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THE BOUSSINESQ SYSTEM WITH NON-SMOOTH BOUNDARY
CONDITIONS : EXISTENCE, RELAXATION AND TOPOLOGY
OPTIMIZATION. *

ALEXANDRE VIEIRAT AND PIERRE-HENRI COCQUET*#

Abstract. In this paper, we tackle a topology optimization problem which consists in finding
the optimal shape of a solid located inside a fluid that minimizes a given cost function. The motion
of the fluid is modeled thanks to the Boussinesq system which involves the unsteady Navier-Stokes
equation coupled to a heat equation. In order to cover several models presented in the literature, we
choose a non-smooth formulation for the outlet boundary conditions. This paper aims at proving
existence of solutions to the resulting equations, along with the study of a relaxation scheme of the
non-smooth conditions. A second part covers the topology optimization problem itself for which
we proved the existence of optimal solutions and provides the definition of first order necessary
optimality conditions.

Key words. Non-smooth boundary conditions, topology optimization, relaxation scheme, di-
rectional do-nothing boundary conditions

AMS subject classifications. 49K20, 49Q10, 76D03, 76D55

1. Introduction.

Directional do-nothing conditions. For many engineering applications, simula-
tions of flows coupled with the temperature are useful for predicting the behaviour
of physical designs before their manufacture, reducing the cost of the development
of new products. The relevance of the model and the adequacy with the experiment
therefore become important [17, 42, 48]. In this paper, we choose to model the flow
with the Boussinesq system which involves the Navier-Stokes equations coupled with
an energy equation. In most mathematical papers analyzing this model [9, 29, 49],
homogeneous Dirichlet boundary conditions are considered on the whole boundary.
This simplifies the mathematical analysis of the incompressible Navier-Stokes equa-
tion since the non-linear term vanishes after integrating by part hence simplifying the
derivation of a priori estimates [8, 22, 28, 49].

However, several applications use different boundary conditions that model inlet,
no-slip and outlet conditions [1]. Unlike the inlet and the no-slip conditions, the
outlet conditions are more subject to modelling choices. A popular one consists in
using a do-nothing outlet condition (see e.g. [7, 26, 27, 35, 47, 50]) which naturally
comes from integration by parts when defining a weak formulation of the Navier-
Stokes equations. However, since this outlet condition does not deal with re-entering
flows, several papers use a non-smooth outlet boundary conditions for their numerical
simulations (see e.g. [5, 24]). A focus on non-smooth outflow conditions when the
temperature appears can be found in [13, 24, 43, 45].

In particular, directional do-nothing (DDN) boundary conditions are non-smooth
conditions that become popular. The idea is originally described in [14], and several

*We thank Franck Boyer for his precious advice.

Funding: All the authors are supported by the ”Agence Nationale de la Recherche” (ANR),
Project O-TO-TT-FU number ANR-19-CE40-0011.

TPhysique et Ingénierie Mathématique pour ’Energie et I'Environnement (PIMENT), Univer-
sité de la Réunion, 2 rue Joseph Wetzell, 97490 Sainte-Clotilde, France. (Alexandre.Vieira@univ-
reunion.fr)

fLaboratoire des Sciences de 1'Ingénieur Appliquées & la Mécanique et au Génie Electrique
(STAME), E2S-UPPA, Université de Pau et des Pays de 1’Adour, 64000 Pau, France (Pierre-
Henri.Cocquet@univ-pau.fr)

This manuscript is for review purposes only.


mailto:Alexandre.Vieira@univ-reunion.fr
mailto:Alexandre.Vieira@univ-reunion.fr
mailto:Pierre-Henri.Cocquet@univ-pau.fr
mailto:Pierre-Henri.Cocquet@univ-pau.fr

11
42
43
44
15
16
47
48
49
50

S S O gt Ot gt Ot Ot gt ot ot
= O © 00 3 O Uk W N

62
63
64
65
66

S|

R = TS BT B B N
J O O = W N <

0 =~

3 =

>
©

80

other mathematical studies followed [5, 10, 12]. These conditions were considered
especially for turbulent flows. In this situation, the flow may alternatively exit and
re-enter the domain. These directional boundary conditions tries to capture this
phenomenon, while limiting the reflection. It is worth noting that other boundary
conditions can be used, namely the so-called local/global Bernouilli boundary condi-
tions [13, 24, 45]. The latter implies the do-nothing boundary condition is satisfied for
exiting fluid and that both the normal velocity gradient and the total pressure vanish
for re-entering fluid. Nevertheless, in this paper, we are going to use non-smooth DDN
boundary condition since they are easier to impose though a variational formulation.

Concerning the mathematical study of Boussinesq system with directional do-
nothing conditions, the literature is rather scarce. To the best of our knowledge, we
only found [6, 16], where the steady case is studied in depth, but the unsteady case only
presents limited results. Indeed, while [16, p. 16, Theorem 3.2] gives existence and
uniqueness of a weak solution with additional regularity to the steady-state Boussinesq
system involving non-smooth boundary conditions at the inlet, it requires the source
terms and the physical constants like for example the Reynolds number to be small
enough. We emphasize that these limitations comes from the proof which relies on a
fixed-point strategy. The first aim of this paper will then be to fill that gap by proving
existence and, in a two-dimensional setting, uniqueness of solutions for the unsteady
Boussinesq system with non-smooth DDN boundary condition at the outlet.

Topology optimization. On top of the previous considerations, this paper aims at
using these equations in a topology optimization (TO) framework. In fluid mechanics,
the term topology optimization refers to the problem of finding the shape of a solid
located inside a fluid that optimizes a given physical effect. There exist various
mathematical methods to deal with such problems that fall into the class of PDE-
constrained optimization, such as the topological asymptotic expansion [3, 15, 41] or
the shape optimization method [25, 39, 40]. In this paper, we choose to locate the
solid thanks to a penalization term added in the unsteady Navier-Stokes equations,
as exposed in [4]. However, the binary function introduced in [4] is usually replaced
by a smooth approximation, referred as interpolation function [45], in order to be
used in gradient-based optimization algorithms. We refer to the review papers [1,
23] for many references that deal with numerical resolution of TO problems applied
to several different physical settings. However, as noted in [1, Section 4.7], most
problems tackling topology optimization for flows only focus on steady flows, and
time-dependant approaches are still rare. Furthermore, to the best of our knowledge,
no paper is dedicated to the mathematical study of unsteady TO problems involving
DDN boundary conditions, even though they are already used in numerical studies
[13, 24, 43, 45]. Therefore, the second goal of this paper will be to prove existence
of optimal solution to a TO problem involving Boussinesq system with non-smooth
DDN boundary conditions at the outlet.

First order optimality conditions. As hinted above, a gradient based method is
often used in order to compute an optimal solution of a TO problem. However, the
introduction of the non-smooth DDN boundary conditions implies that the control-
to-state mapping is no longer differentiable. The literature presents several ways to
deal with such PDE-constrained optimization problems. Most focus on elliptic equa-
tions, using subdifferential calculus [18, 31, 20] or as the limit of relaxation schemes
[19, 36, 46]. We may also cite [38] for a semilinear parabolic case and [51] which
involves the Maxwell equations. We emphasize that using directly a subdifferential
approach presents several drawbacks: the subdifferential of composite functions may
be hardly computed, and the result may be hardly enlightening nor used [18]. We will

2
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therefore use a differentiable relaxation approach, as studied in [46]. First, we will
be able to use standard first order necessary optimality conditions since the relaxed
control-to-state mapping will be smooth. A convergence analysis will let us design
necessary optimality condition for the non-smooth problem. Secondly, we find this
approach more enlightening, as it may be used as a numerical scheme for solving the
TO problem.

