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THE BOUSSINESQ SYSTEM WITH NON-SMOOTH BOUNDARY1

CONDITIONS : EXISTENCE, RELAXATION AND TOPOLOGY2

OPTIMIZATION. ∗3

ALEXANDRE VIEIRA† AND PIERRE-HENRI COCQUET∗‡4

Abstract. In this paper, we tackle a topology optimization problem which consists in finding5
the optimal shape of a solid located inside a fluid that minimizes a given cost function. The motion6
of the fluid is modeled thanks to the Boussinesq system which involves the unsteady Navier-Stokes7
equation coupled to a heat equation. In order to cover several models presented in the literature, we8
choose a non-smooth formulation for the outlet boundary conditions. This paper aims at proving9
existence of solutions to the resulting equations, along with the study of a relaxation scheme of the10
non-smooth conditions. A second part covers the topology optimization problem itself for which11
we proved the existence of optimal solutions and provides the definition of first order necessary12
optimality conditions.13

Key words. Non-smooth boundary conditions, topology optimization, relaxation scheme, di-14
rectional do-nothing boundary conditions15

AMS subject classifications. 49K20, 49Q10, 76D03, 76D5516

1. Introduction.17

Directional do-nothing conditions. For many engineering applications, simula-18

tions of flows coupled with the temperature are useful for predicting the behaviour19

of physical designs before their manufacture, reducing the cost of the development20

of new products. The relevance of the model and the adequacy with the experiment21

therefore become important [17, 42, 48]. In this paper, we choose to model the flow22

with the Boussinesq system which involves the Navier-Stokes equations coupled with23

an energy equation. In most mathematical papers analyzing this model [9, 29, 49],24

homogeneous Dirichlet boundary conditions are considered on the whole boundary.25

This simplifies the mathematical analysis of the incompressible Navier-Stokes equa-26

tion since the non-linear term vanishes after integrating by part hence simplifying the27

derivation of a priori estimates [8, 22, 28, 49].28

However, several applications use different boundary conditions that model inlet,29

no-slip and outlet conditions [1]. Unlike the inlet and the no-slip conditions, the30

outlet conditions are more subject to modelling choices. A popular one consists in31

using a do-nothing outlet condition (see e.g. [7, 26, 27, 35, 47, 50]) which naturally32

comes from integration by parts when defining a weak formulation of the Navier-33

Stokes equations. However, since this outlet condition does not deal with re-entering34

flows, several papers use a non-smooth outlet boundary conditions for their numerical35

simulations (see e.g. [5, 24]). A focus on non-smooth outflow conditions when the36

temperature appears can be found in [13, 24, 43, 45].37

In particular, directional do-nothing (DDN) boundary conditions are non-smooth38

conditions that become popular. The idea is originally described in [14], and several39
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sité de la Réunion, 2 rue Joseph Wetzell, 97490 Sainte-Clotilde, France. (Alexandre.Vieira@univ-
reunion.fr)
‡Laboratoire des Sciences de l’Ingénieur Appliquées à la Mécanique et au Génie Electrique
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other mathematical studies followed [5, 10, 12]. These conditions were considered40

especially for turbulent flows. In this situation, the flow may alternatively exit and41

re-enter the domain. These directional boundary conditions tries to capture this42

phenomenon, while limiting the reflection. It is worth noting that other boundary43

conditions can be used, namely the so-called local/global Bernouilli boundary condi-44

tions [13, 24, 45]. The latter implies the do-nothing boundary condition is satisfied for45

exiting fluid and that both the normal velocity gradient and the total pressure vanish46

for re-entering fluid. Nevertheless, in this paper, we are going to use non-smooth DDN47

boundary condition since they are easier to impose though a variational formulation.48

Concerning the mathematical study of Boussinesq system with directional do-49

nothing conditions, the literature is rather scarce. To the best of our knowledge, we50

only found [6, 16], where the steady case is studied in depth, but the unsteady case only51

presents limited results. Indeed, while [16, p. 16, Theorem 3.2] gives existence and52

uniqueness of a weak solution with additional regularity to the steady-state Boussinesq53

system involving non-smooth boundary conditions at the inlet, it requires the source54

terms and the physical constants like for example the Reynolds number to be small55

enough. We emphasize that these limitations comes from the proof which relies on a56

fixed-point strategy. The first aim of this paper will then be to fill that gap by proving57

existence and, in a two-dimensional setting, uniqueness of solutions for the unsteady58

Boussinesq system with non-smooth DDN boundary condition at the outlet.59

Topology optimization. On top of the previous considerations, this paper aims at60

using these equations in a topology optimization (TO) framework. In fluid mechanics,61

the term topology optimization refers to the problem of finding the shape of a solid62

located inside a fluid that optimizes a given physical effect. There exist various63

mathematical methods to deal with such problems that fall into the class of PDE-64

constrained optimization, such as the topological asymptotic expansion [3, 15, 41] or65

the shape optimization method [25, 39, 40]. In this paper, we choose to locate the66

solid thanks to a penalization term added in the unsteady Navier-Stokes equations,67

as exposed in [4]. However, the binary function introduced in [4] is usually replaced68

by a smooth approximation, referred as interpolation function [45], in order to be69

used in gradient-based optimization algorithms. We refer to the review papers [1,70

23] for many references that deal with numerical resolution of TO problems applied71

to several different physical settings. However, as noted in [1, Section 4.7], most72

problems tackling topology optimization for flows only focus on steady flows, and73

time-dependant approaches are still rare. Furthermore, to the best of our knowledge,74

no paper is dedicated to the mathematical study of unsteady TO problems involving75

DDN boundary conditions, even though they are already used in numerical studies76

[13, 24, 43, 45]. Therefore, the second goal of this paper will be to prove existence77

of optimal solution to a TO problem involving Boussinesq system with non-smooth78

DDN boundary conditions at the outlet.79

First order optimality conditions. As hinted above, a gradient based method is80

often used in order to compute an optimal solution of a TO problem. However, the81

introduction of the non-smooth DDN boundary conditions implies that the control-82

to-state mapping is no longer differentiable. The literature presents several ways to83

deal with such PDE-constrained optimization problems. Most focus on elliptic equa-84

tions, using subdifferential calculus [18, 31, 20] or as the limit of relaxation schemes85

[19, 36, 46]. We may also cite [38] for a semilinear parabolic case and [51] which86

involves the Maxwell equations. We emphasize that using directly a subdifferential87

approach presents several drawbacks: the subdifferential of composite functions may88

be hardly computed, and the result may be hardly enlightening nor used [18]. We will89
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therefore use a differentiable relaxation approach, as studied in [46]. First, we will90

be able to use standard first order necessary optimality conditions since the relaxed91

control-to-state mapping will be smooth. A convergence analysis will let us design92

necessary optimality condition for the non-smooth problem. Secondly, we find this93

approach more enlightening, as it may be used as a numerical scheme for solving the94

TO problem.95

1.1. Problem settings. Let Ω ⊂ Rd, d ∈ {2, 3} be a bounded open set with96

Lipchitz boundary whose outward unitary normal is n. We assume the fluid occupies a97

region Ωf ⊂ Ω and that a solid fills a region Ωs such that Ω = Ωf ∪Ωs. The penalized98

Boussinesq approximation (see e.g. [45] for the steady case) of the Navier-Stokes99

equations coupled to convective heat transfer reads:100

(1.1)

∇ · u = 0,

∂tθ +∇ · (uθ)−∇ · (Ck(α)∇θ) = 0, a.e. in Ω

∂tu + (u · ∇)u−A∆u +∇p−Bθey + h(α)u = f,

u(0) = u0(α), θ(0) = θ0(α),

101

where u denotes the velocity of the fluid, p the pressure and θ the temperature (all102

dimensionless), u0(α), θ0(α) are initial conditions. In (1.1), A = Re−1 with Re being103

the Reynolds number, B = Ri is the Richardson number and C = (Re Pr)−1 where Pr104

is the Prandtl number. In a topology optimization problem, it is classical to introduce105

a function α : x ∈ Ω 7→ α(x) ∈ R+ as optimization parameter (see e.g. [1, 23]). The106

function h(α) then penalizes the flow in order to mimic the presence of a solid:107

• if h ≡ 0, then one retrieves the classical Boussinesq approximation.108

• if, for some s > s0 and large enough αmax, h : s ∈ [0, αmax] 7→ h(s) ∈ [0, αmax]109

is a smooth function such that h(s) = 0 for s ≤ s0 and h(s) = αmax for s ≥ s0,110

one retrieves the formulations used in topology optimization [1, 9, 45]. In the111

sequel, we work in this setting since we wish to study a TO problem.112

Since the classical Boussinesq problem is retrieved when h(α) = 0, the fluid zones113

Ωf ⊂ Ω and the solid ones Ωs ⊂ Ω can be defined as Ωs := {x ∈ Ω | α(x) < s0} , Ωf :=114

{x ∈ Ω | α(x) > s0} , where αmax > 0 is large enough to ensure the velocity u is small115

enough for the Ωs above to be considered as a solid (see [4, Corollary 4.1]). The116

function k(α) : x ∈ Ω 7→ k(α(x)) is the dimensionless diffusivity defined as k(α)|Ωf = 1117

and k(α)|Ωs = ks/kf with ks and kf are respectively the diffusivities of the solid and118

the fluid. We also assume that k is a smooth regularization of (ks/kf )1Ωs + 1Ωf . In119

this framework, α is thus defined as a parameter function, which will let us control120

the distribution of the solid in Ω.121

Let us now specify the boundary conditions. Assume ∂Ω = Γ is Lipschitz and122

is split into three parts: Γ = Γw ∪ Γin ∪ Γout. Here, Γw are the walls, Γin the123

inlet/entrance and Γout is the exit/outlet of the computational domain. Let β be124

a function defined on Γout and define: ∀x ∈ R : x+ = pos(x) = max(0, x), x− =125

neg(x) = max(0,−x), x = x+ − x−. Inspired by [14], we supplement (1.1) with the126

following boundary conditions:127

(1.2)

On Γin : u = uin, θ = 0,

On Γw : u = 0, Ck∂nθ = φ,

On Γout : A∂nu− np = A∂nuref − npref − 1

2
(u · n)−(u− uref),

Ck∂nθ + β(u · n)−θ = 0,

128
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with φ ∈ L2(0, T ;L2(Γw)), f ∈ L2(0, T ; (H1(Ω))′), uin ∈ L2(0, T ;H
1/2
00 (Γin)), ∂n =129

n · ∇ and (uref, pref) denotes a reference solution. As stated in [30], this nonlinear130

condition is physically meaningful: if the flow is outward, we impose the constraint131

coming from the selected reference flow ; if it is inward, we need to control the increase132

of energy, so, according to Bernoulli’s principle, we add a term that is quadratic with133

respect to velocity.134

Weak formulation. To define a weak formulation of (1.1)-(1.2), we introduce135

V u = {u ∈ H1(Ω)d; ∇ · u = 0, u Γin∪Γw
= 0}, and define Hu as the closure of V u136

in (L2(Ω))d. Similarly, we define V θ = {θ ∈ H1(Ω); θ Γin
= 0}, and Hθ = L2(Ω).137

We identify Hu and Hθ with their dual, and denote by (V u)′ (resp. (V θ)′) the dual138

of V u (resp. V θ). Multiplying (1.1)-(1.2) with ϕ ∈ V θ and integrating by parts, the139

result reads as:140 ∫
Ω

∂tθϕ−
∫

Ω

θu · ∇ϕ+

∫
Ω

Ck∇θ · ∇ϕ+

∫
Γ

(θ(u · n)− Ck∂nθ)ϕ = 0,141

for all ϕ ∈ V θ. From (1.2), the boundary term reduces to:142 ∫
Γ

(θ(u · n)− Ck∂nθ)ϕ = −
∫

Γw

φϕ+

∫
Γout

(
(u · n) + β(u · n)−

)
θϕ

−
∫

Γout

(
βθ(u · n)− + Ck∂nθ

)
ϕ

= −
∫

Γw

φϕ+

∫
Γout

(
(u · n) + β(u · n)−

)
θϕ,

143

and the weak form of the heat transfer equation is then144

(WF.1)

∫
Ω

∂tθϕ−
∫

Ω

θu · ∇ϕ+

∫
Ω

Ck∇θ · ∇ϕ+

∫
Γout

(
(u · n) + β(u · n)−

)
θϕ

=

∫
Γw

φϕ.

