in the free
monoid [30], as well as applications to DNA computing [I7], are also concerned. By definition,
closed codes cannot have a real impact on error correction, which itself involves independence.
With the preceding notation, given some edit relation 7, € {0k, tg, 0k, Ak, Ix, Xk, Sk, Ak} and
its corresponding (quasi) metric d, a set X is 7-closed if, for every pair of words z € X, y € A*,
the condition d(z,y) < k implies y € X. In other words, with respect to d, the set X necessarily
contains every neighboring word from each of its elements; in addition, from the fact that X
is also 7;-closed, all its elements can be generated in this way. From this last point of view,
the so-called Gray sequences, which are closely connected to information storage-retrieval, are
involved.

Given some edit relation, our aim is to characterize the family of corresponding closed codes.
In our paper we prove that, for any k > 1 there are only finitely many dg-closed codes, each
of them being itself finite. Furthermore, we can decide whether a given non-complete dx-closed
code can be embedded into some complete one. We also prove that no closed code can exist
with respect to the relations ¢, nor Ag, Iy, Sk, Ag.

With regard to substitutions, given a word w, beforehand we focus to the structure of the
set of(w) = U,y 0h- Actually, excepted for two special cases (that is, k = 1 7 136], or k = 2
with |A| = 2 [I8], ex. 8, p.77]), to our best knowledge, in the literature no general description
appears. In any event we provide such a description; furthermore we establish the following
result:

Theorem B. Let A be a finite alphabet and k > 1. Given a complete op-closed code X C A*,
either every word in X has length not greater than k, or a unique integer n > k + 1 exists such
that X = A™. In addition for every X -closed code X, some positive integer n exists such that
X =A"

In other words, no oi-closed code can simultaneously possess words in ASF = Uo <i<k At and

words in AZF+1 = Uisrs1 A?. As a consequence, one can decide whether a given non-complete
op-closed code X C A* can be embedded into some complete one.

We now shortly describe the contents of the paper:

— Section [2] is devoted to the preliminaries. The terminology of the free monoid is settled,
moreover we recall two main results from the variable-length code theory: they shall be applied
in the sequel. In addition, in order to further examine the decidability of some questions, we
review some of the main properties of the so-called regular, and recognizable subsets of A* x A*.

— In Section[3] we draw some investigation of variable-length codes that are independent with
respect to some edit relation. Although it is known that edit relations are regular, we prove
that no edit relation can be recognizable. We also establish Theorem A: the proof lays upon
the construction of some word with peculiar properties as regarding edit relations.

— Section [ is devoted to some discussion over the involvement of independent variable-
length codes as regards error detection or error correction. Such a perspective is illustrated by
significant examples. Some decidability results are also stated: they concern the class of regular
codes.

— Codes that are closed under deletion or insertion are studied in Section [El

~ In Section [6] after having described the structure of o4-closed codes, we prove Theorem B.
Some algorithmic interpretation is also drawn.



— At least, Section [7]is devoted to some future lines of research related to the present study.

2 Preliminaries

Several definitions and notations from the free monoid theory have been fixed above. The empty
word, denoted by e stands for the word with length 0. Given a word w, we denote by |w]|, the
number of occurrences of the letter a in w. Given t € A* and w € AT, we say that t is a factor
(prefiz, suffiz) of w if words w,v exist such that w = utv (= tv, = ut). A pair of words w,w’
is overlapping-free if no pair u,v exist such that either vw = w'v with 1 < |u| < |w'| — 1, or
ww' = wv with 1 < Ju| < |w| — 1. With such a condition, if w = w’, we say that w itself is
overlapping-free. Given a subset X of A*, we denote by F(X) the set of the factors of X that
is, {w € A*|A*wA* N X # 0}

2.1 Variable-length codes

It is assumed that the reader has a fundamental understanding with the main concepts of the
theory of variable-length codes: we suggest, if necessary, that he (she) refers to [IJ.

Given a subset X of A*, and w € X*, let x1,--- ,x, € X such that w is the result of the
concatenation of the words x1, xa, ..., x,, in this order. In view of specifying the factorization
of w over X, we use the notation w = (z1)(z2) - - - (), or equivalently: w =z -z - x,. For
instance, over the set X = {a, ab, ba}, the word aba € X* can be factorized as (ab)(a) or (a)(ba)
(equivalently denoted by ab - a or a - ba).

A set X is a variable-length code (a code for short) if for any pair of finite sequences of words
in X, say (zi)i<i<n, (¥j)1<j<p, the equation x; - - -z, = y1 - - - yp implies n = p, and z;, = y; for
each integer ¢ € [1,n] (equivalently the submonoid X* is free). In other words, every element
of X* has a unique factorization over X. Given a finite or regular set X, the famous Sardinas
and Patterson algorithm allows to decide whether or not X is a code. Since it will be applied
several times through the examples of the paper, it is convenient to shortly recall it. Actually,
some ultimately periodic sequence of sets, namely (U, )n>0, is computed, as indicated in the
following:

Up=X"'X\{e} and: (Vn>0) U,p1=U,'XUX 'U,. (1)

The algorithm necessarily stops. This corresponds to either € € U,, or U,, = Up, for some pair
of different integers p < n: X is a code if, and only if, the second condition holds. A code
X C A* is prefiz if X N X AT = () that is, Uy = (). In addition, X is suffir if X N ATX = () and
X is bifix if it is both prefix and suffix.

A positive Bernoulli distribution consists in some total mapping p from A into the set Ry
of the non-negative real numbers, such that the equation ) ., p(a) = 1 holds. It can be
extended into a unique morphism of monoids from A* into (R, %), which is itself extended
into a unique positive measure p : 247 — R, as indicated is the following: for each word
w € A* we set p({w}) = p(w); in addition, given two disjoint subsets X,Y of A*, we set
WX UY) = p(X)+ p(Y). Over a finite alphabet A, the corresponding uniform Bernoulli
measure is defined by p(a) = 1/|A|, for each a € A.

Theorem 2.1. Schiitzenberger [I, Theorem 2.5.16] Let X C A* be a regular code. Then the
following properties are equivalent:

(i) X is complete;

(ii) X is a mazimal code;

(iil) a positive Bernoulli distribution p exists such that p(X) = 1;
(iv) for every positive Bernoulli distribution p we have u(X) = 1.



Actually, this result have been extended to several families of codes, the most famous of
which being those of prefix or bifix codes.

Another challenging question focuses on methods for embedding a given code X into some
maximal one in a given family. From this point of view, the following statement answers a
question that was beforehand formulated in [32]:

Theorem 2.2. [6] Given a non-complete code X, let w € A*\F(X™) be an overlapping-free word
and U = A* \ (X* U A*wA*). Then Y = X Uw(Uw)* is a complete code.

2.2 Regular relations, recognizable relations

We assume the reader to be familiar with the theory of regular relations: if necessary, we suggest
that he (she) refers to [35, Chap. II, IV].

— Given a pair of relations 7, p € A* x A*, we denote by 7 - p the composition of 7 by p that
is, for any w € A* we have 7 - p(w) = p (7(w)); moreover we denote by 7 the complement of 7,
ie. (A" x A*)\ 7.

— Given a monoid M, a family F of subsets of M is regularly closed (or equivalently, rationally
closed) if for every pair X, Y € F, necessarily each of the three sets X UY, XY, and X* belongs
to F. Given a family of subsets of M, say F, its regular closure is the smallest (with respect to
the sets inclusion) regularly closed family of subsets of M containing F. With such definitions,
given two monoids M, N, a relation 7 C M x N is regular (or equivalently, rational) if it belongs
to the regular closure of the finite subsets of M x N.