1.1. Problem settings. Let Q@ C RY, d € {2,3} be a bounded open set with
Lipchitz boundary whose outward unitary normal is n. We assume the fluid occupies a
region )y C 2 and that a solid fills a region €2, such that Q = Q;UQ,. The penalized
Boussinesq approximation (see e.g. [45] for the steady case) of the Navier-Stokes
equations coupled to convective heat transfer reads:

V.-u=0,

00+ V-(ud)—V-(Ck(a)V) =0, a.e. in
ou+ (u-V)u— AAu+ Vp — Bbe, + h(a)u = f,

u(0) = uo(@), 0(0) = bo(a),

(1.1)

where u denotes the velocity of the fluid, p the pressure and 6 the temperature (all
dimensionless), uo(c),0o(c) are initial conditions. In (1.1), A = Re™! with Re being
the Reynolds number, B = Ri is the Richardson number and C' = (Re Pr)~! where Pr
is the Prandtl number. In a topology optimization problem, it is classical to introduce
a function « : z € Q — «a(z) € RT as optimization parameter (see e.g. [1, 23]). The
function h(«) then penalizes the flow in order to mimic the presence of a solid:
e if h = 0, then one retrieves the classical Boussinesq approximation.
e if for some s > s¢ and large enough Qmax, b : $ € [0, amax] — h(s) € [0, Amax]

is a smooth function such that h(s) = 0 for s < sg and h(s) = @umax for s > s,

one retrieves the formulations used in topology optimization [1, 9, 45]. In the

sequel, we work in this setting since we wish to study a TO problem.
Since the classical Boussinesq problem is retrieved when h(a) = 0, the fluid zones
Qy C Qand the solid ones Q; C Q can be defined as Q,; := {x € Q | a(x) < s}, Qy :=
{z € Q| a(r) > so}, where amax > 0 is large enough to ensure the velocity u is small
enough for the Qs above to be considered as a solid (see [4, Corollary 4.1]). The
function k() : x € Q — k(a(z)) is the dimensionless diffusivity defined as k(a)|o, =1
and k(o)|o, = ks/ky with kg and ky are respectively the diffusivities of the solid and
the fluid. We also assume that & is a smooth regularization of (k/ks)1q, + 1q,. In
this framework, « is thus defined as a parameter function, which will let us control
the distribution of the solid in 2.

Let us now specify the boundary conditions. Assume 02 = I' is Lipschitz and
is split into three parts: I' = I'y, U Ty, U gy. Here, T'y, are the walls, T'y, the
inlet /entrance and Tyt is the exit/outlet of the computational domain. Let § be
a function defined on Ty and define: Vo € R : 27 = pos(z) = max(0,z), 2~ =
neg(x) = max(0, —x),z = 2+ — 2. Inspired by [14], we supplement (1.1) with the
following boundary conditions:

OnTy,: u=uy, §=0,

Only: u=0, Cko,0 =0,

1.2 1
(12) On Lous : Adpu — np = A9, u™ — np™ — i(u -n) " (u— uref),

Ckop0 + B(u-n)~60 =0,
3
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with ¢ € L2(0,T; L*()), f € L*(0,T; (H(Q))), win € L2(0,T; Hoy*(In)), 0y =
n-V and (u™f, ref) denotes a reference solution. As stated in [30], this nonlinear
condition is physically meaningful: if the flow is outward, we impose the constraint
coming from the selected reference flow ; if it is inward, we need to control the increase
of energy, so, according to Bernoulli’s principle, we add a term that is quadratic with
respect to velocity.

Weak formulation. To define a weak formulation of (1.1)-(1.2), we introduce
Vet ={ue H(Q) V-u=0, ur,ur, = 0}, and define H* as the closure of V*
n (L2(Q))4. Similarly, we define V¢ = {§ € H'(Q); 0|r,, = 0}, and HY = L?(Q).
We identify H* and HY with their dual, and denote by (V*)’ (resp. (V?)") the dual
of V¥ (resp. V?). Multiplying (1.1)-(1.2) with ¢ € V? and integrating by parts, the
result reads as:

/ O — / fu - Vgo—i—/ CkVo -V + /(9(u -mn) — Ckop0)p =
Q Q Q r
for all ¢ € V?. From (1.2), the boundary term reduces to:

Jowm) —cronoye = [ oo [ (msam)) g

out

- / (BO(u-n)~ + Ckd,0) ¢

out

B P I

and the weak form of the heat transfer equation is then

/@9@ /9u w+/cwe ch—&-/r (u-n)+Bu-n)7) by
(WF.1)

/w

For the Navier-Stokes equations, we are going to use the next formula to replace the
inertial term (u- V)u) by a symmetric one which helps to get a priori estimates (see
also [11, 14]). For all ¥ € V*, the latter is given as

1 1
/Q((u-V)u)-\Il:5/9((u-V)u)~‘I’—((u-V)\I’)-u+§/89(u-n)(u-\1’).

Multiplying (1.1) by ¥ € V*, integrating by parts and using the boundary conditions,
the weak formulation of the Navier-Stokes system is then defined as

/Qatu-\Il—i-%{((u-V)u)-\I’—((u-V)\II)-u}—i—AVu:V\Il—i—h(a)u-\I'

(WF.2) —/QBQ-é’y-\II—&—%/F (u-n)*(u- @)

out

:/Qf-\Iur/F (Aduu*’ — np™) - ‘I’Jrz/F (u-n)” (u™ - @)

out out

for all @ € V. A weak solution to (1.1)-(1.2) is then defined as (u,8) € L?(0,T;V*)x
L%(0,T;V?) satisfying the weak formulations (WF).
4
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1.2. The topology optimization problem. A goal of this paper is to analyze
the next topology optimization problem

min J(a, u,0)
(OPT) . (u, 0) solution of (WF) parametrized by «,
o ac Z/{ada
where J is a given cost function. For some xk > 0, we set Uaq = {a € BV(Q)

0 < a(x) < omax a.e. on Q, |Da|(Q) < k} where BV(Q) stands for functions of
bounded variations. As exposed in [2], the weak-* convergence in BV () is defined as
follows: (ae)e C BV(Q) weakly-* converges to o € BV(Q) if () strongly converges
to a in LY(Q2) and (Da.) weakly-* converges to Da in , meaning:

lim [ vdDa, = / vdDa, Yv € Cy(Q),
e—=0 Jo Q

where Cp(Q2) denotes the closure, in the sup norm, of the set of real continuous

functions with compact support over 2. We choose Ua,q as a subset of BV(Q) since

it is a nice way to approximate piecewise constant functions, which is close to the

desired solid distribution.

REMARK 1.1. The set Uyq have been used for instance in [21, 50] and have the
property that any sequence (o) C Uqgq is bounded in BV(QY) and thus have a subse-
quence that converges strongly in L*(Q) toward some o € U,q. It then has a further
subsequence that converges almost everywhere in ) toward o and thus h(c,) and k(o)
converge respectively toward h(a) and k(a)). The last statement is going to be useful
to prove some smoothness result on the control-to-state mapping o — (u(a),0(«)). In
addition, we emphasize we may actually replace the above Uyq by any Banach space
Baa for which any (cu)n C Baa has a subsequence that converges toward some o € Byg
strongly in LP(Q2) forp > 1.

It is classical for these problems to compute first order optimality conditions
(see e.g. [34, 44]). This approach needs smoothness of the control-to-state mapping.
However, the presence of the non-differentiable function neg(x) = z~ makes this
approach impossible. Therefore, we adopt a smoothing approach, as studied in [36,
46], and we approximate the neg function with a C'! positive approximation, denoted
neg,. We suppose this approximation satisfies the following assumptions:

(A1) Vs € R, neg, (s) > neg(s).
(A2) Vs € R, —1 < neg’(s) < 0.
(A3) neg, converges to neg uniformly over R.
(A4) for every ¢ > 0, the sequence (negl).~o converges uniformly to 0 on [4, +00)
and uniformly to -1 on (—o0, —d] as € — 0.
As presented in [46], we may choose:

s~ if |s| > £,
(13) heg, (s) = { S
2 2

We also introduce the notation

pos, (s) = s+ neg, (s).

Remark that, owning to the mean value theorem, (A2)-(A3) implies that, for all
z € R and for € small enough

(1.4) Ineg. (z) | < ||+ O(e).
5
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We redefine (WF) with an approximation of s~ and s*, which gives:

/ D1 — / b - Vi + / ((u; - 1) + fneg, (u. - n)) 6oy
(WFe.1) @ @ Four

+/Ckv9€~V<p:/ dp.
Q FW

/ Opu. - U + % {((ug - V)ue) - ¥ — ((u. - V)¥) -u.} + AVu, : V&
Q

1
(WFe.2) +/ h(a)u, - ¥ — BO, - €, - ¥ + 3 / pos, (u. - n) (u. - ¥)
Q r

out

out

= / ;- +/ (A0, u™" — np™h) . & + L / neg. (u. - n) (u™ - ¥)
Q I 2 1—‘out

for all (¥, p) € V¥ x V7.
We then define the approximate optimal control problem:

min J (., u., 6:)
(OPTe) . (ue, 0.) solution of (WFe.1) — (WFe.2) parametrized by a,
s.t.
e € Uyg.

As it will be made clear later, the control-to-state mapping in (WFe.1)-(WFe.2) is
smooth, which will let us derive first order conditions.

1.3. Plan of the paper. The rest of this introduction is dedicated to the pre-
sentation of some notations used in this article and some important results of the
literature. The core of this paper is organized in two sections. First, we will prove the
existence of solutions to (WFe), which will let us prove, with a compactness argument,
the existence of solutions to (WF). We then focus on the two dimensional case, where
we prove uniqueness of the solutions along with stronger convergence results. This
is an extension of the work done by [14], where only the pressure and the velocity
were considered, and to [6, 16], where the steady case was studied in depth, but the
results concerning the unsteady case were obtained using restrictive assumptions. We
then study the approximate optimal control problem (OPTe), for which we will derive
first order conditions. We conclude this paper with the convergence of the optimality
conditions of (OPTe), which let us design first order conditions of (OPT).