145

For the Navier-Stokes equations, we are going to use the next formula to replace the
inertial term (u · ∇)u) by a symmetric one which helps to get a priori estimates (see
also [11, 14]). For all Ψ ∈ V u, the latter is given as∫

Ω

((u · ∇)u) ·Ψ =
1

2

∫
Ω

((u · ∇)u) ·Ψ− ((u · ∇)Ψ) · u +
1

2

∫
∂Ω

(u · n)(u ·Ψ).

Multiplying (1.1) by Ψ ∈ V u, integrating by parts and using the boundary conditions,146

the weak formulation of the Navier-Stokes system is then defined as147

(WF)148

149

(WF.2)

∫
Ω

∂tu ·Ψ +
1

2
{((u · ∇)u) ·Ψ− ((u · ∇)Ψ) · u}+A∇u : ∇Ψ + h(α)u ·Ψ

−
∫

Ω

Bθ · ~ey ·Ψ +
1

2

∫
Γout

(u · n)+(u ·Ψ)

=

∫
Ω

f ·Ψ +

∫
Γout

(A∂nuref − npref) ·Ψ +
1

2

∫
Γout

(u · n)−(uref ·Ψ)

150

for all Ψ ∈ V u. A weak solution to (1.1)-(1.2) is then defined as (u, θ) ∈ L2(0, T ;V u)×151

L2(0, T ;V θ) satisfying the weak formulations (WF).152
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1.2. The topology optimization problem. A goal of this paper is to analyze153

the next topology optimization problem154

(OPT)

min J (α,u, θ)

s.t.

{
(u, θ) solution of (WF) parametrized by α,

α ∈ Uad,
155

where J is a given cost function. For some κ > 0, we set Uad = {α ∈ BV(Ω)156

: 0 ≤ α(x) ≤ αmax a.e. on Ω, |Dα|(Ω) ≤ κ} where BV(Ω) stands for functions of157

bounded variations. As exposed in [2], the weak-* convergence in BV(Ω) is defined as158

follows: (αε)ε ⊂ BV(Ω) weakly-* converges to α ∈ BV(Ω) if (αε) strongly converges159

to α in L1(Ω) and (Dαε) weakly-* converges to Dα in Ω, meaning:160

lim
ε→0

∫
Ω

νdDαε =

∫
Ω

νdDα, ∀ν ∈ C0(Ω),161

where C0(Ω) denotes the closure, in the sup norm, of the set of real continuous162

functions with compact support over Ω. We choose Uad as a subset of BV(Ω) since163

it is a nice way to approximate piecewise constant functions, which is close to the164

desired solid distribution.165

Remark 1.1. The set Uad have been used for instance in [21, 50] and have the166

property that any sequence (αn)n ⊂ Uad is bounded in BV(Ω) and thus have a subse-167

quence that converges strongly in L1(Ω) toward some α ∈ Uad. It then has a further168

subsequence that converges almost everywhere in Ω toward α and thus h(αn) and k(αn)169

converge respectively toward h(α) and k(α). The last statement is going to be useful170

to prove some smoothness result on the control-to-state mapping α 7→ (u(α), θ(α)). In171

addition, we emphasize we may actually replace the above Uad by any Banach space172

Bad for which any (αn)n ⊂ Bad has a subsequence that converges toward some α ∈ Bad173

strongly in Lp(Ω) for p ≥ 1.174

It is classical for these problems to compute first order optimality conditions175

(see e.g. [34, 44]). This approach needs smoothness of the control-to-state mapping.176

However, the presence of the non-differentiable function neg(x) = x− makes this177

approach impossible. Therefore, we adopt a smoothing approach, as studied in [36,178

46], and we approximate the neg function with a C1 positive approximation, denoted179

negε. We suppose this approximation satisfies the following assumptions:180

(A1) ∀s ∈ R, negε (s) ≥ neg(s).181

(A2) ∀s ∈ R, −1 ≤ neg′ε(s) ≤ 0.182

(A3) negε converges to neg uniformly over R.183

(A4) for every δ > 0, the sequence (neg′ε)ε>0 converges uniformly to 0 on [δ,+∞)184

and uniformly to -1 on (−∞,−δ] as ε→ 0.185

As presented in [46], we may choose:186

(1.3) negε (s) =

{
s− if |s| ≥ ε

2 ,
1
2

(
1
2 −

s
ε

)3 ( 3ε
2 + s

)
if |s| < ε

2 .
187

We also introduce the notation

posε (s) = s+ negε (s) .

Remark that, owning to the mean value theorem, (A2)-(A3) implies that, for all188

x ∈ R and for ε small enough189

(1.4) |negε (x) | ≤ |x|+O(ε).190
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We redefine (WF) with an approximation of s− and s+, which gives:191

(WFe.1)

∫
Ω

∂tθεϕ−
∫

Ω

θεuε · ∇ϕ+

∫
Γout

((uε · n) + βnegε (uε · n)) θεϕ

+

∫
Ω

Ck∇θε · ∇ϕ =

∫
Γw

φϕ.

192

193

(WFe.2)

∫
Ω

∂tuε ·Ψ +
1

2
{((uε · ∇)uε) ·Ψ− ((uε · ∇)Ψ) · uε}+A∇uε : ∇Ψ

+

∫
Ω

h(α)uε ·Ψ−Bθε · ~ey ·Ψ +
1

2

∫
Γout

posε (uε · n) (uε ·Ψ)

=

∫
Ω

f ·Ψ +

∫
Γout

(A∂nuref − npref) ·Ψ +
1

2

∫
Γout

negε (uε · n) (uref ·Ψ)

194

for all (Ψ, ϕ) ∈ V u × V θ.195

We then define the approximate optimal control problem:196

(OPTe)

min J (αε,uε, θε)

s.t.

{
(uε, θε) solution of (WFe.1)− (WFe.2) parametrized by αε,

αε ∈ Uad.
197

As it will be made clear later, the control-to-state mapping in (WFe.1)-(WFe.2) is198

smooth, which will let us derive first order conditions.199

1.3. Plan of the paper. The rest of this introduction is dedicated to the pre-200

sentation of some notations used in this article and some important results of the201

literature. The core of this paper is organized in two sections. First, we will prove the202

existence of solutions to (WFe), which will let us prove, with a compactness argument,203

the existence of solutions to (WF). We then focus on the two dimensional case, where204

we prove uniqueness of the solutions along with stronger convergence results. This205

is an extension of the work done by [14], where only the pressure and the velocity206

were considered, and to [6, 16], where the steady case was studied in depth, but the207

results concerning the unsteady case were obtained using restrictive assumptions. We208

then study the approximate optimal control problem (OPTe), for which we will derive209

first order conditions. We conclude this paper with the convergence of the optimality210

conditions of (OPTe), which let us design first order conditions of (OPT).211

Notations. We set a . b if there exists a constant C(Ω) > 0 depending only on212

Ω such that a ≤ C(Ω)b. Denote:213

• A : V u → (V u)′ defined by 〈Au,v〉(V u)′,V u = A
∫

Ω
∇u : ∇v,214

• B : V u × V u → (V u)′ defined by 〈B(u,v),w〉(V u)′,V u = 1
2

∫
Ω

(u · ∇)v · w −215

(u · ∇)w · v,216

• T : V θ → (V u)′ defined by 〈T θ,v〉(V u)′,V u =
∫

Ω
Bθey · v,217

• P : V u×V u → (V u)′ defined by 〈P(u,v),w〉(V u)′,V u =
∫

Γout
pos(u ·n)(v ·w),218

• Pε : V u×V u → (V u)′ given by 〈Pε(u,v)),w〉(V u)′,V u =
∫

Γout
posε (u · n) (v ·219

w).220

• N : V u×V u → (V u)′ defined by 〈N (u,v),w〉(V u)′,V u =
∫

Γout
neg(u·n)(v·w),221

• Nε : V u×V u → (V u)′ given by 〈Nε(u,v)),w〉(V u)′,V u =
∫

Γout
negε (u · n) (v ·222

w).223

6
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• C(α) : V θ → (V θ)′ defined by 〈C(α)θ, ϕ〉(V θ)′,V θ =
∫

Ω
Ck(α)∇θ · ∇ϕ,224

• D : V u × V θ → (V θ)′ defined by 〈D(u, θ), ϕ〉(V θ)′,V θ =
∫

Ω
θu · ∇ϕ,225

• M : V u × V θ → (V θ)′ defined by 〈M(u, θ), ϕ〉(V θ)′,V θ =
∫

Γout
((u · n)+226

βneg(u · n))θϕ,227

• Mε : V u × V θ → (V θ)′ defined by 〈M(u, θ), ϕ〉(V θ)′,V θ =
∫

Γout
((u · n)+228

βnegε (u · n))θϕ,229

We will also denote by σref the element of (V u)′ defined by 〈σref,w〉(V u)′,V u =230 ∫
Γout

(A∂nuref−prefn)·w, h(α) : V u → (V u)′ the function defined by 〈h(α)u,v〉(V u)′,V u231

=
∫

Ω
h(α)u · v, and φ the element of (V θ)′ defined by 〈φ, ϕ〉(V θ)′,V θ =

∫
Γout

φϕ.232

Results from the literature. We now recall two results that will be heavily used233

throughout this paper.234

Proposition 1.2. ([11, Proposition III.2.35]) Let Ω be a Lipschitz domain of235

Rd with compact boundary. Let p ∈ [1,+∞] and q ∈ [p, p∗], where p∗ is the critical236

exponent associated with p, defined as:237 
1
p∗ = 1

p −
1
d for p < d,

p∗ ∈ [1,+∞[ for p = d,

p∗ = +∞ for p > d.