— A binary relation 7 C A* x A* is regular if, and only if, it is the behavior of some finite
automaton with transitions in A* x A*. Equivalently, 7 is the behavior of some finite automaton
in normal form that is, whose transitions belong to (AU {e}) x (AU{e}) \ {(g,€)} (see e.g. [§
or [35, Sect. IV.1.2]).

— The family of regular relations is closed under union, reverse and composition [8] [35]: this
can be easily translated in terms of finite automata.

— The so-called recognizable relations constitute a noticeable subfamily in regular relations:
a subset R C A* x A* is recognizable if, and only if, we have R = R-¢- ¢!, for some morphism
of monoids ¢ : A* x A* — M, where M is a finite monoid. Equivalently, R is the behavior of
some finite automaton with set of states .S, and where the transitions are done by some action
that is, a total function from S x (A* x A*) into S. Below, we recall a noticeable property, which
is commonly attributed to Mezei: it states a performing characterization of recognizability for
the set R:

Theorem 2.3. [35, Corollary 11.2.20] Given two alphabets A, B, and R C A* x B*, the set R
is recognizable if, and only if, a finite family {T;}icr of recognizable subsets of A* and a finite
family {Ui;}icr of recognizable subsets of B* exist such that R = J;c; T; x U;.

Actually, this result was originally stated in the framework of the direct product of two
arbitrary monoids.

— Recognizable relations are closed under composition, complement and intersection, the
intersection with a regular relation being itself regular.

—As a corollary of Theorem if X is a regular (equivalently recognizable) subset of A*,
the relation X x X is recognizable; see also [35, Example I1.3.2] for a corresponding normalized
automaton.

— The relation ida- = {(w,w)|w € A*} and its complement ida- are regular. However,
According to Theorem id o~ is not recognizable and thus neither is id 4». For every regular
set X C A*, the relation idx C A* x A* is regular: indeed, we have idy = (X x X) Nida~,
thus idx is the intersection of a recognizable relation with a regular one.




— The following result is a consequence of a characterization of regular relations due to Nivat:

Proposition 2.4. [35] Corollary IV.1.3] Given a regular relation T C A* x A*, for every regular
subset X C A* the set 7(X) is regular.

— As indicated above, union and composition of regular relations can be translated in terms
of finite automata. Based on this fact, given an edit relation 7 C A* x A*, a finite automaton
in normal form with behavior is 7 can actually be constructed. In other words, the following
result holds:

Proposition 2.5. [19, Proposition 10] Given a finite alphabet A, every edit relation in
{5k7 Ly Ok, Ak, Ik, Zk, Sk, Ak} 18 regular.

To be more precise, the construction we refered above lays upon some combination of three
basic two-state automata, with respective behavior d;, ¢t; or o1. For instance, as illustrated
by Figure 1, a finite automaton with behavior 2, can be obtained by starting with the basic
automaton with behavior §; and one duplicate; then the terminal state of the first automaton
is identified with the initial state of the second one.

3 Variable-length codes independent with respect to edit rela-
tions

We start with some general considerations. At first, it is straightforward to prove that X is
7-independent if, and only if, it is independent with respect to 7!, the converse relation of 7.
As regard recognizablity, in view of Proposition the following result brings some additional

property:

Proposition 3.1. Given a finite alphabet A, every edit relation into A* is non-recognizable.

Proof Let 7 be an edit relation into A*. Beforehand we notice that, by definition for very word
w € A* both the sets 7(w) and 7-!(w) are finite. In addition, some integer k exists such that
we have 7(w) # () for every word w € AZ¥; therefore 7 itself is necessarily an infinite subset of
A* x A*.

By contradiction, we assume 7 recognizable. According to Theorem two finite fami-
lies of recognizable subsets of A*, namely {T;};er and {U;};cr exist such that the equation
T = Uz‘e ; Ti x U; holds. Firstly, consider an arbitrary index ¢ € I and let w; € T;. It follows
from T; x U; C 7 that we have w’ € 7(w;) for every word w’ € U;. This implies U; C 7(w;), thus
U; being a finite set. As a consequence, since I is finite, the set U = | J;; U; is necessarily finite.
Secondly, from the fact that we have 7 = (J,.; T; x U;, for each i € I the inclusion T; C ~1(U)
holds. Consequently T; is a finite set, hence 7 itself is actually a finite subset of A* x A*: this
contradicts the fact that it is an edit relation. Consequently, 7 cannot be recognizable. (]

In [T4, Theorem 10.4], the authors prove that, given a dependence system, every independent
set can be embedded into some maximal one: actually, we notice that a similar result holds for
independent codes, that is:

Lemma 3.2. Given a binary relation T onto A*, every T-independent code can be embedded into
some maximal one.

Proof Let X C A* be a 7-independent code. In view of Zorn’s lemma, we consider a chain of 7-
independent codes containing X, namely C, such that C is totally ordered by the sets inclusion:
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Figure 1: Over the alphabet A = {a,b}, automata with behavior 01, ¢1, o1, d2, Ag, As.



let X = Uxee X its least upper bound. By construction X is included in the set X, which is
necessarily a code (see e.g. [Il Proposition 2.1.14]).

By contradiction, assume that X is 7-dependent and let y € X such that T(y) € X. By
definition, a pair of sets Y, Z exist in C such that y € Y and 7(y) € Z. From the fact that C
is totally ordered by the sets inclusion we have either Z C Y or Y C Z. Actually, since Y is
7-independent, we have 7(y) € Z \ Y, whence necessarily only the inclusion Y C Z holds. But
this implies y, 7(y) € Z: a contradiction with Z being 7-independent. Therefore for every word
y € X, we have T(y) ¢ X that is, X is 7-independent. As a consequence, X belongs to C: this
completes the proof. O

Unfortunately, no more than in [I4], no any method allowing to embed a given 7-independent
code into some maximal one, as for instance provided by Theorem is actually profiled by
Lemma In the present section, our aim is to establish some characterization of codes that
are maximal in the family of those that are independent with respect to some fixed edit relation.
We start by constructing a peculiar word:

Lemma 3.3. Let k > 1, i € [1,k], 7 € {0;,t5,0:;}. Given a non-complete code X C A* an
overlapping-free word w € A* \ F(X™*) exists such that the two following conditions hold:

(i) T(w)N X =0;

(i) w ¢ 7(X).

Proof Let X be a non-complete code, and let v € A* \ F(X*). Trivially, we have v*+1 ¢ F(X*).
Moreover, in a classical way a word u € A* exists such that w = v*+1u is overlapping-free (see
e.g. [I, Proposition 1.3.6]). Since we assume i € [1,k], each word in 7(y) is constructed by
deleting (inserting, substituting) at most k letters from w, hence by construction it contains at
least one occurrence of v as a factor. This implies 7(w) N F(X*) = 0, thus 7(w) N X = 0.

By contradiction, assume that a word z € X exists such that w € 7(x). It follows from
6,;1 = 1} and 0,;1 = oy that w = v**1u is obtained by deleting (inserting, substituting) at
most k letters from z. Therefore at least one occurrence of v appears as a factor of x € F(X*):
a contradiction with v ¢ F(X*). This implies w ¢ 7(X). O

As a consequence, we obtain the following result:

Theorem 3.4. Let k > 1 and 7 € {0k, tk,0k}. Given a reqular T-independent code X C A*, the
following conditions are equivalent:

(i) X is a mazimal code;

(ii) X is mazimal in the family of T-independent codes;

(iil) X is complete.

Proof According to Theorem [2.1] every complete 7-independent code is a maximal code, hence
it is maximal in the family of 7-independent codes. Consequently, Condition (iii) implies Con-
dition (i), which itself implies Condition (ii).