Notations. We set a < b if there exists a constant C'(€2) > 0 depending only on
Q) such that a < C(2)b. Denote:

o A:V* — (V*) defined by (Au,v)yuy yu = A [, Vu: Vv,

o B: V" x V% — (V") defined by (B(u,v),w)yuyve = 3 [o(u-V)v-w—
(u-V)w-v,

o T:V%— (V") defined by (T0,v)uy vu = [, Ble, v,

o P:VUxV" = (V") defined by (P(u,v), w) )y vu = fFout pos(u-n)(v-w),

o Pe: VUx V¥ — (V¥) given by (Pe(u,v)),W)vuy vu = [ pos. (u-n)(v-
w).

o N:VUxV" — (V") defined by (N (u, V), W) (yuy vu = [, neg(u-n)(v-w),

o No: VEx VY — (V¥) given by (N(u,v)), W)(vuy ve = [, neg, (u-n)(v-
w).
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e C(a): V9 — (V?) defined by (C(@)8, 0)(voy vo = [ Ck()VO -V,
e D:V"xV? = (V?) defined by (D(u,0), ) ey veo = [ 0u- Ve,
o MV x VP — (V9 defined by (M(u,0),¢) ey ve = Jr.. ((0-n)+
fneg(u - n))bep,
e M. : V¥ x V% — (V?) defined by (M(u,0),0) ey ve = [p
Bneg_ (u-n))byp,
We will also denote by o™ the element of (V*) defined by (0™, W) uy yu =
fFO“t (Ad,urf—pn)-w, h(a) : V* — (V") the function defined by (h(a)u, v)ru)y yu
= Joh(a)u- v, and ¢ the element of (V)" defined by (¢, 0)(vey ve = [r ¢
Results from the literature. We now recall two results that will be heavily used
throughout this paper.

PROPOSITION 1.2. ([11, Proposition II11.2.35]) Let Q be a Lipschitz domain of
R< with compact boundary. Let p € [1,+00] and q € [p,p*], where p* is the critical
exponent associated with p, defined as:

((w-n)+

out

111
=5 d for p <d,
p* € [1,+00] forp=d,
p* =+ forp>d.

Then, there exists a positive constant C such that, for any u € W1P(Q):

14d_d d_d
HU”LQ(Q) < OHu”Lp(qQ) ’ Hu”{z;[/ll(g)'

PROPOSITION 1.3. ([11, Theorem II1.2.36]) Let Q be a Lipschitz domain of R?
with compact boundary, and 1 < p < d. Then for any r € [p, pgif_pl)} , there exists a
positive constant C such that, for any u € W1P(Q):

l—dyd=1l  d_d-1
L7 (8%) SCHUHLP(T)Q) " Hu”[z/,[/lpZQ)

luiaql

In the case p = d, the previous result holds true for any r € [p, +00|.

2. Existence of solutions. In this section, we will focus on proving the exis-
tence of solutions to (WFe) and prove their convergence toward the ones of (WF).
We make the following assumptions throughout this paper:

ASSUMPTIONS 2.1. e The source term f € L2(0,T; (H*(R))").
o (U pf) are such that:

w' e L7(0,T; (H'(2)7) N L>(0, T (L*(9))7)

withr =2ifd=2andr =4 if d=3,

V-u =0,

o™ € L2(0,T; (L*(Q))%),

u’=0onl,

umf = U, ON Ffm.

and Ad,u™ — prefn € L2(0,T; H™ 2 (9Q)).
o There exists kumin such that k(x) > kpn > 0 and h(x) > 0 for a.e. x € Q.
7
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e The initial condition ug (resp. o) is a Fréchet-differentiable function from
Ugg to V¥ (resp. V). Furthermore, for all o € Uyg, uo(a)\rm = u,(0),
u(a)|p, =0, and Op(a)|p, = 0.

e € L>0,T; L®°(Tout)) such that B(t,x) > %, for a.e. (t,x) € [0,T] X T pus.

2.1. Existence in dimension 2 or 3. In this part, we work with a fixed € > 0
and a given a¢ in Uyg.

To prove the existence of solutions to (WFe), we follow the classical Fadeo-
Galerkin method as used in [14, 37, 49]. By construction, V* and V? are separable.
Therefore, both admit a countable Hilbert basis (w{) and (wf)s. Let us construct
an approximate problem, which will converge to a solution of the original problem
(WFe). Denote by V,;* (resp. V,?) the space spanned by (w)i<n (resp. (wf)r<n).
We consider the following Galerkin approximated problem:
find t = v, (t) € V¥ and t — 0,(t) € V. such that, defining u, = v,, + 0", (u,,0,)
satisfy (WFe) for allt € [0,T] and for all (¥, p) € V¥ x VI.

As done in [49], such (u,,6,) exist. We now prove that these solutions are
bounded uniformly with respect to n and e:

PROPOSITION 2.2. There exist positive constants ¢, ¢5, ¢¥ and cy, independent
of € and n, such that:

275
(2.1) sup [0, 2 (0) < ¢, 276 (2.3) sup Ivallzze) < cf,
’ 277
T ) T
2 97Q 2 v
@2 [0l <d o ed) [ Il <

Proof. Taking ¢, = 0,, in (WFe.1) and integrating by part give:

d 1
ey~ 5 [ 2w+ [ CHT,P
ag"mE@) g 0

ou

[ () e )6 = [ o,

out

Since 8 > % and using assumption (A1), one has on Tgyy:

—_

(e ) + fncg, (w, 1)) 62— 2 (- 0)62 > ((w,-n) + neg, (u,-n)) 6

2
1
ZiposE (u, -n) 62 > 0.

Therefore: %H9n|\%2(9) + CkminHV&nH%z(Q) < ol 20 10nll L2 (r,,)- Using the con-
tinuity of the trace operator and Young’s inequality, one proves that there exists a
positive constant C'(2) such that, for any v > 0:

C(Q)v

d 1
%Henniz(g) + CkminHVQnH%Z(Q) < ZWH%%FW) + T(H@nniz(g) + ||V9n\|%2(9))-

Taking v small enough, we are left with:

d 1 Qv
%H@nnian) < 5||¢H%2(rw) + THGnHQB(Q)-

8
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Integrating this equation and using Gronwall’s lemma then give (2.1) and (2.2).
Now, take ¥, = v,, in (WFe.2). After some calculations, one gets:

1
|vn|2—|-A|an|2 2/ pos, (w, -n) [v,|[* + /h|vn\2

Out

/f@ Vi — /8tu —A/ Vuref:VVn—/ hutef . v
Q Q

- / (un ' v)uref “Vp / (Aanuref - npref)vn
Q Fout
where fy = f + BOne,. First, using (2.2), one has || fol|(zuy < | f|l(gwy + Bcf. Sec-
ondly, (A1) gives that from neg, (u, - n)|v,|?> > 0. Following then the same pattern
of proof as in [14, Proposition 2], one proves (2.3) and (2.4). d

Following [11, 49], we need to bound the fractional derivatives of the solution in
order to prove some convergence results. For any real-valued function f defined on
[0,7], define by f the extension by 0 of f to the Whole real hne R, and by .Z(f)
the Fourier transform of f, which we define as: F(f = [a J( _“Tdt Using the
Hausdorff-Young inequality [11, Theorem I1.5.20] We can prove the

PROPOSITION 2.3. For all o € [0, ), there exists a constant C(c) > 0 indepen-
dent of € and n such that:

(2:5) L |

(2.6) / 727 (@) 2 < C(0):

< C(o),

‘ (L2 ()4

Proof. We emphasize that (2.6) is proved if (2.5) holds by using [11, Proposition
VII.1.3] by replacing f by fy = f + Bfe,. The proof of (2.5) consists in adapting the
one of [11, Proposition VII.1.3] and is thus omitted. d

Combining the two previous results, we now have the following existence theorem
for (WFe).

THEOREM 2.4. For all (vo,00) € H" x H? and all T > 0, there exists v. €
L>=(0,T; H*)NL*(0,T; V¥), 6. € L>(0,T, H*)NL2(0,T;V?) solution of (WFe) such
that, defining ug = vo+u(0) and u. = v. +u", one has for all (¥, ) € V¥ x V?:
(Joue - ®)(0) = [,uo- ¥, ([,0:9) (0) = [, 00p. Moreover, one has v. = &= €
L3(0,T; (V%)) and 0. € L3 (0,T; (V?)).