238

Then, there exists a positive constant C such that, for any u ∈W 1,p(Ω):239

‖u‖Lq(Ω) ≤ C‖u‖
1+ d

q−
d
p

Lp(Ω) ‖u‖
d
p−

d
q

W 1,p(Ω).240

Proposition 1.3. ([11, Theorem III.2.36]) Let Ω be a Lipschitz domain of Rd241

with compact boundary, and 1 < p < d. Then for any r ∈
[
p, p(d−1)

d−p

]
, there exists a242

positive constant C such that, for any u ∈W 1,p(Ω):243

‖u ∂Ω‖Lr(∂Ω) ≤ C‖u‖
1− dp+ d−1

r

Lp(Ω) ‖u‖
d
p−

d−1
r

W 1,p(Ω).244

In the case p = d, the previous result holds true for any r ∈ [p,+∞[.245

2. Existence of solutions. In this section, we will focus on proving the exis-246

tence of solutions to (WFe) and prove their convergence toward the ones of (WF).247

We make the following assumptions throughout this paper:248

Assumptions 2.1. • The source term f ∈ L2(0, T ; (H1(Ω))′).249

• (uref, pref) are such that:250 

uref ∈ Lr(0, T ; (H1(Ω))d) ∩ L∞(0, T ; (L2(Ω))d)

with r = 2 if d = 2 and r = 4 if d = 3,

∇ · uref = 0,

∂tu
ref ∈ L2(0, T ; (L2(Ω))d),

uref = 0 on Γw

uref = uin on Γin.

251

and A∂nuref − prefn ∈ L2(0, T ;H−
1
2 (∂Ω)).252

• There exists kmin such that k(x) ≥ kmin > 0 and h(x) ≥ 0 for a.e. x ∈ Ω.253
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• The initial condition u0 (resp. θ0) is a Fréchet-differentiable function from254

Uad to V u (resp. V θ). Furthermore, for all α ∈ Uad, u0(α) Γin
= uin(0),255

u0(α) Γw
= 0, and θ0(α) Γin

= 0.256

• β ∈ L∞(0, T ;L∞(Γout)) such that β(t, x) ≥ 1
2 , for a.e. (t, x) ∈ [0, T ]× Γout.257

2.1. Existence in dimension 2 or 3. In this part, we work with a fixed ε > 0258

and a given αε in Uad.259

To prove the existence of solutions to (WFe), we follow the classical Fadeo-260

Galerkin method as used in [14, 37, 49]. By construction, V u and V θ are separable.261

Therefore, both admit a countable Hilbert basis (wuk )k and (wθk)k. Let us construct262

an approximate problem, which will converge to a solution of the original problem263

(WFe). Denote by V un (resp. V θn ) the space spanned by (wuk )k≤n (resp. (wθk)k≤n).264

We consider the following Galerkin approximated problem:265

find t 7→ vn(t) ∈ V un and t 7→ θn(t) ∈ V θn such that, defining un = vn + uref, (un, θn)266

satisfy (WFe) for all t ∈ [0, T ] and for all (Ψ, ϕ) ∈ V un × V θn .267

As done in [49], such (un, θn) exist. We now prove that these solutions are268

bounded uniformly with respect to n and ε:269

Proposition 2.2. There exist positive constants cθ1, cθ2, cv1 and cv2 , independent270

of ε and n, such that:271

(2.1) sup
[0,T ]

‖θn‖L2(Ω) ≤ cθ1,272

273

(2.2)

∫ T

0

‖∇θn‖2L2(Ω) ≤ c
θ
2,274

275

(2.3) sup
[0,T ]

‖vn‖L2(Ω) ≤ cv1 ,276

277

(2.4)

∫ T

0

‖∇vn‖2L2(Ω) ≤ c
v
2 .278

Proof. Taking ϕn = θn in (WFe.1) and integrating by part give:279

d

dt
‖θn‖2L2(Ω) −

1

2

∫
Γout

θ2
n(un · n) +

∫
Ω

Ck|∇θn|2

+

∫
Γout

((un · n) + βnegε (un · n)) θ2
n =

∫
Γw

φθn.

280

Since β ≥ 1
2 and using assumption (A1), one has on Γout:281

((un · n) + βnegε (un · n)) θ2
n −

1

2
(un · n)θ2

n ≥
1

2
((un · n) + negε (un · n)) θ2

n

≥1

2
posε (un · n) θ2

n ≥ 0.

282

Therefore: d
dt‖θn‖

2
L2(Ω) + Ckmin‖∇θn‖2L2(Ω) ≤ ‖φ‖L2(Γw)‖θn‖L2(Γw). Using the con-283

tinuity of the trace operator and Young’s inequality, one proves that there exists a284

positive constant C(Ω) such that, for any ν > 0:285

d

dt
‖θn‖2L2(Ω) + Ckmin‖∇θn‖2L2(Ω) ≤

1

2ν
‖φ‖2L2(Γw) +

C(Ω)ν

2
(‖θn‖2L2(Ω) + ‖∇θn‖2L2(Ω)).286

Taking ν small enough, we are left with:287

d

dt
‖θn‖2L2(Ω) ≤

1

2ν
‖φ‖2L2(Γw) +

C(Ω)ν

2
‖θn‖2L2(Ω).288
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Integrating this equation and using Gronwall’s lemma then give (2.1) and (2.2).289

Now, take Ψn = vn in (WFe.2). After some calculations, one gets:290

d

dt
|vn|2 +A|∇vn|2 +

1

2

∫
Γout

posε (un · n) |vn|2 +

∫
Ω

h|vn|2

=

∫
Ω

fθ · vn −
∫

Ω

∂tu
ref · vn −A

∫
Ω

∇uref : ∇vn −
∫

Ω

huref · vn

−
∫

Ω

(un · ∇)uref · vn +

∫
Γout

(A∂nuref − npref)vn

291

where fθ = f + Bθney. First, using (2.2), one has ‖fθ‖(Hu)′ ≤ ‖f‖(Hu)′ + Bcθ1. Sec-292

ondly, (A1) gives that
∫

Γout
negε (un · n) |vn|2 ≥ 0. Following then the same pattern293

of proof as in [14, Proposition 2], one proves (2.3) and (2.4).294

Following [11, 49], we need to bound the fractional derivatives of the solution in295

order to prove some convergence results. For any real-valued function f defined on296

[0, T ], define by f̃ the extension by 0 of f to the whole real line R, and by F (f̃)297

the Fourier transform of f̃ , which we define as: F (f̃)(τ) =
∫
R f̃(t)e−itτdt. Using the298

Hausdorff-Young inequality [11, Theorem II.5.20] we can prove the299

Proposition 2.3. For all σ ∈ [0, 1
6 ), there exists a constant C(σ) > 0 indepen-300

dent of ε and n such that:301

(2.5)

∫
R
|τ |2σ

∥∥∥F (
θ̃n

)∥∥∥2

(L2(Ω))d
≤ C(σ),302

303

(2.6)

∫
R
|τ |2σ‖F (ũn)‖2L2(Ω) ≤ C(σ).304

Proof. We emphasize that (2.6) is proved if (2.5) holds by using [11, Proposition305

VII.1.3] by replacing f by fθ = f +Bθey. The proof of (2.5) consists in adapting the306

one of [11, Proposition VII.1.3] and is thus omitted.307

Combining the two previous results, we now have the following existence theorem308

for (WFe).309

Theorem 2.4. For all (v0, θ0) ∈ Hu × Hθ and all T > 0, there exists vε ∈310

L∞(0, T ;Hu)∩L2(0, T ;V u), θε ∈ L∞(0, T,Hθ)∩L2(0, T ;V θ) solution of (WFe) such311

that, defining u0 = v0 +uref(0) and uε = vε+uref, one has for all (Ψ, ϕ) ∈ V u×V θ:312 (∫
Ω

uε ·Ψ
)

(0) =
∫

Ω
u0 · Ψ,

(∫
Ω
θεϕ
)

(0) =
∫

Ω
θ0ϕ. Moreover, one has v′ε = dvε

dt ∈313

L
4
3 (0, T ; (V u)′) and θ′ε ∈ L

4
3 (0, T ; (V θ)′).314

Proof. The proof of existence is similar to part (iv) of the proof of [49, Theorem315

3.1] and the proof of [11, Proposition VII.1.4], where estimates (2.1)-(2.4) and (2.5)-316

(2.6) are used in a compactness argument.317

We only add the proof that (un, θn) converges to a solution of (WFe.1). Using318

(2.1), (2.2), (2.5) and [49, Theorem 2.2], one shows that, up to a subsequence, θn319

strongly converges to an element θε of L2(0, T ;Hθ), weakly converges in L2(0, T ;V θ),320

and weak-? converges in L∞(0, T ;L2(Ω)). These results imply that θn strongly con-321

verges to θε in L2(0, T ;L2(Γ)) thanks to Proposition 1.3. The only technical points322

which need more details are the non-linear terms in (WFe.1). Using the strong con-323

vergence of un to uε in L2(0, T ;Hu) proved in [49, Eq (3.41)], one proves that (θnun)324
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strongly converges to θεuε in L1(0, T ;L2(Ω)). Furthermore, notice that:325 ∫ T

0

‖(un · n)θn‖
4
3

L
4
3 (Γ)
≤
∫ T

0

‖un‖
4
3

L
8
3 (Γ)
‖θn‖

4
3

L
8
3 (Γ)

≤C
∫ T

0

‖un‖
1
3

L2(Ω)‖θn‖
1
3

L2(Ω)‖un‖H1(Ω)‖θn‖H1(Ω)

≤C‖un‖
1
3

L∞(0,T ;L2(Ω))‖θn‖
1
3

L∞(0,T ;L2(Ω))

‖un‖L2(0,T ;H1(Ω))‖θn‖L2(0,T ;H1(Ω)).

326

This inequality together with (2.1)-(2.4) proves that ((un · n)θn)n is bounded in327

L
4
3 (0, T ;L

4
3 (Γ)), which is reflexive. Therefore, it proves that, up to a subsequence,328

there exists a weak limit κ1 in L
4
3 (0, T ;L

4
3 (Γ)) of ((un · n)θn)n. A simple adapta-329

tion of the above reasoning proves that (negε (un · n) θn)n weakly converges to some330

κ2 in L
4
3 (0, T ;L

4
3 (Γ)). Using the strong convergence of θn in L2(0, T ;L2(Γ)), [11,331

Proposition II.2.12] implies that:332

((un · n) + βnegε (un · n))θn ⇀ ((uε · n) + βnegε (uε · n))θε in L
4
3 (0, T ;L1(Γ))333

obtained using the uniform Lipschitz continuity with respect to ε of s ∈ R 7→ negε (s).334

By uniqueness of the limit in the sense of distribution, we can identify κ1 + βκ2 with335

((uε · n) + βnegε (uε · n))θε. Therefore, (uε, θε) is a solution of (WF.1).336

The convergence of the weak derivative with respect to time of vε in L
4
3 (0, T ;337

(V u)′) is proved in [11, Proposition V.1.3]. Concerning the weak derivative with338

respect to time of θε, remark that, for all ϕ ∈ V θ with ϕ 6= 0:339

〈∂tθn, ϕ〉(V θ)′,V θ

‖ϕ‖V θ
=

1

‖ϕ‖V θ
(〈D(un, θn), ϕ〉(V θ)′,V θ − 〈C(αε)θn, ϕ〉(V θ)′,V θ

− 〈Mε(un, θn), ϕ〉(V θ)′,V θ + 〈φ, ϕ〉(V θ)′,V θ ).