For proving that Condition (ii) implies Condition (iii), we make use of the contrapositive.
Let X be a non-complete 7-independent code, and let w € A* \ F(X*) satisfying the conditions
of Lemma With the notation of Theorem necessarily X U {w}, which is a subset of
Y = X Uw(Uw)*, is a code. According to Lemma we have 7(w) N X = 7(X) N{w} = 0.
Since X is T-independent and 7 antireflexive, this implies 7(X U{w}) N (X U{w}) = 0, thus X
non-maximal as a 7-independent code. (I

We note that, for k& > 2 no Aj-independent set can exist: indeed, we have z € o?(x) C Agx(x).
Similarly, it follows from = € &1¢1(z) C (01 U t1)?(z) that for k& > 2, no Si-independent set



can exist: this justifies the introduction of restrictions such as A, or S,. On another hand, the
following result is a direct consequence of Theorem

Corollary 3.5. Let 7 € {Ag, I, Xk, Sk, Ar}. Given a regular T-independent code X C A*, the
three following conditions are equivalent:

(i) X is a maximal code;

(ii) X is mazimal in the family of T-independent codes;

(iil) X 4s complete.

Proof As indicated above, if X is complete, it is a maximal code, thus it is maximal as a
7-independent code. Consequently, Condition (iii) implies Condition (i), which itself implies
Condition (ii). For proving that Condition (ii) implies Condition (iii), once more we argue
by contrapositive that is, with the notation of Lemma we prove that X U {w} remains
independent. By definition, for each 7 € {Ag, I, Xr, Ay, Si}, we have 7 C |J; ;< 73, With
7; € {0i,ti,0:}. According to Lemma [3.3] since 7; is antireflexive, for each i € [1,k] we have
(X U{w}) N7(X U{w}) = 0: this implies (X U{w}) NUjc;cp (X U{w}) =0, thus X U{w}
being 7-independent. O o

4 Independent variable-length codes and error detection

As indicated in the Introduction, as regards information transmission, according to the fact that
channels are considered noisy or not, there have always been historically specific mathematical
methodologies for dealing with codes. In this section, we intend to investigate how some aspects
of error detection (correction) could be more deeply regarded in the field of the free monoid,
and especially the framework of variable-length codes.

4.1 Error-detection constraints

Let 7 C A* x A* be some edit relation, F C 24" a family of variable-length codes and X € F.
The goal is to transmit messages of X* via the channel 7, by achieving optimal error detection
(resp., error correction) in output messages. For that purpose, several conditions should be
taken into account. Among the constraints we state below, the first three ones are retrieved
from now classical sources of the literature (see e.g. [I4}[25]). All those conditions are consistent
with the model of information transmission we fixed above: this allows some simplicity in their
formulation. There is one point to be made at the outset: according to the context, it could be
difficult, if not impossible, to satisfy all those conditions: some compromise should be adopted
(nevertheless several constraints appear mandatory). Notice that noiseless channels, which
involve the classical field of variable-length codes, are actually covered by the whole conditions.
Recall that, given an edit relation 7, we denote by 7 the antireflexive restriction of 7 and by 7
its reflexive closure.

(cl) Synchronization constraint:

For every input word factorized as w = (x1) - - - (zy,) (; € X, 1 <4 < n) any corresponding
output message w’ has to be factorized as w' € 7(x1) -+ - 7(zp).

(c2) X is r-independent: X N1(X) = 0.

(¢3) Error-correction constraint:

VzeX)VyeX) 7@)Ntly)#0=2=y.

(cd) X is mazimal in the family F.
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(chb) 7(X) is a code.

(c6) 7(X) s a code.

_>

In what follows, we discuss these conditions:

The so-called synchronization constraint appears mandatory. Indeed, as illustrated in Ex-
ample it ensures that, in the case where the output word w’ belongs to X* no error
occurred. In order to retrieve the factorization of w’ over 7(X), as in the example of Morse
code, some pause symbol could be inserted after each factor x; € X in the input word
w=(z1) - (Tn).

The constraint on independence is crucial: as indicated above it expresses some char-
acterization of the error-detecting capability of the code X, with respect to the channel 7,
or equivalently the corresponding (quasi) metric adopted in A*. In other words, joined with
the synchronization constraint, every 7-independent code X is capable to detect at most k
errors in any block of 7(X) from the output message.

Condition [(c3)|states a classical definition of T-error correcting codes.

According to Kraft inequality, given a positive Bernoulli measure p over A*, for every
variable-length code X we have p(X) < 1. According to Theorem the condition pu(X) =
1 itself is equivalent to X being complete that is, every word in A* being actually a factor
of some message in X*: for such codes no part of X* appears spoiled. In addition, the set
X is a maximal code, hence it is maximal in F [(c4)} in other words, X cannot be improved
with respect to that family (cf. examples 4.3)).

On another hand, depending on the combinatorial structure of the family F, codes that
are maximal in F need not to be complete: this is especially the case for solid codes or
comma-free codes [21], 22], however these codes possess noticeable importance as regards
decoding. Given an edit relation 7, the preceding Theorem and Corollary bring a
characterization of those maximal 7-independent codes which are complete.

Condition arises naturally for 7(X): it expresses that the factorization of every output
message over the set 7(X) = XUz (X) is done in a unique way. Nevertheless, this constraint
appears very strong. Indeed, joined with maximality it implies 7(X) = X: since the
channel is assumed to satisfy the synchronization constraint actually 7 is the identity
over A* that is, it represents the noiseless channel.

On another way, lower constraints might be invoked. From this point of view, we notice that,
even in the case where 7(X) is not a code, X can possess some noticeable error correction

capability (cf. Example or Example .

Consider some output message zx'y, with z € X*, 2/ € 7(X)* and y € #(X)*. Even if
#(X) is not a code, with Condition [(c6)|the word 2’ nevertheless has a unique decomposition
over 7(X).

Nevertheless, even if that condition is not satisfied, error correction property may fortunately
holds, as attested by Example

4.2 A series of examples

In what follows, in the framework of a binary alphabet A = {a,b}, we illustrate how various
can be the configurations related to some conjunction of the preceding constraints.

Example 4.1. Every maximal uniform code is equal to A™, for some n > 1. On a first hand,
with respect to X and A, such a code is never independent that is, has no error-detecting
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Figure 2: Example A tree-like representation of the infinite maximal prefix code X =
{(ba)"{a,b*}In > 0}. Elements of X are in one-to-one correspondence with labels of paths
from the root to some leaf.

capability. On another hand, for every k < n the code A™ is independent with respect to dy
and Ag. Moreover A™ is independent with respect to ¢, and Iy, for every k > 1.

Example 4.2. Consider the regular prefix code X = {(ba)"{a,b*}|n > 0} (cf. Figure 2). In view
of Theorem [2.T] taking for x the uniform Bernoulli distribution over the alphabet A it follows
from p(X) = 1, that X is maximal. For every n > 0, we have |X N A"| = 1, hence X is o1-
independent. With regard to d;, we have d;({a, b*}) = {e, b} and, for every n > 1: §; ((ba)"a) =
{a(ba)""ta,b(ba)"1a, (ba)"} and 61 ((ba)"b?) = {a(ba)"~ b, b(ba)"~'b%, (ba)"b}, therefore
X is dp-independent that is, equivalently it is ¢1-independent: as a consequence, X is S;-
independent and A;-independent. In addition, for every £ > 1 and every = € X we have
lok ()| = |z|, thus X is Xj-independent.