Proof. The proof of existence is similar to part (iv) of the proof of [49, Theorem
3.1] and the proof of [11, Proposition VII.1.4], where estimates (2.1)-(2.4) and (2.5)-
(2.6) are used in a compactness argument.

We only add the proof that (u,,#6,) converges to a solution of (WFe.1). Using
(2.1), (2.2), (2.5) and [49, Theorem 2.2], one shows that, up to a subsequence, 0,
strongly converges to an element 6. of L2(0,T; H?), weakly converges in L?(0,T;V?),
and weak-x converges in L>°(0,T; L?(Q2)). These results imply that 6,, strongly con-
verges to 0. in L?*(0,T; L?(T")) thanks to Proposition 1.3. The only technical points
which need more details are the non-linear terms in (WFe.1). Using the strong con-
vergence of u,, to u. in L?(0,T; H*) proved in [49, Eq (3.41)], one proves that (6,,u,,)

9
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strongly converges to f.u. in L'(0,T; L?(Q)). Furthermore, notice that:

! o 14 TN ST
|t mearts < [ty ety

T 1 1
<C / a1 oy 160y 162 16

1 1
<ClwnllZoe o,7;22() 100122 (0,7512 )
lwnllz2 0,5 @) 100l 2 0,711 () -

This inequality together with (2.1)-(2.4) proves that ((u, - n)d,), is bounded in
L%(O,T; L%(I’)), which is reflexive. Therefore, it proves that, up to a subsequence,
there exists a weak limit x; in L3 (0,T; L3 (T)) of ((u, - n)f,),. A simple adapta-
tion of the above reasoning proves that (neg, (u, - n)#,), weakly converges to some
ko in L3(0,T;L3(T)). Using the strong convergence of 6, in L2(0,T; L2(T")), [11,
Proposition I1.2.12] implies that:

((u, - 1) + Bneg, (u, - n))f, — ((u. -n) + Bneg, (u. - n))f. in L3(0,T; L*(T))

obtained using the uniform Lipschitz continuity with respect to € of s € R +— neg, (s).
By uniqueness of the limit in the sense of distribution, we can identify k1 + Sko with
((ue - n) + Pneg, (u. - n))d.. Therefore, (uc,d.) is a solution of (WF.1).

The convergence of the weak derivative with respect to time of v. in Lé(O,T;
(V™)) is proved in [11, Proposition V.1.3]. Concerning the weak derivative with
respect to time of 6., remark that, for all ¢ € V? with ¢ # 0:

<at9n790> VoY e 1
HSOHi/@ ) - llollve ((D(un, 0), <'D>(V9)/1Ve — (C(ae)bn, 90>(V9)/,V9

— (Mc(un,0n),0)vey ve + (B, 0) ey ve).

One easily derives the following inequalities:

<D(un7 en)» 90> (vey,ve

3
1

1
< (10nllz2@yllanllz2) * (10l mr@)llanllmr@)) *

llollve
<C(Oé )0 a<p> vey ve
Y < V8, 2y S 60l
lellve
<M€(un; 971)7 (P>(V9)/ \ 1 1
: 5 un ; un 2 en H1(Q)-
llollve | HL"’(Q)H HHl(Q)H 21 ()

Since (u,,) is bounded in L?(0, T; H*(Q)4)NL>(0,T; L?*(£2)?) (the same goes for (6,)),
these inequalities prove that (9,6, ), is bounded in L3 (0, T; (V?)’). Therefore, (9,6,
weakly converges in L3 (0,75 (V9)'). By continuity of the weak derivative with respect
to time, this weak limit needs to be 9,6,. 0

We now use the existence of solutions to the approximate problem (WFe) to prove
existence of solutions to the limit problem (WF), along with the convergence of the
approximate solutions to those of (WF).

THEOREM 2.5. Let () C Upq and a € Uyq such that o, Xain BV(Q). Define
by (ve,0.) a solution of (WFe) parametrized by a., and define u. = v. +u’¥. Then,
there exists (v,0) € L>(0,T; H*) N L2(0,T; V%) x L>=(0,T, H%) N L?(0,T;V?) such
that, defining u = v +u", up to a subsequence, we have

10

This manuscript is for review purposes only.



w W W
o v Ot Ot
o 3 O

360
361
362
363
364
365
366
367
368
369
370
371

372

373
374
375

(2]

o

i I B BN |

W W W W

380

381
382
383
384
385
386
387
388
389

u. = uin L®(0,T; H*) and . = 0 in L>(0,T; HY),

u. — u in L20,T; V%) and in L*(0,T; (L°(Q))4),

0. — 0 in L*(0,T;V?) and in L*(0,T; L°(12)),

u. — u in L*0,T; (L*(T)4) and 6. — 6 in L*(0,T; L*(I")),

U —>uin L2(0,T; (L?(2))?) and 6. — 0 in L2(0,T; L?(%2)),

U —u in L?(0,T; (L*(T'))?) and 6. — 0 in L(0,T; L*(T)),
e—

8tu843tu in L3(0,T; (V*)) and 8,0. — 8,0 in L5 (0,T; (V).

(

Furthermore, (v,0) is a solution to (WF) parametrized by «.

Proof. Using (2.1)-(2.4) and (2.5)-(2.6), we prove that there exists u and 6 such
that all the convergences above are verified in the same manner as in [11, Proposition

VIL1.4].

Let us prove first that u is a solution of (WF.2) parametrized by « and 6.

With the same pattern of proof as in Theorem 2.4, one proves immediately
that (u. - V)u. — (u- V)uin L'(0,T;(L*(Q))?), and (u. - n)u' — (u-
n)u in L4(0,T; (L3 (T))%).

Regarding the penalization term:

Ih(ae)ue = h(a)ull o ryp20ye) SIPIR I =0l 0 7y p2(0))

N / / (h(a) — h(a))?ul*.

Since a. — « strongly in L'(Q), h(a.) — h(a) pointwise in Q up to a
subsequence (not relabeled). Lebesgue dominated convergence theorem then
implies: h(ae)ue — h(a)u in L2(0,T; (L2(Q))%).

Concerning the boundary terms, we only consider the term with the approx-
imation of the pos function. First, we claim that there exists v such that
pos. (u. - n)u, — v in L (0,T; L% (T')%). Notice that, for ¢ large enough and
using (1.4), we have:

! S !
o umyuly s [ (e
(2.7) 1
T 8 T 8 2

< 3 3
<[l (F)+</O ||u5||Lgm> .

In addition, from Proposition 1.3, we have

8 2
||us||zg(r) S ||u5||22(m||u5|\%11(9)
Since u. is bounded in L>(0,T; (L?(2))%) and L2(0,T; (H*(2))?) as proved
in Proposition 2.2, we see that pos_ (u. - n) u, is bounded in L3 (0, T; L3 (T')%)
uniformly in €. Since this Banach space is reflexive, it proves the claimed weak
convergence.

Let us now prove that y can be identified with (u-n)*u. First, since u. — u
strongly in L2(0,T; L?(I")9), pos, (-) — (-)* uniformly and |neg’ (-)| < 1, one
proves that pos. (u. -n) — pos. (u-n) — 0 and pos. (u-n) — (u-n)* in
L?(0,T; L?(T)). Therefore, pos, (u. -n) — (u-n)™ in L2(0,T; L3(T")). Then,
the weak convergence of u. in L*(0,T; L?(T')?) and [11, Proposition 11.2.12]

11
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397
398
399
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412
413
414
415
416
417
418
419

implies that pos, (u. -n)u, — (u-n)*u weakly in L3 (0,T; L*(I')?). Using
[11, Proposition I1.2.9], we argue that v = (u-n)™u.
e Regarding 0;u., remark that:

HatUEH(V“)/ N ||B(u€vu6)H(V“)’ + HAUEH(V“)’ + ||h(0‘)u6||(V”)’ + ||7-06||(V“)/
+ 1P (ue, uo) [y + [N (ae, ) || vuy + (1 + 0™ vy

We now bound each term depending on e:
— Since the Stokes operator is continuous, [|Auc|[(yuy < [[uc| g1(Q) and
therefore, Au. is bounded in L2(0,T; (V*)').
— Obviously, [Jh(@)u. ey < [Ihlloucllzs@) and therefore, h(a)u. is
bounded in L (0,T; (V*)').
— Ne(ue, w)[[(vuy S |luel|gi(o) and therefore, N (u., u) is bounded
in L2(0,T; (V4))).
We are left with the boundary term P, and the non linear term 5. Concerning
B, remark that :

1
Y €V (Blue ) W)y = - [ (V% a3 [ (uem) (o @),
Q T

The first term can be treated as in [49, Lemma 3.1] while the second one on
the boundary needs more details.

