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1. Introduction.17

Directional do-nothing conditions. For many engineering applications, simula-18

tions of flows coupled with the temperature are useful for predicting the behaviour19

of physical designs before their manufacture, reducing the cost of the development20

of new products. The relevance of the model and the adequacy with the experiment21

therefore become important [16, 41, 46]. In this paper, we choose to model the flow22

with the Boussinesq system which involves the Navier-Stokes equations coupled with23

an energy equation. In most mathematical papers analyzing this model [8, 27, 47],24

homogeneous Dirichlet boundary conditions are considered on the whole boundary.25

This simplifies the mathematical analysis of the incompressible Navier-Stokes equa-26

tion since the non-linear term vanishes after integrating by part hence simplifying the27

derivation of a priori estimates [7, 21, 26, 47].28

However, several applications use different boundary conditions that model inlet,29

no-slip and outlet conditions [1]. Unlike the inlet and the no-slip conditions, the30

outlet conditions are more subject to modelling choices. A popular choice consists in31

using a do-nothing outlet condition (see e.g. [25, 34, 48]) which naturally comes from32

integration by parts when defining a weak formulation of the Navier-Stokes equations.33

However, since this outlet condition can not deal with re-entering flows, several papers34

use a non-smooth outlet boundary conditions for their numerical simulations (see e.g.35

[5, 23]). A focus on non-smooth outflow conditions when the temperature appears36

can be found in [12, 23, 42, 43].37

In particular, directional do-nothing (DDN) boundary conditions are non-smooth38

boundary conditions that become popular. The idea is originally described in [13],39

and several other mathematical studies followed [5, 9, 11]. These conditions were40

considered especially for turbulent flows. In this situation, the flow may alternatively41
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exit and re-enter the domain. These directional boundary conditions tries to capture42

this phenomenon, while limiting the reflection. It is worth noting that other boundary43

conditions can be used, namely the so-called local/global Bernouilli boundary condi-44

tions [12, 23, 43]. The latter implies the do-nothing boundary condition is satisfied45

for exiting fluid and that both the normal velocity gradient and the total pressure46

vanish for re-entering fluid. Nevertheless, in this paper, we are going to used non-47

smooth DDN boundary condition since they are easier to impose though a variational48

formulation.49

Concerning the mathematical study of Boussinesq system with directional do-50

nothing conditions, the literature is rather scarce. To the best of our knowledge, we51

only found [6, 15], where the steady case is studied in depth, but the unsteady case52

only presents limited results. Indeed, while [15, p. 16, Theorem 3.2] gives existence53

and uniqueness of a weak solution with additional regularity to the Boussinesq system54

involving non-smooth boundary conditions at the inlet, it requires the source terms55

and the physical constants (e.g. Reynolds, Grashof numbers) to be small enough. We56

emphasize that these limitations comes from the proof which relies on a fixed-point57

strategy. The first aim of this paper will then be to fill that gap by proving existence58

and, in a two-dimensional setting, uniqueness of solutions for the unsteady Boussinesq59

system with non-smooth DDN boundary condition on the outlet.60

Topology optimization. On top of the previous considerations, this paper aims at61

using these equations in a topology optimization (TO) framework. In fluid mechanics,62

the term topology optimization refers to the problem of finding the shape of a solid63

located inside a fluid that either minimizes or maximizes a given physical effect. There64

exist various mathematical methods to deal with such problems that fall into the65

class of PDE-constrained optimization, such as the topological asymptotic expansion66

[3, 14, 40] or the shape optimization method [24, 38, 39]. In this paper, we choose to67

locate the solid thanks to a penalization term added in the unsteady Navier-Stokes68

equations, as exposed in [4]. However, the binary function introduced in [4] is usually69

replaced by a smooth approximation, referred as interpolation function [43], in order70

to be used in gradient-based optimization algorithms. We refer to the review papers71

[1, 22] for many references that deal with numerical resolution of TO problems applied72

to several different physical settings. However, as noted in [1, Section 4.7], most73

problems tackling topology optimization for flows only focus on steady flows, and74

time-dependant approaches are still rare. Furthermore, to the best of our knowledge,75

no paper is dedicated to the mathematical study of unsteady TO problems involving76

DDN boundary conditions, even though they are already used in numerical studies77

[12, 23, 42, 43]. Therefore, a second goal of this paper will be to prove existence78

of optimal solution to a TO problem involving Boussinesq system with non-smooth79

DDN boundary conditions at the outlet.80

First order optimality conditions. As hinted above, a gradient based method is81

often used in order to compute an optimal solution of a TO problem. However, the82

introduction of the non-smooth DDN boundary conditions implies that the control-83

to-state mapping is no longer differentiable. The literature presents several ways to84

deal with such PDE-constrained optimization problems. Most focus on elliptic equa-85

tions, using subdifferential calculus [17, 30, 19] or as the limit of relaxation schemes86

[18, 35, 45]. We may also cite [37] for a semilinear parabolic case and [49] which87

involves the Maxwell equations. We emphasize that using directly a subdifferential88

approach presents several drawbacks: the subdifferential of composite functions may89

be hardly computed, and the result may be hardly enlightening nor used [17]. We will90

therefore use a differentiable relaxation approach, as studied in [45]. First, we will91
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be able to use standard first order necessary optimality conditions since the relaxed92

control-to-state mapping will be smooth. A convergence analysis will let us design93

necessary optimality condition for the non-smooth problem. Secondly, we find this94

approach more enlightening, as it may be used as a numerical scheme for solving the95

TO problem.96

1.1. Problem settings. Let Ω ⊂ Rd, d ∈ {2, 3} be a bounded open set with97

Lipchitz boundary whose outward unitary normal is n. We assume the fluid occupies98

a region Ωf ⊂ Ω and that a solid is defined by a region Ωs such that Ω = Ωf ∪ Ωs.99

The penalized Boussinesq approximation (see e.g. [43] for the steady case) of the100

Navier-Stokes equations coupled to convective heat transfer reads:101

(1.1)

∇ · u = 0,

∂tθ +∇ · (uθ)−∇ · (Ck(α)∇θ) = 0, a.e. in Ω

∂tu + (u · ∇)u−A∆u +∇p−Bθey + h(α)u = f,

u(0) = u0(α), θ(0) = θ0(α),

102

where u denotes the velocity of the fluid, p the pressure and θ the temperature (all103

dimensionless), u0(α), θ0(α) are initial conditions. In (1.1), A = Re−1 with Re being104

the Reynolds number, B = Ri is the Richardson number and C = (Re Pr)−1 where Pr105

is the Prandtl number. In a topology optimization problem, it is classical to introduce106

a function α : x ∈ Ω 7→ α(x) ∈ R+ as optimization parameter (see e.g. [1, 22]). The107

function h(α) then penalizes the flow in order to mimic the presence of solid:108

• if h ≡ 0, then one retrieves the classical Boussinesq approximation.109

• if, for some s > s0 and large enough αmax, h : s ∈ [0, αmax] 7→ h(s) ∈ [0, αmax]110

is a smooth function such that h(s) ≈ 0 for s ≤ s0 and h(s) ≈ αmax for s ≥ s0,111

one retrieves the formulations used in topology optimization [1, 8, 43]. In the112

sequel, we work in this setting since we wish to study a TO problem.113

Since the classical Boussinesq problem is retrieved when h(α) = 0, the fluid zones114

Ωf ⊂ Ω and the solid ones Ωs ⊂ Ω can be defined as Ωs := {x ∈ Ω | α(x) < s0} , Ωf :=115

{x ∈ Ω | α(x) > s0} , where αmax > 0 is large enough to ensure the velocity u is small116

enough for the Ωs above to be considered as a solid. The function k(α) : x ∈ Ω 7→117

k(α(x)) is the dimensionless diffusivity defined as k(α)|Ωf = 1 and k(α)|Ωs = ks/kf118

with ks and kf are respectively the diffusivities of the solid and the fluid. We also119

assume that k is a smooth regularization of (ks/kf )1Ωs + 1Ωf . In this framework, α120

is thus defined as a parameter function, which will let us control the distribution of121

the solid in Ω.122

Let us now specify the boundary conditions. Assume ∂Ω = Γ is Lipschitz and we123

split it in three parts: Γ = Γw∪Γin∪Γout. Here, Γw are the walls, Γin the inlet/entrance124

and Γout is the exit/outlet of the computational domain. As exposed above, we would125

like to rigorously study a non-smooth outlet boundary condition. Inspired by [13],126

the following formulation tries to encapsulate these different approaches. Let β be127

a function defined on Γout and define: ∀x ∈ R : x+ = pos(x) = max(0, x), x− =128

neg(x) = max(0,−x), x = x+−x−. On top of (1.1), we impose the following boundary129

conditions:130

(1.2)

On Γin : u = uin, θ = 0,

On Γw : u = 0, Ck∂nθ = φ,

On Γout : A∂nu− np = A∂nuref − npref − 1

2
(u · n)−(u− uref),

Ck∂nθ + β(u · n)−θ = 0,

131
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with φ ∈ L2(0, T ;L2(Γw)), f ∈ L2(0, T ;H−1(Ω)), uin ∈ L2(0, T ;H
1/2
00 (Γin)), n de-132

notes the normal vector to the boundary, ∂n = n·∇ and (uref, pref) denotes a reference133

solution. As stated in [29], this nonlinear condition is physically meaningful: if the134

flow is outward, we impose the constraint coming from the selected reference flow ;135

if it is inward, we need to control the increase of energy, so, according to Bernoulli’s136

principle, we add a term that is quadratic with respect to velocity.137

To define a weak formulation of (1.1)-(1.2), we introduce V u = {u ∈ C∞(Ω;Rd);138

u Γin∪Γw
= 0}, and define V u (resp Hu) as the closure of V u in (H1(Ω))d (resp. in139

(L2(Ω))d). Similarly, we define V θ = {θ ∈ C∞(Ω;R); θ Γin
= 0}, and V θ and Hθ140

accordingly. A weak formulation of (1.1)-(1.2) then reads as:141 ∫
Ω

∂tθϕ−
∫

Ω

θu · ∇ϕ+

∫
Ω

Ck∇θ · ∇ϕ+

∫
Γ

(θ(u · n)− Ck∂nθ)ϕ = 0,142

for all ϕ ∈ Hθ. However, from (1.2), we have:143 ∫
Γ

(θ(u · n)− Ck∂nθ)ϕ = −
∫

Γw

φϕ+

∫
Γout

(
(u · n) + β(u · n)−

)
θϕ

−
∫

Γout

(
βθ(u · n)− + Ck∂nθ

)
ϕ

= −
∫

Γw

φϕ+

∫
Γout

(
(u · n) + β(u · n)−

)
θϕ.