On another hand, taking w = baa € X as an input message, via the channel A; (resp., X1) the
output message w’ = aaa can be returned. Notice that, with respect to the notation introduced
in Section 2.1, w’ itself can be factorized either as (aaa) € A;(X) (resp., (aaa) € %1(X))
or (a)(a)(a) € X*. With the second factorization, since the Levenshtein metric between the
words w and a is 2, without the synchronization condition no error could be detected
with respect to the channels A;. Similarly, since the Hamming metric between w and a is not
defined, without Condition no error could be detected with respect to ¥;. More precisely,
with this condition, with respect to each of the preceding channels, we shall only retain the
factorization (aaa) for w’, in which exactly one error may effectively be detected.

Example 4.3. Let 7 = 01 = 7 and X be the bifix code |J,~,{ab"a,ba™b}. Taking for ; the
uniform measure we obtain p(X) =2-1/4%" -,(1/2)" =1, thus X is maximal in the family
of bifix codes Moreover X is T-independent indeed 7(X) is the union of the sets Y;,
(1 <4 <5) which as defined as indicated in the following:

Y, = U{ab",b”a}, Y, = LJ{anb7 ba"}, Y3 = U {ab™ab"a,baba" b},

n>1 n>1 m,n>1

Y, = U{GQb”a,bza"b}, Y; = U{ab”aQ,banbz}.

n>0 n>0

According to Theorem X is maximal in the family of o;-independent codes. Since we have
ab € o1(aa) Noy(bb), X does not satisfy the error correction constraint [(c3)l The condition of
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being a code is no more satisfied for 7(X) and 7(X). Indeed, the following equation holds upon
the words of 7(X):

(ab™ab™a)(ba™ba™b) = (ab™)(ab™)(ab)(a™b)(a™b).

Actually, given two different words z,y € X, the condition 7(z) N 7(y) # 0 implies 7(x) N
7(y) = {ab} or 7(x) N 7(y) = {ba} that is, {z,y} = {a? b*}. As a consequence the bifix code
X\ {a?, b} is error-correcting

Example 4.4. ([I4, Example 4.3] extended) Let 7 = 6 = 7 and X = {a™b",bPa?}, with
m,n,p,q > 2. We have 7(a™b") = {a™ 10", a™b" "1} and 7(bPa?) = {bP~1a?,bPa?" 1}, whence
X is T-independent
The set 7(X) = 7(X) is a (prefix) code however, as attested by what follows, 7(X) is
not a code.
Consider the input message w = (a™b")(bPa?)(a™b™)(b?a?). Via the channel 7, the word
w = amb" TP lgmtaT1pntr—149 may be a returned output message. Actually, according to
the synchronization constraint w’ may be factorized over #(X) in each of the following
different ways:
w' = (a™b™)(bP~1a?) (a™ 1™ (P a?) € a™b™ - T(bPad) - T(a™b") - T(bPal),
w' = (a™b" 1) (bPad) (a™ 1" (P a?) € T(a™b") - bPal - T(a™b") - T(bPad),
"= (amb" ) (bPat ) (a™b™) (P a?) € T(a"b") - T(bPal?) - a™b™ - T(bPad),
w' = (amb" ) (bPad ) (a™bm L) (bPa?) € T(a™b™) - T(bPal) - T(a™b™) - bPad.
Since we have 7(a™b™) N 7(bPa?) = (), the code X is error-correcting with respect to 7 [(c3)]
Furthermore, in each case, we have:

w' € 7(a™b") - 7(bPal) - T(a™b™) - T(bPa’).

Example 4.5. Let 7 = A, and X be the bifix code {a?b?, b*a®}.

We have 7(a?b3) = {ab?, a®b?, b3, ab?,a?b} and 7(b*a?) = {b3a? b*a, b%a?, b3a, b*}, hence X
is error—correcting However, 7(X) is not a code as attested by the following equation
among its elements:

(a?6?)(b%a?)(ab®)(b%a?) = (a?b)(b3a)(a?b?)(b3a?).

Nevertheless, we notice that each side of the previous equation belongs to the set:

#(a?b?) - #(b*a?) - #(a?b?) - #(b*a?),

hence the output message a?b*a®b®a? may be corrected as (a?b®)(b*a?)(a?b%)(b*a?).

Example 4.6. Let X = {a*, a®b,ab? bab}. Since we have d;(X) = {a®, a®b, ab, ba, v*}, X is ;-
independent that is, error-detecting with respect to d; Since we have a? € §;(a®)Nd1(ab),
X is not error-correcting. Notice that d1(X) itself is a (maximal prefix) code

Example 4.7. Let 7 = §; and X be the non-complete context-free bifix code {a™b"|n > 2}.
Since we have 7(X) = {a"1b"|n > 2} U {a™b""!|n > 2}, the code X is T-independent In
addition, since n # m implies 7(a™b™) N 7(a™b™) = 0, X is error-correcting

Notice that the set 7(X) = 7(X) remains a code which is bifix and error-detecting
with respect to the channel 7. Indeed, we have 72(X) = |, v, {a" 2", a" " 1b" "1 a™b"2|n >
2}, thus 7 (7(X)) N 7(X) = 0. However 7(X) is not error-correcting (we have a"~16"~! €

( n— 1bn)m7_( npn— 1))

Actually, 7(X) is a code Indeed, by applying Sardinas and Patterson algorithm (cf.

to 7(X), we obtain Uy = {b} thus U, = 0 for all p > 1.

4.3 Some decidability results

As indicated above, the main feature of the synchronization constraint essentially consists in
guiding the correction process, and it could be directly implemented in the channel. In what
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follows our aim is to examine whether the condition |(c2)H(c6)| can be decidable. We start by
proving a technical property, which actually holds without assuming that X is a code:

Lemma 4.8. Given a code X C A*, it satisfies the error correction constraint if, and only if,
for each word x € X, 7(z) # 0 implies =1 (r(z)) N X = {z}.

Proof Let « € X such that 7(x) # 0 and let y € 7! (7(x)) N X. By construction we have
T(x) N7(y) # 0: if X satisfies the error correction constraint then we obtain z = y, thus
T r(z))N X = {z}.

Conversely, assume that * € X and 7(z) # 0 implies 77! (7(2)) N X = {z}. Let z,y € X
such that 7(z) N 7(y) # 0. For every word y’ € 7(z) N 7(y), necessarily we have y € 7=1(y’) C
771(7(x)): this implies y € {x}, thus x = y, whence X is error-correcting. O

The following result provides some decidability properties related to our conditions:

Proposition 4.9. Let A be some finite alphabet, and k > 1. Given a reqular variable-length
code X C A*, and given an edit relation 7 € {0k, Lk, Ok, Dk, I, Sy Ay}, each of the following
properties holds:

(i) If X is finite then each of the conditions is decidable.

(ii) It can be decided whether X is mazimal in the family of T-independent codes and
whether 7(X) is a code

(iil) If 7 belongs to {6k,Lk,ak,Ak,Ik,Sl,A1} (k > 1) then one can decide whether X is
7-independent[(c2)} and whether T(X) is a code[(cG)]

Proof Let X C A* be a regular code. We consider one by one our conditions |(c2)H(c6)|

— Condition|(c2)| Firstly, assume that X is a finite set. Since 7 is an edit relation, 7(X) is finite,
thus 7(X) N X itself is finite: trivially it can be decided whether or not it is the empty set.
Secondly, in the case where 7 belongs to {0y, tk, ok, Ak, I, S1, A1} (K > 1) we have 7 = 7,
therefore, the equation 7(X) N X = @ is equivalent to 7 N (X X X) = 0. As indicated in
Sectlon X x X is a recognizable subset of A* x A*. In addition, according to Proposition
T is regular. this implies 7 N (X x X) regular, hence it can be decided whether or not it
is the empty set, in other words Condition is decidable.

— Condition|(c3)| Since 7 is an edit relation, for any finite subset X of A*, and for each z € X
the set 7~ 1 (7(z))NX is necessarily finite. Therefore, according to Lemmal4.8] one can decide
whether X satisfies the error correction condition.