340

One easily derives the following inequalities:341

〈D(un, θn), ϕ〉(V θ)′,V θ

‖ϕ‖V θ
.
(
‖θn‖L2(Ω)‖un‖L2(Ω)

) 1
4
(
‖θn‖H1(Ω)‖un‖H1(Ω)

) 3
4 ,342

〈C(αε)θn, ϕ〉(V θ)′,V θ

‖ϕ‖V θ
. ‖∇θn‖L2(Ω) . ‖θn‖H1(Ω),343

〈Mε(un, θn), ϕ〉(V θ)′,V θ

‖ϕ‖V θ
. ‖un‖

1
2

L2(Ω)‖un‖
1
2

H1(Ω)‖θn‖H1(Ω).344

Since (un) is bounded in L2(0, T ;H1(Ω)d)∩L∞(0, T ;L2(Ω)d) (the same goes for (θn)),345

these inequalities prove that (∂tθn)n is bounded in L
4
3 (0, T ; (V θ)′). Therefore, (∂tθn)n346

weakly converges in L
4
3 (0, T ; (V θ)′). By continuity of the weak derivative with respect347

to time, this weak limit needs to be ∂tθε.348

We now use the existence of solutions to the approximate problem (WFe) to prove349

existence of solutions to the limit problem (WF), along with the convergence of the350

approximate solutions to those of (WF).351

Theorem 2.5. Let (αε) ⊂ Uad and α ∈ Uad such that αε
∗
⇀ α in BV(Ω). Define352

by (vε, θε) a solution of (WFe) parametrized by αε, and define uε = vε + uref. Then,353

there exists (v, θ) ∈ L∞(0, T ;Hu) ∩ L2(0, T ;V u) × L∞(0, T,Hθ) ∩ L2(0, T ;V θ) such354

that, defining u = v + uref, up to a subsequence, we have355
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• uε
∗
⇀ u in L∞(0, T ;Hu) and θε

∗
⇀ θ in L∞(0, T ;Hθ),356

• uε ⇀ u in L2(0, T ;V u) and in L2(0, T ; (L6(Ω))d),357

• θε ⇀ θ in L2(0, T ;V θ) and in L2(0, T ;L6(Ω)),358

• uε ⇀ u in L4(0, T ; (L2(Γ))d) and θε ⇀ θ in L4(0, T ;L2(Γ)),359

• uε −−−→
ε→0

u in L2(0, T ; (L2(Ω))d) and θε −−−→
ε→0

θ in L2(0, T ;L2(Ω)),360

• uε −−−→
ε→0

u in L2(0, T ; (L2(Γ))d) and θε −−−→
ε→0

θ in L2(0, T ;L2(Γ)),361

• ∂tuε ⇀ ∂tu in L
4
3 (0, T ; (V u)′) and ∂tθε ⇀ ∂tθ in L

4
3 (0, T ; (V θ)′).362

Furthermore, (v, θ) is a solution to (WF) parametrized by α.363

Proof. Using (2.1)-(2.4) and (2.5)-(2.6), we prove that there exists u and θ such364

that all the convergences above are verified in the same manner as in [11, Proposition365

VII.1.4].366

Let us prove first that u is a solution of (WF.2) parametrized by α and θ.367

• With the same pattern of proof as in Theorem 2.4, one proves immediately368

that (uε · ∇)uε ⇀ (u · ∇)u in L1(0, T ; (L1(Ω))d), and (uε · n)uref ⇀ (u ·369

n)uref in L4(0, T ; (L
4
3 (Γ))d).370

• Regarding the penalization term:371

‖h(αε)uε − h(α)u‖2L2(0,T ;L2(Ω)d) .‖h‖
2
∞‖uε − u‖2L2(0,T ;L2(Ω)d)

+

∫ T

0

∫
Ω

(h(αε)− h(α))2|u|2.
372

Since αε → α strongly in L1(Ω), h(αε) → h(α) pointwise in Ω up to a373

subsequence (not relabeled). Lebesgue dominated convergence theorem then374

implies: h(αε)uε −−−→
ε→0

h(α)u in L2(0, T ; (L2(Ω))d).375

• Concerning the boundary terms, we only consider the term with the approx-376

imation of the pos function. First, we claim that there exists γ such that377

posε (uε · n) uε ⇀ γ in L
4
3 (0, T ;L

4
3 (Γ)d). Notice that, for ε large enough and378

using (1.4), we have:379

(2.7)

∫ T

0

‖posε (uε · n) uε‖
4
3

L
4
3 (Γ)

.
∫ T

0

(
‖uε‖

4
3

L
8
3 (Γ)

+ C

)
‖uε‖

4
3

L
8
3 (Γ)

.
∫ T

0

‖uε‖
8
3

L
8
3 (Γ)

+

(∫ T

0

‖uε‖
8
3

L
8
3 (Γ)

) 1
2

.

380

In addition, from Proposition 1.3, we have

‖uε‖
8
3

L
8
3 (Γ)

. ‖uε‖
2
3

L2(Ω)‖uε‖
2
H1(Ω).

Since uε is bounded in L∞(0, T ; (L2(Ω))d) and L2(0, T ; (H1(Ω))d) as proved381

in Proposition 2.2, we see that posε (uε · n) uε is bounded in L
4
3 (0, T ; L

4
3 (Γ)d)382

uniformly in ε. Since this Banach space is reflexive, it proves the claimed weak383

convergence.384

• Let us now prove that γ can be identified with (u ·n)+u. First, since uε → u385

strongly in L2(0, T ;L2(Γ)d), posε (·)→ (·)+ uniformly and |neg′ε (·) | ≤ 1, one386

proves that posε (uε · n) − posε (u · n) → 0 and posε (u · n) → (u · n)+ in387

L2(0, T ;L2(Γ)). Therefore, posε (uε · n)→ (u ·n)+ in L2(0, T ;L2(Γ)). Then,388

the weak convergence of uε in L4(0, T ;L2(Γ)d) and [11, Proposition II.2.12]389
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implies that posε (uε · n) uε ⇀ (u · n)+u weakly in L
4
3 (0, T ;L1(Γ)d). Using390

[11, Proposition II.2.9], we argue that γ = (u · n)+u.391

• Regarding ∂tuε, remark that:392

‖∂tuε‖(V u)′ . ‖B(uε,uε)‖(V u)′ + ‖Auε‖(V u)′ + ‖h(α)uε‖(V u)′ + ‖T θε‖(V u)′

+ ‖Pε(uε,uε)‖(V u)′ + ‖Nε(uε,uref)‖(V u)′ + ‖f + σref‖(V u)′ .
393

We now bound each term depending on ε:394

– Since the Stokes operator is continuous, ‖Auε‖(V u)′ . ‖uε‖H1(Ω) and395

therefore, Auε is bounded in L2(0, T ; (V u)′).396

– Obviously, ‖h(α)uε‖(V u)′ ≤ ‖h‖∞‖uε‖L2(Ω) and therefore, h(α)uε is397

bounded in L∞(0, T ; (V u)′).398

– ‖Nε(uε,uref)‖(V u)′ . ‖uε‖H1(Ω) and therefore, Nε(uε,uref) is bounded399

in L2(0, T ; (V u)′).400

We are left with the boundary term Pε and the non linear term B. Concerning401

B, remark that :402

∀Ψ ∈ V u, 〈B(uε,uε),Ψ〉(V u)′,V u = −
∫

Ω

(uε · ∇)Ψ ·uε +
1

2

∫
Γ

(uε ·n)(uε ·Ψ).403

The first term can be treated as in [49, Lemma 3.1] while the second one on404

the boundary needs more details.405

Let 0 6= Ψ ∈ V u. Since the proof is similar in dimension 2, we will only focus406

on the dimension d = 3. Using Holder’s inequality and Proposition 1.3, we407

obtain:408 ∫
Γout
|(uε · n)(uε ·Ψ)|
‖Ψ‖V u

. ‖uε‖
1
2

L2(Ω)‖uε‖
3
2

H1(Ω).409

Therefore:410 ∫ T

0

(
sup

Ψ∈V u\{0}

∫
Γout
|(uε · n)(uε) ·Ψ|
‖Ψ‖V u

) 4
3

. ‖uε‖
2
3

L∞(0,T ;L2(Ω))‖uε‖L2(0,T ;H1(Ω)).411

This proves that (B(uε,uε))ε is bounded in L
4
3 (0, T ; (V u)′). We prove analo-412

gously that (Pε(uε,uε))ε is bounded in L
4
3 (0, T ; (V u)′). These bounds prove413

that (∂tuε) is bounded in L
4
3 (0, T ; (V u)′), and by continuity of the time de-414

rivative, we argue that (∂tuε) weakly converges to ∂tu in L
4
3 (0, T ; (V u)′).415

Concerning θ, the convergence is largely proved in the same way as in Theorem 2.4.416

The only difference concerns the convergence of negε (uε · n) θε to (u · n)−θ, which417

is proved in the same manner as (2.7). All these convergence results let us say that418

(u, θ) is a solution to (WF) in the distribution sense.419

2.2. Further results in dimension 2. It is notably known that the solution420

of the Navier-Stokes equations with homogeneous Dirichlet boundary conditions are421

unique in dimension 2. We prove here that uniqueness still holds with the boundary422

conditions (1.2). Denote Xu = L2(0, T ;V u) ∩ L4(0, T ;Hu) and Xθ = L2(0, T ;V θ) ∩423

L4(0, T ;Hθ). These space are endowed with the norm:424

‖u‖Xu = max{‖u‖L2(0,T ;V u), ‖u‖L∞(0,T ;Hu)},425

and the same definition follows for ‖ · ‖Xθ .426
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Lemma 2.6. Assume d = 2. Then the solution (vε, θε) of (WFe) is such that:427

∂tvε ∈ (Xu)′, ∂tθε ∈ (Xθ)′428

Proof. The proof being similar, we will only focus on ∂tuε. First, remark that:429

∂tuε = −B(uε,uε)−Auε − h(α)uε + T θε − Pε(uε,uε) +Nε(uε,uref) + f + σref.430

Due to the fact that uε ∈ Xu and θε ∈ Xθ, it is straightforward to prove that Auε,431

h(α)uε, T θε, Nε(uε,uref) and f + σref are in (Xu)′. Concerning B, we use once again432

the identity:433

∀Ψ ∈ V u, 〈B(uε,uε),Ψ〉(V u)′,V u = −
∫

Ω

(uε · ∇)Ψ · uε +
1

2

∫
Γ

(uε · n)(uε ·Ψ),434

and only focus on the boundary part.435

Let Ψ ∈ Xu. Notice that, using Proposition 1.3:436 ∫ T

0

∫
Γ

(uε · n)(uε ·Ψ) .
∫ T

0

‖uε‖L2(Γ)‖uε‖L4(Γ)‖Ψ‖L4(Γ)

.
∫ T

0

‖uε‖
3
4

L2(Ω)‖Ψ‖
1
2

L2(Ω)‖uε‖
5
4

H1(Ω)‖Ψ‖
1
2

H1(Ω)

. ‖uε‖
3
4

L∞(0,T ;L2(Ω))‖uε‖
5
4

L2(0,T ;H1(Ω))‖Ψ‖
1
2

L4(0,T ;L2(Ω))‖Ψ‖
1
2

L2(0,T ;H1(Ω))

. ‖uε‖
3
4

L∞(0,T ;L2(Ω))‖uε‖
5
4

L2(0,T ;H1(Ω))‖Ψ‖Xu

437

This proves that B(uε,uε) is in (Xu)′. Similar computations for Pε(uε,uε) show that438

∂tuε ∈ (Xu)′.439

We may now prove uniqueness of the solution. We only sketch the proof.440

Proposition 2.7. Let d = 2. Then, the solution (uε, θε) of (WFe) is unique.441

Sketch of proof Let (uε1, θε1) and (uε2, θε2) be two solutions of (WF.1)-(WF.2).442

Define u = v = uε1 − uε2 and θ = θε1 − θε2. Slightly adapting the proof in [11,443

Section VII.1.2.5], one proves that:444

(2.8)
d

dt
|v|2L2(Ω) +A|∇v|2L2(Ω) . gv(t)|v|2L2(Ω) +B|θ|2L2(Ω) + νv|∇v|2L2(Ω)445

where νv is a positive constant and gv is a function in L1([0, T ]).446

Testing the differential equation verified by θ with θ and using Lemma A.2, it447

proves that:448

d

dt
|θ|2L2(Ω) + 2C

∫
Ω

k|∇θ|2 +

∫
Γout

θ2

(
1

2
(uε1 · n) + βnegε (uε1 · n)

)
= −

∫
Γout

(
β (negε (uε1 · n)− negε (uε2 · n)) +

1

2
(u · n)

)
θε2θ.