144

Therefore:145

(WF.1)∫
Ω

∂tθϕ−
∫

Ω

θu · ∇ϕ+

∫
Ω

Ck∇θ · ∇ϕ+

∫
Γout

(
(u · n) + β(u · n)−

)
θϕ =

∫
Γw

φϕ.146

Doing similar computations with the Navier-Stokes system yield:147

(WF)148

149

(WF.2)

∫
Ω

q∇ · u = 0, ∀q ∈ L2(Ω),150

151

(WF.3)

∫
Ω

(∂tu + (u · ∇)u) ·Ψ +A

∫
Ω

∇u : ∇Ψ−
∫

Ω

Bθey ·Ψ

−
∫

Ω

p∇ ·Ψ +

∫
Ω

hu ·Ψ +
1

2

∫
Γout

(u · n)−(u− uref) ·Ψ

=

∫
Ω

f ·Ψ +

∫
Γout

(A∂nuref − npref) ·Ψ,

152

for all Ψ ∈ Hu.153

1.2. The topology optimization problem. A goal of this paper is to analyze154

the next topology optimization problem155

(OPT)

min J (α,u, θ, p)

s.t.

{
(u, θ, p) solution of (WF) parametrized by α,

α ∈ Uad,
156

where J is a given cost function and, for some κ > 0, we set Uad = {α ∈ BV(Ω)157

: 0 ≤ α(x) ≤ αmax a.e. on Ω, , |Dα|(Ω) ≤ κ}. BV(Ω) stands for functions of bounded158
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variations, as exposed in [2]. We recall that the weak-* convergence in BV(Ω) is159

defined as follows [2]: (αε)ε ⊂ BV(Ω) weakly-* converges to α ∈ BV(Ω) if (αε)160

strongly converges to α in L1(Ω) and (Dαε) weakly-* converges to Dα in Ω, meaning:161

lim
ε→+∞

∫
Ω

νdDαε =

∫
Ω

νdDα, ∀ν ∈ C0(Ω),162

where C0(Ω) denotes the closure, in the sup norm, of the set of real continuous163

functions with compact support over Ω. We choose Uad as a subset of BV(Ω) since164

it is a nice way to approximate piecewise constant functions, which is close to the165

desired solid distribution.166

It is classical for these problems to compute first order optimality conditions167

(see e.g. [33, 44]). This approach needs smoothness of the control-to-state mapping.168

However, the presence of the non-differentiable function neg(x) = x− makes this169

approach impossible. Therefore, we adopt a smoothing approach, as studied in [35,170

45], and we approximate the neg function with a C1 positive approximation, denoted171

negε. We suppose this approximation satisfies the following assumptions:172

(A1) ∀x ∈ R, negε (x) ≥ neg(x).173

(A2) ∀x ∈ R, 0 ≤ neg′ε(x) ≤ 1.174

(A3) negε converges to neg uniformly over R.175

(A4) for every δ > 0, the sequence (neg′ε)ε>0 converges uniformly to 1 on [δ,+∞)176

and uniformly to 0 on (−∞,−δ] as ε→ +∞.177

As presented in [45], we may choose:178

(1.3) negε (x) =

{
x− if |x| ≥ 1

2ε ,
1
2

(
1
2 − εx

)3 ( 3
2ε + x

)
if |x| < 1

2ε .
179

We thus redefine (WF) with an approximation of neg, which gives:180

(WFe.1)

∫
Ω

(∂tuε + (uε · ∇)uε) ·Ψ +A

∫
Ω

∇uε : ∇Ψ−
∫

Ω

Bθey ·Ψ

+

∫
Ω

h(αε)uε ·Ψ−
∫

Ω

pε∇ ·Ψ +
1

2

∫
Γout

negε (uε · n) (uε − uref
ε ) ·Ψ

=

∫
Ω

f ·Ψ−
∫

Γout

(A∂nuref + npref) ·Ψ,

181

182

(WFe.2)

∫
Ω

uε · ∇q = 0,183

184

(WFe.3)

∫
Ω

∂tθεϕ−
∫

Ω

θεuε · ∇ϕ+

∫
Ω

Ck∇θε · ∇ϕ

+

∫
Γout

((uε · n) + βnegε (uε · n)) θεϕ =

∫
Γw

φϕ,

185

for all (Ψ, ϕ, q) ∈ Hu×Hθ ×L2(Ω). We then define the approximate optimal control186

problem:187

(OPTe)

min J (αε,uε, θε, pε)

s.t.

{
(uε, θε, pε) solution of (WFe) parametrized by αε,

αε ∈ Uad.
188

5

This manuscript is for review purposes only.



As it will be made clear later, the control-to-state mapping in (WFe) is smooth, which189

will let us derive first order conditions.190

1.3. Plan of the paper. The rest of this introduction is dedicated to the pre-191

sentation of some notations used in this article and some important results of the192

literature. The core of this paper is organized in two sections. First, we will prove the193

existence of solutions to (WFe), which will let us prove, with a compactness argument,194

the existence of solutions to (WF). We then focus on the two dimensional case, where195

we prove uniqueness of the solutions along with stronger convergence results. This196

is an extension of the work done by [13], where only the pressure and the velocity197

where considered, and to [6, 15], where the steady case was studied in depth, but the198

results concerning the unsteady case were obtained using restrictive assumptions. We199

then study the approximate optimal control problem (OPTe), for which we will derive200

first order conditions. We conclude this paper with the convergence of the optimality201

conditions of (OPTe), which let us design first order conditions of (OPT).202

Notations. We denote by a . b if there exists a constant C(Ω) > 0 depending203

only on Ω such that a ≤ C(Ω)b. Denote:204

• A : V u → (V u)′ defined by 〈Au,v〉(V u)′,V u = A
∫

Ω
∇u : ∇v,205

• B : V u × V u → (V u)′ defined by 〈B(u,v),w〉(V u)′,V u =
∫

Ω
(u · ∇)v ·w,206

• T : V θ → (V u)′ defined by 〈T θ,v〉(V u)′,V u =
∫

Ω
Bθey · v,207

• P : L2(Ω)→ (V u)′ defined by 〈Pp,w〉(V u)′,V u =
∫

Ω
p∇ ·w,208

• N : V u×V u → (V u)′ defined by 〈N (u,v),w〉(V u)′,V u =
∫

Γout
neg(u·n)(v·w),209

• Nε : V u×V u → (V u)′ given by 〈Nε(u,v)),w〉(V u)′,V u =
∫

Γout
negε (u · n) (v ·210

w).211

• C(α) : V θ → (V θ)′ defined by 〈C(α)θ, ϕ〉(V θ)′,V θ =
∫

Ω
Ck(α)∇θ · ∇ϕ,212

• D : V u × V θ → (V θ)′ defined by 〈D(u, θ), ϕ〉(V θ)′,V θ =
∫

Ω
θu · ∇ϕ,213

• M : V u × V θ → (V θ)′ defined by 〈M(u, θ), ϕ〉(V θ)′,V θ =
∫

Γout
((u · n)+214

βneg(u · n))θϕ,215

• Mε : V u × V θ → (V θ)′ defined by 〈M(u, θ), ϕ〉(V θ)′,V θ =
∫

Γout
((u · n)+216

βnegε (u · n))θϕ,217

By a slight abuse of notation, we will still denote by σref the element of (V u)′ defined218

by 〈σref,w〉(V u)′,V u =
∫

Γout
(A∂nuref − prefn) · w, h(α) : V u → (V u)′ the function219

defined by 〈h(α)u,v〉(V u)′,V u =
∫

Ω
h(α)u · v, and φ the element of (V θ)′ defined by220

〈φ, ϕ〉(V θ)′,V θ =
∫

Γout
φϕ.221

Results from the literature. We now recall two results from the literature that will222

be heavily used throughout this paper.223

Proposition 1.1. ([10, Proposition III.2.35]) Let Ω be a Lipschitz domain of224

Rd with compact boundary. Let p ∈ [1,+∞] and q ∈ [p, p∗], where p∗ is the critical225

exponent associated with p, defined as:226 
1
p∗ = 1

p −
1
d for p < d,

p∗ ∈ [1,+∞[ for p = d,

p∗ = +∞ for p > d.

227

Then, there exists a positive constant C such that, for any u ∈W 1,p(Ω):228

‖u‖Lq(Ω) ≤ C‖u‖
1+ d

q−
d
p

Lp(Ω) ‖u‖
d
p−

d
q

W 1,p(Ω).229
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Proposition 1.2. ([10, Theorem III.2.36]) Let Ω be a Lipschitz domain of Rd230

with compact boundary, and 1 < p < d. Then for any r ∈
[
p, p(d−1)

d−p

]
, there exists a231

positive constant C such that, for any u ∈W 1,p(Ω):232

‖u ∂Ω‖Lr(∂Ω) ≤ C‖u‖
1− dp+ d−1

r

Lp(Ω) ‖u‖
d
p−

d−1
r

W 1,p(Ω).233

In the case p = d, the previous result holds true for any r ∈ [p,+∞[.234

2. Existence of solutions. In this section, we will focus on proving the exis-235

tence of solutions to (WFe) and prove their convergence toward the ones of (WF).236

We make the following assumptions throughout this paper:237

Assumptions 2.1. • The source term f ∈ L2(0, T ;H−1(Ω)).238

• (uref, pref) are such that:239 

uref ∈ Lr(0, T ; (H1(Ω))d) ∩ L∞(0, T ; (L2(Ω))d)

with r = 2 if d = 2 and r = 4 if d = 3,

∇ · uref = 0,

∂tu
ref ∈ L2(0, T ; (L2(Ω))d),

uref = uin on Γin.