— Condition According to Theorem and Corollary X is maximal in the family of
7-independent codes if, and only if, it is complete. According to Theorem (iii), this is
equivalent to u(X) = 1, where p stands for the uniform Bernoulli distribution. Consequently,
maximality in the family of 7-independent codes can be decided for every regular (a fortiori
finite) code.

- Condition By definition, we have 7 = 7Uid4~. As indicated in Section the relations
tda~ and T are regular, therefore their union 7 is regular; in addition, since X is regular,
according to Proposition 7(X) is regular. Consequently one can decide whether it is a
code by applying Sardinas and Patterson algorithm.

— Condition[(c6)|If X is finite, 7(X) itself is finite: once more it can be decided whether it is a
code by applying Sardinas and Patterson algorithm. If 7 belongs to {dx, tk, ok, Ak, Ix, S1, A1}
(k> 1), we have 7 = 7. According to Proposition since 7 and X are regular, 7(X) itself
is regular: once more by applying Sardinas and Patterson algorithm, one can decide whether
or not 7(X) is a code. O
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In the case where X is not a finite set, Proposition lets actually open the three following
questions:

Q1) Let k > 2, 7 € {Sk,Ax}. Given a regular code X C A* is X a r-independent set, or
equivalently does the equation (7 Nid*)(X)N X = 0 hold?

Q2) Given a regular code X C A*, does it satisfy the error correction constraint? Note
that according to Lemma this is equivalent to (X x A*) N (7-771) C ida- that is,
(X x A )N (- 77 Nida- = 0.

Q3) Let k> 2, 7 € {Sk, Ax}. Given a regular code X C A* is the set 7(X) = (7 Nida«)(X) a
variable-length code?

Since id 4~ is not recognizable and since, in the most general case, intersection of sets is not
regularity preserving, none of the preceding questions is presently known to be decidable.

As indicated in the Introduction, the second part of the paper is devoted to investigating
the behavior of edit relations with regard to closed sets. We will start with the relations &y, ¢k,
Ay, Ii;, Sk

5 Codes closed under deletion or insertion

Recall that, given a relation 7 C A* x A*, a set X C A* is 7-closed if 7(X) C X. We start with
some general properties of closed codes. Firstly, the following result comes from the definition:
actually it will be frequently applied in the sequel.

Lemma 5.1. Let 7 € A* x A* and X C A*. Then X is 7-closed if, and only if, it is T*-closed.

Proof Assume that X is 7-closed. For each i € N we have 7i71(X) = 7(7%(X)) therefefore,
by induction over i > 0 we obtain 7¢(X) C X, thus 7%(X) C X. Conversely, by definition
7 = U;en 7" implies 7(X) C 7%(X), whence X being 7*-closed implies 7(X) C X. O

Secondly, as regards maximality, the following result states that closed codes have a behavior
quite similar to that of independent codes.

Lemma 5.2. Given a binary relation T onto A*, every T-closed code can be embedded into some
maximal one.

Proof In a classical way, we apply Zorn’s lemma. Let C be a chain ordered by inclusion of
7-closed codes and let X = Uxee X- By construction the set X is necessarily a code [T

Proposition 2.1.14]. For proving that it is 7-closed, we consider a word x € X that is, z € X
for some X € C. Since X is 7-closed, we have 7(z) C X, thus 7(z) C X. O

As in the case of independence, the preceding property only states a condition of existence. In
other words, it unfortunately does not allow to implement any practical method for embedding
a non-maximal code into some maximal one: actually the question of developing such method
remains open. However, in the special case of di-closed codes, we will see that such a procedure
can be obtained (cf. Corollary [5.7).

Remark 5.3. In the literature, in the framework of dependence systems [5] another notion of
closed set appears: for instance, with regard to the prefix order P, such sets correspond to
unitary submonoids of A*. The two notions do not intersect: indeed in the sense of our paper,
unitary submonoids are not P-closed.
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Next we focus to di-closed codes. A noticeable fact is that corresponding closed codes are
necessarily finite, as attested by the following result:

Proposition 5.4. Given a i-closed code X, and x € X, we have |z| € [1,k* —k — 1]\ {k}.

Proof It follows from ¢ ¢ X and X being di-closed that |z| # k. By contradiction, assume
|z| > (k—1)k and let ¢, r be the unique pair of integers such that || = gk+r, with 0 <r < k—1.
Since we have 0 < rk < (k — 1)k < |z|, an integer s > 0 exists such that |z| = rk + s, thus

words x1,- -, X,y exist such that x = x1---zpy, with |z1| = -+ = |zg| = r and |y| = s.
By construction, every word ¢t € Sub(x) with [t| € {r,s} belongs to 6;(x) C X (indeed, we
have r = |z| — ¢k and s = |x| — rk). This implies z1,--- , 2,y € X, thus 2 € X' N X: a
contradiction with X being a code. (]

Example 5.5. (1) According to Proposition no code can be di-closed. This can be also
drawn from the fact that, for every set X C AT we have ¢ € §7(X).

In addition, a code X C A* is do-closed if, and only if, it is a subset of A.

(2) Let A = {a,b} and k = 3. According to Proposition[5.4] every word in any d;-closed code
has length not greater than 5. Let X = {a?,ab,b?, a*b,ab*}. We prove that X is a non-complete
code which is however maximal as a d3-closed code.

Firstly, for proving that X is a code, we apply Sardinas and Patterson algorithm. We obtain:
Up = X' X\{e} = {a®b,0%}, Uy = XU UU; ' X = {b}, U = X 'U, UU; ' X = {b}, whence
U, = {b} for every n > 2, thus X is a code. Since §3(X) = {a?,ab,b*} C X, the code X is
d3-closed.

Secondly, taking for p the uniform Bernoulli distribution, we obtain: u(X) =3/4+2/32 < 1
hence, by Theorem X is non-complete.

Thirdly, we proceed to verify that X is maximal in the family of d3-closed codes. For that
purpose, by contradiction we assume that a d3-closed code Y that strictly contains X exists.
According to Proposition and since a®b belongs to Y, we have max{|y| : y € Y} = 5. From
the fact that a? € X CY we have a ¢ Y moreover, since a*b = (a?)(a?)b, Y cannot contains b.
Consequently, we have ANY = () whence, since Y is d3-closed, no word of length 4 can belong
to Y. Similarly, it follows from & ¢ Y that Y N A3 = : this implies Y \ X C A2 U A5.

Note that {a?, ab, ba,b?} = A? is a maximal code, therefore X U{ba}, which strictly contains
A2 is not a code, thus we have ba ¢ Y: we obtain Y \ X C A5. It follows from d3(A%) = A2
that no word of Y’ N A% can contain ba as a subword. In addition, since we have a®,b> € X C Y,
necessarily we have a®,b° ¢ Y, thus Y \ X C atb™. More precisely:

— Assume a®b? € Y. Applying Sardinas and Patterson algorithm to Y leads to compute the
sets Up, Uy, such that {a?b,ab? b3} C Uy and {b?,b} C U;. It follows from b?> € U; NY that Y
could not be a code.

— Similarly by assuming a“b®> € Y, applying Sardinas and Patterson algorithm to Y leads to
compute the sets Uy, Uy, which respectively contain the sets {a?b, b3} and {b%,b}. Once more
since we have b2 € U; NY, Y could not be a code. As a consequence, no word of atb™ can
belong to Y\ X.

Finally we obtain Y = X, which is a contradiction: consequently X is maximal in the family
of d3-closed code over A.

2b3

Remark 5.6. A noticeable fact is that Proposition[5.4] provides some bound which is independent
of the size of the alphabet, but only depending of k.