449

With a similar proof as the one of Proposition 2.2, we can prove that, on Γout,450

θ2
(

1
2 (u1 · n) + βnegε (u1 · n)

)
≥ 0. Therefore, using (A3), one has:451

(2.9)
d

dt
|θ|2L2(Ω) + 2C

∫
Ω

k|∇θ|2 .

(
|β|L∞(Γout) +

1

2

)
|u · n|L3(Γout)|θε2|L3(Γout)|θ|L3(Γout).452
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Using Sobolev embeddings and Young inequality, we prove:453

(
|β|L∞(Γout) +

1

2

)
|u · n|L3(Γout)|θε2|L3(Γout)|θ|L3(Γout)

.

(
|β|L∞(Γout) +

1

2

)3 |θε2|L2(Ω)|∇θε2|2L2(Ω)

2(νθ)3
(|u|2L2(Ω) + |θ|2L2(Ω))

+
(νθ)

3
2

2

(
|∇u|2L2(Ω) + |∇θ|2L2(Ω)

)
,

454

where νθ is a positive constant. Therefore, summing (2.8) and (2.9) gives ddt (|u|
2
L2(Ω) +455

|θ|2L2(Ω)) . max(gv1 , g
θ)(|u|2L2(Ω) + |θ|2L2(Ω)), with gv1 and gθ integrable. Therefore,456

applying Gronwall’s lemma and noticing that |u(0)|2L2(Ω) + |θ(0)|2L2(Ω) = 0, one shows457

that u = 0 and θ = 0.458

Note that we may also prove that, for d = 2, the solution (u, θ) of (WF) is unique,459

and that ∂tu ∈ (Xu)′, ∂tθ ∈ (Xθ)′. We can also state stronger convergence (compared460

to the ones stated in Theorem 2.5) in dimension 2. These results will be useful in the461

analysis of the optimisation problems.462

Denote ū = u− uε and θ̄ = θ− θε. The variational formulation verified by (ū, θ̄)463

reads as: for all (Ψ, ϕ) ∈ V u × V θ:464

(2.10a)
0 =〈∂tū +Aū + h(α)ū,Ψ〉(V u)′,V u + 〈(h(α)− h(αε))uε,Ψ〉(V u)′,V u+

1

2
〈P(u, ū) + P(u,uε)− Pε(uε,uε),Ψ〉(V u)′,V u + 〈T θ̄,Ψ〉(V u)′,V u

− 1

2
〈N (u,uref)−Nε(uε,uref),Ψ〉(V u)′,V u + 〈B(u, ū) + B(ū,uε),Ψ〉(V u)′,V u ,

465

466

(2.10b)

0 =〈∂tθ̄, ϕ〉(V θ)′,V θ − 〈D(u, θ̄) +D(ū, θε), ϕ〉(V θ)′,V θ

+ 〈(C(α)− C(αε))θ + C(αε)θ̄, ϕ〉(V θ)′,V θ

+ 〈M(u, θ) +Mε(uε, θε), ϕ〉(V θ)′,V θ .

467

We now bound some of the terms above in the following lemma. The proof is468

omitted since it mainly relies on Proposition 1.2, Theorem 1.3 and Holder’s inequality.469

Lemma 2.8. Suppose d = 2. Denote ū = u − uε and θ̄ = θ − θε. Let Cε =470

sups∈R |negε (s)−s−|. Owning to (A1), one has Cε −−−→
ε→0

0. The following inequalities471

are then valid:472

1.
(2.11)
〈B(ū,uε), ū〉(V u)′,V u .‖ū‖L2(Ω)‖∇ū‖L2(Ω)‖∇uε‖L2(Ω)

+
(
‖ū‖L2(Ω)‖∇ū‖3L2(Ω)‖uε‖L2(Ω)‖∇uε‖L2(Ω)

) 1
2

.
473

2.

(2.12) neg(u · n)− negε (uε · n) ≤ |ū · n|+ Cε474
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475

(2.13a)

∫
Γout

(pos(u · n)− posε (uε · n))uε · ū

.
(
‖ū‖

1
4

L2(Ω)‖∇ū‖
3
4

L2(Ω) + Cε

)
‖uε‖

1
2

L2(Ω)‖uε‖
1
2

H1(Ω)

× ‖ū‖
1
4

L2(Ω)‖∇ū‖
3
4

L2(Ω).

476

477

(2.13b)

∫
Γout

(neg(u · n)− negε (uε · n))uref · ū

.
(
‖ū‖

1
4

L2(Ω)‖∇ū‖
3
4

L2(Ω) + Cε

)
‖uref‖

1
2

L2(Ω)‖u
ref‖

1
2

H1(Ω)

× ‖ū‖
1
4

L2(Ω)‖∇ū‖
3
4

L2(Ω).

478

3.

(2.14)

∫
Ω

θεū · ∇θ̄ . ‖θε‖
1
2

L2(Ω)‖θε‖
1
2

H1(Ω)‖ū‖
1
2

L2(Ω)‖∇ū‖
1
2

L2(Ω)‖∇θ̄‖L2(Ω).479

4.
(2.15a)∫

Γout

(ū ·n)θεθ̄ . ‖ū‖
1
4

L2(Ω)‖∇ū‖
3
4

L2(Ω)‖θε‖
1
2

L2(Ω)‖∇θε‖
1
2

L2(Ω)‖θ̄‖
1
4

L2(Ω)‖∇θ̄‖
3
4

L2(Ω).480

481
(2.15b)∫

Γout

(neg(u · n)− negε (uε · n)) θεθ̄ .
(
‖ū‖

1
4

L2(Ω)‖∇ū‖
3
4

L2(Ω) + Cε

)
‖θε‖

1
2

L2(Ω)

‖∇θε‖
1
2

L2(Ω)‖θ̄‖
1
4

L2(Ω)‖∇θ̄‖
3
4

L2(Ω).

482

Corollary 2.9. Suppose d = 2. Under the assumptions of Theorem 2.5, uε → u483

strongly in L∞(0, T ;L2(Ω)2) and θε → θ strongly in L∞(0, T ;L2(Ω)).484

Proof. Since d = 2, one has ∂tū ∈ (Xu)′ and we may choose Ψ = ū(t) for fixed t485

in (2.10a). After rearranging the terms, and using Lemma A.2, we obtain:486

d

dt
‖ū‖2L2(Ω) + 2A‖∇ū‖2L2(Ω) + 2

∫
Ω

h(α)|ū|2 +

∫
Γout

pos(u · n)|ū|2 =

− 2〈(h(α)− h(αε))uε, ū〉(V u)′,V u −
∫

Ω

Bθ̄ey · ū

− 〈B(ū,uε), ū〉(V u)′,V u +

∫
Γout

(neg(u · n)− negε (uε · n)) uref · ū

−
∫

Γout

(pos(u · n)− posε (uε · n)) uε · ū.

487

Therefore, (2.11), (2.13), Proposition 1.3 and Young’s inequality imply there exists488

C1 > 0 independent of ε such that:489

d

dt
‖ū‖2L2(Ω) + C1‖∇ū‖2L2(Ω) . ‖θ̄‖

2
L2(Ω) + 2

∫
Ω

|h(α)− h(αε)|2 |uε|2

+ gu1 ‖ū‖2L2(Ω) + (gu2 )
4
5 ‖ū‖

2
5

L2(Ω),

490
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where gu1 = ‖uε‖2H1(Ω) + ‖uε‖2L2(Ω)‖uε‖
2
H1(Ω) + ‖uref‖2L2(Ω)‖u

ref‖2H1(Ω) and gu2 =491

C2
ε

(
‖uε‖L2(Ω)‖uε‖H1(Ω) + ‖uref‖L2(Ω)‖uref‖H1(Ω)

)
. Using once again Young’s inequal-492

ity, one has:493

(2.16)

d

dt
‖ū‖2L2(Ω) + C1‖∇ū‖2L2(Ω) .‖θ̄‖

2
L2(Ω) + (1 + gu1 )‖ū‖2L2(Ω)

+ 2

∫
Ω

|h(α)− h(αε)|2 |uε|2 + gu2 .
494

We now move back to (2.10b) and choose ϕ = θ̄, which gives, after some manip-495

ulation:496

1

2

d

dt
‖θ̄‖2L2(Ω) + C

∫
Ω

k(αε)|∇θ̄|2 +

∫
Γout

(
1

2
(u · n) + βneg(u · n)

)
θ̄2

=

∫
Ω

θεū · ∇θ̄ − C
∫

Ω

(k(α)− k(αε))∇θ · ∇θ̄

−
∫

Γout

[((ū · n) + β (neg(u · n)− negε (uε · n))] θεθ̄.

497

As shown in Proposition 2.2,
∫

Γout

(
1
2 (u · n) + βneg(u · n)

)
θ̄2 is positive. Therefore,498

using (2.15), Proposition 1.3 and Young’s inequality, one proves that there exist C3 >499

0, C4 > 0, such that:500

(2.17)

d

dt
‖θ̄‖2L2(Ω) + C3‖∇θ̄‖2L2(Ω) . ‖θε‖

2
L2(Ω)‖∇θε‖

2
L2(Ω)‖ū‖

2
L2(Ω) + C4‖∇ū‖2L2(Ω)

+

(
C

∫
Ω

(k(α)− k(αε))
2|∇θ|2

)
+ gθ1‖θ̄‖2L2(Ω) + gθ2 ,

501

where gθ1 = 1 + ‖θε‖2L2(Ω)‖θε‖
2
H1(Ω), g

θ
2 = C2

ε‖θε‖L2(Ω)‖θε‖H1(Ω).502

Summing (2.16) and (2.17) and choosing C4 small enough, there exists C∗ > 0503

such that:504

(2.18)

d

dt
(‖ū‖2L2(Ω) + ‖θ̄‖2L2(Ω)) + C∗(‖∇ū‖2L2(Ω) + ‖∇θ̄‖2L2(Ω)) . gu2 + gθ2

+ (1 + ‖θε‖2L2(Ω)‖∇θε‖
2
L2(Ω) + gu1 )‖ū‖2L2(Ω) + (gθ1 + 1)‖θ̄‖2L2(Ω)

+

∫
Ω

(k(α)− k(αε))
2|∇θ|2 +

∫
Ω

|h(α)− h(αε)|2 |uε|2.