240

• There exists kmin such that k(x) ≥ kmin > 0 and h(x) ≥ 0 for a.e. x ∈ Ω.241

• The initial condition u0 (resp. θ0) is a Fréchet-differentiable function from242

Uad to V u (resp. V θ). Furthermore, for all α ∈ Uad, u0(α) Γin
= uin(0),243

u0(α) Γw
= 0, ∇ · u0(α) = 0 and θ0(α) Γin

= 0.244

• β ∈ L∞(0, T ;L∞(Γout)) such that β(t, x) ≥ 1
2 , for a.e. (t, x) ∈ [0, T ]× Γout.245

2.1. Existence in dimension 2 or 3. In this part, we work with a fixed ε > 0246

and a given αε in Uad.247

In order to prove the existence of solutions to (WFe), we follow the classical Fadeo-248

Galerkin method, as used in [13, 36, 47]. By construction, V u and V θ are separable.249

Therefore, both admit a countable Hilbert basis (wuk )k and (wθk)k. Let us construct250

an approximate problem, which will converge to a solution of the original problem251

(WFe). Denote by V un (resp. V θn ) the space spanned by (wuk )k≤n (resp. (wθk)k≤n).252

We consider the following Galerkin approximated problem:253

find t 7→ vn(t) ∈ V un , t 7→ pn(t) ∈ L2(Ω) and t 7→ θn(t) ∈ V θn such that, defining254

un = vn + uref, (un, pn, θn) satisfy (WFe) for all t ∈ [0, T ] and for all (Ψ, q, ϕ) ∈255

V un × L2(Ω)× V θn .256

As done in [47], we prove that such (un, θn, pn) exist. We now prove that these257

solutions are bounded with respect to n and ε:258

Proposition 2.2. There exist positive constants cθ1, cθ2, cv1 and cv2 , independent259

of ε and n, such that:260

(2.1) sup
[0,T ]

‖θn‖L2(Ω) ≤ cθ1,261

262

(2.2)

∫ T

0

‖∇θn‖2L2(Ω) ≤ c
θ
2,263

264

(2.3) sup
[0,T ]

‖vn‖L2(Ω) ≤ cv1 ,265

266

(2.4)

∫ T

0

‖∇vn‖2L2(Ω) ≤ c
v
2 .267
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Proof. Taking ϕn = θn in (WFe.1) and integrating by part give:268

d

dt
‖θn‖2L2(Ω) −

1

2

∫
Γout

θ2
n(un · n) +

∫
Ω

Ck|∇θn|2

+

∫
Γout

((un · n) + βnegε (un · n)) θ2
n =

∫
Γw

φθn.

269

Since β ≥ 1
2 and using assumption (A1), one has on Γout:270

((un · n) + βnegε (un · n)) θ2
n −

1

2
(un · n)θ2

n ≥
1

2
((un · n) + negε (un · n)) θ2

n

≥1

2
(un · n)+θ2

n ≥ 0.

271

Therefore: d
dt‖θn‖

2
L2(Ω) + Ckmin‖∇θn‖2L2(Ω) ≤ ‖φ‖L2(Γw)‖θn‖L2(Γw). Using continuity272

of the trace operator and Young’s inequality, one proves that there exists a positive273

constant C(Ω) such that, for any ν > 0:274

d

dt
‖θn‖2L2(Ω) + Ckmin‖∇θn‖2L2(Ω) ≤

1

2ν
‖φ‖2L2(Γw) +

C(Ω)ν

2
(‖θn‖2L2(Ω) + ‖∇θn‖2L2(Ω)).275

Taking ν small enough, we are left with:276

d

dt
‖θn‖2L2(Ω) ≤

1

2ν
‖φ‖2L2(Γw) +

C(Ω)ν

2
‖θn‖2L2(Ω).277

Integrating this equation and using Gronwall’s lemma then give (2.1) and (2.2).278

Now, take Ψn = vn in (WFe.3). After some calculations, one gets:279

d

dt
|vn|2 +A|∇vn|2 +

1

2

∫
Γout

negε (un · n) |vn|2 +

∫
Ω

h|vn|2

=

∫
Ω

fθ · vn −
∫

Ω

∂tu
ref · vn −A

∫
Ω

∇uref : ∇vn +

∫
Ω

(un · ∇)vn · uref

−
∫

Ω

huref · vn +

∫
Γout

(A∂nuref − npref)vn

280

where fθ = f + Bθney. First, using (2.2), one has ‖fθ‖(Hu)′ ≤ ‖f‖(Hu)′ + Bcθ1.281

Secondly, using (A1) gives that
∫

Γout
negε (un · n) |vn|2 ≥ 0 and following then the282

same pattern of proof as in [13, Proposition 2], one proves (2.3) and (2.4).283

Following [47, 10], we need to bound the fractional derivatives of the solution in284

order to prove some convergence results. For any real-valued function f defined on285

[0, T ], define by f̃ the extension by 0 of f to the whole real line R, and by F (f̃)286

the Fourier transform of f̃ , which we define as: F (f̃)(τ) =
∫
R f̃(t)e−itτdt. Using the287

Hausdorff-Young inequality [10, Theorem II.5.20] we can prove the288

Proposition 2.3. For all σ ∈ [0, 1
6 ), there exists a constant C(σ) > 0 indepen-289

dent of ε and n such that:290

(2.5)

∫
R
|τ |2σ

∥∥∥F (
θ̃n

)∥∥∥2

(L2(Ω))d
≤ C(σ),291

292

(2.6)

∫
R
|τ |2σ‖F (ũn)‖2L2(Ω) ≤ C(σ).293
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Proof. We emphasize that (2.6) is proved if (2.5) holds by using [10, Proposition294

VII.1.3] by replacing f by fθ = f +Bθey. The proof of (2.5) consists in adapting the295

one of [10, Proposition VII.1.3] and is thus omitted.296

Combining the two previous results, we can now prove the following existence297

theorem for (WFe).298

Theorem 2.4. For all (v0, θ0) ∈ Hu × Hθ and all T > 0, there exists vε ∈299

L∞(0, T ;Hu)∩L2(0, T ;V u), θε ∈ L∞(0, T,Hθ)∩L2(0, T ;V θ) and pε ∈W−1,∞(0, T ;300

L2(Ω)) solution of (WFe) such that, defining u0 = v0 + uref(0) and uε = vε + uref,301

one has for all (Ψ, ϕ) ∈ V u × V θ such that ∇ ·Ψ = 0:
(∫

Ω
uε ·Ψ

)
(0) =

∫
Ω

u0 ·Ψ,302 (∫
Ω
θεϕ
)

(0) =
∫

Ω
θ0ϕ. Moreover, one has v′ε = dvε

dt ∈ L
4
d (0, T ; (V u)′) and θ′ε ∈303

L2(0, T ; (V θ)′).304

Proof. The proof of existence is similar to part (iv) of the proof of [47, Theorem305

3.1] and the proof of [10, Proposition VII.1.4], where estimates (2.1)-(2.4) and (2.5)-306

(2.6) are used in a compactness argument.307

We only add the proof that (un, θn) converges to a solution of (WFe.1). Using308

(2.5) and [47, Theorem 2.2], one shows that, up to a subsequence, θn strongly con-309

verges to an element θε of L2(0, T ;Hθ). The only technical points which needs more310

detail are the non-linear terms in (WFe.1). Using the strong convergence of un to uε311

in L2(0, T ;Hu) proved in [47, Eq (3.41)], one proves that (θnun) strongly converges312

to θεuε in L1(0, T ;L2(Ω)). Furthermore, notice that:313 ∫ T

0

‖(un · n)θn‖
4
3

L
4
3 (Γ)
≤
∫ T

0

‖un‖
4
3

L
8
3 (Γ)
‖θn‖

4
3

L
8
3 (Γ)

≤C
∫ T

0

‖un‖
1
3

L2(Ω)‖θn‖
1
3

L2(Ω)‖un‖H1(Ω)‖θn‖H1(Ω)

≤C‖un‖
1
3

L∞(0,T ;L2(Ω))‖θn‖
1
3

L∞(0,T ;L2(Ω))

‖un‖L2(0,T ;H1(Ω))‖θn‖L2(0,T ;H1(Ω)).

314

This inequality together with (2.1)-(2.4) proves that ((un · n)θn)n is bounded in315

L
4
3 (0, T ;L

4
3 (Γ)), which is reflexive. Therefore, it proves that, up to a subsequence,316

there exists a weak limit κ1 in L
4
3 (0, T ;L

4
3 (Γ)) of ((un · n)θn)n. A simple adapta-317

tion of the above reasoning proves that (negε (un · n) θn)n weakly converges to some318

κ2 in L
4
3 (0, T ;L

4
3 (Γ)). Using the strong convergence of θn in L2(0, T ;L2(Ω)), [10,319

Proposition II.2.12] implies that:320

((un · n) + βnegε (un · n))θn ⇀ ((uε · n) + βnegε (uε · n))θε in L
4
3 (0, T ;L1(Γ))321

obtained using the continuity of x ∈ R 7→ negε (x). By uniqueness of the limit in322

the sense of distribution, we can identify κ1 + βκ2 with ((uε · n) + βnegε (uε · n))θε.323

Therefore, (uε, θε) is a solution of (WF.1).324

The convergence of the weak derivative with respect to time of vε in L
4
d (0, T ;325

(V u)′) is proved in [10, Proposition V.1.3]. Concerning the weak derivative with326

respect to time of θε, it follows immediately from the fact that differentiation with327

respect to time is continuous in the sense of distribution. Existence of the pressure328

pε follows from [10, Chapter V].329

We now use the existence of solutions to the approximate problem (WFe) to prove330

existence of solutions to the limit problem (WF), along with the convergence of the331

approximate solutions to the solutions of (WF).332
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Theorem 2.5. Let (αε) ⊂ Uad and α ∈ Uad such that αε
∗
⇀ α in BV. Define by333

(vε, θε, pε) a solution of (WFe) parametrized by αε, and define uε = vε + uref. Then,334

there exists (v, θ, p) ∈ L∞(0, T ;Hu) ∩ L2(0, T ;V u) × L∞(0, T,Hθ) ∩ L2(0, T ;V θ) ×335

W−1,∞(0, T ;L2(Ω)) such that, defining u = v + uref, up to a subsequence, we have336