According to Example [5.5] (2), there are maximal closed codes that are not complete. In
other words no result similar to Theorem can be stated in the framework of dj-closed codes.
Nevertheless, the following result holds:
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Corollary 5.7. Let A be a a finite alphabet and let k > 1. Then one can decide whether a given
non-complete (resp. non-mazximal) §y-closed code X C A* is included into some complete one.
In addition there are a finite number of such complete codes, all of them being computable, if
any.

Proof According to Proposition only a finite number of §x-closed codes over A can exist,
each of them being a subset of ASF —F=1\ Ak, O

In other words, in the framework of d;-closed codes we obtain a specific answer with regard to
the open question raised by Lemmal[5.2] We close the section by considering the relation ¢j, and
the ones it involves, that is Iy, S, and Ag:

Proposition 5.8. For every every k > 1, no code can be closed under vy, nor Iy, Ag, Sk, Ak.

Proof Let X C A* be a tx-closed set. According to Lemma X is tj-closed, whence for
every € X, the word z¥t! = z2*¥ € 1;(z) belongs to X, therefore X cannot be a code. As a
consequence, by definition no Ii-closed code can exist. According to Example 1)7 given a
code X C A* we have §;(X) € X: this implies Ax(X) € X, thus X being not Ag-closed, nor
Sk-closed, nor Ag-closed. O

6 Codes closed under substitutions

Recall that according to Lemmal5.1} for an arbitrary set, being oj-closed is equivalent to being
oj-closed. Beforehand, given a word w € A", we need a thorough description of the set o} (w)
(whose any element of course have length |w]). Actually, as shown below, such a set is closely
related to the so-called Gray sequences.

Some words about Gray sequences

Binary Gray sequences consist of any 2™-term sequences of pairwise different words in A", say
(Wi))<;<on, Where A is a binary alphabet and n a positive integer, satisfying the following
condition: for each i € [1,2™ — 1], the words w;4+1 and w; differ by only one letter. Clearly,
in the framework of our study, this last condition is equivalent to w;y1 € o1 (w;). It is well
known that, for every positive integer n such sequences exist and they can be computed by
applying now-classical algorithms: see e.g. [0, [12] and for a survey [36] or [I8, Chap. 7,
Sect. 7.2.1.1]. In any case, over a binary alphabet A, for every non-empty word w, we have
of(w) = A"l Furthermore, for every finite alphabet A, the so-called |A|-arity Gray cyclic
sequences themselves allow to generate A™ [I2) B3]: once more we have o} (w) = A"™. In
addition, in the special case where k = 2 and |A| = 2, by making use of some Gray sequence,
it can be proved that we have |oo(w)| = 27~ ! [I8, Exercise 8, p. 28].

However, except for the special cases we mentioned above, to the best of our knowledge,
given an arbitrary positive integer k no general description of the structure of o (w) appears
in the literature. In any event, in what follows we provide an exhaustive description of o (w).
Actually we will see that, according to the fact that A can be a binary alphabet or not, the
behavior of o, greatly differs.

To be more precise, in the case where there are at least three letters in A, the study is
greatly facilitated by the fact that the inclusion o7 C o7 holds (cf. Lemma. Unfortunately,
this property does not extend to binary alphabets, but nevertheless, with this condition the
inclusion o5 C 07 holds (cf. Lemma . In addition, in the framework of a binary alphabet, a
noticeable fact is that the action of o can be translated in terms of some addition on (Z/27)"
(cf. Property ) Let us start by the easiest part of the study.
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6.1 Basic results concerning o} (w): the case where |A| > 3

In the sequel we set n = |w| > k. Recall that we set A=F = |J,5, A". We begin with the
following property: B

Lemma 6.1. Assume |A| > 3. For every word w € A=* we have o1(w) C o2(w).

Proof Recall that the notation w = wy - - - wy,, with w; € A (0 <14 < n), stands for a factorization
of w upon A. Let w’ € o1(w); set w' = w} - w), with w} € A (0 <4 < n). Then a unique
io € [1,n], with n = |w|, exists such that:

(a) w; = w; if, and only if, i # 4.
We prove that w” € A* exists with w” € op(w) and w' € ox(w”). It comes from k < n
that some (k — 1)-element subset I C [1,n]\ {ip} exists. Since we have |A| > 3, some letter
c € A\ {w;,, w; } exists. Let w” € A™ such that:

(b) wi! = c and, for each i # ig: w; # wj if, and only if, i € I.
By construction we have w” € oj(w), moreover it comes from ¢ # wj that we have wj # wj .
According to (a) and (b), we obtain:

() = wl) £ ul,,

(d) w) = w; #wl if i € I, and:

(e) wi=w; =w} ifi¢ IU{i}

7

Since we have |I U {ig}| = k, this implies w’ € oy (w"). O

As a consequence of Lemma in the case where we have |A| > 3, the following statement
brings some characterization of o*(w):

Proposition 6.2. Assume |A| > 3. For each w € AZF, we have of(w) = Alvl.

Proof Let w' € A™\ {w}, with |w| = n: we prove that w' € of(w). Let I = {ip, -+ ,ip} =
{i € [L,n] : w} # w;} and let (w(7)) be a sequence of words such that both the following
conditions hold:

(a) w= wlio) | lie) = 4,

(b) for each j € [0,p — 1], wé”“) + w(g“) if, and only if, £ =4;41.
By construction, the following property holds:

(c) for each j € [0,p — 1], w5+ € oy (w)) (1 < j < p).
By induction over j we obtain w’ € o} (w) thus, according to Lemmal6.1} w’ € oj(w). O

0<j<p

6.2 The case of a binary alphabet

In the case where A is a binary alphabet, without loss of generality we set A = {0,1}: this
will allow a well-known algebraic interpretation of o;. Indeed, denote by @ the addition in the
group Z/27 with identity 0, and fix a positive integer n. Let w = wy -+ wy, w' = w} - w),,
with w;,w, € A (1 < i < n). Define w ® w’ as the unique word of A™ such that, for each
i € [1,n], the letter of position ¢ in w @ w’ is w; ® w;. With this notation the sets A™ and
(Z/2Z)" are in one-to-one correspondence.

From the previous remarks, we have w’ € o1 (w) if, and only if, some u € A™ exists such that
w’ = w@u with |ul;, the number of occurrences of the letter 1 in u, equal to 1 (equivalently, we
have |u|p = n — 1). From the fact that we have o (w) C o¥(w), the following property holds:

w €op(w) = Fue A" v =wdu, |uj;=Ek. (2)

More precisely, for each i € [1,n], the condition u; = 1 is equivalent to w; # w}. Let d
i € [1,n] : w; = w; = 1}|. On a first hand, it follows from |u|; = |{i € [1,n] : w; = 1,w]
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0} + {7 € [1,n] : w; = 0,w] = 1}, that |u|; = (w1 —d) + (Jw'|1 — d) = |w|1 + |w'|1 — 2d, thus
luly = |w|; + |w'|; mod 2. On another hand, we have |w'|; — |w]; = |w]| + |w|1 — 2]w];, thus
|w'|y — |w|y = |w1] + |w’|; mod 2. We obtain:

w =wdu= |w|; + |[w']; =|wi| — |w'|; mod 2 = |u|; mod 2. (3)

In addition w’ = w @ u is equivalent to u = w ® w’. Finally, for a € A we denote by @ its
complementary letter that is, we set @ = a @ 1; moreover, for w = wy -+ w,, with w; € A
(i € [1,n]), we set W = wy - - - W,. The following statement is the counterpart of Lemma [6.1] in
the framework of binary alphabets:

Lemma 6.3. Assume |A| = 2. For every w € AZ**1 we have o9(w) C o2(w).