505

We now introduce the following functions506

auε = (1 + ‖θε‖2L2(Ω)‖∇θε‖
2
L2(Ω) + gu1 ), buε =

∫
Ω

|h(α)− h(αε)|2 |uε|2 + gu2 ,507

aθε = (1 + gθ1), bθε =

∫
Ω

(k(α)− k(αε))
2|∇θ|2 + gθ2 .508

Since u and uε both belong to L2(0, T ;H1(Ω)2) ∩ L∞(0, T ;L2(Ω)2) (the same holds509

for θ and θε), a
u
ε , buε , aθε and bθε are integrable, and so are aε = max(auε , a

θ
ε) and bε =510

buε + bθε. Grönwall’s lemma proves that for all t ∈ [0, T ], ‖ū(t)‖2L2(Ω) + ‖θ̄(t)‖2L2(Ω) ≤511 (∫ t
0
bε(s)ds

)
exp

(∫ t
0
aε(s)ds

)
. Since aε ≥ 0 and bε ≥ 0, t 7→

(∫ t
0
bε(s)ds

)
and t 7→512
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exp
(∫ t

0
aε(s)ds

)
are non-decreasing and we have513

(2.19) sup
t∈[0,T ]

(
‖ū(t)‖L2(Ω) + ‖θ̄(t)‖L2(Ω)

)
≤

(∫ T

0

bε(s)ds

) 1
2

exp

(
1

2

∫ T

0

aε(s)ds

)
.514

Since, on one hand, αε → α in L1(Ω) and αε is independent of time, and on the other515

hand, uε → u strongly in L2(0, T ;L2(Ω)), Lebesgue’s dominated convergence gives a516

subsequence (εk) such that:517

(2.20)∫ T

0

∫
Ω

|h(α)− h(αεk)|2 |uεk |2 −−−−−→
k→+∞

0,

∫ T

0

∫
Ω

|k(α)− k(αεk)|2 |∇θ|2 −−−−−→
k→+∞

0.518

Notice that, owning to the convergence of uε and θε, ‖uε‖L2(Ω)‖uε‖H1(Ω) and519

‖θε‖L2(Ω)‖∇uε‖L2(Ω) are bounded w.r.t ε in L1([0, T ]). Therefore, since Cε −−−→
ε→0

0, it520

proves that
∫ T

0
(gu2 + g2

θ) −−−−−→
εk→+∞

0. Gathering the previous convergence results then521

ensure that
∫ T

0
bεk(s)ds −−−−−→

k→+∞
0. In addition, thanks to Theorem 2.5, we show that522 ∫ T

0
aε(s)ds is bounded w.r.t. ε. Therefore, it proves that ‖u − uεk‖L∞(0,T,L2(Ω)) +523

‖θ − θεk‖L∞(0,T,L2(Ω)) −−−−−→
k→+∞

0.524

Corollary 2.10. Suppose d = 2. Under the assumptions of Theorem 2.5, ∇uε525

→ ∇u strongly in L2(0, T ;L2(Ω)2) and ∇θε → ∇θ strongly in L2(0, T ;L2(Ω)).526

Proof. Move back to (2.18). We integrate each side of the inequality:527 ∫ T

0

‖∇ū‖2L2(Ω) + ‖∇θ̄‖2L2(Ω) .F
u,θ
ε +

∫ T

0

(gu1 + ‖θε‖2L2(Ω)‖∇θε‖
2
L2(Ω) + 1)‖ū‖2L2(Ω)

+

∫ T

0

(gθ1 + 1)‖θ̄‖2L2(Ω),

528

with529

Fu,θε = ‖u0(αε)− u0(α)‖2L2(Ω) + ‖θ0(αε)− θ0(α)‖2L2(Ω) +

∫ T

0

(gu2 + gθ2)530

+

∫ T

0

∫
Ω

|k(α)− k(αε)|2 |∇θ|2 +

∫ T

0

∫
Ω

|h(α)− h(αε)|2 |uε|2.531

• From Assumptions 2.1, the initial conditions are continuous with respect to532

α and thus the two first terms in Fu,θε goes to 0 as ε→ 0.533

• The third, forth and fifth terms in Fu,θε have been already treated (see (2.20)).534

• We now prove convergence for the term gu1 ‖ū‖2L2(Ω). The main problem con-535

cerns the term
∫ T

0
(1+‖uε‖2L2(Ω))‖uε‖

2
H1(Ω)‖ū‖

2
L2(Ω). First, remark that (uε)ε536

is bounded in L∞(0, T ;L2(Ω)2) Secondly, as proved in Theorem 2.5, up to537

a subsequence, uε weakly converges to u in L2(0, T,H1(Ω)) and ū → 0 in538

L∞(0, T ;L2(Ω)). Therefore, the whole term converges to 0.539

• Concerning the other terms in gu1 , they are all independent of ε, and we540

mainly use the fact that ‖ū‖L2(Ω) → 0 in L∞([0, T ]).541

• We may do the same proof concerning
∫ T

0
‖θε‖L2(Ω)‖∇θε‖2L2(Ω)‖ū‖

2
L2(Ω) and542 ∫ T

0
‖θε‖L2(Ω)‖θε‖2H1(Ω)‖θ̄‖

2
L2(Ω).543
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Therefore,
∫ T

0
(1 + ‖θεk‖L2(Ω)‖∇θεk‖2L2(Ω) + g1)‖ū‖2L2(Ω)) −−−→εk→0

0 and544 ∫ T
0

(gθ1 + 1)‖θ̄‖2L2(Ω) −−−→εk→0
0. It eventually proves that ‖∇(u − uεk)‖L2(0,T ;L2(Ω)) +545

‖∇(θ − θεk)‖L2(0,T ;L2(Ω)) −−−−−→
k→+∞

0.546

Owing to Urysohn’s subsequence principle and the uniqueness of the solution to547

(WF), we actually obtain that the whole sequence (uε, θε) strongly converges toward548

(u, θ).549

Remark 2.11. If αε = α, then the next estimate holds550

sup
t∈[0,T ]

(
‖u(t)− uε(t)‖L2(Ω) + ‖θ(t)− θε(t)‖L2(Ω)

)
551

+

(∫ T

0

‖∇ū(t)−∇uε(t)‖2L2(Ω) + ‖∇θ(t)−∇θε(t)‖2L2(Ω)

)1/2

= O(Cε).552

The convergence of (uε, θε) toward (u, θ) as ε→ 0 thus has the same rate as the one553

of negε toward neg.554

3. First order necessary conditions for the non-smooth optimization555

problem. We now begin the analysis of the optimization problems (OPT) and556

(OPTe). Let us detail first some assumptions made on the objective functional:557

Assumptions 3.1. • For d = 2, J is lower semi-continuous with respect to558

the (weak-*, strong, strong, strong) topology of Uad × L2(0, T ;V u)× L2(0, T ;559

V θ).560

• In dimension 3, J is either lower semi-continuous with respect to the (weak-561

*, strong, strong) topology of Uad × L2(0, T ;Hu) × L2(0, T ;Hθ), or lower562

semi-continuous with respect to the (weak-*, weak, weak) topology of Uad ×563

L2(0, T ;V u)× L2(0, T ;V θ).564

Remark that these assumptions exclude terminal costs, but these could be easily565

added by considering functionals continuous in time with respect to the topology of566

L∞([0, T ]) .567

The existence of solutions to (OPTe) and (OPT) is rather classical and we refer568

for instance to [21, 32, 34]. We state a first result that let us see that a solution of569

(OPT) can be approximated by (OPTe).570

Theorem 3.2. Assume Assumptions 3.1 is verified. Let (α∗ε ,uε, θε) be a globally571

optimal solution of (OPTe). Then (α∗ε) ⊂ Uad is a bounded sequence. Furthermore,572

there exists (α∗,u∗, θ∗) ∈ Uad × L2(0, T ;V u) × L2(0, T ;V θ) such that a subsequence573

of (α∗ε ,uε, , θε) converges to (α∗,u∗, θ∗) in the topology of Assumptions 3.1, and for574

all (α,u, θ) in Uad × L2(0, T ;V u) × L2(0, T ;V θ): J (α∗,u∗, θ∗) ≤ J (α,u, θ). Hence,575

any accumulation point of (α∗ε ,uε, θε) is a globally optimal solution of (OPT).576

Proof. The proof can be adapted from [21, Theorem 15] or [32, Theorem 3].577

However, the fact that this only concerns global solutions may appear restrictive.578

Under an additional assumption, we can state a slightly stronger result.579

Corollary 3.3. Assume Assumptions 3.1 hold. Let α∗ be a local strict solution580

of (OPT), meaning that there exists ρ > 0 such that J (α∗,u∗, θ∗) < J (α,u, θ) for581

all α such that ‖α∗ − α‖BV < ρ. Then, there exists a family of local solution (α∗ε) of582

(OPTe) such that (α∗ε) converges weak-* to α∗.583

Proof. Similar to [36, Theorem 3.14].584
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3.1. First order necessary conditions for (OPTe). From now on, we set585

d = 2 in order to have uniqueness of solution of (WFe). We make the following586

assumption on the cost function:587

Assumptions 3.4. Assume d = 2 and J is Fréchet-differentiable.588

We define the sets Wu(0, T ) = {u ∈ Xu; ∂tu ∈ (Xu)′}, and W θ(0, T ) = {θ ∈589

Xθ; ∂tθ ∈ (Xθ)′}. Write, in (Xu)′ × (Xθ)′, the equation (WFe) as e(uε, θε, αε) = 0,590

where e : Wu(0, T )×W θ(0, T )× Uad → (Xu)′ × (Xθ)′ ×Hu ×Hθ is defined as:591

e(uε, θε, αε) =


∂tuε +Auε + B(uε,uε) + h(αε)uε

+ 1
2Pε(uε,uε)−

1
2Nε(uε,u

ref)− f − σref

∂tθε −D(uε, θε) + C(αε)θε +Mε(uε, θε)− φ
uε(0, ·)− u0(αε)
θε(0, ·)− θ0(αε)