• uε
∗
⇀ u in L∞(0, T ;Hu) and θε

∗
⇀ θ in L∞(0, T ;Hθ),337

• uε ⇀ u in L2(0, T ;V u) and in L2(0, T ; (L6(Ω))),338

• θε ⇀ θ in L2(0, T ;V θ) and in L2(0, T ; (L6(Ω))),339

• uε ⇀ u in L4(0, T ; (L2(Γ))d) and θε ⇀ θ in L4(0, T ; (L2(Γ))),340

• uε −−−−−→
ε→+∞

u in L2(0, T ; (L2(Ω))d) and θε −−−−−→
ε→+∞

θ in L2(0, T ; (L2(Ω))),341

• uε −−−−−→
ε→+∞

u in L2(0, T ; (L2(Γ))d) and θε −−−−−→
ε→+∞

θ in L2(0, T ; (L2(Γ))),342

• pε ⇀ p in L
4
d (0, T ;L2(Ω)).343

Furthermore, (v, θ, p) is a solution to (WF) parametrized by α.344

Proof. Using (2.1)-(2.4) and (2.5)-(2.6), we prove that there exists u and θ such345

that all the convergences above are verified in the same manner as in [10, Propo-346

sition VII.1.4]. Let us prove first that u is a solution of (WF.3) parametrized347

by α and θ. With the same pattern of proof as in Theorem 2.4, one proves im-348

mediately that (uε · ∇)uε ⇀ (u · ∇)u in L1(0, T ; (L1(Ω))d), and (uε · n)uref ⇀349

(u · n)uref in L4(0, T ; (L
4
3 (Γ))d). Regarding the penalization term:350

‖h(αε)uε − h(α)u‖2L2(0,T ;L2(Ω)d) .‖h‖
2
∞‖uε − u‖2L2(0,T ;L2(Ω)d)

+

∫ T

0

∫
Ω

(h(αε)− h(α))2|u|2.
351

Since αε → α strongly in L1(Ω), h(αε) → h(α) pointwise in Ω up to a subsequence352

(which is not relabeled). Lebesgue dominated convergence theorem then implies:353

h(αε)uε −−−−−→
ε→+∞

h(α)u in L2(0, T ; (L2(Ω))d).354

Concerning the boundary terms, we only consider the term with the approxima-355

tion of the neg function. First, we claim that there exists γ such that negε (uε · n) (uε+356

uref) ⇀ γ in L
4
3 (0, T ;L

4
3 (Γ)d). Notice that, for ε large enough and using the proper-357

ties of the neg approximation, we have:358

(2.7)∫ T

0

‖negε (uε · n) (uε + uref)‖
4
3

L
4
3 (Γ)

.
∫ T

0

(
‖uε · n + 1‖

4
3

L
8
3 (Γ)
‖uε + uref‖

4
3

L
8
3 (Γ)

)
.
∫ T

0

(
‖uε‖

4
3

L
8
3 (Γ)

+ C

)
‖uε‖

4
3

L
8
3 (Γ)

+

∫ T

0

(
‖uε‖

4
3

L
8
3 (Γ)

+ C

)
‖uref‖

4
3

L
8
3 (Γ)

.
∫ T

0

‖uε‖
8
3

L
8
3 (Γ)

+ 2

(∫ T

0

‖uε‖
8
3

L
8
3 (Γ)

) 1
2

+ C.

359

In addition, from Proposition 1.2, we have ‖uε‖
8
3

L
8
3 (Γ)

. ‖uε‖
2
3

L2(Ω)‖uε‖H1(Ω). Since360

uε is bounded in L∞(0, T ; (L2(Ω))d) and in L2(0, T ; (H1(Ω))d) as proved in Propo-361

sition 2.2, we see that negε (uε · n) (uε + uref) is bounded in L
4
3 (0, T ;L

4
3 (Γ)d) in-362

dependently of ε. Since this Banach space is reflexive, it proves the claimed weak363

convergence. Let us now prove that γ can be identified with (u · n)−(u + uref).364
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First, since uε → u strongly in L2(0, T ;L2(Γ)d) and negε (·) → (·)− uniformly,365

one proves that negε (uε · n) → (u · n)− strongly in L2(0, T ;L2(Γ)). Then, the366

weak convergence of uε in L4(0, T ;L2(Γ)d) and [10, Proposition II.2.12] implies that367

negε (uε · n) (uε + uref) ⇀ (u · n)−(u + uref) weakly in L
4
3 (0, T ;L1(Γ)d). Using [10,368

Proposition II.2.9], we argue that γ = (u · n)−(u + uref).369

Regarding pε, we use an inf-sup condition as the one introduced in the proof of370

[28, Theorem 5.1, eq. (5.14)], which states that371

(2.8) ‖p‖L2(Ω) . sup
Ψ∈V

∫
Ω
p∇ ·Ψ

‖Ψ‖H1(Ω)
.372

Therefore, using (WFe.3), one shows that:373

‖pε‖L2(Ω) . ‖∂tuε‖V ′ + ‖B(uε,uε)‖V ′ + ‖Auε‖V ′ + ‖h(α)uε‖V ′ + ‖T θ‖V ′

+ ‖Nε(uε,uε − uref)‖V ′ + ‖f‖V ′ + ‖σref‖V ′ .
374

We now bound each term depending on ε:375

• Since the Stokes operator is continuous, ‖Auε‖V ′ . ‖uε‖H1(Ω) and therefore,376

Auε is bounded in L2(0, T ;V ′).377

• Using [10, Eq. (V.3)], we prove that ‖B(uε,uε)‖V ′ . ‖uε‖
2− d2
L2(Ω)‖uε‖

d
2

H1(Ω),378

which in turn shows that B(uε,uε) is bounded in L
4
d (0, T ;V ′).379

• Obviously, ‖h(α)uε‖V ′ ≤ ‖h‖∞‖uε‖L2(Ω) and therefore, h(α)uε is bounded380

in L∞(0, T ;V ′).381

We are left with the boundary term. Let 0 6= Ψ ∈ V . In a similar manner as before382

and using Proposition 1.2, there exists a constant C > 0 such that:383

1

‖Ψ‖H1(Ω)

∫
Γout

|negε (uε · n) (uε − uref) ·Ψ| .
(
‖uε‖

3−d
4

L2(Ω)‖uε‖
d−1
4

H1(Ω) + C
)2

.384

As proved before, uε is bounded in L∞(0, T ;L2(Ω))∩L2(0, T ;H1(Ω)). Therefore, uε385

is also bounded in L2− 2
d (0, T ;H1(Ω)). Taking the supremum over Ψ, this proves that386

N (uε,uε) is bounded in L
4
d (0, T ;V ′). Finally, in a similar fashion as in [10, Lemma387

V.1.6], the above bounds prove that ∂tuε is bounded in L
4
d (0, T ;V ′). These bounds388

prove that (pε) is bounded in L
4
d (0, T ;L2(Ω)), and therefore (pε) weakly converges to389

some p in L
4
d (0, T ;L2(Ω)).390

Concerning θ, the convergence is largely proved in the same way as in Theorem 2.4.391

The only difference concerns the convergence of negε (uε · n) θε to (u · n)−θ, which392

is proved in the same manner as (2.7). All these convergence results let us say that393

(u, θ, p) is a solution to (WF) in the distribution sense.394

2.2. Further results in dimension 2. It is notably known that the solution395

of the Navier-Stokes equations with homogeneous Dirichlet boundary conditions are396

unique in dimension 2. We prove here that uniqueness still holds with the boundary397

conditions (1.2). We only sketch the proof.398

Proposition 2.6. Let d = 2. Then, the solution (uε, θε, pε) of (WFe) is unique.399

Sketch of proof First of all, note that uniqueness of (uε, θε) implies the uniqueness of400

pε via the De Rham Theorem [10, Theorem IV.2.4 and Chapter V].401

Let (uε1, θε1) and (uε2, θε2) be two solutions of (WF.1)-(WF.3). Define u = v =402

vε1 − vε2 and θ = θε1 − θε2. Slightly adapting the proof in [10, Section VII.1.2.5],403
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one proves that:404

(2.9)
d

dt
|v|2L2(Ω) +A|∇v|2L2(Ω) . gv(t)|v|2L2(Ω) +B|θ|2L2(Ω) + νv|∇v|2L2(Ω)405

where νv is a positive constant and gv is a function in L1([0, T ]).406

Testing the differential equation verified by θ with θ proves that:407

d

dt
|θ|2L2(Ω) + 2C

∫
Ω

k|∇θ|2 +

∫
Γout

θ2

(
1

2
(uε1 · n) + βnegε (uε1 · n)

)
= −

∫
Γout

(
β (negε (uε1 · n)− negε (uε2 · n)) +

1

2
(u · n)

)
θε2θ.

408

With a similar proof as the one of Proposition 2.2, we can prove that, on Γout,409

θ2
(

1
2 (u1 · n) + βnegε (u1 · n)

)
≥ 0. Therefore, using (A3), one has:410

(2.10)
d

dt
|θ|2L2(Ω) + 2C

∫
Ω

k|∇θ|2 .

(
|β|L∞(Γout) +

1

2

)
|u · n|L3(Γout)|θε2|L3(Γout)|θ|L3(Γout).411

Using Sobolev embeddings and Young inequality, we prove:412 (
|β|L∞(Γout) +

1

2

)
|u · n|L3(Γout)|θε2|L3(Γout)|θ|L3(Γout)

.