Let 0 £ ¥ € V*. Since the proof is similar in dimension 2, we will only focus
on the dimension d = 3. Using Holder’s inequality and Proposition 1.3, we

obtain:
Jr.. [(ue - n)(u. - @) < facltao el
[y ~ Mell 20y ellm @)
Therefore:
4

T . . 3
/ sup frout ‘(115 Il)(lls) ‘I’| 5 ||u€||§m(0 T.Lz(Q))Hus||L2(O,T;H1(Q))~
0 wevu\{0} ||‘I’||V“ ”

This proves that (B(u., u.)). is bounded in L3 (0, T (V*)'). We prove analo-

gously that (P.(u.,u.)). is bounded in L3 (0,T; (V*)’). These bounds prove

that (d;u.) is bounded in L3 (0,T; (V*)'), and by continuity of the time de-
rivative, we argue that (d,u.) weakly converges to dyu in L3 (0,T; (V*)).

Concerning 6, the convergence is largely proved in the same way as in Theorem 2.4.

The only difference concerns the convergence of neg, (u. - n) 6. to (u-n)~6, which

is proved in the same manner as (2.7). All these convergence results let us say that

(u,0) is a solution to (WF) in the distribution sense. d

2.2. Further results in dimension 2. It is notably known that the solution
of the Navier-Stokes equations with homogeneous Dirichlet boundary conditions are
unique in dimension 2. We prove here that uniqueness still holds with the boundary
conditions (1.2). Denote X* = L2(0,T;V%) N L*(0,T; H*) and X% = L2(0,T;V%) N
L*(0,T; H?). These space are endowed with the norm:

lallxe = max{[[al20,z;v), [[ullLe oz}

and the same definition follows for || - ||xe.
12
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LEMMA 2.6. Assume d = 2. Then the solution (v¢,0:) of (WFe) is such that:
Opve € (XM, 046- € (X7)

Proof. The proof being similar, we will only focus on d;u.. First, remark that:

dpu. = —B(ug,u.) — Aue — h(a)ue + T, — P.(ue,u.) + Ne(ue, ) + f + o™

Due to the fact that u, € X* and 6, € X%, it is straightforward to prove that Au,,
h(a)ug, TO., Nz(ue,u™) and f + o™ are in (X*)". Concerning B, we use once again
the identity:

Yo e V" (B(us,u.), ®)(yuy yu = — / (ue - V)W - u, + %/(uE ‘n)(u - ¥),
Q r

and only focus on the boundary part.
Let ¥ € X*. Notice that, using Proposition 1.3:

T T
/0 / (u. - n)(u. - ¥) < / oy el e o 2 ey

T 3 1 5 1
5/0 ||ue||z2(g)||‘I’||22(Q)Hus‘|?—11(g)||‘m|;{1(g)

3 5 1 1

S uellZe 0,7:22 0 10l 220,211 00y N Ea 0,222 00 1R W E2 (0,111 (02))
3 5

S ||u6||£oo(o,T;L2(Q))Hu8‘|z2(o,T;H1(Q))H‘I’”X“

This proves that B(u.,u.) is in (X*)’. Similar computations for P (u., u.) show that
Btus S (Xu)/ 0
We may now prove uniqueness of the solution. We only sketch the proof.

PROPOSITION 2.7. Let d = 2. Then, the solution (uc,0.) of (WFe) is unique.

Sketch of proof Let (uc1,0c1) and (ugq,6.5) be two solutions of (WEF.1)-(WEF.2).
Define u = v = u.; — u., and 6 = 6.y — 0.,. Slightly adapting the proof in [11,
Section VII.1.2.5], one proves that:

d v v
(2.8) %|V|%2(Q) + A|VV|%2(Q) <9 (t)|V\%2(Q) + B|0|%2(Q) tv |VV|2L2(Q)
where 1V is a positive constant and ¢° is a function in L*([0,T7).

Testing the differential equation verified by 6 with # and using Lemma A.2, it
proves that:

d 1
—\0|2L2(Q) + 20/ E|Vo|? +/ 62 <(u51 -n) + fneg, (ug; - n))
dt Q Tout 2

- (1 g (s ) = met. (1) + ) ) .

With a similar proof as the one of Proposition 2.2, we can prove that, on Iy,
6% (3(uy - ) + Bneg, (uy - n)) > 0. Therefore, using (A3), one has:
(2.9)

d 1
%\9&2(9) + 20/ k[VO* < <|5|Loo(rout) + 2) [ 023000 10e2| L3 (T oue) 0] 23 (Pone) -
Q

13
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153 Using Sobolev embeddings and Young inequality, we prove:

1
<5|Lw(rout) + 2) w00 0e2] 08 (o) 1013 (Powr)

. 1 3 ‘952|L2(Q)|V952|%2 Q
54 S (mmm) + 2) s (e + Bl )

(%)%
> (|Vu\i2(g) + \V9|%2(Q)) ;

+

0

55 where ¥ is a positive constant. Therefore, summing (2.8) and (2.9) gives%(|u|i2(ﬂ) +

56 |9|2L2(Q)) < max(gy, g‘g)(\u|2L2(Q) + |6|2L2(Q)), with g? and g% integrable. Therefore,
57 applying Gronwall’s lemma and noticing that [u(0)|72q) +10(0)[72 gy = 0, one shows
458 that u=0and § =0. O
59 Note that we may also prove that, for d = 2, the solution (u, ) of (WF) is unique,
160 and that dyu € (X*)’, 9;0 € (X?)’. We can also state stronger convergence (compared
461 to the ones stated in Theorem 2.5) in dimension 2. These results will be useful in the

162 analysis of the optimisation problems.

463 Denote @t = u — u, and § = 6 — 6,. The variational formulation verified by (u, 0)
164 reads as: for all (¥, ) € V¥ x V7.
(2.10a)
0 =(0ra+ Au+ h(a)a, ¥) ey v + ((h(a) = h(ae))ue, ¥)uy vt
1 ~ _
465 §<79(u, u) + ’P(u, ug) — 'Pg(ug, u5)7 q’>(vu)/’vu + <T6, ‘I’>(Vu)',vu

1 - _ _
- §<N(u7 umi) - Na(u& umf)a ‘P>(V“)’,V” + <B(u7 u) + B(u7 uE)r \Il>(V“)’,V“a

466

0 =(08, ) (voy.ve — (D(w,8) + D(W,0:), ) (voy ve

167 (2.10Db) + ((C(a) = C(ae))0 + C(ae)b, @) (voy ve
+ (M(u,0) + Mc(uc, 0.), p)(vey ve.

468 We now bound some of the terms above in the following lemma. The proof is
469 omitted since it mainly relies on Proposition 1.2, Theorem 1.3 and Holder’s inequality.

470 LEMMA 2.8. Suppose d = 2. Denote it = u —u. and = 0 —0.. Let C. =
471 sup,ep |neg, (s) —s~|. Owning to (A1), one has C, — 0. The following inequalities
e—

472 are then valid:

1.
(2.11)
(B(a,uz), a) vy v Sl VUl L2(0)[[ Vel 2o
473 1
+ <||ﬁ||L2(Q)HVGH%P(Q)||u€||L2(Q)Hvus||L2(Q)>

2.

474 (2.12) neg(u-n) —neg, (u. -n) < |a-n|+ C.
14
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/Fm(pos(u +1) = pos, (u. - n))u. - 0

e 1 _ 3 1 1
476 (2.13a) S (HU”zz(Q)HV‘lez(Q) + Cs) ||u5|\z2(9)||u5||}“{1(9)
1 _ 3
X ||ﬁH[4,2(Q)||Vu||£2(Q)'
477
[ (st m) — neg. (u. -y n
Fout
. 1 _ 3 rofid vofn L
78 (2.13D) < (Il o I8 2 g+ € ) 1107 g 107
1 _ 3
X HﬁHE?(Q)HVUHE%Q)-
3.
o 1 1 1 1 _
A79 (2.14) /Qeeu VO S H08H12,2(Q)||05||I2-]1(Q)||u||z2(Q)||qu[2,2(Q)||vo”L2(Q)'
4.
(2.15a)
, = 7 < llalli Sd 3 3 ik ks
480 /1“ (u-m)feb < Hu||EZ(Q)”vu”z2(Q)H96H22(Q)”VHEHL?(Q)||9HL2(Q)||V9”L2(Q)'
. out
(2.15b)
_ 1 _ 3 1

[ neg(un) —neg, (0 1) 00 5 (10l {20 V8 ooy + C2) 106] ooy

482 out
1 _ 1 _ 3
VOl 22 ) 101 220 IV Ol 22 () -

483 COROLLARY 2.9. Suppose d = 2. Under the assumptions of Theorem 2.5, u. — u
ag4 strongly in L°°(0,T; L?(Q)?) and 0. — 0 strongly in L>°(0,T; L?(£2)).
485 Proof. Since d = 2, one has 9, € (X*)" and we may choose ¥ = a(t) for fixed ¢