Proof Set A = {0,1}. It follows from oy C o that the result holds for k& = 1: in the sequel
of the proof, we assume k > 2. Let n = |w| > k+ 1 and v’ € o1(w). Set w = wy -+ wp,
w = wj - -wh, with w;,w; € A (1 <i < n). Note that we have w; # w; if, and only if, the
equation w; = w; holds. By construction, there are distinct integers ig, jo € [1, n] such that the
following condition holds for each i € [1,n]:

(a) w; = w; if, and only if, i € {io, jo}.
It follows from n > k4 1 > 3 that some (k — 1)-element set I C [1,n] \ {io,jo} exists. Let
w”,w" € A™ such that each of the two following conditions holds:

(b) wi’ = w; if, and only if, i € {ig} U I, and:

(¢) w = w! if, and only if, i € {jo} U I
By construction, we have w”’ € oy (w”) and w” € og(w), thus w”’ € o#(w). Moreover, the fact
that we have w” = w’ is attested by the three following equations:

Y g eq

d) v =w! =w;, =,

() why = W =00 = Wr

(e) Wi, = Wi, = Wiy = Wy, and:

(f) for i ¢ {ig, jo}: w! = wl/ = w; = w} if, and only if, i € I. O

%

n

As regards algebraic interpretation of binary alphabets, we state:

Lemma 6.4. Let A ={0,1}. Given w,w’ € A™ each of the two following properties holds:

(i) If we have |w| > k41 and w' € of(w), where k is even, then |w'|; — |w|; is an even
integer;

(ii) If |w'|1 — |w|1 s even then we have w' € o} (w), for every k such that |w| > k + 1.

Proof Assume k even with w’ € oj(w). According to Property we have w' = w @ u with
lul1 = k. According to Property (3), [w'[1 — |w|; is even, hence Property (i) holds.

Conversely, assume |w'|; — |w]y even and let w = w ® w’. According to Property , |u)y
is an even integer: set |u|; = 2p, with p > 0. Actually we have u = v’ @ --- @ uP), with
|u|; = 2 for each i € [1,p], and the sets D; = {j : uy) = 1} (1 < i < p) being pairwise
disjoint. Let (w®, - ,w®)) be the sequence of words in A" defined by w® = w, w® =’
and w® = w1 @y (1 <i < p). For each i € [1,p], by taking k = 2 in Property (2) we
obtain w(? € oy(w~Y). By induction, since the sets D; (1 < i’ < p) are pairwise disjoint,
this implies w® € o (w(®): in particular we have w’ € o (w). According to Lemma we
obtain w’ € o (w) for every k < |w| — 1: this establishes Property (ii). O

Given a positive integer n, we denote Even} (resp., Odd}) the set of the words w € A™ such
that |w|; is even (resp., odd). As a consequence of Lemma [6.3] and Lemma we state:
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Proposition 6.5. Assume |A| = 2. For each wordw € AZF exactly one of the following conditions
holds:

() |lw| > k+1, k is even, and oy (w) € {Evenllwl,Odd‘lwl};

(ii) |w| > k+ 1, k is odd, and o} (w) = A"I;

(iii) Jw| =k and o} (w) = {w,w}.

Proof Let w € AZ* and n = |w|. Trivially, the case where n = k corresponds to Condition (iii)
of the statement.

Next, we assume n > k+ 1, with k even. It follows from Lemmal6.4{i) that o}(w) is the set
of the words w’ € A™ such that |w'|; — |w|; is even: this corresponds to Condition (i).

At last, we assume n > k + 1 and k odd. We will prove that we have w’ € o} (w) for each
word w' € A"\ {w}. If |w'|; — |w|; is even, the property comes from Lemma ii). Assume
|w'|y — |w|; odd and let ¢t € o1(w’) that is, v’ € o1(t) C ok (ok—1(t)) thus, w' € ox(¢') for
some t' € oj,_1(t). According to Property (2), it follows from w’ € oy(t) that |t|; — |w]] is
odd, whence |t|; — [w|; = ([th — [w[1) + (Jw’|y — |w]1) is even: according to Lemma [6.4fii),
this implies ¢ € o} (w). But since k — 1 is even, we have o,_1(t) C o5(t), thus ¢’ € o5(¢):
according to Lemma [6.3] this implies ¢’ € o (t) (we have [t| = [w/| = n > k + 1). We obtain
w' € o, (') Coi(t) C o} (o) (w)) = o} (w): this completes the proof of Condition (ii). O

6.3 The consequences for o-closed codes

Let X C A* be a oy-closed code. Beforehand, we notice that it may happen that the inclusion
X C ASF=1 holds: indeed, trivially every subset of ASF~1 is gj-closed. In the case where at
least one word in X, say x, has length not smaller than k, thanks to the study we have drawn
in both the sections and we are able to describe o} (x). The aim of Section is to
apply such a study in order to precisely describe the structure of our code X.

More precisely, in the two special cases where we have |A| > 3, or |A| = 2 with &k odd,
due to the fact that the equation o} (x) = Al*l holds, we will see that the structure of X can
be described in a straightforward way (cf. Lemma set out below). Actually, the most
delicate part of the study consists in examining the case where we have |A| = 2 and k even: this
corresponds to Condition , which is stated just below. With such a condition, by making
use of some technical property (cf. Lemma , an exhaustive description of the structure of
the code X can be obtained (cf. Lemma . At last, some summary of the study is provided
by Corollary Let us start by stating the announced condition:

Given a op-closed code X C A*, we say that the tuple (k, A, X) satisfies Condition if
each of the three following properties holds:

(a) k is even, (b) |A|=2, (c) X ¢ AS. (4)
At first, we establish the following property:

Lemma 6.6. Assume |A| = 2 and k even. Given a pair of words v,w € A%, if we have
|w| > max{|v| + 1,k + 1} then the set o} (w) U {v} cannot be a code.

Proof Let v,w € AT and n = |w| > max{|v| + 1,k + 1}: we have v ¢ o} (w) C A™. We are in
Condition (i) of Proposition [6.5| that is, we have o} (w) € {Even’, Odd}.

On a first hand, since A" is a right-complete prefix code [I, Theorem 3.3.8], it follows
from |v] < mn —1 that a (perhaps empty) word s exists such that vs € A"~1. On another hand,
it follows from A" !A = A" = Even] U Odd} that, for each u € A"~!, a unique pair of letters
ap, ai, exists such that uag € EvenY, ua; € Odd} with a; = ag.
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In other words, a € A exists such that vsa € oj(w). According to Lemma [6.4(i), the integer
|sav|; — |w|y = |vsa|; — |w|; is even; according to Lemma ii), this implies sav € of(w).
Since we have (vsa)v = v(sav), the set o} (w) U {v} cannot be a code.

As a consequence of Lemma we obtain the following result:

Lemma 6.7. Given a og-closed code X C A*, if (k, A, X) satisfies Condition then we have
X € {Even,0dd}, A"}, for some n >k + 1.

Proof Firstly, by contradiction assume that two words x,y € X NAZ*+1 exist such that |z| # |y|
that is, without loss of generality |z| > |y|+ 1. Since X is oj-closed, we have o (z) C X. Since
every subset of a code is a code, the subset of X, o} (2)U{y}, is a code as well, thus contradicting
the result of Lemma As a consequence, all the words in X N AZ*+! have a common length
that is, we have X C ASF U A", for some integer n > k + 1.