(
|β|L∞(Γout) +

1

2

)3 |θε2|L2(Ω)|∇θε2|2L2(Ω)

2(νθ)3
(|u|2L2(Ω) + |θ|2L2(Ω))

+
(νθ)

3
2

2

(
|∇u|2L2(Ω) + |∇θ|2L2(Ω)

)
,

413

where νθ is a positive constant. Therefore, summing (2.9) and (2.10) gives ddt (|u|
2
L2(Ω)+414

|θ|2L2(Ω)) . max(gv1 , g
θ)(|u|2L2(Ω) + |θ|2L2(Ω)), with gv1 and gθ integrable. Therefore,415

applying Gronwall’s lemma and noticing that |u(0)|2L2(Ω) + |θ(0)|2L2(Ω) = 0, one shows416

that u = 0 and θ = 0.417

Note that we may also prove that, for d = 2, the solution (u, θ, p) of (WF) is418

unique. We can also state stronger convergence (compared to the ones stated in419

Theorem 2.5) in dimension 2. These results will be useful in the analysis of the420

optimisation problems.421

Corollary 2.7. Suppose d = 2. Under the assumptions of Theorem 2.5, uε →422

u strongly in L∞(0, T ;L2(Ω)2), ∇uε → ∇u strongly in L2(0, T ;L2(Ω)2), θε → θ423

strongly in L∞(0, T ;L2(Ω)), ∇θε → ∇θ strongly in L2(0, T ;L2(Ω)) and pε → p424

strongly in L2(0, T ;L2(Ω)).425

Proof. Denote ū = u−uε, θ̄ = θ−θε and p̄ = pε−p. The variational formulation426

verified by (ū, θ̄, p̄) reads as: for all Ψ ∈ V u:427

(2.11a)
−〈P p̄,Ψ〉 =〈∂tū +Aū + h(α)ū,Ψ〉(V u)′,V u + 〈(h(α)− h(αε))uε,Ψ〉(V u)′,V u+

〈B(u,u)− B(uε,uε),Ψ〉(V u)′,V u + 〈T θ̄,Ψ〉(V u)′,V u

1

2
〈N (u,u− uref)−Nε(uε,uε − uref),Ψ〉(V u)′,V u ,

428

429

(2.11b) 0 = 〈∇ · ū, q〉L2(Ω),430
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431

(2.11c)

0 =〈∂tθ̄, ϕ〉(V θ)′,V θ − 〈D(u, θ̄) +D(ū, θε), ϕ〉(V θ)′,V θ

+ 〈(C(α)− C(αε))θ + C(αε)θ̄, ϕ〉(V θ)′,V θ

+ 〈M(u, θ) +Mε(uε, θε), ϕ〉(V θ)′,V θ .

432

The following inequalities, valid for d = 2, will be useful throughout this proof:433

• As proved in [10, Eq. (V.5)]:434

(2.12)
〈B(u,u)− B(uε,uε),Ψ〉(V u)′,V u

‖Ψ‖H1(Ω)
=
〈B(ū,u) + B(uε, ū),Ψ〉(V u)′,V u

‖Ψ‖H1(Ω)

.
(
‖ū‖L2(Ω)‖u‖H1(Ω) + ‖uε‖L2(Ω)‖∇ū‖L2(Ω)

)
.

435

• Concerning the boundary term in (2.11a):436

〈N (u,u− uref)−Nε(uε,uε − uref),Ψ〉(V u)′,V u =

〈N (u, ū),Ψ〉(V u)′,V u +

∫
Γout

(neg(u · n)− negε (uε · n))(uε − uref) ·Ψ.
437

We now deal with each term separately. Concerning the first term, Young’s438

inequality and Proposition 1.1 imply:439

(2.13) 〈N (u, ū),Ψ〉(V u)′,V u . ‖ū‖H1(Ω)‖Ψ‖H1(Ω).440

Owning to the Lipschitz behavior of the neg function, and the uniform con-441

vergence of negε toward neg (see (A3)), there exists Cε > 0 such that:442

(2.14)

neg(u · n)− negε (uε · n) =neg(u · n)− neg(uε · n)

+ neg(uε · n)− negε (uε · n)

≤|ū · n|+ Cε

443

where Cε −−−−−→
ε→+∞

0. Therefore, using Proposition 1.2, we infer:444

(2.15)

∫
Γout

(neg(u · n)− negε (uε · n))(uε − uref) ·Ψ

. ‖neg(u · n)− negε (uε · n)‖L4(Γ) ‖uε − uref‖L2(Γ)‖Ψ‖L4(Γ)

.
(
‖ū‖

1
4

L2(Ω)‖∇ū‖
3
4

L2(Ω) + Cε

)
‖uε − uref‖

1
2

L2(Ω)‖∇(uε − uref)‖
1
2

L2(Ω)

× ‖Ψ‖
1
4

L2(Ω)‖∇Ψ‖
3
4

L2(Ω).

445

• The inequality proved in Proposition 1.1 shows that:446

(2.16)

∫
Ω

θεū · ∇θ̄ . ‖θε‖H1(Ω)‖ū‖
1
2

L2(Ω)‖∇ū‖
1
2

L2(Ω)‖∇θ̄‖L2(Ω).447

• One will need also to bound the terms involving u and θ on the boundary.448

Using once again Proposition 1.1 , one shows directly that:449

(2.17)∫
Γout

(ū·n)θεθ̄ . ‖ū‖
1
4

L2(Ω)‖∇ū‖
3
4

L2(Ω)‖θε‖
1
2

L2(Ω)‖∇θε‖
1
2

L2(Ω)‖θ̄‖
1
4

L2(Ω)‖∇θ̄‖
3
4

L2(Ω).450
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With the same technique as for (2.15), one proves:451

(2.18)∫
Γout

(neg(ū · n)− negε (uε · n)) θεθ̄ .
(
‖ū‖

1
4

L2(Ω)‖∇ū‖
3
4

L2(Ω) + Cε

)
‖θε‖

1
2

L2(Ω)

‖∇θε‖
1
2

L2(Ω)‖θ̄‖
1
4

L2(Ω)‖∇θ̄‖
3
4

L2(Ω).

452

Since d = 2, one has ū′ ∈ L2(0, T ; (V u)′) and we may choose Ψ = ū(t) for fixed t453

in (2.11a). Using the fact that ∇·Ψ = 0 in this case, and after rearranging the terms,454

we obtain:455

d

dt
‖ū‖2L2(Ω) + 2A‖∇ū‖2L2(Ω) + 2

∫
Ω

h(α)|ū|2 +

∫
Γout

pos(u · n)|ū|2 =

− 2〈(h(α)− h(αε))uε, ū〉(V u)′,V u − 〈B(ū,u), ū〉(V u)′,V u + 〈B(ū, ū),u〉(V u)′,V u

−
∫

Ω

Bθ̄ey · ū−
∫

Γout

(neg(u · n)− negε (uε · n)) (uε − uref) · ū

−
∫

Γout

(ū · n)uε · ū = 0.

456

Therefore, (2.12), (2.15), Proposition 1.2 and Young’s inequality imply there ex-457

ists C1 > 0 independent of ε such that:458

d

dt
‖ū‖2L2(Ω) + C1‖∇ū‖2L2(Ω) . ‖θ̄‖

2
L2(Ω) + 2

∫
Ω

|h(α)− h(αε)|2 |uε|2

+ gu1 ‖ū‖2L2(Ω) + (gu2 )
4
5 ‖ū‖

2
5

L2(Ω),

459

where gu1 = 1 + ‖u‖2H1(Ω) + ‖u‖2L2(Ω)‖∇u‖2L2(Ω) + 2‖uε‖L2(Ω)‖∇uε‖2L2(Ω)+460

‖uref‖L2(Ω)‖uref‖2H1(Ω) and gu2 = C2
ε‖uε − uref‖L2(Ω)‖∇(uε − uref)‖L2(Ω).461

Using once again Young’s inequality, one has:462

(2.19)

d

dt
‖ū‖2L2(Ω) + C1‖∇ū‖2L2(Ω) .‖θ̄‖

2
L2(Ω) + (1 + gu1 )‖ū‖2L2(Ω)

+ 2

∫
Ω

|h(α)− h(αε)|2 |uε|2 + gu2 .
463

We now move back to (2.11c) and choose ϕ = θ̄, which gives, after some manip-464

ulation:465

1

2

d

dt
‖θ̄‖2L2(Ω) + C

∫
Ω

k(αε)|∇θ̄|2 +

∫
Γout

(
1

2
(u · n) + βneg(u · n)

)
θ̄2

=

∫
Ω

θεū · ∇θ̄ − C
∫

Ω

(k(α)− k(αε))∇θ · ∇θ̄

−
∫

Γout

[((ū · n) + β (neg(u · n)− negε (uε · n))] θεθ̄.

466

As shown in Proposition 2.2,
∫

Γout

(
1
2 (u · n) + βneg(u · n)

)
θ̄2 is positive. There-467

fore, using (2.17), (2.18), Proposition 1.2 and Young’s inequality, one proves that468

there exists C3 > 0, C4 > 0, such that:469

(2.20)

d

dt
‖θ̄‖2L2(Ω) + C3‖∇θ̄‖2L2(Ω) . ‖θε‖

2
L2(Ω)‖∇θε‖

2
L2(Ω)‖ū‖

2
L2(Ω) + C4‖∇ū‖2L2(Ω)

+

(
C

∫
Ω

(k(α)− k(αε))
2|∇θ|2

)
+ gθ1‖θ̄‖2L2(Ω) + gθ2 ,

470
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where gθ1 = 1 + ‖θε‖2L2(Ω)‖∇θε‖
2
L2(Ω), g

θ
2 = C2

ε‖θε‖L2(Ω)‖∇θε‖L2(Ω).471

Summing (2.19) and (2.20) and choosing C4 small enough, there exists C∗ > 0472

such that:473

(2.21)

d

dt
(‖ū‖2L2(Ω) + ‖θ̄‖2L2(Ω)) + C∗(‖∇ū‖2L2(Ω) + ‖∇θ̄‖2L2(Ω)) . gu2 + gθ2

+ (1 + ‖θε‖2L2(Ω)‖∇θε‖
2
L2(Ω) + gu1 )‖ū‖2L2(Ω) + (gθ1 + 1)‖θ̄‖2L2(Ω)

+

∫
Ω

(k(α)− k(αε))
2|∇θ|2 +

∫
Ω

|h(α)− h(αε)|2 |uε|2.