486 in (2.10a). After rearranging the terms, and using Lemma A.2, we obtain:

d . _ _ _ _
GVl + 24130y +2 [ Helal + [ postu-wlal? -
—2((h(a) — h(ce))ue, ﬁ>(vu)/7vu — / Bﬂ_ey -a

487 @

— (B(1, u.), @) (yuy yu + / (neg(u - n) — neg, (u. - n)) uf . a

out

- / (pos(u ' n) — POose (us : n)) u. - u.
Pout

188 Therefore, (2.11), (2.13), Proposition 1.3 and Young’s inequality imply there exists
489 C7 > 0 independent of € such that:

d, _ _ ~ 2
a2y + CrllVal ey S 10ll720) +2 [ [h(a) = h(ao)[ [ucf?
dt
490 Q
U112 u\ 2= %
+o1lallz2 ) + (92)° [l 22 (o)
15
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191 where gi = ||u6||%,1(9) + ||u€||i2(Q)Hu6H§-Il(Q) + HumeQLz(Q)||11mf||?{1(9) and g3 =
192 C2 ([Jucl 2o luell g o) + ([0 L2 ()0 g1 (o) ). Using once again Young'’s inequal-Jj
193 ity, one has:

d. ) _ o
@HUHQLQ(Q) + 01”qu%2(9) <||‘9||2L2(Q) + (1 +91)||UH%2(Q)

494 (2.16)
+2 [ [hle) = hloo) o + g3
195 We now move back to (2.10b) and choose ¢ = , which gives, after some manip-
496 ulation:
1 _
2dt||0||Lz(Q +C/ k()| VO] + /Fout (2(u~n) +,Bneg(u~n)> 6°
497 / f.u-Vo— C/ a.))Veo-vo

- / [((@ 1) + 5 (neg(u - n) — neg, (u, - n))] 6.8.

498 As shown in Proposition 2.2, fr (3(u-n) + Bneg(u-n)) 62 is positive. Therefore,
499 using (2.15), Proposition 1.3 and Young s inequality, one proves that there exist C3 >
500 0,Cy > 0, such that:

d - _ ~ _
%”9”%2(9) + CSHVHH%?(Q) < HHEH%?(Q)||V96H%2(Q)”u”%2(§2) + C4||VUH%2(Q)

501 (2.17) )

+ (€ [ (h0e) = H@PIVOP) + o181 0 + 55

502 where ¢f =1+ ||96||2LZ(Q)”96”?&11(9)7 95 = Cs2||96||L2(Q)||96||H1(Q)~
503 Summing (2.16) and (2.17) and choosing Cy4 small enough, there exists C* > 0
504 such that:
d, = NP 5
(12 o) + 101172 o)) + C IV (o) + VO 2) S 05 + 95
505 (2.18) + (1 + [|6- ||2L2(Q)||V9 ||2L2(Q) + 9?)”171”%2 @ (g7 + 1)||0_||2L2(Q)

+ [ (k(e) = @) PIVOR + [ (@) = ho) P
Q

506  We now introduce the following functions

507 af = (1+[|0:]72(0) V0172 () + 91), / |A(e) = h(ae)|* [ue* + g3,

5 f=1+g] = [ (k(a) =k Vo|* + g5

508 ac = (1+g7), b Q( (@) = k(az))?IVO]* + g5.

509 Since u and u. both belong to L2(0,T; H'(Q)?) N L>=(0,T; L*(2)?) (the same holds

5
510 for 6 and 6.), a¥, b¥, a? and bY are integrable, and so are a. = max(a¥,a?) and b, =
511 bY + b, Gronwall’s lemma proves that for all ¢ € [0,7], [[a(t)||. 1o T ||0( Wiz <

512 (fo ds) exp (fo ac(s ) Since a. > 0 and b, > 0, t — (f(f bg(s)ds) and t —
16
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exp ( fo ac(s ds) are non-decreasing and we have

T
219) s (1@l + 100)lz2o) (/ be( > exp (; / aa<s>ds>.

Since, on one hand, . — « in L'(Q2) and «. is independent of time, and on the other
hand, u. — u strongly in L?(0,T; L*(Q2)), Lebesgue’s dominated convergence gives a
subsequence () such that:

(2.20)

/ /|h MoedP e 0, [ [ @) bz 19OP o0

Notice that, owning to the convergence of u. and 0., |[u.|[z2(q)lluc|m1 () and
0120 IV ue|| L2(q) are bounded w.r.t e in L([0,T]). Therefore, since C. - 0, it
e—

proves that fOT(gé‘ + gg) —+> 0. Gathering the previous convergence results then
Ep—>+00
ensure that fOT be, (s)ds —+> 0. In addition, thanks to Theorem 2.5, we show that

fo a-(s)ds is bounded w.r.t. e. Therefore, it proves that ||u — u., |z~ 0,r,r2(Q)) +

16 — Gekllmo orr2@) T O

COROLLARY 2.10. Suppose d = 2. Under the assumptions of Theorem 2.5, Vu.
— Vu strongly in L*(0,T; L*()?) and V0. — VO strongly in L(0,T; L*(2)).

Proof. Move back to (2.18). We integrate each side of the inequality:
T - T
| 1981+ 190030y SF20+ [ (01 + 1000y I8y + DI

T
4 / (6 + DI0]22 0,

with

T
F20 = [Juo(ac) — uo(a)l[Z2(q) + lf0(ae) = Bo(@) 720 + / (65 +5)

/ | k(@) = ko) * V0P + / | ) = hia) o

e From Assumptions 2.1, the initial conditions are continuous with respect to
« and thus the two first terms in F% goes to 0 as & — 0.

e The third, forth and fifth terms in £ have been already treated (see (2.20)).

e We now prove convergence for the term g7f||1_1||%2 . The main problem con-
cerns the term fOT(l—l—||u€||2L2(Q))||u5||Hl(Q ||u||L2 () First, remark that (u.).
is bounded in L®(0,7T; L?(2)?) Secondly, as proved in Theorem 2.5, up to
a subsequence, u. weakly converges to u in L?(0,7, H*(2)) and @ — 0 in
L>(0,T; L?(£2)). Therefore, the whole term converges to 0.

e Concerning the other terms in g¢j', they are all independent of e, and we
mainly use the fact that || z2q) — 0 in LOO([O 7).

e We may do the same proof concerning fo 10cl 20| Ve HLQ(Q ||ﬁ||2LQ(Q) and

Jo 16c2 (@) 16 1372 ) 18112 2
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580
581
582

583

584

T _
Therefore, [i (14 [|0ck]|2(0)[IVO:1l172(q) + 90)1Tl72 () p— 0 and

. _
Jo (¢¢ + 1)H9||2L2(Q) H) 0. It eventually proves that ||[V(u — u.,)|z2(0,7;02(0)) +
V(O = =)l 20,7522 (02) ——— 0.

k— o0
Owing to Urysohn’s subsequence principle and the uniqueness of the solution to

(WF), we actually obtain that the whole sequence (uc, 6.) strongly converges toward
(u,0). |

REMARK 2.11. If a. = «, then the next estimate holds

sup (I[(t) = uc(0)] 2 gy + 10(8) = 0-(8)] 20 )
te[0,T]

T 1/2
+ (/0 IVa(t) = Vu(t) 720 + IVO(t) — Wa(t)lliz(m) = 0(Cs).

The convergence of (ue,0.) toward (u,0) as e — 0 thus has the same rate as the one
of neg, toward neg.

3. First order necessary conditions for the non-smooth optimization
problem. We now begin the analysis of the optimization problems (OPT) and
(OPTe). Let us detail first some assumptions made on the objective functional:

ASSUMPTIONS 3.1. e Ford =2, 7 is lower semi-continuous with respect to
the (weak-*, strong, strong, strong) topology of Uasq x L*(0,T; V%) x L?(0,T;
V).

o In dimension 3, J is either lower semi-continuous with respect to the (weak-
* strong, strong) topology of Uaq x L*(0,T; H") x L?(0,T;H?), or lower
semi-continuous with respect to the (weak-*, weak, weak) topology of Uuq X
L2(0,T;V¥) x L2(0,T; V).

Remark that these assumptions exclude terminal costs, but these could be easily
added by considering functionals continuous in time with respect to the topology of
L>([0,T]) .

The existence of solutions to (OPTe) and (OPT) is rather classical and we refer
for instance to [21, 32, 34]. We state a first result that let us see that a solution of
(OPT) can be approximated by (OPTe).