Secondly, once more by contradiction, assume that there are words x € X N AZF+1 ¢ €
X N A=k, As indicated above, since X is oy-closed, of(x) U {y}, which is a subset of X, is a
code: since we have |z| > k+ 1 and |z| > |y| + 1, once more we obtain a contradiction with the
result of Lemma [6.61

As a consequence, either we have X C A<F or we have X C AZ*t1 for some n > k + 1:
since (k, A, X) satisfies Condition , only the second condition holds. According to Proposition
M(i), for each word « € X we obtain o} (z) € {Eveny, Odd7}. It follows from ¢*(X) C X that
we have either Even] C X, or Odd} C X, or A" C X. We now examine each of these three
conditions:

— Since A™ is a maximal code, the condition A™ C X implies X = A".

— Now, we examine the case where the condition Even] C X holds. Assume that we have
Even! # X that is, some word z € X N Odd] exists. Since k is an even integer, once more
according to Proposition [6.5(i), we have o}(z) = Odd}. On a first hand we have o} (Even} U
{z}) = EvenlUor}(z) = Even]UOdd} = A", furthermore Even} C X implies X € {Even}, A"}.
On another hand we have o} (Eveny U {z}) C 0;(X) C X: since A" is a maximal code, once
more we obtain X = A™. Consequently, in any case, Even] C X implies X € {Even}, A"}

— Symmetrical arguments prove that the condition Odd}! C X implies X € {OddY, A™}.
Consequently in any case we have X € {Even],Odd}, A™}: this completes the proof. O

According to Lemmal6.7] with Condition 4] no oj-closed code can simultaneously possess words
in AS* and words in AZ**!, In remains to examine the case where Condition (4] does not hold.
The following property allows to complete this part of the study:

Lemma 6.8. Given a oi-closed code X C A*, if (k, A, X) does not satisfy Condition then
either we have X C A<, or we have X = A", withn > k + 1.

Proof Assume that Condition doesn’t hold. By definition, exactly one of the three following
conditions holds:

(a) X C ASF;

(b) X ¢ AF and |A| > 3;

(c) X ¢ ASF with |A| =2 and k odd.

With each of the two last conditions, let € X N AZ**1, Since X is oy-closed, according
to the propositions and [6.5(ii), we have A" = o} (z) C 0(X) C X. Since A" is a maximal
(bifix) code, we obtain X = A™. O

At last, as a consequence of Lemma [6.7] and Lemma [6.8] we state:
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Corollary 6.9. Let A be a finite alphabet and k a positive integer. Given a code oy-closed
X C A*, either X is a subset of in AS*, or we have X € {Even},0dd}, A"} for some integer
n>k+1.

Proof Let € X and n = |z|. As specified in preamble of Section [6] we have of(z) = A"
(see e.g. [I8, Chap. 7, Sect. 7.2.1.1]). Consequently, the property of Corollary holds in
the case where £ = 1. In the sequel of the proof, we assume k > 2. Assume that X is o-
closed. According to Lemmal6.8] if Condition [4]does not hold, the code X satisfies our property.
Otherwise, according to Lemma [6.7] we have X € {Even}, Odd}, A"}, whence the code X once
more satisfies the property. O

6.4 Maximality and completeness in o;-closed codes

We are now ready to provide an exhaustive description of complete og-closed (resp., X-closed)
codes:

Proposition 6.10. Let X C A* a code. Then each of the following properties holds:

(i) If X is oy-closed and complete, then either X is a subset of ASF, or some integern > k+1
exists such that X = A"™.

(ii) If X is Xp-closed, we have X = A™ for some n > k, thus it is necessarily mazimal and
complete.

Proof Let X be a complete o-closed code. According to Corollary either we have X C ASk,
or we have X € {Eveny,0dd}, A"} for some integer n > k + 1. Taking for p the uniform
Bernoulli distribution, we have p(Even?) = p(0dd}) = 1/2, and u(A™) = 1, thus according to
Theorem 2.1} X = A™.

In view of Property (ii), recall that by definition we have Xx(X) = [, <;< 05 (X): this
implies 01(X) C X (X). Consequently, given a ¥j-closed code X, some integer n > 1 exists
such that A™ = o}(X) C E;(X) C X. Since A” is a maximal code we obtain X = A", whence
X is complete. ([

Trivially, according to Proposition [6.10[ii), in the family of ¥j-closed codes maximality and
completeness are equivalent notions. In addition, as a direct consequence of Proposition [6.10]
(i), in the family of oj-closed codes included in AZF+1 those concepts are also equivalent.

With regard to oj-closed codes not included in AZ*+1, results are different. On a first hand,
according to Proposition i), such codes are necessarily included in AS*. On another hand,
as shown in [32], there are non-complete finite codes that cannot be included into any finite
complete (or equivalently, finite maximal) one. Let X be one of them and let k& = max{|z| :
x € X}+1. By definition X is og-closed. Since every og-closed code is finite, no finite maximal
code can contain X; in other words, although X is non-complete, it is maximal in the family
of op-closed codes.

Example 6.11. [32] Let A = {a,b} and X = {a®, a?ba,a?b,ba,b}, k = 6. The code X is non-
complete, oi-closed and not included into any finite maximal code, whence X is maximal in
the family of oi-closed codes.

Proposition 6.12. Let X be a (finite) non-complete oy-closed code. Then one can decide whether
some complete oy-closed code containing X exists. More precisely, there is only a finite number
of such codes, each of them being computable, if any.

Proof We draw the scheme of an algorithm that allows to compute every complete og-closed
code X containing X.
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— In a first step, we compute Y = X N ASk,

- If Y = X, according to Proposition we have X C A<k X if any, can be computed
in a finite number of steps.

— Otherwise, X exists if, and only if, for some n > k + 1 we have X C A™: this can be
checked in a straightforward way; furthermore we obtain X = A™. O

Recall that Corollary has provided some method for embedding a dj-closed code into some
maximal one (if any). Similarly, in the framework of oj-closed codes, Proposition actually
brings a positive answer to the issue raised by Lemmal[5.2]

7 Some future line of research

The study we presented in the present paper lies in the framework of the free monoid, and
it involves some connections with the three famous fields of error detection, regular binary
relations, and variable-length codes. With regard to further developments, such connections
appear promising:

(i) On a first hand, as regards independence of codes, the constraints introduced in Section
[ lead to some regard of the framework of error detection in term of free monoid. From
this point of view, investigations could be done in several ways:

— According to Lemma [3.2] every code independent with respect to a given edit relation
can be embedded into some maximal one. We recall that presently there is no method
of computation, as is the case of the formula provided by Theorem Developing
such methods, at least for special families of codes could allow new connections between
variable-length codes and error-detecting (error-correcting) ones.

— As attested by the examples of Section it appears very difficult to construct codes
that satisfies the totality of the constraints|(c1)H(c6)| of Section Fortunately, alterna-
tive solution exist in order to satisfying the condition of error correction. From this point
of view, according to the type of channel that is, the type of edit relation, it would be
desirable to identify noticeable families of regular (even finite) variable-length codes that
could as to best ensure error correction constraint.

— Studying whether the questions we stated in Section [4.3] are decidable or not, appears
challenging. From this last point of view, new connections between regular binary words
relations and variable-length codes (especially maximal ones) could be brought to light.

(ii) On another hand, with regard to closed codes, according to the results of the propositions
and one can ask whether some sequences generalizing the classical Gray sequences
exist in A™, or eventually in the sets Even} or Odd;". In such sequences, two consec-
utive elements would differ by exactly k characters. Cyclic sequences that is, sequences
(wi)1<i<p such that wi; = op(wp), would be highly desirable: indeed, such a property is
satisfied by each of the Gray sequences provided by the literature. Actually, in view of
some of our most recent studies, we strongly believe that the answer is yes. We hope to
develop this point in some further paper.

(iii) At least, it could be of interest to extend the study of the present paper to the framework
of other specific binary relations that is, other specific (quasi) metrics.
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