474

We now introduce the following functions475

auε = (1 + ‖θε‖2L2(Ω)‖∇θε‖
2
L2(Ω) + gu1 ), buε =

∫
Ω

|h(α)− h(αε)|2 |uε|2 + gu2 ,476

aθε = (1 + gθ1), bθε =

∫
Ω

(k(α)− k(αε))
2|∇θ|2 + gθ2 .477

Since u and uε both belong to L2(0, T ;H1(Ω)2) ∩ L∞(0, T ;L2(Ω)2) (the same holds478

for θ and θε), a
u
ε , buε , aθε and bθε are integrable, and so are aε = max(auε , a

θ
ε) and bε =479

buε + bθε. Grönwall’s lemma proves that for all t ∈ [0, T ], ‖ū(t)‖2L2(Ω) + ‖θ̄(t)‖2L2(Ω) ≤480 (∫ t
0
bε(s)ds

)
exp

(∫ t
0
aε(s)ds

)
. Since aε ≥ 0 and bε ≥ 0, t 7→

(∫ t
0
bε(s)ds

)
and t 7→481

exp
(∫ t

0
aε(s)ds

)
are non-decreasing and we have482

(2.22) sup
t∈[0,T ]

(
‖ū(t)‖L2(Ω) + ‖θ̄(t)‖L2(Ω)

)
≤

(∫ T

0

bε(s)ds

) 1
2

exp

(
1

2

∫ T

0

aε(s)ds

)
.483

Since, on one hand, αε → α in L1(Ω) and αε is independent of time, and on the other484

hand, uε → u strongly in L2(0, T ;L2(Ω)), Lebesgue’s dominated convergence gives a485

subsequence (εk) such that:486

(2.23)∫ T

0

∫
Ω

|h(α)− h(αεk)|2 |uε|2 −−−−−→
k→+∞

0,

∫ T

0

∫
Ω

|k(α)− k(αεk)|2 |∇θ|2 −−−−−→
k→+∞

0.487

Notice that, owning to the convergence of uε and θε, ‖uε − uref‖L2(Ω)‖∇(uε −488

uref)‖L2(Ω) and ‖θε‖L2(Ω)‖∇uε‖L2(Ω) are bounded w.r.t ε in L1([0, T ]). Therefore,489

since Cε −−−−−→
ε→+∞

0, it proves that
∫ T

0
(gu2 + g2

θ) −−−−−→
εk→+∞

0. Gathering the previous490

convergence results then prove that
∫ T

0
bεk(s)ds −−−−−→

k→+∞
0. In addition, thanks to the491

convergence proved in Theorem 2.5, we show that
∫ T

0
aε(s)ds is bounded w.r.t. ε.492

Therefore, it proves that ‖u− uεk‖L∞(0,T,L2(Ω)) + ‖θ − θεk‖L∞(0,T,L2(Ω)) −−−−−→
k→+∞

0.493

We now move back to (2.21). We integrate each side of the inequality:494 ∫ T

0

‖∇ū‖2L2(Ω) + ‖∇θ̄‖2L2(Ω) .F
u,θ
ε +

∫ T

0

(gu1 + ‖θε‖2L2(Ω)‖∇θε‖
2
L2(Ω) + 1)‖ū‖2L2(Ω)

+

∫ T

0

(gθ1 + 1)‖θ̄‖2L2(Ω),

495

with Fu,θε = ‖u0(αε)− u0(α)‖2L2(Ω) + ‖θ0(αε)− θ0(α)‖2L2(Ω) +
∫ T

0
(gu2 + gθ2)496

+
∫ T

0

∫
Ω
|k(α)− k(αε)|2 |∇θε|2 +

∫ T
0

∫
Ω
|h(α)− h(αε)|2 |uε|2. From Assumptions 2.1,497
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the initial conditions are continuous with respect to α and thus the two first terms498

above goes to 0 as ε → +∞. The third, forth and fifth terms have been already499

treated (see (2.23)). Concerning the two last terms, notice that due to the con-500

vergence of uε, one has ‖uε − uref‖L2(Ω)‖∇(uε − uref)‖L2(Ω) bounded w.r.t ε in501

L1([0, T ]). The main problem concerns the term
∫ T

0
‖uε‖L2(Ω)‖∇uε‖2L2(Ω)‖ū‖

2
L2(Ω).502

Since uε ∈ L2(0, T ;L2(Ω)2), we only need to deal with ‖∇uε‖2L2(Ω)‖ū‖
2
L2(Ω) How-503

ever, as proved in Theorem 2.5, up to a subsequence, ∇uε weakly converges to ∇u504

in L2(0, T, L2(Ω)) and ‖u− uε‖2L2(Ω) → 0 in L∞([0, T ]). Concerning the other terms505

in gu1 , they are all independent of ε, and we mainly use the fact that ‖ū‖L2(Ω) → 0506

in L2([0, T ]). We may do the same proof concerning
∫ T

0
‖θε‖L2(Ω)‖∇θε‖2L2(Ω)‖ū‖

2
L2(Ω)507

and
∫ T

0
‖θε‖L2(Ω)‖∇θε‖2L2(Ω)‖θ̄‖

2
L2(Ω).508

Therefore,
∫ T

0
(1 + ‖θεk‖L2(Ω)‖∇θεk‖2L2(Ω) + g1)‖ū‖2L2(Ω)) −−−−−→εk→+∞

0 and
∫ T

0
(gθ1 +509

1)‖θ̄‖2L2(Ω) −−−−−→εk→+∞
0. It eventually proves that ‖∇(u − uεk)‖L2(0,T ;L2(Ω)) + ‖∇(θ −510

θεk)‖L2(0,T ;L2(Ω)) −−−−−→
k→+∞

0.511

Concerning the pressure, we use once again the inf-sup condition (2.8) on p̄, which512

proves that:513

(2.24)

‖p̄‖L2(Ω) .‖∂tū‖V ′ + ‖ū‖L2(Ω) + ‖h‖‖ū‖L2(Ω) + ‖(h(α)− h(αε))uε‖V ′+
‖B(u,u)− B(uε,uε)‖V ′ + ‖T θ̄‖V ′+
1

2
‖N (u,u− uref)−Nε(uε,uε − uref)‖V ′ .

514

Most of the terms in the right hand side were proved to converge strongly to 0 in515

L2([0, T ]).516

• In the same pattern of proof as in (2.23), one proves easily that (h(α) −517

h(αεk))uεk converges strongly to 0 in L2(0, T ;V ′)518

• Using (2.12), one proves that B(u,u) − B(uεk,uεk) strongly converges to 0519

in L2(0, T ;V ′).520

• Summing (2.13) and (2.15) prove that: ‖N (u,u−uref)−Nε(uε,uε−uref)‖V ′521

. ‖ū‖H1(Ω) + Cε. Since uεk → u strongly in L2(0, T ;H1(Ω)) and Cε → 0,522

this proves that N (u,u− uref)−Nε(uεk ,uεk − uref) converges strongly to 0523

in L2(0, T ;V ′).524

• Finally, in a similar fashion as in [10, Lemma V.1.6], the above bounds prove525

that ∂tū→ 0 strongly in L2(0, T ;V ′).526

Therefore, all the convergence results above prove that, up to a subsequence, pε → p527

strongly in L2(0, T ;L2(Ω)). Owning to Urysohn’s subsequence principle and the528

uniqueness of the solution to (WF), we actually obtain that the whole sequence529

(uε, θε, pε) strongly converges toward (u, θ, p).530

3. Optimal control and necessary conditions. We now begin the analysis of531

the optimal control problems (OPT) and (OPTe). Let us detail first some assumptions532

made on the objective functional:533

Assumptions 3.1. • For d = 2, J is lower semi-continuous with respect to534

the (weak-*, strong, strong, strong) topology of Uad × L2(0, T ;V u)× L2(0, T ;535

V θ)× L2(0, T ;L2(Ω)).536

• In dimension 3, J is either lower semi-continuous with respect to the (weak-537

*, strong, strong, weak) topology of Uad × L2(0, T ;Hu) × L2(0, T ;Hθ) ×538
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L2(0, T ;L2(Ω)), or lower semi-continuous with respect to the (weak-*, weak,539

weak, weak) topology of Uad × L2(0, T ;V u)× L2(0, T ;V θ)× L2(0, T ;L2(Ω)).540

The existence of solutions to (OPTe) and (OPT) is rather classical and we refer541

for instance to [20, 31, 33]. We state a first result that let us see that a solution of542

(OPT) can be approximated by (OPTe).543

Theorem 3.2. Assume Assumptions 3.1 is verified. Let (α∗ε ,uε, θε, pε) be a glob-544

ally optimal solution of (OPTe). Then (α∗ε) ⊂ Uad is a bounded sequence. Further-545

more, there exists (α∗,u∗, θ∗, p∗) ∈ Uad×L2(0, T ;V u)×L2(0, T ;V θ)×L2(0, T ;L2(Ω))546

such that a subsequence of (α∗ε ,uε, , θε, pε) converges to (α∗,u∗, θ∗, p∗) in the topol-547

ogy of Assumptions 3.1, and for all (α,u, θ, p) in Uad×L2(0, T ;V u)×L2(0, T ;V θ)×548

L2(0, T ;L2(Ω)): J (α∗,u∗, θ∗, p∗) ≤ J (α,u, θ, p). Hence, any accumulation point of549

(α∗ε ,uε, θε, pε) is a globally optimal solution of (OPT).550

Proof. The proof can be adapted from [20, Theorem 15] or [31, Theorem 3].551

However, the fact that this only concerns global solutions may appear restrictive.552

Under an additional assumption, we can state a slightly stronger result.553

Corollary 3.3. Assume Assumptions 3.1 hold. Let α∗ be a local strict solution554

of (OPT), meaning that there exists ρ > 0 such that J (α∗,u∗, θ∗, p∗) < J (α,u, θ, p)555

for all α such that ‖α∗ −α‖BV < ρ. Then, there exists a family of local solution (α∗ε)556

of (OPTe) such that (α∗ε) converges weak-* to α∗.557

Proof. Similar to [35, Theorem 3.14].558

3.1. First order necessary conditions for (OPTe). From now on, we set559

d = 2, in order to have uniqueness of solution of (WFe). We make the following560

assumption on the cost function:561

Assumptions 3.4. Assume d = 2 and J is Fréchet-differentiable.562

We define the sets Wu(0, T ) = {u ∈ L2(0, T ; (V u)); ∂tu ∈ L2(0, T ; (V u)′)}, and563

W θ(0, T ) = {θ ∈ L2(0, T ; (V θ)); ∂tθ ∈ L2(0, T ; (V θ)′)}. Write, in (V u)′ × (V θ)′ ×564

L2(0, T ;L2(Ω)), the equation (WFe) as e(uε, θε, pε, αε) = 0, where e : Wu(0, T ) ×565