THEOREM 3.2. Assume Assumptions 3.1 is verified. Let (af,u.,0.) be a globally
optimal solution of (OPTe). Then (af) C Uqq is a bounded sequence. Furthermore,
there exists (a*,u*,0*) € Uyqg x L?(0,T;V*) x L2(0,T;V?) such that a subsequence
of (af,u.,,0:) converges to (a*,u*,0%) in the topology of Assumptions 3.1, and for
all (a,u,0) in Uyg x L*(0,T; V%) x L2(0,T;V?): J(a*,u*,0*) < J(a,u,0). Hence,
any accumulation point of (aX,u.,0.) is a globally optimal solution of (OPT).

Proof. The proof can be adapted from [21, Theorem 15] or [32, Theorem 3]. 0O

However, the fact that this only concerns global solutions may appear restrictive.
Under an additional assumption, we can state a slightly stronger result.

COROLLARY 3.3. Assume Assumptions 3.1 hold. Let o* be a local strict solution
of (OPT), meaning that there exists p > 0 such that J(a*,u*,0*) < J(a,u,0) for
all o such that ||o* — of|pv < p. Then, there exists a family of local solution (o) of

(OPTe) such that () converges weak-* to a*.

Proof. Similar to [36, Theorem 3.14]. d
18
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585 3.1. First order necessary conditions for (OPTe). From now on, we set
586 d = 2 in order to have uniqueness of solution of (WFe). We make the following
587 assumption on the cost function:

588 ASSUMPTIONS 3.4. Assume d =2 and J is Fréchet-differentiable.

530 We define the sets W*(0,7) = {u € X% 9u € (X*)'}, and W?(0,T) = {0 ¢
500 X9 9,0 € (X)), Write, in (X*)’ x (X%)’, the equation (WFe) as e(u,0.,a.) = 0,
501 where e : W(0,T) x W?(0,T) X Una — (X¥)' x (X?) x H* x HY is defined as:

dru, + Au, + B(usa us) + h(as)us
—|—%'P (u.,u.) — %./\/' (ug, uret) — f — ot
592 e(ue, e, ac) = 0. — D(ue,0:) + C(ae)0: + Mc(u,0.) — ¢
us(ov ) - uO(as)
0:(0,-) — Op(ae)

593 The operators P., N. and M, are Fréchet differentiable with the same smoothness
594 as the approximation neg,. Their derivatives with respect to u. are denoted by
595 dyPe : W(0,T)* — LW(0,T),(X%)), NI : W¥(0,T7)* — L(W*(0,T),(X*)),
506 dy Mg : W0, T) x W9(0,T) — L(W™(0,T), (X?)), defined by:

597 dyP-(u,u)v = P.(u,v) + PL(u,u)v,

598

599 (N (u, W)V, ®) yuy yu / negl (u-n)(v-n)w- .
600 P

601 (duMc(u,0)v, ) oy vo = / (1 + Bueg (u-n)) (v-n)fy,

602 where P.(u,w) is defined by:

603 (PL(u, W)V, ®)yuy yu = / pos. (u-n) (v -n)w- P.
Fout

604 Furthermore, these operators are bounded, as proved in the following lemmas:

605 LEMMA 3.5. Given (u,0.) solution of (WFe):

1 3
[|duPe(ue, ue) v cuy S([Jue Hzoo(o,T;LZ(Q)) ||u€||22(0’T;H1(Q)) +C-)

1 1
VW E 0,722 1V 1 22 0,71 (2

1 1
|V (ue, uref)VH vy Sllue ||200(0’T;L2(Q)) ||V||[2,00(0’T;L2(Q))

608 K N
o<l 22 0,711 IV 22 0,750 )
609
1 1
- ||duM6(u5795)VH(Xe)’ SHQEHEOO(O,T;L?(Q))HVHEOO(O,T;LQ(Q))
D 3 1
10N 22 0,710 52 IV 1 220,721 62
611 Proof. The proof is similar to the proof of Lemma 2.6. Thanks to (A2), we obtain
612 also: . .
. (PL(u,0)v, ) (yuy yu SHUEHEM(QT;L?(Q))HVHEM(OE;L?(Q))

3 1
el 22 0,11 ) IV 11 22 0,0 (0 1 e
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615

616
617
618
619

620

621
622
623

624

635
636
637

638

Analogously, using (A4), ones proves that there exists C. > 0 such that:

T 1 3
/0 (Pe(ue, v), ®) (yuy yu §(||ua||foc(o,T;L2(Q))||u€||i2(o,T;H1(Q)) +Co)

1 1
HVHZOO(O,T;LQ(Q)) HV”zz’(o,T;Hl(Q)) (|5

Adding the two inequalities and dividing by ||¥|| ;1 (o) concludes the proof. The proof
of the second and third inequalities being similar, they are thus omitted. 0

Using the results of [34, Section 1.8.2], one shows easily that e is Fréchet differ-
entiable w.r.t. (uc,#.), with derivative given by:

v+ Av + B(v,u.) + B(u.,v) + h(a)v+ TY
+1d,Pe(ue,u.)v — SN (u., u)v
, v | 94 —D(u.,f) —D(v,0.) 4+ Cla:)l + Mc(uc,?)
u 0. (@) <€) - +dy M. (u.,0.)v
v(0,-)

(&

For defining first order conditions (see [34]), a question of interest is to determine
if, for all g = (g%, g% vo,0) € (X%) x (X) x H* x H? the following linearized
equation

(31) oo (7) =9

admits a solution (v, £) € W*(0,T) x W9(0,T).

THEOREM 3.6. For all e € Unq, Eq. (3.1) admits a unique solution. Therefore,
"o (0e) is invertible.

eu57 £
Sketch of proof. Using Lemma 3.5, the proof can be adapted from Theorem 2.5
and [33, Appendix A2]. Uniqueness is proved as for Proposition 2.7 (see also [33,
Appendix A2]). O
A consequence of Theorem 3.6 is that for all G = (g1, g2) € W*(0,T) xW?(0,T)’,

the following adjoint equation admits a unique solution A, = (A%, \¢ Ao \0o) ¢
XU x X0 x H* x HY:
(3.2) (€. 5. ()" Ae = G,

where (e}, 4 (ae))* denotes the adjoint operator of e}, 4 (ae).

€

After some calculations, equation (3.2) is equivafent to solve, for all (v,¢) €
W®(0,T) x W9(0,T), the following variational problem:
(3.3)

1
(=02 + AN + 5 (Vue)TAL = (VA Tue) = Blue, A7) + hlac) Al — D1 (6:)AL
1 1
+ ?Ps(usv AY) + 5(?2(115’ u.) —Ns/(um umf))*)‘};

+ (duM6<usa 96))* )‘g>V>Wu(0,T)/,Wu(0,T)
+ (v(0,-), AL m
= <917V>W“(O,T)’,W“(O,T)v
<*5t/\g + TN+ C(as))\g - D2(us))\g + Ms(ue)*)\g»£>W9(0,T)/,W9(0,T)

= (g2, L) wo 0,1y ,we(0,1)
20
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640
641

642

643

644

645
646
647
648
649
650

ot

o

where (D(0,u), 0) = (D1(0)p, u) = (Da(u)p,0), (M ()0, p) = (Mc(a)ep, 0)
= ‘[Fout ((u-n)+ fBneg, (u-n))fp. This equation, in turn, is the weak formulation
of:

— A — AANY + h(a )N + (Vu)TAY — (ue - V)AE — 6.V = ¢
VAU =0,
— N £ B\ e, — V- (CE(a)VAY) =V - (u)f) = gy
)\?\qurm =0,
Ag‘rm =0,
(3.4a) N =0,

1
A0 N |, = 5 (pos, (ug - 1) 4 (ug - 1)) A + (14 Bue)0-\n
1
+ghe ((ue —u™) - A%) n,
Ck:(as)an)\g + B)\gnegE (ue - n) lp,,, =0

N(T) = 0,0(T) =0,

(3.4b) He = neg/s (u: -n)

and, as shown in a similar fashion in [33], A% = A%(0,-), A% = X\Y(0,-). Further-
more, we can argue that the weak solution (A%, A\?) of (3.4) are in L°°(0,T; L%(Q)?) x
L>°(0,T; L?(£2)), as done in Theorem 2.4.

An other consequence of Theorem 3.6 is that we can apply [34, Corollary 1.3]
which states that at any local solution (af, uf, 6%) of (OPTe), the following optimality
conditions hold:

THEOREM 3.7. Let o be an optimal solution of (OPTe) with associated states
(uf,0). Then there ewist adjoint states (A2, \?) € X" x X? such that, denoting

€rve gr’te

(A0, M0) = (A2(0,-), 12(0,)) and Ao = (A, A2, AU, \%):
6(0&:,11:,0:) = 07
Tir 92 (@2) + (eur0:(al)')"Ac = 0,
(3.5) i o . o
ja*(ue79€)+(ea:(us705)) AE,OZ Q. 207 vaeuad,
: u;d’zj{ad

o € Uyg.