 .592

The operators Pε, Nε and Mε are Fréchet differentiable with the same smoothness593

as the approximation negε. Their derivatives with respect to uε are denoted by594

duPε : Wu(0, T )2 → L(Wu(0, T ), (Xu)′), N ′ε : Wu(0, T )2 → L(Wu(0, T ), (Xu)′),595

duMε : Wu(0, T )×W θ(0, T )→ L(Wu(0, T ), (Xθ)′), defined by:596

duPε(u,u)v = Pε(u,v) + P ′ε(u,u)v,597

598

〈N ′ε(u,w)v,Ψ〉(V u)′,V u =

∫
Γout

neg′ε (u · n) (v · n)w ·Ψ.599

600

〈duMε(u, θ)v, ϕ〉(V θ)′,V θ =

∫
Γout

(1 + βneg′ε (u · n)) (v · n)θϕ,601

where P ′ε(u,w) is defined by:602

〈P ′ε(u,w)v,Ψ〉(V u)′,V u =

∫
Γout

pos′ε (u · n) (v · n)w ·Ψ.603

Furthermore, these operators are bounded, as proved in the following lemma:604

Lemma 3.5. Given (uε, θε) solution of (WFe):605

‖duPε(uε,uε)v‖(Xu)′ .(‖uε‖
1
4

L∞(0,T ;L2(Ω))‖uε‖
3
4

L2(0,T ;H1(Ω)) + Cε)

‖v‖
1
2

L∞(0,T ;L2(Ω))‖v‖
1
2

L2(0,T ;H1(Ω)),
606

607

‖N ′ε(uε,uref)v‖(Xu)′ .‖uε‖
1
4

L∞(0,T ;L2(Ω))‖v‖
1
2

L∞(0,T ;L2(Ω))

‖uε‖
3
4

L2(0,T ;H1(Ω))‖v‖
1
2

L2(0,T ;H1(Ω)),
608

609

‖duMε(uε, θε)v‖(Xθ)′ .‖θε‖
1
4

L∞(0,T ;L2(Ω))‖v‖
1
2

L∞(0,T ;L2(Ω))

‖θε‖
3
4

L2(0,T ;H1(Ω))‖v‖
1
2

L2(0,T ;H1(Ω)).
610

Proof. The proof is similar to the proof of Lemma 2.6. Thanks to (A2), we obtain611

also:612

〈P ′ε(u,u)v,Ψ〉(V u)′,V u .‖uε‖
1
4

L∞(0,T ;L2(Ω))‖v‖
1
2

L∞(0,T ;L2(Ω))

‖uε‖
3
4

L2(0,T ;H1(Ω))‖v‖
1
2

L2(0,T ;H1(Ω))‖Ψ‖Xu .
613
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Analogously, using (A4), ones proves that there exists Cε > 0 such that:614 ∫ T

0

〈Pε(uε,v),Ψ〉(V u)′,V u .(‖uε‖
1
4

L∞(0,T ;L2(Ω))‖uε‖
3
4

L2(0,T ;H1(Ω)) + Cε)

‖v‖
1
2

L∞(0,T ;L2(Ω))‖v‖
1
2

L2(0,T ;H1(Ω))‖Ψ‖Xu .
615

Adding the two inequalities and dividing by ‖Ψ‖H1(Ω) concludes the proof. The proof616

of the second and third inequalities being similar, they are thus omitted.617

Using the results of [34, Section 1.8.2], one shows easily that e is Fréchet differ-618

entiable w.r.t. (uε, θε), with derivative given by:619

e′uε,θε(αε)

(
v
`

)
=


∂tv +Av + B(v,uε) + B(uε,v) + h(αε)v + T `

+ 1
2duPε(uε,uε)v −

1
2N
′
ε(uε,u

ref)v
∂t`−D(uε, `)−D(v, θε) + C(αε)`+Mε(uε, `)

+duMε(uε, θε)v
v(0, ·)
`(0, ·)

 .620

For defining first order conditions (see [34]), a question of interest is to determine621

if, for all g = (gu, gθ,v0, `0) ∈ (Xu)′ × (Xθ)′ × Hu × Hθ, the following linearized622

equation623

(3.1) e′uε,θε(αε)

(
v
`

)
= g624

admits a solution (v, `) ∈Wu(0, T )×W θ(0, T ).625

Theorem 3.6. For all αε ∈ Uad, Eq. (3.1) admits a unique solution. Therefore,626

e′uε,θε(αε) is invertible.627

Sketch of proof. Using Lemma 3.5, the proof can be adapted from Theorem 2.5628

and [33, Appendix A2]. Uniqueness is proved as for Proposition 2.7 (see also [33,629

Appendix A2]).630

A consequence of Theorem 3.6 is that for all G = (g1, g2) ∈Wu(0, T )′×W θ(0, T )′,631

the following adjoint equation admits a unique solution Λε = (λu
ε , λ

θ
ε, λ

u0
ε , λ

θ0
ε ) ∈632

Xu × Xθ ×Hu ×Hθ:633

(3.2) (e′uε,θε(αε))
∗Λε = G,634

where (e′uε,θε(αε))
∗ denotes the adjoint operator of e′uε,θε(αε).635

After some calculations, equation (3.2) is equivalent to solve, for all (v, `) ∈636

Wu(0, T )×W θ(0, T ), the following variational problem:637

(3.3)

〈−∂tλu
ε +Aλu

ε +
1

2
((∇uε)

ᵀλu
ε − (∇λu

ε )ᵀuε)− B(uε, λ
u
ε ) + h(αε)λ

u
ε −D1(θε)λ

θ
ε

+
1

2
Pε(uε, λu

ε ) +
1

2
(P ′ε(uε,uε)−N ′ε(uε,uref))∗λu

ε

+ (duMε(uε, θε))
∗
λθε,v〉Wu(0,T )′,Wu(0,T )

+ 〈v(0, ·), λu0
ε 〉H

= 〈g1,v〉Wu(0,T )′,Wu(0,T ),

〈−∂tλθε + T ∗λu
ε + C(αε)λθε −D2(uε)λ

θ
ε +Mε(uε)

∗λθε, `〉W θ(0,T )′,W θ(0,T )

= 〈g2, `〉W θ(0,T )′,W θ(0,T )

638
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where 〈D(θ,u), ϕ〉 = 〈D1(θ)ϕ,u〉 = 〈D2(u)ϕ, θ〉, 〈Mε(u)θ, ϕ〉 = 〈Mε(u)ϕ, θ〉639

=
∫

Γout
((u · n) + βnegε (u · n)) θϕ. This equation, in turn, is the weak formulation640

of:641

(3.4a)

− ∂tλu
ε −A∆λu

ε + h(αε)λ
u
ε + (∇uε)

ᵀλu
ε − (uε · ∇)λu

ε − θε∇λθε = g1

∇ · λu
ε = 0,

− ∂tλθε +Bλu
ε · ey −∇ · (Ck(αε)∇λθε)−∇ · (uελθε) = g2

λu
ε Γw∪Γin

= 0,

λθε Γin
= 0,

∂nλ
θ
ε Γw

= 0,

A∂nλ
u
ε Γout

=
1

2
(posε (uε · n) + (uε · n))λu

ε + (1 + βµε)θελ
θ
εn

+
1

2
µε
(
(uε − uref) · λu

ε

)
n,

Ck(αε)∂nλ
θ
ε + βλθεnegε (uε · n) Γout

= 0

λu
ε (T ) = 0, λθε(T ) = 0,

642

643

(3.4b) µε = neg′ε (uε · n)644

and, as shown in a similar fashion in [33], λu0
ε = λu

ε (0, ·), λθ0ε = λθε(0, ·). Further-645

more, we can argue that the weak solution (λu
ε , λ

θ
ε) of (3.4) are in L∞(0, T ;L2(Ω)2)×646

L∞(0, T ;L2(Ω)), as done in Theorem 2.4.647

An other consequence of Theorem 3.6 is that we can apply [34, Corollary 1.3]648

which states that at any local solution (α∗ε ,u
∗
ε, θ
∗
ε) of (OPTe), the following optimality649

conditions hold:650

Theorem 3.7. Let α∗ε be an optimal solution of (OPTe) with associated states651

(u∗ε, θ
∗
ε). Then there exist adjoint states (λu

ε , λ
θ
ε) ∈ Xu × Xθ such that, denoting652

(λu0
ε , λ

θ0
ε ) = (λu

ε (0, ·), λθε(0, ·)) and Λε = (λu
ε , λ

θ
ε, λ

u0
ε , λ

θ0
ε ):653

(3.5)

e(α∗ε ,u
∗
ε, θ
∗
ε) = 0,

J ′u∗ε ,θ∗ε (α∗ε) + (eu∗ε ,θ∗ε (α∗ε)
′)∗Λε = 0,〈

J ′α∗ε (u∗ε, θ
∗
ε) + (eα∗ε (u∗ε, θ

∗
ε)′)∗Λε, α− α∗ε

〉
U ′ad,Uad

≥ 0, ∀α ∈ Uad,

αε ∈ Uad.

654

Remark 3.8. As stated in [34, Eq. (1.89)], since e and J are Fréchet dif-655

ferentiable, the mapping αε 7→ Ĵ (αε) = J (αε,uε) is Fréchet differentiable, and656

Ĵ ′(αε) = J ′α∗ε (u∗ε, θ
∗
ε) + (eα∗ε (u∗ε, θ

∗
ε))∗Λε, which reads as:657

(eα∗ε (u∗ε, θ
∗
ε))∗Λε =

∫ T

0

(
h′(αε)uε · λu

ε + Ck′(αε)∇θε · ∇λθε
)

+ u′0(αε) · λu0
ε + θ′0(αε)λ

θ0
ε .

658

3.2. Limit adjoint system. To conclude this paper, we will now study the659

convergence, as ε→ 0, of the adjoint states (λu
ε , λ

θ
ε) to functions (λu, λθ). The main660

difficulty concerns the multiplier µε defined in (3.4b). We will prove that at the limit,661
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µ is defined thanks to the convex-hull of the Heaviside function H : R ( [0, 1], given662

by:663

(3.6) H(u) =


{0} if u < 0,

{1} if u > 0,

[0, 1] if u = 0.