W θ(0, T )×L2(0, T ;L2(Ω))×Uad → L2(0, T ; (V u)′)×L2(0, T ;L2(Ω))×L2(0, T ; (V θ)′)566

×Hu ×Hθ is defined as:567

e(uε, θε, pε, αε) =


∂tuε +Auε + B(uε,uε) + h(αε)uε + Pp

+ 1
2Nε(uε,uε − uref)− f − σref

P∗uε
∂tθε −D(uε, θε) + C(αε)θε +Mε(uε, θε)− φ

uε(0, ·)− u0(αε)
θε(0, ·)− θ0(αε)

 .568

The operators Nε and Mε are Fréchet differentiable with the same smoothness as569

the approximation negε. Their derivatives with respect to uε are denoted by duNε :570

Wu(0, T )2 → L(W (0, T ), L2(0, T ; (V u)′)), duMε : Wu(0, T )×W θ(0, T )→571

L(Wu(0, T ), L2(0, T ; (V θ)′)), defined by:572

duNε(u,u− uref)v = Nε(u,v) +N ′(u,u− uref)v,573

574

〈duMε(u, θ)v, ϕ〉(V θ)′,V θ =

∫
Γout

(1 + βneg′ε (u · n)) (v · n)θϕ,575
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where N ′(u,w) is defined by:576

〈N ′(u,w)v,Ψ〉(V u)′,V u =

∫
Γout

neg′ε (u · n) (v · n)w ·Ψ.577

Furthermore, these operators are bounded, as proved in the following lemma:578

Lemma 3.5. Given (uε, θε) solution of (WFe):579

‖duNε(uε,uε − uref)v‖L2(0,T ;(V u)′) ≤ c(‖uε‖L2(0,T ;V u))‖v‖L2(0,T ;V u),580

581
‖duMε(uε, θε)v‖L2(0,T ;(V θ)′) ≤ c(‖θε‖L2(0,T ;V θ))‖v‖L2(0,T ;V u),582

where c(·) is a Lipschitz function.583

Proof. The proof is similar to the proof of Theorem 2.5 from which we infer,584

for Ψ ∈ V , that: 〈Nε(uε,v),Ψ〉V ′,V ≤ ‖uε‖H1(Ω)‖v‖H1(Ω)‖Ψ‖H1(Ω). Due to (A3),585

one has straight away the existence of a constant C > 0 such that: 〈N ′(u,u −586

uref)v,Ψ〉V ′,V ≤ (‖uε‖H1(Ω)‖ + C)‖v‖H1(Ω)‖Ψ‖H1(Ω). Adding the two inequalities587

and dividing by ‖Ψ‖H1(Ω) concludes the proof. The proof of the second inequality588

being similar is thus omitted.589

Using the results of [33, Section 1.8.2], one shows easily that e is Fréchet differ-590

entiable w.r.t. (uε, θε, pε), with derivative given by:591

e′uε,θε,pε(αε)

v
`
q

 =



∂tv +Av + B(v,uε) + B(uε,v) + h(αε)v + Pq + T `
+ 1

2duNε(uε,uε − uref)v
P∗v

∂t`−D(uε, `)−D(v, θε) + C(αε)`+Mε(uε, `)
+duMε(uε, θε)v

v(0, ·)
`(0, ·)


.592

For defining first order conditions (see [33]), a question of interests is to determine593

if, for all g = (gu, gp, gθ,v0, `0) ∈ L2(0, T ; (V u)′)×L2(0, T ; (V θ)′)×L2(0, T ;L2(Ω))×594

Hu ×Hθ, the following linearized equation595

(3.1) e′uε,θε,pε(αε)

v
`
q

 = g596

admits a solution (v, `, q) ∈Wu(0, T )×W θ(0, T )× L2(0, T ;L2(Ω)).597

Theorem 3.6. For all αε ∈ Uad, Eq. (3.1) admits a unique solution. Therefore,598

e′uε,θε,pε(αε) is invertible.599

Sketch of proof. First, notice that using [28, Corollary 2.4], there exists vref ∈600

L2(0, T ;H1
0 (Ω)) such that gp = ∇ · vref. Thus, defining v̄ = v − vref, we bring the601

system back in the framework of a solenoidal vector function v̄. Using Lemma 3.5,602

the proof becomes a simple adaptation of the proof of Theorem 2.5 and [32, Appendix603

A2]. Uniqueness is proved as for Proposition 2.6 (see also [32, Appendix A2]).604

A consequence of Theorem 3.6 is that for all G = (g1, g2, g3) ∈ Wu(0, T )′ ×605

W θ(0, T )′ × L2(0, T ;L2(Ω)), the following adjoint equation admits a unique solution606

Λε = (λu
ε , λ

θ
ε, λ

p
ε , λ

u0
ε , λ

θ0
ε ) ∈ L2(0, T ;V u)×L2(0, T ;V θ)×L2(0, T ;L2(Ω))×Hu×Hθ:607

(3.2) (e′uε,θε,pε(αε))
∗Λε = G,608
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where (e′uε,θε,pε(αε))
∗ denotes the adjoint operator of e′uε,θε,pε(αε).609

After some calculations, equation (3.2) is equivalent to solve, for all (v, `, q) ∈610

Wu(0, T )×W θ(0, T )× L2(0, T ;L2(Ω)), the following variational problem:611

(3.3)

〈−∂tλu
ε +Aλu

ε + (∇uε)
ᵀλu

ε + B(uε, λ
u
ε ) + h(αε)λ

u
ε + Pλpε −D1(θε)λ

θ
ε

+Nε(uε, λu
ε ) + (N ′ε(uε,uε − uref))∗λu

ε

+N2(uε, λ
u
ε ) + (duMε(uε, θε))

∗
λθε,v〉W (0,T )′,W (0,T )

+ 〈v(0, ·), λu0
ε 〉H

= 〈g1,v〉Wu(0,T )′,Wu(0,T ),

〈P∗λu
ε , q〉L2(0,T ;L2(Ω)) = 〈g2, q〉L2(0,T ;L2(Ω))

〈−∂tλθε + T ∗λu
ε + C(αε)λθε −D2(uε)λ

θ
ε +Mε(uε)

∗λθε, `〉W θ(0,T )′,W θ(0,T )

= 〈g3, `〉W θ(0,T )′,W θ(0,T )

612

where 〈D(θ,u), ϕ〉 = 〈D1(θ)ϕ,u〉 = 〈D2(u)ϕ, θ〉, 〈Mε(u)θ, ϕ〉 = 〈Mε(u)ϕ, θ〉613

=
∫

Γout
((u · n) + βnegε (u · n)) θϕ, and 〈N2(uε, λ

u
ε ),v〉 =

∫
Γout

(uε · n)λu
ε · v. This614

equation, in turn, is the weak formulation of:615

(3.4a)

− ∂tλu
ε −A∆λu

ε + h(αε)λ
u
ε +∇λpε + (∇uε)

ᵀλu
ε − (uε · ∇)λu

ε − θε∇λθε = g1

∇ · λu
ε = g2

− ∂tλθε +Bλu
ε · ey −∇ · (Ck(αε)∇λθε)−∇ · (uελθε) = g3

λu
ε Γw∪Γin

= 0,

λθε Γin
= 0,

∂nλ
θ
ε Γw

= 0,

A∂nλ
u
ε − nλpε Γout

=

(
1

2
negε (uε · n) + (uε · n)

)
λu
ε + (1 + βµε)θελ

θ
εn

+
1

2
µε
(
(uε − uref) · λu

ε

)
n,

Ck(αε)∂nλ
θ
ε + βλθεnegε (uε · n) Γout

= 0

λu
ε (T ) = 0, λθε(T ) = 0,

616

617

(3.4b) µε = neg′ε (uε · n)618

and, as shown in a similar fashion in [32], λu0
ε = λu

ε (0, ·), λθ0ε = λθε(0, ·).619

An other consequence of Theorem 3.6 is that we can apply [33, Corollary 1.3]620

which states that at any local solution (α∗ε ,u
∗
ε, θ
∗
ε , p
∗
ε) of (OPTe), the following opti-621

mality conditions hold:622

Theorem 3.7. Let α∗ε be an optimal solution of (OPTe) with associated states623

(u∗ε, θ
∗
ε , p
∗
ε). Then there exists adjoint states (λu

ε , λ
θ
ε, λ

p
ε) ∈ L2(0, T ;V u)×L2(0, T ;V θ)624

×L2(0, T ;L2(Ω)) such that, denoting (λu0
ε , λ

θ0
ε ) = (λu

ε (0, ·), λθε(0, ·)) and Λε = (λu
ε , λ

θ
ε,625

λpε , λ
u0
ε , λ

θ0
ε ):626

(3.5)

e(α∗ε ,u
∗
ε, θ
∗
ε , p
∗
ε) = 0,

J ′u∗ε ,θ∗ε ,p∗ε (α∗ε) + (eu∗ε ,θ∗ε ,p∗ε (α∗ε)
′)∗Λε = 0,〈

J ′α∗ε (u∗ε, θ
∗
ε , p
∗
ε) + (eα∗ε (u∗ε, θ

∗
ε , p
∗
ε)
′)∗Λε, α− α∗ε

〉
U ′ad,Uad

≥ 0, ∀α ∈ Uad,

αε ∈ Uad.

627
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Remark 3.8. As stated in [33, Eq. (1.89)], since e and J are Fréchet differ-628

entiable, the mapping αε 7→ Ĵ (αε) = J (αε,uε, pε) is Fréchet differentiable, and629

Ĵ ′(αε) = J ′α∗ε (u∗ε, θ
∗
ε , p
∗
ε) + (eα∗ε (u∗ε, θ

∗
ε , p
∗
ε))
∗Λε, which reads as:630

(eα∗ε (u∗ε, θ
∗
ε , p
∗
ε))
∗Λε =

∫ T

0

(
h′(αε)uε · λu

ε + Ck′(αε)∇θε · ∇λθε
)

+ u′0(αε) · λu0
ε + θ′0(αε)λ

θ0
ε .