REMARK 3.8. As stated in [3/, Eq. (1.89)], since e and J are Fréchet dif-
ferentiable, the mapping ae J(a:) = T(ae,u.) is Fréchet differentiable, and
J'(ae) = To- (Ul 07) + (eax (uZ, 02))* A, which reads as:

T
(ear(uz,07))"A. :/ (h’(ozg)uE A2+ CK () V. - wﬁ)
0
+ug(ac) - AL+ 06(@5)>\§°~
3.2. Limit adjoint system. To conclude this paper, we will now study the

convergence, as £ — 0, of the adjoint states (A, \?) to functions (A%, A?). The main
difficulty concerns the multiplier p. defined in (3.4b). We will prove that at the limit,
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696

u is defined thanks to the convex-hull of the Heaviside function H : R —o [0, 1], given
by:

{0} ifu<0,
(3.6) H(u)=¢{1} ifu>0,
0,1 ifu=0.

As we will prove in this section, these limit adjoint states (A%, \?) let us define neces-
sary conditions of optimality for the unrelaxed problem (OPT).

LEMMA 3.9. Let (a.) CUuq and o € Uyq such that o, X a. Define by (A2, a
weak solution of (3.4) parametrized by o.. Then, there exists \* € L*°(0,T; H*) N
L2(0,T; V™), A € L>°(0,T, H?) N L?(0,T;V?) such that, up to a subsequence:

o A\ — A% in L>(0,T; (L3(Q))?) and N — X0 in L>=(0,T; L*(Q)),
o \! — A% in L2(0,T; (H'(2))?) and \? — N in L2(0,T; (HY(2))),
e— e—
oAg—TXWnEmJﬂB@W)mmﬁ—?ﬂﬂnBMEﬂﬂwm.
e— e—
Furthermore, there exists pp € L ([0, T)x T oyt) defined by —pp € H(—u-n) a.e. in Tpye
such that (A%, \?) is a weak solution to (3.4a) parametrized by o and u, replacing
neg, () (resp. pos (-)) by neg(-) (resp. pos()).
Proof. The proof is very similar to the ones presented in section 2.

e In a similar manner as for Proposition 2.2 and Proposition 2.3, one shows
that, for all o € [0, ), there exist constants c§ () and c}(c), independent of

e, such that:
» ()

7 ()]
e These bounds prove a weaker set of convergence in the same manner as in
Theorem 2.5. Since once again, we set d = 2, one proves the strong conver-

gence stated above as in Corollary 2.9.
We only need to prove that (A%, \?) is a weak solution to (3.4a). The terms ((P.(u.,

) A w0,y weo,r) and ((duMe(ue, 02))" A, v)yu(o,ry we(0,1) need a more
thorough examination. We start with the first term for which we have

T
sup [|[AY] L2 —|—/ VAL L2 +/ i
e A2 220 ; [ 222 R\ | L)

L2 < & (0).

T
sup [\ e + | 19X ooy + [ I70
0,77 0 R

T
(P (e 1)) A%, V) e = / / pos!, (u. - ) (ue - A%)n - v.

out

In the same spirit as in [18, Proof of Lemma 4.3], we prove that up to a subsequence
(not relabeled) one has neg’ (u. -n) = p in L>®([0,T] X Toyt), and such that —1 <
w<0a.e. in [y, and

p=—-lae in{u-n<0}, p=0ae in {u-n>0}

Furthermore, due to the convergence presented above, u. - A* — u - A" in L1(0,T;
L'(Tout)). Therefore, it proves that:

T
((PL(uc, uc)* AL, vy we(o,r) ,we(0,1) —>/ / I+p)(u-A"n-v.
o Jr

out
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Similarly, we have that:

T
((duMc(ue,02))" AL, V)W (0,1),Wu(0,T) — / / (1+Bu) (v-n)or’.
o Jr

out

All other terms in (3.3) can be dealt with as in the proof of Theorem 2.5. Therefore,
(A%, \?) is a weak solution to (3.4a) parametrized by a and p. |

We may now prove the final result of this paper ; namely the necessary optimality
conditions of (OPT).

THEOREM 3.10. Let o* be an optimal solution of (OPT) with associated state
u*,0*. Then there exist a multiplier i € L™= ([0, T]xT ,y:) and adjoint states (A%, \?) €
X" x X9 solution of (3.4a) such that, denoting (A0, \%) =
(A(0,),A7(0,)) and A = (A%, A7, A%, \%):

<~70/¢* (u™,0%) + (eqx(u”*, 9*)/)*1\7 o — a*)u/d,u ., >0, Ya € Uyg.

a

Proof. The proof follows the lines of [18, Theorem 4.4]. Denote by S, the solution
operator which associates to « the solution of the relaxed equations (WFe) and by S
the solution operator which to « associates the solution of (WF). For some p > 0,
consider the auxiliary optimal control problem:

. 1.
min F(ae) = J (e, ue, 0:) + 5”04 - O‘EHQL?(Q)

(3.7) (u.,0:) = Se(ae),
s.t. < ae € Uy,

e — |12y < p-

Since a. and a* are both in Uy,q, they are both bounded in L*>°(Q2) and therefore,
lo* — acllz2(q) is well defined. It is classical to show that (3.7) admits a global
minimizer af € U,q.

Using (2.19) (but with ae = «), one proves that (in the norm of the topology
given in Assumptions 3.1 with d = 2):

(3.8) 1S(a) = S-(a)|| < C, Va € Upa,

where C; has been defined in (2.12).
Note that due to the Fréchet-differentiability of J supposed in Assumptions 3.4
and (3.8), it holds, for € small enough:

T (e, S(a)) = T (@, Se(a)| S Cc, Va € Uaa, [l —a™[| < p.
We obtain as a consequence that F.(a*) < C. + J(a*, S(a*)), and:
* * 1 * *
Fe(0) 2 =Ce+ I (0", S(a") + 5lla = a’l[fz(), Yo € Usa, llo = a”l|L2i0) < p.
Therefore, for all o € Unq such that [|a — a*||z2q) < p:
F.(a") SC.+ T, S(a") SC. 4+ T(a,S(a)) S 2C: + F.(«).

Hence, for some constant C’, and denoting C. = C’C,, one has the implication:

1 1
Vo € Upq, 2CL < 5”04 - a*||%2(9) < §p2 = F.(a") < F.(a).
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747
748
749

One has therefore the following necessary condition of optimality:

(3.9) oz — a[|p2(a) < VACL.

Hence, for ¢ small enough, «f is in the p-ball around o* ; therefore, o} is a local
solution of (OPTe). Using Theorem 3.7, one then proves that there exists adjoint
states (A%, \?) solution of (3.4a) such that, for all o € U,g:

gr’te

(810) (Ta (w2, 02) + (caz (w2, 02))"Acy o - +{az—a%,a—al) 1) > 0.

a:>
UpgUaa
From (3.9), one has af — o* strongly in L?(Q2), and therefore, in L'(£2). Since
(f — a*)e C Uag, one has also (a — a*). bounded in BV (). Hence, a* = a* in
U,q. Using then Corollary 2.9, Assumptions 3.1 and Lemma 3.9, we can pass to the
limit in (3.10), which concludes this proof. |
Appendix A. Technical lemma. Let X = L2(0,T; H*(Q)) N L*(0,T; L*(Q)),
and denote by X’ the dual of X with the following dual pairing: (f, ¢)x x =
fOT(f(t),g(t))Lz(Q). Denot/e Ex ={u e Xju' = ‘fi—‘t’ € X'}. We endow Ex with the
norm: [[uflg, = |ullx + [Ju’|lx, where |lullx = max{||ul|L2(0,7;1 ()
llall Loe (0,7;22(2)) }- Finally, denote D(0,T; X) the set of infinitely differentiable func-
tions from [0,7] to X with compact support in [0, T].

LEMMA A.1. Let u € Ex. There exists (u,)n, C D(0,T; HY(Q)) such that:
u, —uin L*(0,T; HY(Q)), u), —u inX.

Proof. From [11, Theorem 11.2.26], one proves directly that there exists (u,), C
D(0,T; HY(Q)) such that u,, — u strongly in L(0,7T; H'(Q)).
For all ¢ € D(0,T; H'(Q2)), one has:

(W, b = —(uns @ T (s @ = (W @)

By the density result [11, Theorem I1.2.26], we prove that:

i !
Vo € X, (uy,, v)xr x m (u, ) x. 0

LEMMA A.2. Let u,v € Ex. Then, t — (u(t),v(t))r2(q) is in WH([0,T]) and
for allt €[0,T):

d du dv
%<u(t),V(t)>L2(Q) = <dt(t),V(t)>L2(Q) + <dt(t)au(t)>L2(Q) .

Proof. Using Lemma A.l, the proof is a simple adaptation of [11, Theorem
I1.5.12]. d
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