664

As we will prove in this section, these limit adjoint states (λu, λθ) let us define neces-665

sary conditions of optimality for the unrelaxed problem (OPT).666

Lemma 3.9. Let (αε) ⊂ Uad and α ∈ Uad such that αε
∗
⇀ α. Define by (λu

ε , λ
θ
ε) a667

weak solution of (3.4) parametrized by αε. Then, there exists λu ∈ L∞(0, T ; Hu) ∩668

L2(0, T ;V u), λθ ∈ L∞(0, T,Hθ) ∩ L2(0, T ;V θ) such that, up to a subsequence:669

• λu
ε → λu in L∞(0, T ; (L2(Ω))2) and λθε → λθ in L∞(0, T ;L2(Ω)),670

• λu
ε −−−→

ε→0
λu in L2(0, T ; (H1(Ω))2) and λθε −−−→

ε→0
λθ in L2(0, T ; (H1(Ω))),671

• λu
ε −−−→

ε→0
λu in L2(0, T ; (L2(Γ))2) and λθε −−−→

ε→0
λθ in L2(0, T ; (L2(Γ))).672

Furthermore, there exists µ ∈ L∞([0, T ]×Γout) defined by −µ ∈ H(−u·n) a.e. in Γout673

such that (λu, λθ) is a weak solution to (3.4a) parametrized by α and µ, replacing674

negε (·) (resp. posε (·)) by neg(·) (resp. pos(·)).675

Proof. The proof is very similar to the ones presented in section 2.676

• In a similar manner as for Proposition 2.2 and Proposition 2.3, one shows677

that, for all σ ∈ [0, 1
6 ), there exist constants cθλ(σ) and cuλ(σ), independent of678

ε, such that:679

sup
[0,T ]

‖λu
ε ‖L2(Ω) +

∫ T

0

‖∇λu
ε ‖L2(Ω) +

∫
R
|τ |2σ

∥∥∥F (
λ̃u
ε

)∥∥∥
L2(Ω)

dτ ≤ cuλ(σ),680

681

sup
[0,T ]

‖λθε‖L2(Ω) +

∫ T

0

‖∇λθε‖L2(Ω) +

∫
R
|τ |2σ

∥∥∥F (
λ̃θε

)∥∥∥
L2(Ω)

dτ ≤ cθλ(σ).682

• These bounds prove a weaker set of convergence in the same manner as in683

Theorem 2.5. Since once again, we set d = 2, one proves the strong conver-684

gence stated above as in Corollary 2.9.685

We only need to prove that (λu, λθ) is a weak solution to (3.4a). The terms 〈(P ′ε(uε,686

uε))
∗λu
ε 〉Wu(0,T )′,Wu(0,T ) and 〈(duMε(uε, θε))

∗
λθε,v〉Wu(0,T )′,Wu(0,T ) need a more687

thorough examination. We start with the first term for which we have688

〈(P ′ε(uε,uε))∗λu
ε ,v〉Wu =

∫ T

0

∫
Γout

pos′ε (uε · n) (uε · λu
ε ) n · v.689

In the same spirit as in [18, Proof of Lemma 4.3], we prove that up to a subsequence690

(not relabeled) one has neg′ε (uε · n)
∗
⇀ µ in L∞([0, T ] × Γout), and such that −1 ≤691

µ ≤ 0 a.e. in Γout and692

µ = −1 a.e. in {u · n < 0}, µ = 0 a.e. in {u · n > 0}.693

Furthermore, due to the convergence presented above, uε · λu
ε → u · λu in L1(0, T ;694

L1(Γout)). Therefore, it proves that:695

〈(P ′ε(uε,uε)∗λu
ε ,v〉Wu(0,T )′,Wu(0,T ) →

∫ T

0

∫
Γout

(1 + µ) (u · λu) n · v.696
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Similarly, we have that:697

〈(duMε(uε, θε))
∗
λθε,v〉Wu(0,T )′,Wu(0,T ) →

∫ T

0

∫
Γout

(1 + βµ) (v · n)θλθ.698

All other terms in (3.3) can be dealt with as in the proof of Theorem 2.5. Therefore,699

(λu, λθ) is a weak solution to (3.4a) parametrized by α and µ.700

We may now prove the final result of this paper ; namely the necessary optimality701

conditions of (OPT).702

Theorem 3.10. Let α∗ be an optimal solution of (OPT) with associated state703

u∗, θ∗. Then there exist a multiplier µ ∈ L∞([0, T ]×Γout) and adjoint states (λu, λθ) ∈704

Xu × Xθ solution of (3.4a) such that, denoting (λu0 , λθ0) =705

(λu(0, ·), λθ(0, ·)) and Λ = (λu, λθ, λu0 , λθ0):706

〈J ′α∗(u∗, θ∗) + (eα∗(u
∗, θ∗)′)∗Λ, α− α∗〉U ′ad,Uad ≥ 0, ∀α ∈ Uad.707

Proof. The proof follows the lines of [18, Theorem 4.4]. Denote by Sε the solution708

operator which associates to α the solution of the relaxed equations (WFe) and by S709

the solution operator which to α associates the solution of (WF). For some ρ > 0,710

consider the auxiliary optimal control problem:711

(3.7)

min Fε(αε) = J (αε,uε, θε) +
1

2
‖α∗ − αε‖2L2(Ω)

s.t.


(uε, θε) = Sε(αε),

αε ∈ Uad,
‖αε − α∗‖L2(Ω) ≤ ρ.

712

Since αε and α∗ are both in Uad, they are both bounded in L∞(Ω) and therefore,713

‖α∗ − αε‖L2(Ω) is well defined. It is classical to show that (3.7) admits a global714

minimizer α∗ε ∈ Uad.715

Using (2.19) (but with αε ≡ α), one proves that (in the norm of the topology716

given in Assumptions 3.1 with d = 2):717

(3.8) ‖S(α)− Sε(α)‖ . Cε, ∀α ∈ Uad,718

where Cε has been defined in (2.12).719

Note that due to the Fréchet-differentiability of J supposed in Assumptions 3.4720

and (3.8), it holds, for ε small enough:721

|J (α, S(α))− J (α, Sε(α))| . Cε, ∀α ∈ Uad, ‖α− α∗‖ ≤ ρ.722

We obtain as a consequence that Fε(α
∗) . Cε + J (α∗, S(α∗)), and:723

Fε(α) & −Cε + J (α∗, S(α∗)) +
1

2
‖α− α∗‖2L2(Ω), ∀α ∈ Uad, ‖α− α∗‖L2(Ω) ≤ ρ.724

Therefore, for all α ∈ Uad such that ‖α− α∗‖L2(Ω) ≤ ρ:725

Fε(α
∗) . Cε + J (α∗, S(α∗)) . Cε + J (α, S(α)) . 2Cε + Fε(α).726

Hence, for some constant C ′, and denoting C ′ε = C ′Cε, one has the implication:727

∀α ∈ Uad, 2C ′ε <
1

2
‖α− α∗‖2L2(Ω) ≤

1

2
ρ2 =⇒ Fε(α

∗) < Fε(α).728
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One has therefore the following necessary condition of optimality:729

(3.9) ‖α∗ε − α∗‖L2(Ω) ≤
√

4C ′ε.730

Hence, for ε small enough, α∗ε is in the ρ-ball around α∗ ; therefore, α∗ε is a local731

solution of (OPTe). Using Theorem 3.7, one then proves that there exists adjoint732

states (λu
ε , λ

θ
ε) solution of (3.4a) such that, for all α ∈ Uad:733

(3.10)
〈
J ′α∗ε (u∗ε, θ

∗
ε) + (eα∗ε (u∗ε, θ

∗
ε)′)∗Λε, α− α∗ε

〉
U ′ad,Uad

+〈α∗ε−α∗, α−α∗ε〉L2(Ω) ≥ 0.734

From (3.9), one has α∗ε → α∗ strongly in L2(Ω), and therefore, in L1(Ω). Since735

(α∗ε − α∗)ε ⊂ Uad, one has also (α∗ε − α∗)ε bounded in BV (Ω). Hence, α∗ε
∗
⇀ α∗ in736

Uad. Using then Corollary 2.9, Assumptions 3.1 and Lemma 3.9, we can pass to the737

limit in (3.10), which concludes this proof.738

Appendix A. Technical lemma. Let X = L2(0, T ;H1(Ω)) ∩ L4(0, T ;L2(Ω)),739

and denote by X′ the dual of X with the following dual pairing: 〈f, g〉X′,X =740 ∫ T
0
〈f(t), g(t)〉L2(Ω). Denote EX = {u ∈ X|u′ = du

dt ∈ X′}. We endow EX with the741

norm: ‖u‖EX = ‖u‖X + ‖u′‖X′ , where ‖u‖X = max{‖u‖L2(0,T ;H1(Ω)),742

‖u‖L∞(0,T ;L2(Ω))}. Finally, denote D(0, T ;X) the set of infinitely differentiable func-743

tions from [0, T ] to X with compact support in [0, T ].744

Lemma A.1. Let u ∈ EX. There exists (un)n ⊂ D(0, T ;H1(Ω)) such that:745

un → u in L2(0, T ;H1(Ω)), u′n ⇀ u′ in X′.746

Proof. From [11, Theorem II.2.26], one proves directly that there exists (un)n ⊂747

D(0, T ;H1(Ω)) such that un → u strongly in L2(0, T ;H1(Ω)).748

For all ϕ ∈ D(0, T ;H1(Ω)), one has:749

〈u′n, ϕ〉X′,X = −〈un, ϕ′〉X′,X −−−−−→
n→+∞

−〈u, ϕ′〉X′,X = 〈u′, ϕ〉X′,X.750

By the density result [11, Theorem II.2.26], we prove that:751

∀ϕ ∈ X, 〈u′n, ϕ〉X′,X −−−−−→
n→+∞

〈u′, ϕ〉X′,X.
752

Lemma A.2. Let u,v ∈ EX. Then, t 7→ 〈u(t),v(t)〉L2(Ω) is in W 1,1([0, T ]) and753

for all t ∈ [0, T ]:754

d

dt
〈u(t),v(t)〉L2(Ω) =

〈
du

dt
(t),v(t)

〉
L2(Ω)

+

〈
dv

dt
(t),u(t)

〉
L2(Ω)

.755

Proof. Using Lemma A.1, the proof is a simple adaptation of [11, Theorem756

II.5.12].757
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[22] E. Colmenares, G. N. Gatica, and R. Oyarzúa. A posteriori error analysis of an augmented811
fully-mixed formulation for the stationary Boussinesq model. Computers & Mathematics812
with Applications, 77(3):693–714, 2019.813

[23] T. Dbouk. A review about the engineering design of optimal heat transfer systems using814
topology optimization. Applied Thermal Engineering, 112:841–854, 2017.815

[24] G. Desrayaud, E. Chénier, A. Joulin, A. Bastide, B. Brangeon, J.P. Caltagirone, Y Cherif,816
R. Eymard, C. Garnier, S. Giroux-Julien, et al. Benchmark solutions for natural convection817
flows in vertical channels submitted to different open boundary conditions. International818
journal of thermal sciences, 72:18–33, 2013.819

[25] F. Feppon, G. Allaire, F. Bordeu, J. Cortial, and C. Dapogny. Shape optimization of a coupled820
thermal fluid–structure problem in a level set mesh evolution framework. SeMA Journal,821
76(3):413–458, 2019.822

[26] L. Formaggia, J.-F. Gerbeau, F. Nobile, and A. Quarteroni. Numerical treatment of defec-823
tive boundary conditions for the Navier–Stokes equations. SIAM Journal on Numerical824

25

This manuscript is for review purposes only.



Analysis, 40(1):376–401, 2002.825
[27] J. Fouchet-Incaux. Artificial boundaries and formulations for the incompressible navier–stokes826

equations: applications to air and blood flows. SeMA Journal, 64(1):1–40, 2014.827
[28] G. Galdi. An introduction to the mathematical theory of the Navier–Stokes equations:828

Steady-state problems. Springer Science & Business Media, 2011.829
[29] H. Garcke, M. Hinze, C. Kahle, and K. F. Lam. A phase field approach to shape optimiza-830

tion in Navier–Stokes flow with integral state constraints. Advances in Computational831
Mathematics, 44(5):1345–1383, 2018.832

[30] T. Goudon, S. Krell, and G. Lissoni. Ddfv method for Navier–Stokes problem with outflow833
boundary conditions. Numerische Mathematik, 142(1):55–102, 2019.834

[31] F. Harder and G. Wachsmuth. Comparison of optimality systems for the optimal control of835
the obstacle problem. GAMM-Mitteilungen, 40(4):312–338, 2018.836
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