631

3.2. Limit adjoint system. To conclude this paper, we will now study the con-632

vergence of the adjoint states (λu
ε , λ

θ
ε, λ

p
ε) to functions (λu, λθ, λp). The only trouble633

concerns the multiplier µε defined in (3.4b). We will prove that at the limit, µ is634

defined thanks to the convex-hull of the Heaviside function H : R ( [0, 1], defined as:635

(3.6) H(u) =


{0} if u < 0,

{1} if u > 0,

[0, 1] if u = 0.

636

As we will prove in this section, these limit adjoint states (λu, λθ, λp) let us define637

necessary conditions of optimality for the unrelaxed problem (OPT).638

Lemma 3.9. Let (αε) ⊂ Uad and α ∈ Uad such that αε
∗
⇀ α. Define by (λu

ε , λ
θ
ε, λ

p
ε)639

a weak solution of (3.4) parametrized by αε. Then, there exists (λu, λθ, λp) ∈ L∞(0, T ;640

Hu) ∩ L2(0, T ;V u)× L∞(0, T,Hθ) ∩ L2(0, T ;V θ)× L∞(0, T ;L2(Ω)) such that, up to641

a subsequence:642

• λu
ε → λu in L∞(0, T ; (L2(Ω))2) and λθε → λθ in L∞(0, T ;L2(Ω)),643

• λu
ε −−−−−→

ε→+∞
λu in L2(0, T ; (H1(Ω))2) and λθε −−−−−→

ε→+∞
λθ in L2(0, T ; (H1(Ω))),644

• λu
ε −−−−−→

ε→+∞
λu in L2(0, T ; (L2(Γ))2) and λθε −−−−−→

ε→+∞
λθ in L2(0, T ; (L2(Γ))),645

• λpε → λp in L2(0, T ;L2(Ω)).646

Furthermore, there exists µ ∈ L∞(0, T ;L∞(Γout)) defined by −µ(x) ∈ H(−u(x) ·647

n(x)) a.e. in Γout such that (λu, λθ, λp) is a weak solution to (3.4a) parametrized by648

α and µ.649

Proof. The proof is very similar to the ones presented in section 2.650

• In a similar manner as for Proposition 2.2 and Proposition 2.3, one shows651

that, for all σ ∈ [0, 1
6 ), there exist constants cθλ(σ) and cuλ(σ), independent of652

ε, such that:653

sup
[0,T ]

‖λu
ε ‖L2(Ω) +

∫ T

0

‖∇λu
ε ‖L2(Ω) +

∫
R
|τ |2σ

∥∥∥F (
λ̃u
ε

)∥∥∥
L2(Ω)

dτ ≤ cuλ(σ),654

655

sup
[0,T ]

‖λθε‖L2(Ω) +

∫ T

0

‖∇λθε‖L2(Ω) +

∫
R
|τ |2σ

∥∥∥F (
λ̃θε

)∥∥∥
L2(Ω)

dτ ≤ cθλ(σ).656

• These bounds prove a weaker set of convergence in the same manner as in657

Theorem 2.5. Since once again, we set d = 2, one proves the strong conver-658

gence stated above as in Corollary 2.7.659

We only need to prove that (λu, λθ, λp) is a weak solution to (3.4a). The terms660

〈(N ′ε(uε,uε−uref))∗λu
ε and (duMε(uε, θε))

∗
λθε,v〉Wu(0,T )′,Wu(0,T ) need a more thor-661

ough examination. We start with the first term for which we have662

〈(N ′ε(uε,uε − uref))∗λu
ε ,v〉Wu =

∫ T

0

∫
Γout

neg′ε (uε · n)
(
(uε − uref) · λu

ε

)
n · v.663
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Thanks to assumptions (A3) and (A4) and uε → u pointwise a.e. in Γ (due to664

strong convergence in L2([0, T ]×Γ)), there is a subsequence (not relabeled) such that665

neg′ε (uε · n)
∗
⇀ µ in L∞(0, T ;L∞(Γout)), and such that 0 ≤ µ ≤ 1 a.e. in Γout and666

µ = 1 a.e. in {x ∈ Γout, u(x) · n(x) > 0}, µ = 0 a.e. in {x ∈ Γout, u(x) · n(x) < 0}.667

Furthermore, due to the convergence presented above,
(
(uε − uref) · λu

ε

)
→ ((u−uref)·668

λu) in L1(0, T ;L1(Γout)). Therefore, it proves that:669

〈(N ′ε(uε,uε − uref))∗λu
ε ,v〉Wu(0,T )′,Wu(0,T ) →

∫ T

0

∫
Γout

µ
(
(u− uref) · λu

)
n · v.670

Similarly, one proves that:671

〈(duMε(uε, θε))
∗
λθε,v〉Wu(0,T )′,Wu(0,T ) →

∫ T

0

∫
Γout

(1 + βµ) (v · n)θλθ.672

All other terms in (3.3) are easily proved to converge in the same manner as in673

Theorem 2.5. Therefore, (λu, λθ, λp) is a weak solution to (3.4a) parametrized by α674

and µ.675

We may now prove the final result of this paper ; namely the necessary optimality676

conditions of (OPT).677

Theorem 3.10. Let α∗ be an optimal solution of (OPT) with associated state678

u∗, θ∗, p∗. Then there exist a multiplier µ ∈ L∞(0, T ;L∞(Γout)) and adjoint states679

(λu, λθ, λp) ∈ L2(0, T ;V u) × L2(0, T ;V θ) × L2(0, T ;L2(Ω)) solution of (3.4a) such680

that, denoting (λu0 , λθ0) = (λu(0, ·), λθ(0, ·)) and Λ = (λu, λθ, λp, λu0 , λθ0):681

〈J ′α∗(u∗, θ∗, p∗) + (eα∗(u
∗, θ∗, p∗)′)∗Λ, α− α∗〉U ′ad,Uad ≥ 0, ∀α ∈ Uad.682

Proof. The proof follows the lines of [17, Theorem 4.4]. Denote by Sε the solution683

operator which to α associates the solution of the relaxed equations (WFe) and by S684

the solution operator which to α associates the solution of (WF). For some ρ > 0,685

consider the auxiliary optimal control problem:686

(3.7)

min Fε(αε) = J (αε,uε, θε, pε) +
1

2
‖α∗ − αε‖2L2(Ω)

s.t.


(uε, θε, pε) = Sε(αε),

αε ∈ Uad,
‖αε − α∗‖L2(Ω) ≤ ρ.

687

Since αε and α∗ are both in Uad, they are both bounded in L∞(Ω) and therefore,688

‖α∗ − αε‖L2(Ω) is well defined. It is classical to show that (3.7) admits a global689

minimizer α∗ε ∈ Uad.690

Using (2.22) and (2.24) (but with αε ≡ α), one proves that (in the norm of the691

topology from Assumptions 3.1 with d = 2):692

(3.8) ‖S(α)− Sε(α)‖ . Cε, ∀α ∈ Uad,693

where Cε has been defined in (2.14).694

Note that due to the Fréchet-differentiability of J supposed in Assumptions 3.4695

and (3.8), it holds, for ε large enough:696

|J (α, S(α))− J (α, Sε(α))| . Cε, ∀α ∈ Uad, ‖α− α∗‖ ≤ ρ.697
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We obtain as a consequence that Fε(α
∗) . Cε + J (α∗, S(α∗)), and:698

Fε(α) & −Cε + J (α∗, S(α∗)) +
1

2
‖α− α∗‖2L2(Ω), ∀α ∈ Uad, ‖α− α∗‖L2(Ω) ≤ ρ.699

Therefore, for all α ∈ Uad such that ‖α− α∗‖L2(Ω) ≤ ρ:700

Fε(α
∗) . Cε + J (α∗, S(α∗)) . Cε + J (α, S(α)) . 2Cε + Fε(α).701

Hence, for some constant C ′, and denoting C ′ε = C ′Cε, one has the implication:702

∀α ∈ Uad, 2C ′ε <
1

2
‖α− α∗‖2L2(Ω) ≤

1

2
ρ2 =⇒ Fε(α

∗) < Fε(α).703

One has therefore the following necessary condition of optimality:704

(3.9) ‖α∗ε − α∗‖L2(Ω) ≤
√

4C ′ε.705

Hence, for ε large enough, α∗ε is in the ρ-ball around α∗ ; therefore, α∗ε is a local706

solution of (OPTe). Using Theorem 3.7, one then proves that there exists adjoint707

states (λu
ε , λ

θ
ε, λ

p
ε) solution of (3.4a) such that, for all α ∈ Uad:708

(3.10)〈
J ′α∗ε (u∗ε, θ

∗
ε , p
∗
ε) + (eα∗ε (u∗ε, θ

∗
ε , p
∗
ε)
′)∗Λε, α− α∗ε

〉
U ′ad,Uad

+ 〈α∗ε − α∗, α− α∗ε〉L2(Ω) ≥ 0.709

From (3.9), one has α∗ε → α∗ strongly in L2(Ω), and therefore, in L1(Ω). Since710

(α∗ε − α∗)ε ⊂ Uad, one has also (α∗ε − α∗)ε bounded in BV (Ω). Hence, α∗ε
∗
⇀ α∗ in711

Uad. Using then Corollary 2.7, Assumptions 3.1 and Lemma 3.9, we can pass to the712

limit in (3.10), which concludes this proof.713
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of natural convection flow in a double-skin façade. Energy and Buildings, 50:229–233, 2012.816

[42] D. Ramalingom, P.-H. Cocquet, and A. Bastide. Numerical study of natural convection in817
asymmetrically heated channel considering thermal stratification and surface radiation.818
Numerical Heat Transfer, Part A: Applications, 72(9):681–696, 2017.819

[43] D. Ramalingom, P.-H. Cocquet, R. Maleck, and A. Bastide. A multi-objective optimization820
problem in mixed and natural convection for a vertical channel asymmetrically heated.821
Structural and Multidisciplinary Optimization, 60(5):2001–2020, 2019.822

[44] Delphine Ramalingom, Pierre-Henri Cocquet, and Alain Bastide. A new interpolation tech-823
nique to deal with fluid-porous media interfaces for topology optimization of heat transfer.824
Computers & Fluids, 168:144–158, 2018.825

[45] A. Schiela and D. Wachsmuth. Convergence analysis of smoothing methods for optimal con-826
trol of stationary variational inequalities with control constraints. ESAIM: Mathematical827
Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique,828
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